

Full wwPDB X-ray Structure Validation Report (i)

Feb 26, 2025 - 04:11 PM EST

PDB ID	:	9EJN
Title	:	Crystal structure of magnesium-transporting ATPase MgtA in an E1-like
		magnesium-bound state
Authors	:	Khan, M.B.; Primeau, J.O.; Basu, P.C.; Morth, J.P.; Lemieux, M.J.; Young,
		H.S.
Deposited on	:	2024-11-28
Resolution	:	3.55 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.21
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.004 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41.4

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.55 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	164625	1261 (3.62 - 3.50)
Clashscore	180529	$1351 \ (3.62-3.50)$
Ramachandran outliers	177936	1336 (3.62 - 3.50)
Sidechain outliers	177891	1337 (3.62-3.50)
RSRZ outliers	164620	1260 (3.62 - 3.50)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	921	73%	23%	•
1	В	921	71%	25%	
1	С	921	73%	23%	·
1	D	921	72%	25%	·

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 27352 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Α	toms			ZeroOcc	AltConf	Trace
1	Δ	880	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	Л	889	6837	4403	1106	1286	42	0	0	U
1	С	880	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	U	009	6837	4403	1106	1286	42	0	0	0
1	В	880	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	D	009	6837	4403	1106	1286	42	0	0	0
1	Л	880	Total	С	Ν	Ο	S	0	0	0
		889	6837	4403	1106	1286	42	0	0	U

• Molecule 1 is a protein called Magnesium-transporting ATPase, P-type 1.

There are 76 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-10	MET	-	initiating methionine	UNP A0A1V0NGB6
А	-9	HIS	-	expression tag	UNP A0A1V0NGB6
А	-8	HIS	-	expression tag	UNP A0A1V0NGB6
А	-7	HIS	-	expression tag	UNP A0A1V0NGB6
А	-6	HIS	-	expression tag	UNP A0A1V0NGB6
А	-5	HIS	-	expression tag	UNP A0A1V0NGB6
А	-4	HIS	-	expression tag	UNP A0A1V0NGB6
А	-3	HIS	-	expression tag	UNP A0A1V0NGB6
А	-2	HIS	-	expression tag	UNP A0A1V0NGB6
А	-1	LEU	-	expression tag	UNP A0A1V0NGB6
А	0	GLU	-	expression tag	UNP A0A1V0NGB6
А	216	ALA	ASP	conflict	UNP A0A1V0NGB6
А	217	ALA	GLU	conflict	UNP A0A1V0NGB6
А	218	ALA	LYS	conflict	UNP A0A1V0NGB6
А	219	ALA	ASP	conflict	UNP A0A1V0NGB6
А	220	ALA	ASP	conflict	UNP A0A1V0NGB6
А	603	ALA	LYS	conflict	UNP A0A1V0NGB6
А	606	ALA	LYS	conflict	UNP A0A1V0NGB6
А	607	ALA	GLU	conflict	UNP A0A1V0NGB6
С	-10	MET	-	initiating methionine	UNP A0A1V0NGB6
С	-9	HIS	-	expression tag	UNP A0A1V0NGB6

Chain	Residue	Modelled	Actual	Comment	Reference
С	-8	HIS	-	expression tag	UNP A0A1V0NGB6
С	-7	HIS	_	expression tag	UNP A0A1V0NGB6
С	-6	HIS	_	expression tag	UNP A0A1V0NGB6
С	-5	HIS	_	expression tag	UNP A0A1V0NGB6
С	-4	HIS	-	expression tag	UNP A0A1V0NGB6
С	-3	HIS	-	expression tag	UNP A0A1V0NGB6
С	-2	HIS	-	expression tag	UNP A0A1V0NGB6
С	-1	LEU	-	expression tag	UNP A0A1V0NGB6
С	0	GLU	-	expression tag	UNP A0A1V0NGB6
С	216	ALA	ASP	conflict	UNP A0A1V0NGB6
С	217	ALA	GLU	conflict	UNP A0A1V0NGB6
С	218	ALA	LYS	conflict	UNP A0A1V0NGB6
С	219	ALA	ASP	conflict	UNP A0A1V0NGB6
С	220	ALA	ASP	conflict	UNP A0A1V0NGB6
С	603	ALA	LYS	conflict	UNP A0A1V0NGB6
С	606	ALA	LYS	conflict	UNP A0A1V0NGB6
С	607	ALA	GLU	conflict	UNP A0A1V0NGB6
В	-10	MET	-	initiating methionine	UNP A0A1V0NGB6
В	-9	HIS	-	expression tag	UNP A0A1V0NGB6
В	-8	HIS	-	expression tag	UNP A0A1V0NGB6
В	-7	HIS	-	expression tag	UNP A0A1V0NGB6
В	-6	HIS	-	expression tag	UNP A0A1V0NGB6
В	-5	HIS	-	expression tag	UNP A0A1V0NGB6
В	-4	HIS	-	expression tag	UNP A0A1V0NGB6
В	-3	HIS	-	expression tag	UNP A0A1V0NGB6
В	-2	HIS	-	expression tag	UNP A0A1V0NGB6
В	-1	LEU	-	expression tag	UNP A0A1V0NGB6
В	0	GLU	-	expression tag	UNP A0A1V0NGB6
В	216	ALA	ASP	conflict	UNP A0A1V0NGB6
В	217	ALA	GLU	conflict	UNP A0A1V0NGB6
В	218	ALA	LYS	conflict	UNP A0A1V0NGB6
В	219	ALA	ASP	conflict	UNP A0A1V0NGB6
В	220	ALA	ASP	conflict	UNP A0A1V0NGB6
В	603	ALA	LYS	conflict	UNP A0A1V0NGB6
В	606	ALA	LYS	conflict	UNP A0A1V0NGB6
В	607	ALA	GLU	conflict	UNP A0A1V0NGB6
D	-10	MET	-	initiating methionine	UNP A0A1V0NGB6
D	-9	HIS	-	expression tag	UNP A0A1V0NGB6
D	-8	HIS	-	expression tag	UNP A0A1V0NGB6
D	-7	HIS	-	expression tag	UNP A0A1V0NGB6
D	-6	HIS	-	expression tag	UNP A0A1V0NGB6
D	-5	HIS	-	expression tag	UNP A0A1V0NGB6

Chain	Residue	Modelled	Actual	Comment	Reference
D	-4	HIS	-	expression tag	UNP A0A1V0NGB6
D	-3	HIS	-	expression tag	UNP A0A1V0NGB6
D	-2	HIS	-	expression tag	UNP A0A1V0NGB6
D	-1	LEU	-	expression tag	UNP A0A1V0NGB6
D	0	GLU	-	expression tag	UNP A0A1V0NGB6
D	216	ALA	ASP	conflict	UNP A0A1V0NGB6
D	217	ALA	GLU	conflict	UNP A0A1V0NGB6
D	218	ALA	LYS	conflict	UNP A0A1V0NGB6
D	219	ALA	ASP	conflict	UNP A0A1V0NGB6
D	220	ALA	ASP	conflict	UNP A0A1V0NGB6
D	603	ALA	LYS	conflict	UNP A0A1V0NGB6
D	606	ALA	LYS	conflict	UNP A0A1V0NGB6
D	607	ALA	GLU	conflict	UNP A0A1V0NGB6

• Molecule 2 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total Mg 1 1	0	0
2	С	1	Total Mg 1 1	0	0
2	В	1	Total Mg 1 1	0	0
2	D	1	Total Mg 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Magnesium-transporting ATPase, P-type 1

MET HISS HHISS HHISS HHISS HHISS HHISS HHISS HHISS HISS HISS

4198 K210 K210 1213 R225 R226 R226 R249 R249 R249 R249 R249 R249 R249 R249 R249 R261 R261 R261 R261 R269 R271 R269 R271 R269 R271 R269 R271 R269 R271 R269 R271 R269 R271 R269 R271 R269 R271 R269 R271 R269 R271 R269 R271 R260 R269 R271 R260 R260 R260 R271 R260 R271 R260 R271 R260 R271 R260 R271 R260 R271 R260 R260 R271 R260 R260 R260 R260 R260 R271 R260
H376 H376 H377 1389 1389 H388 H388 H388 H388 H388 H388 H388 H
1405 1405 1405 1405 1503 1503 1503 1514 1510 1514 1514 1514 1514 1514 1514
L614 L614 N631 S632 N631 N631 N631 N636 N650 N650 L653 L653 N664 A700 S701 L711 L711 N726 L733 L732 L733 L732 L732 L732 L732 L732
18114 18114 18114 18117 18225 18226 18226 18226 18226 18226 18226 18226 18226 18226 18226 18266 18259 18250 18266 18267 18266 18266 18267 18266 18267 18266 18267 18266 18266 18267 18266 18267 18267 18267 18267 18267 18267 18267 18267 18267 18267 1827 18267 18276
• Molecule 1: Magnesium-transporting ATPase, P-type 1
Chain B: 71% 25% · ·
MET HIS HIS HIS HIS HIS HIS HIS HIS HIS HIS
R58 R58 R56 R56 R73 R73 R73 R73 R166 R112 R112 R112 R112 R112 R112 R112
1223 N227 A229 A229 A240 F253 C332 C332 C332 C332 F261 F261 F261 F367 C328 C321 C322 F365 F361 F364 F361 F365 F363 F364 F364 F364 F364 F365 F365 F365 F365 F365 F365 F366 F365 F365
D378 D378 1379 1379 1386 1386 1386 1386 1388 1388 1388 1388
R5 02 1495 1496 1496 1496 1496 1496 1496 1496 1496 1496 1496 1496 1496 1496 1503 1504 1511 1511 1511 1511 1521 1521 1523 1524 1524 1534 1534 1534 1534 1534 1534 1534 1534 1534 1534 1534 1534 1545 1554 1553 1554 1553 1553 1553 1553 1553 1553 1553 1553
1593 1601 1601 1601 8609 8609 8615 8615 8615 8629 8616 8616 8626 8629 8629 8626 8629 8626 8629 8624 8641 1653 8643 8644 8655 8643 8644 1655 8654 1655 8665 8665 8665 8665 8665 8665 8665
R7 55 W757 W757 W757 W757 M757 M757 M84 1769 M84 1788 883 8833 M824 1824 1824 1824 1823 1824 1824 1823 1823 1823 1823 1823 1823 1823 1823
T1887 V888 W889 M992 M992 M992 M992 M992 M992 M992 L910
• Molecule 1: Magnesium transporting ATPage D type 1

sportii type 1 ecule 1. Magi iesium-tran ıg п ΤT

Chain D:

72%

25%

•

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	180.40Å 66.59 Å 218.67 Å	Depositor
a, b, c, α , β , γ	90.00° 90.15° 90.00°	Depositor
$\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$	24.91 - 3.55	Depositor
Resolution (A)	24.91 - 3.55	EDS
% Data completeness	98.5 (24.91-3.55)	Depositor
(in resolution range)	98.2 (24.91-3.55)	EDS
R _{merge}	(Not available)	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.21 (at 3.18 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.21.2_5419	Depositor
B B.	0.288 , 0.339	Depositor
Λ, Λ_{free}	0.293 , 0.344	DCC
R_{free} test set	3137 reflections $(4.97%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	76.0	Xtriage
Anisotropy	0.520	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.28 , 65.3	EDS
L-test for twinning ²	$< L >=0.38, < L^2>=0.21$	Xtriage
Estimated twinning fraction	0.348 for h,-k,-l	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	27352	wwPDB-VP
Average B, all atoms $(Å^2)$	98.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 50.71 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 6.2188e-05. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.25	0/6956	0.45	0/9426	
1	В	0.24	0/6956	0.44	0/9426	
1	С	0.25	0/6956	0.45	0/9426	
1	D	0.25	0/6956	0.44	0/9426	
All	All	0.25	0/27824	0.45	0/37704	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	6837	0	7054	143	0
1	В	6837	0	7054	144	0
1	С	6837	0	7054	143	0
1	D	6837	0	7054	143	0
2	А	1	0	0	0	0
2	В	1	0	0	0	0
2	С	1	0	0	0	0
2	D	1	0	0	0	0
All	All	27352	0	28216	567	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (567) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom-2	Interatomic	Clash
Atom-1		distance (Å)	overlap (Å)
1:A:48:GLY:H	1:A:156:LEU:HD21	1.31	0.94
1:A:50:SER:H	1:A:156:LEU:HD22	1.37	0.88
1:A:210:LYS:NZ	1:A:224:GLU:O	2.14	0.79
1:A:826:THR:HG22	1:A:852:THR:HG23	1.62	0.79
1:B:331:LYS:HG2	1:B:742:PRO:HB3	1.64	0.79
1:C:837:ILE:H	1:C:841:GLN:HE21	1.31	0.78
1:A:45:SER:HB2	1:A:173:ILE:HD11	1.66	0.77
1:B:834:THR:HG22	1:B:836:LYS:H	1.48	0.77
1:C:379:ILE:HG23	1:C:495:ILE:HD11	1.67	0.76
1:D:41:LYS:HE3	1:D:45:SER:HB2	1.66	0.75
1:C:49:LEU:HB3	1:C:156:LEU:HD13	1.68	0.75
1:C:50:SER:HA	1:C:53:GLN:HB3	1.68	0.74
1:B:102:ILE:HD12	1:B:112:PRO:HB3	1.69	0.72
1:A:389:ARG:NH2	1:A:430:TYR:OH	2.23	0.72
1:B:362:LYS:HD3	1:B:573:THR:HG22	1.70	0.72
1:B:69:GLY:H	1:B:258:LYS:HA	1.54	0.71
1:C:194:LEU:HD23	1:C:210:LYS:HB2	1.70	0.71
1:C:288:VAL:HG13	1:C:309:ALA:HB1	1.73	0.71
1:D:288:VAL:HG13	1:D:309:ALA:HB1	1.73	0.71
1:D:508:ARG:HG3	1:D:572:VAL:HG11	1.73	0.70
1:A:822:MET:SD	1:A:859:LEU:HD13	2.32	0.70
1:A:385:ILE:HD12	1:A:420:ASN:HD22	1.56	0.69
1:C:35:LYS:HG3	1:C:189:ILE:HD11	1.75	0.69
1:B:189:ILE:HG22	1:B:190:GLN:HG2	1.74	0.69
1:A:421:PRO:HB2	1:B:553:LYS:HB3	1.74	0.69
1:C:438:PHE:HB2	1:C:445:MET:HB3	1.74	0.69
1:B:379:ILE:HD13	1:B:478:VAL:HG13	1.75	0.69
1:B:499:VAL:HG13	1:B:509:VAL:HG21	1.75	0.69
1:D:213:LEU:O	1:D:227:ASN:ND2	2.25	0.69
1:A:48:GLY:N	1:A:156:LEU:HD21	2.06	0.69
1:A:567:GLY:HA2	1:A:614:LEU:H	1.58	0.68
1:A:201:LEU:HG	1:A:202:THR:HG23	1.76	0.68
1:D:155:ARG:H	1:D:159:GLY:HA2	1.57	0.68
1:D:616:PRO:HB3	1:D:641:ASN:HB2	1.77	0.67
1:B:548:THR:HG22	1:B:549:ALA:H	1.59	0.67
1:A:98:ALA:HB2	1:A:115:LEU:HD21	1.76	0.66
1:A:176:LEU:HB3	1:A:235:VAL:HG21	1.77	0.66

	louo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:174:ILE:HD13	1:D:183:PRO:HG2	1.78	0.66
1:C:375:ARG:HB2	1:C:539:ALA:HB3	1.77	0.66
1:C:112:PRO:O	1:C:114:GLY:N	2.29	0.65
1:D:384:ASN:ND2	1:D:480:ASP:OD2	2.28	0.65
1:C:90:LEU:HB3	1:C:122:VAL:HG22	1.77	0.65
1:D:567:GLY:HA2	1:D:614:LEU:H	1.60	0.65
1:C:567:GLY:HA2	1:C:614:LEU:H	1.61	0.65
1:B:834:THR:HG21	1:B:842:SER:HB3	1.78	0.65
1:D:267:THR:HG23	1:D:271:LYS:HD3	1.77	0.65
1:D:364:GLY:O	1:D:545:LYS:NZ	2.29	0.65
1:C:378:ASP:HB3	1:C:384:ASN:HB2	1.77	0.65
1:B:580:VAL:HG23	1:B:582:LEU:HD13	1.78	0.65
1:C:485:VAL:HG12	1:C:486:HIS:H	1.61	0.64
1:B:435:GLU:HG3	1:B:447:VAL:HG12	1.78	0.64
1:B:288:VAL:HG13	1:B:309:ALA:HB1	1.78	0.64
1:D:822:MET:SD	1:D:826:THR:OG1	2.55	0.64
1:B:730:LEU:HB2	1:B:818:PHE:HE1	1.63	0.64
1:B:378:ASP:OD1	1:B:382:GLN:N	2.27	0.64
1:B:694:LYS:HG2	1:B:910:LEU:HD22	1.79	0.64
1:A:112:PRO:O	1:A:114:GLY:N	2.31	0.64
1:B:733:ILE:HD12	1:B:859:LEU:HD13	1.79	0.63
1:B:456:ALA:HB3	1:B:459:LYS:HE3	1.80	0.63
1:A:368:GLN:HE21	1:A:543:PRO:HB2	1.64	0.63
1:A:474:ILE:HG23	1:A:530:SER:HA	1.80	0.63
1:A:515:LYS:HB2	1:A:532:MET:HG2	1.80	0.63
1:A:663:LYS:HA	1:A:669:ILE:HD11	1.81	0.63
1:B:472:LEU:HD23	1:B:492:ARG:HG3	1.81	0.62
1:A:378:ASP:OD1	1:A:382:GLN:N	2.31	0.62
1:A:189:ILE:HG22	1:A:190:GLN:HE21	1.65	0.62
1:D:44:THR:O	1:D:47:LYS:NZ	2.31	0.62
1:A:888:VAL:O	1:A:892:MET:HG2	2.00	0.62
1:A:448:VAL:HG22	1:A:462:MET:HG3	1.81	0.62
1:D:694:LYS:NZ	1:D:744:ASP:OD2	2.31	0.62
1:A:132:GLN:NE2	1:A:326:THR:OG1	2.33	0.61
1:A:511:LEU:HD22	1:A:534:LEU:HD11	1.82	0.61
1:A:586:LYS:HE3	1:A:588:ILE:HD11	1.83	0.61
1:C:45:SER:HB3	1:C:156:LEU:HD21	1.81	0.61
1:A:695:TYR:OH	1:A:735:ASP:OD2	2.17	0.61
1:B:615:SER:HB2	1:B:617:GLN:HE21	1.65	0.61
1:A:26:ARG:NH1	1:A:245:ILE:O	2.34	0.61
1:B:50:SER:HB3	1:B:53:GLN:HB3	1.83	0.61

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:132:GLN:NE2	1:B:326:THR:OG1	2.33	0.60
1:D:35:LYS:HZ2	1:D:189:ILE:HD12	1.67	0.60
1:C:249:ASP:HA	1:C:254:GLY:HA3	1.83	0.60
1:C:733:ILE:HD12	1:C:859:LEU:HD13	1.82	0.60
1:C:174:ILE:HB	1:C:186:LEU:HD21	1.84	0.60
1:B:454:ASN:O	1:B:459:LYS:NZ	2.34	0.60
1:D:520:PRO:O	1:D:521:ILE:HB	2.01	0.60
1:D:188:ILE:HG22	1:D:212:ASP:HB2	1.83	0.60
1:A:867:PHE:CE1	1:A:871:ILE:CG2	2.86	0.59
1:D:375:ARG:HB2	1:D:539:ALA:HB3	1.83	0.59
1:D:437:PRO:O	1:D:442:ARG:NH2	2.35	0.59
1:A:694:LYS:NZ	1:A:744:ASP:OD2	2.36	0.59
1:C:50:SER:HB3	1:C:54:VAL:HG23	1.83	0.59
1:B:526:VAL:HG23	1:B:527:GLN:HE21	1.67	0.59
1:C:720:ILE:O	1:C:814:HIS:NE2	2.35	0.59
1:D:471:MET:HG2	1:D:511:LEU:HB2	1.85	0.59
1:A:186:LEU:HD21	1:A:242:GLY:HA3	1.84	0.59
1:C:478:VAL:HG12	1:C:479:GLU:H	1.67	0.59
1:C:43:LYS:O	1:C:45:SER:N	2.34	0.59
1:D:720:ILE:O	1:D:814:HIS:NE2	2.36	0.59
1:B:267:THR:HA	1:B:271:LYS:HD2	1.85	0.59
1:B:393:LEU:HD21	1:B:426:LEU:HD22	1.84	0.59
1:B:221:SER:O	1:B:223:THR:N	2.36	0.58
1:D:476:THR:HG23	1:D:477:LEU:HD12	1.86	0.58
1:A:436:ILE:HB	1:A:446:SER:HB2	1.85	0.58
1:A:867:PHE:CE1	1:A:871:ILE:HG23	2.38	0.58
1:B:567:GLY:HA2	1:B:614:LEU:H	1.68	0.58
1:C:826:THR:HG22	1:C:852:THR:HG23	1.86	0.58
1:D:23:ILE:HD11	1:D:26:ARG:HH11	1.69	0.58
1:B:38:LEU:HB3	1:B:42:PHE:HB3	1.86	0.58
1:D:153:VAL:HG22	1:D:174:ILE:HG12	1.85	0.58
1:D:888:VAL:O	1:D:892:MET:HG2	2.03	0.58
1:A:361:ASP:OD1	1:A:362:LYS:N	2.34	0.57
1:C:357:ILE:HD11	1:C:631:ASN:HD22	1.69	0.57
1:C:545:LYS:O	1:C:548:THR:HG22	2.04	0.57
1:D:111:ASN:HD21	1:D:113:GLN:HB2	1.69	0.57
1:A:468:ALA:HA	1:A:511:LEU:HD12	1.85	0.57
1:C:398:GLN:HG2	1:C:400:GLY:H	1.69	0.57
1:D:799:LEU:HD23	1:D:806:TYR:HA	1.87	0.57
1:C:511:LEU:HD12	1:C:534:LEU:HD11	1.86	0.57
1:B:563:LYS:HD2	1:B:609:SER:HA	1.87	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:439:ASP:HB2	1:C:442:ARG:HG3	1.86	0.57
1:B:826:THR:HG22	1:B:852:THR:HG23	1.86	0.57
1:D:515:LYS:HB2	1:D:532:MET:HG2	1.86	0.56
1:A:826:THR:CG2	1:A:852:THR:HG23	2.33	0.56
1:C:46:ASN:HB3	1:C:154:HIS:HB3	1.88	0.56
1:D:137:GLY:O	1:D:345:ASN:ND2	2.39	0.55
1:B:702:SER:HB3	1:B:825:GLN:HG2	1.86	0.55
1:B:189:ILE:O	1:B:190:GLN:NE2	2.34	0.55
1:A:720:ILE:O	1:A:814:HIS:NE2	2.39	0.55
1:A:288:VAL:HG13	1:A:309:ALA:HB1	1.87	0.55
1:D:50:SER:H	1:D:156:LEU:HG	1.71	0.55
1:B:503:ASN:HB3	1:B:571:LYS:HB2	1.89	0.55
1:B:888:VAL:O	1:B:892:MET:HG2	2.07	0.55
1:A:277:SER:HA	1:A:280:LEU:HD12	1.89	0.54
1:C:132:GLN:NE2	1:C:326:THR:OG1	2.40	0.54
1:A:437:PRO:O	1:A:442:ARG:NH2	2.36	0.54
1:C:50:SER:O	1:C:52:GLU:N	2.40	0.54
1:C:382:GLN:HE21	1:C:383:GLU:HG2	1.71	0.54
1:D:635:TYR:HD2	1:D:646:MET:HG3	1.72	0.54
1:D:596:LEU:HD22	1:D:600:GLU:HG2	1.90	0.54
1:A:678:LEU:O	1:A:682:ILE:HG13	2.07	0.54
1:D:176:LEU:HB3	1:D:235:VAL:HG21	1.90	0.54
1:B:378:ASP:OD1	1:B:381:GLY:N	2.40	0.54
1:D:187:ARG:HB2	1:D:245:ILE:HD13	1.88	0.54
1:D:516:THR:HG22	1:D:517:ASN:H	1.71	0.54
1:A:74:LEU:HA	1:A:77:ARG:HB2	1.90	0.54
1:A:35:LYS:HD2	1:A:189:ILE:HD12	1.90	0.54
1:C:290:PHE:HD2	1:C:711:LEU:HD11	1.72	0.54
1:B:53:GLN:HA	1:B:56:ILE:HG12	1.89	0.54
1:B:384:ASN:O	1:B:387:VAL:HG12	2.08	0.54
1:B:386:ARG:NH1	1:B:535:MET:SD	2.81	0.54
1:D:378:ASP:N	1:D:382:GLN:O	2.32	0.54
1:C:121:MET:CE	1:C:732:LEU:HD11	2.37	0.53
1:C:442:ARG:NH2	1:C:444:ARG:O	2.42	0.53
1:D:196:ILE:HG22	1:D:235:VAL:HA	1.90	0.53
1:B:720:ILE:O	1:B:814:HIS:NE2	2.41	0.53
1:C:888:VAL:O	1:C:892:MET:HG2	2.08	0.53
1:B:66:ILE:HD13	1:B:254:GLY:HA2	1.90	0.53
1:A:822:MET:HE2	1:A:856:ILE:HA	1.90	0.53
1:C:33:SER:HB2	1:C:37:GLU:HB2	1.91	0.53
1:B:81:ALA:O	1:B:84:ASN:ND2	2.42	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:799:LEU:HD23	1:B:806:TYR:HA	1.90	0.53
1:C:38:LEU:HB2	1:C:42:PHE:HB3	1.90	0.52
1:B:345:ASN:ND2	1:B:348:SER:OG	2.42	0.52
1:D:267:THR:O	1:D:350:GLN:NE2	2.37	0.52
1:B:73:SER:H	1:B:76:LYS:HD2	1.75	0.52
1:D:597:ASP:OD1	1:D:598:ASP:N	2.42	0.52
1:A:98:ALA:O	1:A:102:ILE:HG22	2.10	0.52
1:D:45:SER:HB3	1:D:49:LEU:HB2	1.92	0.52
1:D:37:GLU:OE1	1:D:37:GLU:N	2.43	0.52
1:D:881:PHE:O	1:D:885:ILE:HG12	2.10	0.52
1:A:328:CYS:SG	1:A:742:PRO:HG3	2.49	0.52
1:D:189:ILE:HG13	1:D:243:VAL:HG13	1.91	0.52
1:D:384:ASN:O	1:D:387:VAL:HG12	2.10	0.52
1:D:50:SER:HB2	1:D:53:GLN:HB3	1.91	0.51
1:D:89:ILE:HD11	1:D:281:ILE:HG12	1.91	0.51
1:B:117:ILE:O	1:B:121:MET:HG3	2.09	0.51
1:D:605:ALA:HA	1:D:611:PHE:HZ	1.76	0.51
1:A:260:VAL:HG23	1:A:261:THR:H	1.74	0.51
1:C:89:ILE:HG12	1:C:281:ILE:HD11	1.92	0.51
1:C:477:LEU:HB3	1:C:484:VAL:HG22	1.91	0.51
1:D:474:ILE:HG23	1:D:530:SER:HA	1.92	0.51
1:A:500:ASP:HB3	1:A:571:LYS:HE3	1.92	0.51
1:B:174:ILE:HD12	1:B:186:LEU:HD11	1.91	0.51
1:B:430:TYR:HB3	1:B:449:VAL:HG12	1.92	0.51
1:A:194:LEU:HD23	1:A:210:LYS:HB2	1.91	0.51
1:A:819:VAL:HA	1:A:859:LEU:HD21	1.92	0.51
1:C:859:LEU:HD12	1:C:862:ILE:HD12	1.92	0.51
1:D:38:LEU:HD13	1:D:243:VAL:HG21	1.93	0.51
1:D:491:LEU:O	1:D:495:ILE:HG12	2.11	0.51
1:D:558:TYR:HD1	1:D:752:VAL:HA	1.74	0.51
1:A:44:THR:OG1	1:A:45:SER:N	2.43	0.51
1:C:728:LEU:O	1:C:732:LEU:HD13	2.10	0.51
1:C:389:ARG:HH12	1:C:430:TYR:HE2	1.59	0.50
1:C:23:ILE:HD13	1:C:250:ALA:HB1	1.92	0.50
1:C:893:MET:O	1:C:896:THR:HG22	2.11	0.50
1:D:35:LYS:NZ	1:D:189:ILE:HG23	2.26	0.50
1:D:132:GLN:NE2	1:D:326:THR:OG1	2.44	0.50
1:B:52:GLU:O	1:B:56:ILE:HG23	2.12	0.50
1:D:213:LEU:HG	1:D:214:ALA:H	1.76	0.50
1:C:434:ASP:OD1	1:C:435:GLU:N	2.45	0.50
1:D:185:ASP:HB2	1:D:246:ALA:HB3	1.94	0.50

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:64:ASN:HB3	1:C:166:GLU:HA	1.92	0.50	
1:C:95:LEU:O	1:C:99:PHE:N	2.37	0.50	
1:C:187:ARG:HD3	1:C:228:LEU:HD23	1.93	0.50	
1:C:366:LEU:HD12	1:C:564:ILE:HD11	1.92	0.50	
1:B:434:ASP:OD1	1:B:435:GLU:N	2.42	0.50	
1:D:38:LEU:O	1:D:42:PHE:HB3	2.11	0.50	
1:D:695:TYR:OH	1:D:735:ASP:OD2	2.30	0.50	
1:D:730:LEU:HD12	1:D:822:MET:HE2	1.93	0.50	
1:A:335:THR:O	1:A:339:GLU:HG2	2.12	0.50	
1:D:593:ILE:HD13	1:D:622:ILE:HD11	1.93	0.50	
1:D:863:PRO:HG3	1:D:873:LEU:HD13	1.92	0.50	
1:D:154:HIS:HA	1:D:160:SER:H	1.75	0.50	
1:C:35:LYS:O	1:C:42:PHE:HB2	2.12	0.49	
1:C:799:LEU:HD23	1:C:806:TYR:HA	1.93	0.49	
1:D:155:ARG:N	1:D:159:GLY:HA2	2.27	0.49	
1:A:252:ILE:O	1:A:255:GLU:HG3	2.11	0.49	
1:A:576:VAL:O	1:A:580:VAL:HG23	2.12	0.49	
1:A:784:MET:HE2	1:A:784:MET:HA	1.92	0.49	
1:B:188:ILE:HD11	1:B:229:ALA:HB2	1.94	0.49	
1:D:77:ARG:HB3	1:D:130:PHE:HE1	1.76	0.49	
1:D:328:CYS:SG	1:D:742:PRO:HG3	2.52	0.49	
1:C:41:LYS:HD3	1:C:171:GLY:O	2.12	0.49	
1:A:89:ILE:HG12	1:A:281:ILE:HD11	1.93	0.49	
1:B:800:VAL:HG13	1:B:803:SER:HB3	1.95	0.49	
1:B:887:THR:HA	1:B:890:MET:HE2	1.94	0.49	
1:D:46:ASN:HD21	1:D:159:GLY:HA3	1.78	0.49	
1:D:728:LEU:O	1:D:732:LEU:HG	2.12	0.49	
1:B:32:THR:HG22	1:B:216:ALA:HA	1.95	0.49	
1:B:504:GLU:HA	1:B:571:LYS:HB3	1.94	0.49	
1:B:542:ASP:OD1	1:B:542:ASP:N	2.46	0.49	
1:D:194:LEU:HA	1:D:238:GLY:HA3	1.93	0.49	
1:B:345:ASN:ND2	1:B:667:ASP:OD1	2.46	0.48	
1:B:394:ASN:ND2	1:B:463:ILE:O	2.46	0.48	
1:B:432:LYS:HE2	1:B:435:GLU:HB2	1.95	0.48	
1:A:442:ARG:NH1	1:A:529:GLU:OE1	2.46	0.48	
1:C:563:LYS:NZ	1:C:608:ALA:O	2.43	0.48	
1:C:702:SER:HB3	1:C:825:GLN:HG2	1.96	0.48	
1:D:507:MET:HG2	1:D:541:LEU:HB2	1.96	0.48	
1:D:41:LYS:HD3	1:D:171:GLY:O	2.14	0.48	
1:C:378:ASP:OD1	1:C:380:HIS:N	2.47	0.48	
1:B:190:GLN:O	1:B:240:ALA:HA	2.13	0.48	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:277:SER:HA	1:D:280:LEU:HD12	1.96	0.48
1:A:234:ASN:ND2	1:A:661:ILE:HB	2.28	0.48
1:A:691:ASN:HB3	1:A:741:ILE:HG22	1.95	0.48
1:B:601:LEU:HD23	1:B:625:THR:HG21	1.96	0.48
1:C:478:VAL:HG12	1:C:479:GLU:N	2.28	0.48
1:C:722:MET:HG2	1:C:726:HIS:HB2	1.96	0.48
1:C:723:LEU:HB2	1:C:726:HIS:CD2	2.48	0.48
1:C:900:LYS:HD3	1:D:883:TRP:HZ2	1.79	0.48
1:D:366:LEU:HD13	1:D:580:VAL:HG21	1.96	0.48
1:A:435:GLU:HG3	1:A:447:VAL:HG12	1.96	0.47
1:A:867:PHE:CE1	1:A:871:ILE:HG21	2.49	0.47
1:A:869:HIS:HE1	1:A:874:MET:HG3	1.77	0.47
1:C:107:PRO:HA	1:C:110:LYS:HE3	1.96	0.47
1:A:316:LEU:HG	1:A:707:MET:HG3	1.96	0.47
1:C:213:LEU:C	1:C:227:ASN:HD21	2.17	0.47
1:A:31:LYS:HD2	1:A:227:ASN:HB3	1.95	0.47
1:A:380:HIS:CE1	1:A:481:LYS:HG2	2.50	0.47
1:D:465:LYS:HD2	1:D:510:ILE:HD12	1.97	0.47
1:A:831:MET:SD	1:A:838:PRO:HG2	2.54	0.47
1:D:733:ILE:HD12	1:D:859:LEU:HD12	1.97	0.47
1:C:176:LEU:HB3	1:C:235:VAL:HG21	1.97	0.47
1:C:633:VAL:O	1:C:650:ASP:N	2.44	0.47
1:D:393:LEU:HD21	1:D:426:LEU:HD22	1.95	0.47
1:C:460:THR:HB	1:C:518:PRO:HG2	1.97	0.47
1:C:585:ASP:OD1	1:C:585:ASP:N	2.47	0.47
1:D:829:ILE:O	1:D:833:ARG:HG3	2.13	0.47
1:C:542:ASP:OD1	1:C:542:ASP:N	2.48	0.47
1:B:360:THR:HG23	1:B:564:ILE:HD13	1.96	0.47
1:D:46:ASN:OD1	1:D:154:HIS:ND1	2.48	0.47
1:B:29:PHE:HE2	1:B:39:PHE:HD2	1.62	0.46
1:B:58:ARG:HD3	1:B:169:LEU:HD21	1.97	0.46
1:C:87:THR:HG23	1:C:122:VAL:HG13	1.97	0.46
1:C:548:THR:O	1:C:550:LYS:N	2.49	0.46
1:B:30:ALA:O	1:B:187:ARG:NE	2.48	0.46
1:B:750:TYR:HA	1:B:755:ARG:HH21	1.80	0.46
1:D:691:ASN:HB3	1:D:741:ILE:HG22	1.96	0.46
1:B:153:VAL:HG13	1:B:155:ARG:HG2	1.96	0.46
1:D:377:LEU:HD12	1:D:502:LEU:HD11	1.97	0.46
1:A:446:SER:OG	1:A:529:GLU:OE2	2.33	0.46
1:A:577:CYS:HB3	1:A:582:LEU:HB2	1.98	0.46
1:A:822:MET:HE1	1:A:855:GLY:O	2.14	0.46

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:80:GLN:HA	1:B:83:ILE:HG12	1.98	0.46
1:B:370:LYS:NZ	1:B:411:GLU:OE2	2.44	0.46
1:B:593:ILE:O	1:B:621:ARG:NH1	2.49	0.46
1:D:82:PHE:HE1	1:D:126:GLY:HA3	1.81	0.46
1:A:413:ALA:O	1:A:417:GLN:HG3	2.16	0.46
1:C:366:LEU:HD13	1:C:580:VAL:HG21	1.96	0.46
1:A:800:VAL:HG13	1:A:803:SER:HB3	1.97	0.46
1:B:636:MET:HA	1:B:653:ILE:O	2.16	0.46
1:D:33:SER:OG	1:D:37:GLU:HB2	2.15	0.46
1:D:165:ILE:HG23	1:D:183:PRO:HB3	1.97	0.46
1:D:221:SER:O	1:D:223:THR:N	2.45	0.46
1:A:114:GLY:HA2	1:A:117:ILE:HG22	1.96	0.46
1:A:151:THR:HG23	1:A:165:ILE:HG12	1.98	0.46
1:A:267:THR:HG23	1:A:271:LYS:HD3	1.98	0.46
1:D:867:PHE:CZ	1:D:871:ILE:HD11	2.51	0.46
1:A:231:MET:HE2	1:A:253:PHE:HB3	1.97	0.46
1:C:328:CYS:SG	1:C:742:PRO:HG3	2.56	0.46
1:B:373:LEU:HD21	1:B:375:ARG:HH21	1.80	0.46
1:B:511:LEU:HD12	1:B:534:LEU:HD11	1.98	0.46
1:C:38:LEU:O	1:C:42:PHE:HB3	2.16	0.46
1:D:582:LEU:HG	1:D:583:PRO:HD2	1.98	0.46
1:C:352:LEU:HD13	1:C:668:VAL:HG21	1.97	0.45
1:C:389:ARG:HG3	1:C:426:LEU:HD11	1.99	0.45
1:D:290:PHE:CD2	1:D:711:LEU:HD11	2.51	0.45
1:C:392:PHE:HD2	1:C:426:LEU:HD12	1.80	0.45
1:D:142:ASN:ND2	1:D:147:ILE:O	2.49	0.45
1:D:375:ARG:HH21	1:D:502:LEU:HD21	1.81	0.45
1:A:74:LEU:HD12	1:A:74:LEU:H	1.81	0.45
1:A:199:ALA:HB2	1:A:205:SER:HA	1.98	0.45
1:A:394:ASN:HA	1:A:447:VAL:HG21	1.98	0.45
1:C:277:SER:HA	1:C:280:LEU:HD12	1.97	0.45
1:C:765:PHE:CZ	1:C:769:ILE:HD12	2.51	0.45
1:B:893:MET:O	1:B:896:THR:HG22	2.16	0.45
1:C:392:PHE:CD2	1:C:426:LEU:HD12	2.52	0.45
1:B:35:LYS:HB3	1:B:36:GLU:OE2	2.17	0.45
1:D:399:THR:OG1	1:D:435:GLU:OE1	2.31	0.45
1:D:570:ASP:OD2	1:D:574:ARG:NH1	2.49	0.45
1:A:438:PHE:HE1	1:A:443:ARG:HA	1.81	0.45
1:C:525:SER:HB3	1:C:527:GLN:HE22	1.81	0.45
1:B:34:THR:HA	1:B:214:ALA:HB2	1.98	0.45
1:B:201:LEU:HD11	1:B:232:GLY:HA3	1.98	0.45

	io ao pagoni	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:374:MET:HG3	1:B:540:PHE:CE1	2.51	0.45
1:B:510:ILE:HD11	1:B:540:PHE:HE2	1.82	0.45
1:D:50:SER:C	1:D:52:GLU:H	2.20	0.45
1:A:41:LYS:HE3	1:A:44:THR:HB	1.99	0.45
1:A:376:HIS:O	1:A:376:HIS:ND1	2.48	0.45
1:C:44:THR:O	1:C:44:THR:OG1	2.31	0.45
1:C:722:MET:HB2	1:C:817:TRP:HE3	1.81	0.45
1:D:361:ASP:OD1	1:D:362:LYS:N	2.50	0.45
1:A:376:HIS:HA	1:A:538:LEU:HD23	1.99	0.45
1:A:765:PHE:HE2	1:A:909:LEU:HG	1.81	0.45
1:C:49:LEU:H	1:C:156:LEU:HB3	1.81	0.45
1:C:828:VAL:O	1:C:832:ILE:HG12	2.17	0.45
1:B:458:SER:HB2	1:B:460:THR:HG23	1.99	0.45
1:B:361:ASP:OD1	1:B:362:LYS:N	2.50	0.45
1:B:643:ALA:O	1:B:647:LYS:HG3	2.17	0.45
1:D:35:LYS:HG3	1:D:189:ILE:HD12	1.98	0.45
1:D:601:LEU:HD23	1:D:625:THR:HG21	1.99	0.45
1:A:615:SER:H	1:A:618:GLN:HB2	1.82	0.44
1:B:360:THR:OG1	1:B:361:ASP:N	2.50	0.44
1:B:515:LYS:HG3	1:B:532:MET:HG2	1.98	0.44
1:D:467:ALA:O	1:D:471:MET:HB2	2.17	0.44
1:C:710:VAL:HG22	1:C:721:PRO:HG2	1.99	0.44
1:D:70:LYS:HG2	1:D:71:LYS:H	1.82	0.44
1:D:394:ASN:HA	1:D:447:VAL:HG21	1.98	0.44
1:D:479:GLU:HA	1:D:484:VAL:HA	1.99	0.44
1:C:254:GLY:O	1:C:258:LYS:HG2	2.16	0.44
1:B:765:PHE:CZ	1:B:769:ILE:HD12	2.52	0.44
1:B:641:ASN:ND2	1:B:642:ASP:OD1	2.50	0.44
1:A:479:GLU:CD	1:A:480:ASP:H	2.19	0.44
1:A:587:THR:HG22	1:A:610:VAL:HB	1.99	0.44
1:D:34:THR:OG1	1:D:37:GLU:OE1	2.33	0.44
1:D:170:VAL:HG23	1:D:247:THR:HG22	1.99	0.44
1:D:674:ASP:OD1	1:D:675:LEU:N	2.51	0.44
1:A:34:THR:OG1	1:A:35:LYS:N	2.51	0.44
1:A:85:PRO:O	1:A:89:ILE:HG13	2.18	0.44
1:A:221:SER:C	1:A:223:THR:H	2.21	0.44
1:C:722:MET:HB2	1:C:817:TRP:CE3	2.53	0.44
1:C:886:LEU:HD21	1:D:893:MET:HB3	1.99	0.44
1:B:328:CYS:SG	1:B:742:PRO:HG3	2.58	0.44
1:B:448:VAL:HG23	1:B:524:PHE:CZ	2.53	0.44
1:B:457:THR:OG1	1:B:458:SER:N	2.50	0.44

	lo us page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:689:TYR:CE1	1:D:757:TRP:HA	2.53	0.44
1:A:728:LEU:O	1:A:732:LEU:HG	2.17	0.44
1:C:53:GLN:HA	1:C:56:ILE:HB	2.00	0.44
1:C:352:LEU:HG	1:C:682:ILE:HD13	1.98	0.44
1:C:361:ASP:OD1	1:C:362:LYS:N	2.50	0.44
1:A:118:ILE:O	1:A:122:VAL:HG23	2.17	0.44
1:A:255:GLU:HA	1:A:258:LYS:HE2	2.00	0.44
1:C:567:GLY:HA2	1:C:614:LEU:N	2.30	0.44
1:B:389:ARG:HG3	1:B:426:LEU:HD11	1.99	0.44
1:B:831:MET:SD	1:B:838:PRO:HG2	2.58	0.44
1:D:290:PHE:HD2	1:D:711:LEU:HD11	1.82	0.44
1:A:147:ILE:HB	1:A:342:ILE:HG21	2.00	0.44
1:A:758:ASP:OD1	1:A:759:ALA:N	2.51	0.44
1:A:845:SER:OG	1:A:847:PRO:HD2	2.18	0.44
1:C:136:SER:HB3	1:C:346:LEU:HB2	1.99	0.44
1:B:277:SER:HA	1:B:280:LEU:HD12	1.99	0.44
1:D:43:LYS:O	1:D:45:SER:N	2.51	0.44
1:D:376:HIS:HA	1:D:538:LEU:HD23	2.00	0.44
1:D:828:VAL:O	1:D:832:ILE:HG12	2.18	0.44
1:C:121:MET:HE3	1:C:732:LEU:HD11	1.98	0.43
1:C:485:VAL:HG12	1:C:486:HIS:N	2.30	0.43
1:C:636:MET:HA	1:C:653:ILE:O	2.17	0.43
1:C:818:PHE:CZ	1:C:859:LEU:HD11	2.53	0.43
1:B:818:PHE:CE1	1:B:859:LEU:HD21	2.52	0.43
1:D:189:ILE:HD13	1:D:189:ILE:HA	1.89	0.43
1:C:49:LEU:N	1:C:156:LEU:HB3	2.34	0.43
1:B:717:LEU:HD12	1:B:721:PRO:HG3	2.00	0.43
1:D:190:GLN:O	1:D:240:ALA:HB1	2.17	0.43
1:D:702:SER:HB3	1:D:825:GLN:HG2	1.99	0.43
1:A:35:LYS:HA	1:A:38:LEU:HD23	2.00	0.43
1:A:173:ILE:HA	1:A:242:GLY:O	2.19	0.43
1:C:117:ILE:O	1:C:121:MET:HG3	2.18	0.43
1:D:697:LYS:HZ1	1:D:761:SER:HB3	1.83	0.43
1:A:465:LYS:HE2	1:A:510:ILE:HD12	1.99	0.43
1:D:513:ALA:HB1	1:D:532:MET:HB3	2.00	0.43
1:C:384:ASN:O	1:C:387:VAL:HG12	2.18	0.43
1:D:38:LEU:HB2	1:D:42:PHE:HB3	2.01	0.43
1:A:513:ALA:HB1	1:A:532:MET:HB3	2.00	0.43
1:A:577:CYS:HA	1:A:582:LEU:HD12	2.01	0.43
1:C:377:LEU:HA	1:C:382:GLN:O	2.18	0.43
1:B:548:THR:O	1:B:550:LYS:N	2.51	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:196:ILE:HG22	1:A:235:VAL:HA	2.01	0.43
1:A:605:ALA:HA	1:A:611:PHE:HZ	1.84	0.43
1:C:47:LYS:N	1:C:156:LEU:HD23	2.34	0.43
1:C:118:ILE:O	1:C:122:VAL:HG23	2.18	0.43
1:C:499:VAL:HG13	1:C:509:VAL:HG21	2.01	0.43
1:C:587:THR:HG22	1:C:610:VAL:HB	2.01	0.43
1:B:66:ILE:HD11	1:B:257:ALA:HB3	2.00	0.43
1:B:394:ASN:HA	1:B:447:VAL:HG21	2.01	0.43
1:B:507:MET:HB3	1:B:539:ALA:HB1	2.00	0.43
1:A:34:THR:HG23	1:A:36:GLU:H	1.84	0.43
1:A:89:ILE:O	1:A:93:LEU:HG	2.19	0.43
1:C:362:LYS:HD2	1:C:573:THR:HG22	2.01	0.43
1:D:587:THR:HG22	1:D:610:VAL:HB	2.00	0.43
1:D:834:THR:HG21	1:D:842:SER:HB3	2.01	0.43
1:A:89:ILE:O	1:A:92:VAL:HG12	2.19	0.43
1:A:198:GLN:HG2	1:A:233:SER:HB3	2.00	0.43
1:A:213:LEU:HD23	1:A:213:LEU:HA	1.84	0.43
1:C:267:THR:HA	1:C:271:LYS:HD2	2.01	0.43
1:B:50:SER:HB2	1:B:156:LEU:HD12	2.01	0.43
1:B:737:SER:HA	1:B:851:LEU:HG	2.01	0.43
1:D:448:VAL:HA	1:D:461:GLN:O	2.19	0.43
1:A:312:VAL:HA	1:A:707:MET:SD	2.58	0.43
1:A:551:ALA:HB2	1:A:676:MET:HG2	2.01	0.43
1:A:722:MET:HE2	1:A:727:ILE:HG12	2.00	0.43
1:B:726:HIS:CE1	1:B:871:ILE:HG22	2.54	0.43
1:D:723:LEU:H	1:D:726:HIS:HD2	1.66	0.43
1:A:700:ALA:HB1	1:A:766:MET:SD	2.59	0.42
1:B:507:MET:SD	1:B:541:LEU:HB2	2.58	0.42
1:A:504:GLU:OE1	1:A:571:LYS:NZ	2.52	0.42
1:B:49:LEU:HG	1:B:50:SER:H	1.84	0.42
1:B:423:LEU:O	1:B:426:LEU:HG	2.19	0.42
1:D:43:LYS:HG2	1:D:44:THR:H	1.84	0.42
1:D:50:SER:OG	1:D:51:GLU:N	2.51	0.42
1:D:342:ILE:HD12	1:D:671:LEU:HD21	2.02	0.42
1:D:432:LYS:HE2	1:D:435:GLU:HB2	2.01	0.42
1:A:35:LYS:HD2	1:A:189:ILE:HG23	2.00	0.42
1:C:376:HIS:CD2	1:C:388:LEU:HD22	2.54	0.42
1:C:597:ASP:N	1:C:597:ASP:OD1	2.53	0.42
1:B:832:ILE:HA	1:B:899:LYS:HD3	2.01	0.42
1:B:625:THR:O	1:B:629:SER:OG	2.29	0.42
1:A:55:GLU:HG3	1:A:58:ARG:HH12	1.85	0.42

	i agem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:102:ILE:HD13	1:C:102:ILE:HA	1.89	0.42
1:C:460:THR:O	1:C:518:PRO:HD2	2.19	0.42
1:B:272:GLY:HA3	1:B:757:TRP:CE3	2.55	0.42
1:B:468:ALA:HB2	1:B:511:LEU:HD23	2.01	0.42
1:C:679:GLU:O	1:C:683:ILE:HG12	2.19	0.42
1:C:784:MET:HE2	1:C:813:PHE:HA	2.02	0.42
1:C:831:MET:SD	1:C:838:PRO:HG2	2.59	0.42
1:B:49:LEU:O	1:B:156:LEU:HB2	2.19	0.42
1:B:399:THR:OG1	1:B:435:GLU:OE1	2.37	0.42
1:B:694:LYS:NZ	1:B:744:ASP:OD2	2.53	0.42
1:B:820:GLU:HA	1:B:884:LEU:HD11	2.00	0.42
1:B:881:PHE:O	1:B:885:ILE:HG13	2.19	0.42
1:A:252:ILE:H	1:A:252:ILE:HD12	1.83	0.42
1:C:409:ILE:HD12	1:C:465:LYS:HZ3	1.84	0.42
1:C:578:LYS:HD2	1:C:578:LYS:HA	1.81	0.42
1:B:467:ALA:O	1:B:471:MET:HB2	2.19	0.42
1:B:585:ASP:N	1:B:585:ASP:OD1	2.52	0.42
1:A:144:LEU:HB3	1:A:146:MET:HG3	2.02	0.42
1:A:876:LEU:HD22	1:A:880:PHE:CE2	2.54	0.42
1:C:476:THR:HB	1:C:531:GLU:HG3	2.01	0.42
1:D:33:SER:O	1:D:187:ARG:NH2	2.53	0.42
1:A:421:PRO:O	1:B:553:LYS:HD3	2.20	0.41
1:C:823:TRP:O	1:C:827:LEU:HB2	2.20	0.41
1:C:190:GLN:O	1:C:240:ALA:HA	2.20	0.41
1:C:479:GLU:O	1:C:480:ASP:HB3	2.20	0.41
1:B:342:ILE:H	1:B:342:ILE:HD12	1.86	0.41
1:D:826:THR:HB	1:D:856:ILE:HD11	2.00	0.41
1:A:822:MET:SD	1:A:859:LEU:CB	3.08	0.41
1:C:40:GLN:HB3	1:C:53:GLN:HE22	1.85	0.41
1:C:700:ALA:HB1	1:C:766:MET:SD	2.60	0.41
1:B:53:GLN:HG3	1:B:56:ILE:HD11	2.02	0.41
1:B:98:ALA:O	1:B:102:ILE:HG22	2.19	0.41
1:B:118:ILE:O	1:B:122:VAL:HG23	2.20	0.41
1:B:784:MET:HA	1:B:788:ILE:HB	2.02	0.41
1:D:198:GLN:NE2	1:D:223:THR:O	2.40	0.41
1:D:594:ASP:OD1	1:D:618:GLN:NE2	2.54	0.41
1:A:142:ASN:O	1:A:145:LYS:NZ	2.39	0.41
1:A:826:THR:HG22	1:A:852:THR:CG2	2.42	0.41
1:C:98:ALA:HB2	1:C:115:LEU:HD13	2.02	0.41
1:C:502:LEU:HD23	1:C:502:LEU:HA	1.88	0.41
1:C:504:GLU:HA	1:C:571:LYS:HB3	2.01	0.41

	i agein	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:480:ASP:O	1:B:481:LYS:HG3	2.20	0.41	
1:B:863:PRO:HG3	1:B:873:LEU:HD13	2.01	0.41	
1:A:903:VAL:HG22	1:A:909:LEU:HB2	2.02	0.41	
1:B:155:ARG:HA	1:B:155:ARG:HD3	1.79	0.41	
1:B:479:GLU:HA	1:B:483:ASN:O	2.19	0.41	
1:D:186:LEU:HD21	1:D:242:GLY:HA3	2.02	0.41	
1:A:102:ILE:HD12	1:A:102:ILE:HA	1.90	0.41	
1:A:504:GLU:HA	1:A:571:LYS:HB3	2.01	0.41	
1:A:762:VAL:O	1:A:766:MET:HG3	2.21	0.41	
1:C:198:GLN:HE22	1:C:230:PHE:H	1.68	0.41	
1:C:564:ILE:HD12	1:C:577:CYS:SG	2.61	0.41	
1:D:443:ARG:O	1:D:466:GLY:HA3	2.21	0.41	
1:A:189:ILE:HG13	1:A:243:VAL:HG13	2.01	0.41	
1:C:114:GLY:HA2	1:C:117:ILE:HG22	2.03	0.41	
1:C:800:VAL:HG13	1:C:803:SER:HB3	2.02	0.41	
1:B:823:TRP:O	1:B:827:LEU:HB2	2.21	0.41	
1:D:758:ASP:OD1	1:D:759:ALA:N	2.54	0.41	
1:A:869:HIS:CE1	1:A:874:MET:HA	2.56	0.41	
1:C:468:ALA:HB2	1:C:511:LEU:HD23	2.02	0.41	
1:B:45:SER:O	1:B:156:LEU:HD22	2.20	0.41	
1:B:89:ILE:HG12	1:B:281:ILE:HD11	2.01	0.41	
1:B:448:VAL:HG13	1:B:460:THR:HB	2.03	0.41	
1:D:419:LYS:HE3	1:D:419:LYS:HB3	1.93	0.41	
1:D:499:VAL:HG13	1:D:509:VAL:HG21	2.03	0.41	
1:D:567:GLY:HA2	1:D:614:LEU:N	2.31	0.41	
1:D:884:LEU:HD12	1:D:884:LEU:HA	1.91	0.41	
1:A:50:SER:N	1:A:156:LEU:HD22	2.20	0.41	
1:A:352:LEU:HD21	1:A:682:ILE:HG12	2.02	0.41	
1:C:155:ARG:HD3	1:C:155:ARG:HA	1.92	0.41	
1:C:290:PHE:CD2	1:C:711:LEU:HD11	2.55	0.41	
1:C:462:MET:HE1	1:C:515:LYS:HE2	2.03	0.41	
1:C:893:MET:HB3	1:D:886:LEU:HD21	2.02	0.41	
1:B:281:ILE:HA	1:B:284:MET:HE2	2.02	0.41	
1:B:324:ILE:HG13	1:B:695:TYR:CZ	2.55	0.41	
1:B:379:ILE:HG23	1:B:495:ILE:HG22	2.01	0.41	
1:B:460:THR:HG21	1:B:521:ILE:HG12	2.03	0.41	
1:B:511:LEU:HD22	1:B:537:TYR:HB3	2.02	0.41	
1:D:35:LYS:HZ2	1:D:189:ILE:HG23	1.84	0.41	
1:D:128:LEU:HD23	1:D:128:LEU:HA	1.93	0.41	
1:D:465:LYS:HA	1:D:511:LEU:O	2.21	0.41	
1:D:899:LYS:HB2	1:D:899:LYS:HE3	1.87	0.41	

	F S S S S S S S S S S S S S S S S S S S	Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
1:A:41:LYS:NZ	1:A:50:SER:HB2	2.36	0.41	
1:A:66:ILE:HD12	1:A:66:ILE:HA	1.97	0.41	
1:A:744:ASP:HA	1:A:845:SER:HB2	2.02	0.41	
1:A:858:GLY:O	1:A:861:ILE:HG22	2.20	0.41	
1:C:694:LYS:NZ	1:C:744:ASP:OD2	2.53	0.41	
1:C:900:LYS:HD3	1:D:883:TRP:CZ2	2.55	0.41	
1:B:858:GLY:O	1:B:862:ILE:HG12	2.21	0.41	
1:D:68:ARG:HB3	1:D:260:VAL:HG11	2.02	0.41	
1:A:387:VAL:HG13	1:A:512:VAL:HG21	2.04	0.40	
1:A:474:ILE:HD13	1:A:474:ILE:HA	1.96	0.40	
1:A:623:VAL:HG13	1:A:633:VAL:HG11	2.02	0.40	
1:C:467:ALA:O	1:C:471:MET:HB2	2.21	0.40	
1:C:523:THR:O	1:C:527:GLN:NE2	2.54	0.40	
1:B:174:ILE:HB	1:B:186:LEU:HD21	2.03	0.40	
1:D:197:SER:HB2	1:D:236:ILE:HD11	2.02	0.40	
1:D:370:LYS:HD2	1:D:370:LYS:HA	1.91	0.40	
1:C:312:VAL:HA	1:C:707:MET:SD	2.61	0.40	
1:C:893:MET:HA	1:C:896:THR:HG22	2.02	0.40	
1:B:331:LYS:HG3	1:B:332:GLY:N	2.37	0.40	
1:B:655:VAL:HG21	1:B:673:LYS:HG3	2.03	0.40	
1:A:71:LYS:HD3	1:A:71:LYS:HA	1.84	0.40	
1:A:555:LEU:HB3	1:A:560:VAL:HB	2.01	0.40	
1:A:592:ASP:O	1:A:596:LEU:HG	2.21	0.40	
1:B:675:LEU:HD12	1:B:675:LEU:H	1.85	0.40	
1:B:726:HIS:HE1	1:B:871:ILE:HG22	1.86	0.40	
1:D:118:ILE:O	1:D:122:VAL:HG23	2.21	0.40	
1:A:785:PHE:HB2	1:A:813:PHE:HE2	1.87	0.40	
1:A:828:VAL:O	1:A:832:ILE:HG12	2.21	0.40	
1:B:56:ILE:O	1:B:60:GLN:CB	2.70	0.40	
1:B:519:SER:HB3	1:B:520:PRO:HD3	2.01	0.40	
1:D:627:ARG:HD2	1:D:649:SER:HA	2.03	0.40	
1:A:184:ALA:HA	1:A:231:MET:SD	2.61	0.40	
1:A:867:PHE:O	1:A:871:ILE:HG12	2.21	0.40	
1:C:84:ASN:OD1	1:C:84:ASN:N	2.53	0.40	
1:C:89:ILE:O	1:C:93:LEU:HG	2.22	0.40	
1:C:360:THR:OG1	1:C:361:ASP:N	2.55	0.40	
1:C:377:LEU:HB3	1:C:381:GLY:HA2	2.04	0.40	
1:B:693:ILE:HD12	1:B:693:ILE:HA	1.98	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	887/921~(96%)	808 (91%)	77 (9%)	2(0%)	44	74
1	В	887/921~(96%)	826 (93%)	58~(6%)	3~(0%)	37	67
1	С	887/921~(96%)	821 (93%)	62 (7%)	4 (0%)	25	59
1	D	887/921~(96%)	817 (92%)	69~(8%)	1 (0%)	48	79
All	All	3548/3684~(96%)	3272 (92%)	266 (8%)	10 (0%)	37	67

All (10) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	113	GLN
1	С	113	GLN
1	D	521	ILE
1	С	485	VAL
1	С	51	GLU
1	В	40	GLN
1	В	261	THR
1	А	222	ILE
1	С	299	LYS
1	В	222	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	764/795~(96%)	758~(99%)	6 (1%)	79 89

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	В	764/795~(96%)	751~(98%)	13~(2%)	56	76
1	С	764/795~(96%)	761 (100%)	3~(0%)	89	95
1	D	764/795~(96%)	760 (100%)	4 (0%)	86	93
All	All	3056/3180~(96%)	3030~(99%)	26 (1%)	75	87

Continued from previous page...

All (26) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	135	ARG
1	А	253	PHE
1	А	419	LYS
1	А	524	PHE
1	А	735	ASP
1	А	736	PHE
1	С	24	ASN
1	С	253	PHE
1	С	450	LYS
1	В	43	LYS
1	В	180	ASP
1	В	227	ASN
1	В	253	PHE
1	В	331	LYS
1	В	396	TYR
1	В	481	LYS
1	В	483	ASN
1	В	496	LEU
1	В	524	PHE
1	В	537	TYR
1	В	617	GLN
1	В	818	PHE
1	D	46	ASN
1	D	253	PHE
1	D	483	ASN
1	D	820	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (37) such sidechains are listed below:

IVIOI	Chain	Res	\mathbf{Type}
1	А	132	GLN
1	А	138	ASN

Mol	Chain	Res	Type
1	А	152	ASN
1	А	190	GLN
1	А	368	GLN
1	А	417	GLN
1	А	420	ASN
1	А	486	HIS
1	А	641	ASN
1	А	830	HIS
1	А	869	HIS
1	С	132	GLN
1	С	198	GLN
1	С	227	ASN
1	С	382	GLN
1	С	503	ASN
1	С	517	ASN
1	С	841	GLN
1	В	132	GLN
1	В	345	ASN
1	В	503	ASN
1	В	527	GLN
1	В	617	GLN
1	В	641	ASN
1	В	726	HIS
1	D	60	GLN
1	D	132	GLN
1	D	161	GLN
1	D	234	ASN
1	D	295	ASN
1	D	368	GLN
1	D	417	GLN
1	D	420	ASN
1	D	503	ASN
1	D	527	GLN
1	D	579	GLN
1	D	726	HIS

Continued from previous page...

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 4 ligands modelled in this entry, 4 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RS	SRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	889/921~(96%)	-0.80	3~(0%)	90 79	71, 100, 144, 199	0
1	В	889/921~(96%)	-0.78	2 (0%)	92 84	73, 100, 149, 207	0
1	С	889/921~(96%)	-0.87	3~(0%)	90 79	53, 87, 144, 213	0
1	D	889/921~(96%)	-0.87	1 (0%)	92 88	51, 86, 139, 192	0
All	All	3556/3684~(96%)	-0.83	9 (0%)	90 79	51, 94, 144, 213	0

All (9) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	47	LYS	3.2
1	С	28	GLU	2.9
1	С	25	ALA	2.7
1	В	263	ASP	2.5
1	А	191	ALA	2.3
1	А	200	SER	2.2
1	D	59	GLU	2.1
1	С	879	ASN	2.1
1	В	113	GLN	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
2	MG	А	1001	1/1	0.99	0.04	78,78,78,78	0
2	MG	С	1001	1/1	0.99	0.04	$61,\!61,\!61,\!61$	0
2	MG	В	1001	1/1	0.99	0.06	75,75,75,75	0
2	MG	D	1001	1/1	1.00	0.03	53,53,53,53	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

