

Mar 16, 2025 – 02:12 PM EDT

PDB ID	:	9E2X
EMDB ID	:	EMD-47471
Title	:	Cryo-EM structure of yeast CMG helicase stalled at G4-containing DNA tem-
		plate, state 2
Authors	:	Allwein, B.; Batra, S.; Remus, D.; Hite, R.
Deposited on	:	2024-10-23
Resolution	:	3.50 Å(reported)
Based on initial model	:	

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev117
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41.4

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	EM structures		
Metric	$(\# {\rm Entries})$	$(\# { m Entries})$		
Clashscore	210492	15764		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain									
1	А	208	78%	15	5% 7%							
2	В	213	74%	14%	• 11%							
3	С	217	67% 12	2% •	20%							
4	D	294	63% 12%		24%							
5	Е	650	76%	11%	13%							
6	F	48	73%	239	% •							
7	G	20	85%		15%							
8	2	868	62% 13%		25%							
9	3	971	54% 12%	34%								

Mol	Chain	Length	Quality of chain								
10	4	933	53%	12%	3	5%					
11	5	775	69%		14%	17%					
12	6	1017	55%	8%	37	%					
13	7	845	62%		13%	24%					
14	Х	1238	48%	9%	43%						
15	Y	92	77%			22% •					

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
18	ZN	2	1003	-	-	Х	-

2 Entry composition (i)

There are 19 unique types of molecules in this entry. The entry contains 98329 atoms, of which 49013 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called DNA replication complex GINS protein PSF1.

Mol	Chain	Residues	Atoms						AltConf	Trace
1	А	194	Total 3180	C 999	Н 1592	N 273	O 307	S 9	0	0

• Molecule 2 is a protein called DNA replication complex GINS protein PSF2.

Mol	Chain	Residues	Atoms						AltConf	Trace
2	В	189	Total 3191	C 1014	Н 1614	N 276	O 282	${ m S}{ m 5}$	0	0

• Molecule 3 is a protein called DNA replication complex GINS protein PSF3.

Mol	Chain	Residues	Atoms						AltConf	Trace
3	C	174	Total	С	Н	Ν	Ο	\mathbf{S}	0	0
5		111	2813	913	1412	225	257	6	0	

There are 23 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	-22	MET	-	expression tag	UNP Q12146
С	-21	GLY	-	expression tag	UNP Q12146
С	-20	SER	-	expression tag	UNP Q12146
С	-19	SER	-	expression tag	UNP Q12146
С	-18	HIS	-	expression tag	UNP Q12146
С	-17	HIS	-	expression tag	UNP Q12146
С	-16	HIS	-	expression tag	UNP Q12146
С	-15	HIS	-	expression tag	UNP Q12146
С	-14	HIS	-	expression tag	UNP Q12146
С	-13	HIS	-	expression tag	UNP Q12146
С	-12	SER	-	expression tag	UNP Q12146
С	-11	SER	-	expression tag	UNP Q12146
С	-10	GLY	-	expression tag	UNP Q12146
С	-9	LEU	-	expression tag	UNP Q12146
С	-8	VAL	-	expression tag	UNP Q12146

Chain	Residue	Modelled	Actual	Comment	Reference
С	-7	PRO	-	expression tag	UNP Q12146
С	-6	ARG	-	expression tag	UNP Q12146
С	-5	GLY	-	expression tag	UNP Q12146
С	-4	SER	-	expression tag	UNP Q12146
С	-3	HIS	-	expression tag	UNP Q12146
С	-2	MET	-	expression tag	UNP Q12146
С	-1	ALA	-	expression tag	UNP Q12146
С	0	SER	-	expression tag	UNP Q12146

• Molecule 4 is a protein called DNA replication complex GINS protein SLD5.

Mol	Chain	Residues	Atoms						AltConf	Trace
4	D	222	Total	С	Н	N	0	S	0	0
			3671	1170	1844	300	345	12		

• Molecule 5 is a protein called Cell division control protein 45.

Mol	Chain	Residues			Atom	S			AltConf	Trace
5	Е	566	Total 9119	C 2920	Н 4552	N 770	O 863	S 14	0	0

• Molecule 6 is a DNA chain called Leading strand DNA template.

Mol	Chain	Residues			Ator	ns			AltConf	Trace
6	Б	48	Total	С	Н	Ν	0	Р	0	0
0	Г	40	1548	475	545	182	298	48	0	0

• Molecule 7 is a DNA chain called Lagging strand DNA template.

Mol	Chain	Residues			Aton	ıs			AltConf	Trace
7	G	20	Total 633	C 194	Н 224	N 79	0 116	Р 20	0	0

• Molecule 8 is a protein called DNA replication licensing factor MCM2.

Mol	Chain	Residues			AltConf	Trace				
8	2	655	Total 10454	C 3271	Н 5250	N 933	0 981	S 19	0	0

• Molecule 9 is a protein called DNA replication licensing factor MCM3.

Mol	Chain	Residues			Atom	s			AltConf	Trace
0	2	644	Total	С	Η	Ν	Ο	\mathbf{S}	0	0
9	5	044	10097	3173	5073	894	944	13	0	0

• Molecule 10 is a protein called DNA replication licensing factor MCM4.

Mol	Chain	Residues			Atom	s			AltConf	Trace
10	4	611	Total	С	Н	Ν	0	S	0	0
	-	011	9772	3062	4914	836	932	28	Ŭ	Ŭ

• Molecule 11 is a protein called Minichromosome maintenance protein 5.

Mol	Chain	Residues			Atom	s			AltConf	Trace
11	5	641	Total 10249	C 3208	H 5164	N 882	0 973	S 22	0	0

• Molecule 12 is a protein called DNA replication licensing factor MCM6.

Mol	Chain	Residues			AltConf	Trace				
12	6	642	Total 10130	C 3189	H 5068	N 882	0 966	S 25	0	0
12	6	642	Total 10130	C 3189	Н 5068	N 882	0 966	S 25	0	

• Molecule 13 is a protein called DNA replication licensing factor MCM7.

Mol	Chain	Residues			Atom	s			AltConf	Trace
13	7	641	Total 10141	C 3184	Н 5101	N 875	O 953	S 28	0	0

• Molecule 14 is a protein called Topoisomerase 1-associated factor 1.

Mol	Chain	Residues			AltConf	Trace				
14	X	705	Total 11536	C 3691	Н 5821	N 962	O 1043	S 19	0	0

• Molecule 15 is a protein called Chromosome segregation in meiosis protein 3.

Mol	Chain	Residues			AltConf	Trace				
15	Y	92	Total 1537	C 495	Н 769	N 138	0 131	$\frac{S}{4}$	0	0

• Molecule 16 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		A	Aton	ıs			AltConf
16	0	1	Total	С	Η	Ν	Ο	Р	0
10	Δ	1	43	10	12	5	13	3	0
16	2	1	Total	С	Η	Ν	Ο	Р	0
10	5	1	43	10	12	5	13	3	0
16	Б	1	Total	С	Η	Ν	Ο	Р	0
10	5	1	41	10	10	5	13	3	0
16	7	1	Total	С	Η	Ν	Ο	Р	0
10	1	1	43	10	12	5	13	3	0

• Molecule 17 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
17	2	1	Total Mg 1 1	0
17	3	1	Total Mg 1 1	0
17	4	1	Total Mg 1 1	0
17	5	1	Total Mg 1 1	0
17	7	1	Total Mg 1 1	0

• Molecule 18 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
18	2	1	Total Zn 1 1	0
18	4	1	Total Zn 1 1	0
18	5	1	Total Zn 1 1	0
18	6	1	Total Zn 1 1	0
18	7	1	Total Zn 1 1	0

• Molecule 19 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf		
10	4	1	Total	С	Η	Ν	Ο	Р	0
19	4	L	39	10	12	5	10	2	0
10	10 4	1 1	Total	С	Η	Ν	Ο	Р	0
19	4		39	10	12	5	10	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA replication complex GINS protein PSF1

ASN ASP ASN ASP 4243 ASN 4249 ASN 4255 ASN 4256 ASN 4264 ASN 4264 ASN 4264 ASN 4264 ASN 4264 ASN 4275 ASN 4206 4161 PSO 4167 PSO 4167 PSO 4167 PSO 4168 H147 4167 PSO 4168 H147 4167 PSO 4168 H147 4167 PSO 4168 H147 4178 H1478 H1478 H1478 H1478 H1478 H1478 H1478 H1478 H1478

• Molecule 5: Cell division control protein 45

Chain E:	76%	11%	13%
M1 116 116 817 819 819 819 819 127 145 145 145 145 145 145 145 145 145 145	V84 192 198 198 198 198 198 1105 1105 1105 1105 1125 1125 1140	146 1151 1151	GLU GLU GLU GLU ASP ASP ASP ASP ASP ASP SER SER
GLY ASP GLU ASP ASP ASN ASN ASN ASP GLU ASP ALA ASP ASP ALA ASP ASP ASP ASP GLU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	GLU ASP GLU GLU GLU TLE TLE ASP ASR ASR SER SER SER SER SER SER ASN ASP	SER LYS ARG LYS Q225	q229 E232 V236 V236 N249 S250
1265 1266 1269 1264 1299 1296 1296 1296 1296 1296 1296 1296	8349 (K57 (K57 (K57 (K357 (K36) (K39) (K41) (K41) (K41) (K41) (K41) (K41) (K41) (K41) (K5) (K5) (K5) (K5) (K57) (K77) (K	LYS LYS ASN ASN ASP ASP	ASN ASP ASP ASP ASP ASP ASP GLU GLU GLU
GLU ASP ASP ASP ASP L466 L466 D486 V539 V539 A570 S571 1572 S571 1572 1577 1578 V550	V581 M607 A608 F609 F609 F609 F625 F625 F625 F625 F625 F623 F633 F633 F633 F633 F635 F635 F635 F63	L650	
• Molecule 6: Leading strand DI	NA template		
Chain F:	73%	23%	·
115 122 122 122 122 122 122 123 123 123 123			
• Molecule 7: Lagging strand DI	NA template		
Chain G:	85%		15%
6 7 1 1 1 1 1 1 1 1 1 1			
• Molecule 8: DNA replication la	icensing factor MCM2		
Chain 2: 62%	13%	25%	
MET ASP ASP ASP ASC ASC ASC ASC ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	PRO PRO GLN GLN FHE ARG AST AST PRO VALY SER PRO CLY ASP PRO CLY ASP PRO CLY ASP PRO CLY ASP ASP ASP	ILE ASN PRO GLV GLY	ASP ASN GLU VAL ASP VAL ASP VAL ASP ASP
1LE ASP 6LU 6LU 6LU 6LU 6LU 6LU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ASP HIS ARG ARG ARG ARG ASP ASP ASP ASP ASP ASP ASP CLN GLN GLN CLN	LEU SER GLU ARG ARG	TLE ASP ALA GLN CLEU ASN ASN ASP ASP
ARG LEU LEU LEU ARG ASN ASN ASP ASP GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	MET OLY PRO PRO PRO PRO ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	ASP ASP LEU LEU SER ASP	MET ASP E184 E184 S187 K190

• Molecule 9: DNA replication licensing factor MCM3

• Molecule 10: DNA replication licensing factor MCM4

1596 1597 1597 1597 1599 1599 1599 1599 1599 1599 1605 1615 1615 1615 1615 1665 1665 1665 1710 1700

HIIS 111EU 11EU 1

•	Molecule	14:	Topoisomerase	1-associated	factor	1
---	----------	-----	---------------	--------------	--------	---

Chain X:	48%	9%	43%	
MET SER ALA ASL ASL GLN GLN GLN THR THR THR ASN A12	A28 D41 X45 K46 L47 L47 L58 L58 L58 L58 L58 L58 L84 D87	L88 L89 191 192 193 193 193 193 193 193 193 193 193	L101 F115 A119 K123 K123 L132 L132 L132 L132 L133	L139 1140 0144 1167 V175
A178 A179 L184 L184 R194 R194 L206 N207	N211 1221 1231 1238 1237 1238 1238 1256 8256 V262	E276 F277 1282 P285 L286 F291 Y292	F293 E300 L301 L302 F304 ARG ARG ARG ALU THR CLU GLU GLU	THR HIS SER LYS VAL VAL ASN ASN
GLU SER SER SER SER ASN ASN ASN TLE TLE T1LE T329 Q344 C344	N348 K351 D370 R400 R401 L418 Q422 Q422	N433 K438 E439 N450 1451 L453 L453	E463 0464 0465 0465 1466 1476 1476 1476 1476 1476 7479 7485	0486 0493 0494 1494 1498 1498 E507
F510 1511 1517 1517 1517 4520 V528 A535 F536	E538 E538 L559 L541 L542 L543 L544 L545 S554 E558 E558 F559 F559	L572 1592 1593 1598 1613 011 011 011	LYS SER ARG ARG CLN CLNS LYS LYS LYS PHE ASIN TLL SER CLU GLU	ASP THR LYS LYS LEU TLEU GLU GLU
ASN VAL VAL ARS ARS ARS ALU ALA ALU ALA LEU LEU LEU THR	SER SER LEU LEU ARC SER SER E656 K661 Y675 R661 R661 R681	F7 13 F7 25 S7 34 V7 38 S7 42 S7 42 S7 42 S7 42	L753 F760 L768 F765 L768 L768 L78 AXL	LEU ASN ASN GLU SER MET TYR ALA ALA
PRO ALA SER GLN PHE LYS PRO ASP GLU GLU	LEU PRO PRO SER ILE LEU LEU MET LYS TYR CLY VAL	VAL SER THR LEU LEU ASP ASP ASP CLY THR CLY	LEU LEU ASP ASP GLN CEU LFU LFU LFU THR HIS THR HIS LEU	ASP ILE PHE LYS SER TRP TRP LEU THR VAL
ASN VAL ASN ALA ALA GLY CLYS GLY CLYS GLU THR VAL ASN ASN	GLU TYR TYR THR THR LEU CLEU ASN ASN ASN ASP PRO	PHE LYS ASP LYS LYS ASP ASP ASP ALA LEU LEU LEU	LEU ILE GLY FRR FRO ARG LYS ILE ASN GLU	CYS PHE LEU PRO GLY THR VAL VAL VAL
SER ASP LEU THR VAL SER SER GLU CYS GLU LVS LYS	LEU THR PRO PHE CLU FLU ASN ASN CLU FLU CLY FRO SER SER	SER TYR LEU LEU ARG ARG SER GLU ASP	SER PHE SER HIS ASN GLU GLU GLY GLY GLY ASP ASP	ASP ASP TYR ASP TYR ASN ASP PRO TYR
ILE VAL PRO ASP ASP ASP ASP CLN ILE LEU SER SER SER ASP	ALA TYR FYR LYS ASP ASP ASP ASN ASN ASN ASN ASN ASN ASN ASP LEU	LYS GLY THR LYS LYS PHE SER SER CLY TLE ALA ARG	SER LYS LYS LYS LYS ASP LYS ARG LYS ARG CY GLV GLU	ALA LYS THR ASN LEU PRO MET PHE GLY
ASP GLN ASP ASP ASP GLU GLU CHN THR THR THR THR CHN GLU	ARIA GLY VAL PHE SER CLU FLY CLY SER FLY SER SER SER SER SER SER SER SER SER	ASP GLU ASP ASP MET ASN PRO PHE PHE CLU GLU	ASN GLU TYR MET ARG TRP TRP LEU ASP ASN ASN ASN	GLY GLN LEU THR GLU ASP ASP ARG TYR ILE
GLN PHE LYS LYS LYS PHE ALA ALA ALA GLU GLU GLU ASN ASN	GLY VAL VAL THR GLY GLY GLY GLY GLY SER SER	ILE PRO SER ILE GLU SER ILE ARG ALA THR CLU	SER SER SER PHE ALA PRO ASP PRO LYS SER LEU ILEU SER LEU	ALA SER HIS VAL ALA SER GLU MET SER
ILE PHE ASP ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ASP ASP ASP ASP SER GLU SER ASN SER CLU CLU CLU SER SER SER SER	SER GLN PRO SER ASN GLN MET MET PHF GLN	SER CLU VAL TYR SER ARG CLU SER THR LYS SER ARG SER SER	LEU GLU ALA SER ALA ALA ALA ALA GLU SER
ASP GLU GLU GLU GLU GLU ILE PHE CLY CLY SYJ	SER ARG VAL VAL LEU CLN GLN ASP SER ASP ASP ASP			

• Molecule 15: Chromosome segregation in meiosis protein 3

•

R48 R48 P62 P62 P63 F16 P17 P17 P18 F191 F191 F191 F191 F191 F1132 F1132 F1132 F1132 F1132 F1132 F1132 F1132 F1132 F1133 R1134 R1134 R1137 F1132 F1133 R1134 R1137 F1132 F1133 R1137 F1133 F113

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	40714	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	66	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	1800	Depositor
Magnification	29000	Depositor
Image detector	GATAN K3 (6k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ADP, ZN, ATP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	nd lengths	Bond angles	
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.26	0/1608	0.48	0/2163
2	В	0.27	0/1609	0.51	0/2177
3	С	0.55	1/1434~(0.1%)	0.42	0/1938
4	D	0.24	0/1861	0.45	0/2514
5	Е	0.25	0/4654	0.47	0/6303
6	F	0.54	0/1125	1.08	5/1741~(0.3%)
7	G	0.57	0/459	0.96	0/705
8	2	0.25	0/5292	0.52	0/7145
9	3	0.25	0/5112	0.51	0/6930
10	4	0.26	0/4931	0.50	0/6666
11	5	0.24	0/5155	0.50	0/6956
12	6	0.25	0/5143	0.51	0/6938
13	7	0.39	1/5120~(0.0%)	0.52	0/6921
14	Х	0.24	0/5828	0.45	0/7868
15	Y	0.34	0/784	0.55	1/1049~(0.1%)
All	All	0.30	2/50115~(0.0%)	0.53	6/68014~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
5	Ε	0	1
8	2	0	3
10	4	0	3
12	6	0	3
13	7	0	3
14	Х	0	1
15	Y	0	4
All	All	0	18

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	Ideal(Å)
3	С	37	PRO	N-CD	18.57	1.73	1.47
13	7	501	PRO	N-CD	18.34	1.73	1.47

All (2) bond length outliers are listed below:

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	F	34	DC	O4'-C4'-C3'	-9.12	100.53	106.00
6	F	34	DC	O4'-C1'-N1	6.69	112.68	108.00
6	F	34	DC	C4'-C3'-C2'	-5.53	98.13	103.10
15	Y	128	TYR	N-CA-CB	-5.11	101.40	110.60
6	F	27	DA	O4'-C1'-N9	5.08	111.56	108.00
6	F	32	DT	N3-C4-O4	5.03	122.92	119.90

There are no chirality outliers.

All ((18)	planarity	outliers	are	listed	below:
1111	(10)	pranarity	outilitit	arc	mouca	DC10W.

Mol	Chain	Res	Type	Group
8	2	581	ARG	Sidechain
8	2	795	ARG	Sidechain
8	2	808	ARG	Sidechain
10	4	246	ARG	Sidechain
10	4	827	ARG	Sidechain
10	4	830	ARG	Sidechain
12	6	446	ARG	Sidechain
12	6	614	ARG	Sidechain
12	6	752	ARG	Sidechain
13	7	479	ARG	Sidechain
13	7	718	ARG	Sidechain
13	7	721	ARG	Sidechain
5	Е	398	ARG	Sidechain
14	Х	41	ASP	Peptide
15	Y	129	ARG	Sidechain
15	Y	134	ARG	Sidechain
15	Y	48	ARG	Sidechain
15	Y	49	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1588	1592	1593	23	0
2	В	1577	1614	1625	36	0
3	С	1401	1412	1415	25	0
4	D	1827	1844	1844	34	0
5	Е	4567	4552	4555	54	0
6	F	1003	545	545	11	0
7	G	409	224	224	2	0
8	2	5204	5250	5261	100	0
9	3	5024	5073	5087	111	0
10	4	4858	4914	4924	85	0
11	5	5085	5164	5177	112	0
12	6	5062	5068	5078	61	0
13	7	5040	5101	5101	115	0
14	Х	5715	5821	5833	79	0
15	Y	768	769	801	14	0
16	2	31	12	12	2	0
16	3	31	12	12	1	0
16	5	31	10	11	1	0
16	7	31	12	12	1	0
17	2	1	0	0	0	0
17	3	1	0	0	0	0
17	4	1	0	0	0	0
17	5	1	0	0	0	0
17	7	1	0	0	0	0
18	2	1	0	0	2	0
18	4	1	0	0	0	0
18	5	1	0	0	0	0
18	6	1	0	0	0	0
18	7	1	0	0	0	0
19	4	54	24	24	2	0
All	All	49316	49013	49134	763	0

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (763) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
11:5:755:LEU:HD13	11:5:761:ILE:CD1	1.48	1.40

	h a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:2:854:ARG:NH2	8:2:858:ARG:HH22	1.20	1.39
2:B:99:ASP:OD1	2:B:144:LYS:CE	1.75	1.33
3:C:37:PRO:N	3:C:37:PRO:CD	1.73	1.32
2:B:146:GLN:CG	11:5:47:ARG:HH11	1.41	1.32
8:2:854:ARG:NH2	8:2:858:ARG:NH2	1.76	1.29
13:7:501:PRO:N	13:7:501:PRO:CD	1.73	1.27
9:3:456:ARG:NH2	13:7:327:ILE:HG21	1.47	1.26
9:3:456:ARG:NH2	13:7:327:ILE:CG2	1.99	1.23
8:2:344:CYS:SG	8:2:367:CYS:SG	2.44	1.16
10:4:709:LEU:CD1	10:4:711:LYS:HG2	1.78	1.13
5:E:577:ASP:OD1	5:E:634:ARG:CB	1.97	1.13
2:B:146:GLN:HG2	11:5:47:ARG:HH11	1.01	1.12
8:2:670:THR:HG22	8:2:672:PRO:HD2	1.22	1.12
8:2:364:CYS:SG	8:2:369:SER:N	2.21	1.11
14:X:291:PHE:CD2	14:X:474:GLU:HG2	1.86	1.10
8:2:854:ARG:HH21	8:2:858:ARG:NH2	1.38	1.10
11:5:755:LEU:HD13	11:5:761:ILE:HD12	1.09	1.08
11:5:755:LEU:CD1	11:5:761:ILE:HD12	1.82	1.08
2:B:146:GLN:HG2	11:5:47:ARG:NH1	1.69	1.08
9:3:456:ARG:NH2	13:7:327:ILE:CB	2.17	1.07
9:3:462:MET:HG2	9:3:489:VAL:HG11	1.17	1.07
2:B:1:MET:HG2	2:B:2:SER:H	1.19	1.05
2:B:146:GLN:CG	11:5:47:ARG:NH1	2.20	1.05
11:5:755:LEU:HD13	11:5:761:ILE:HD11	1.36	1.05
2:B:99:ASP:OD1	2:B:144:LYS:HE2	1.48	1.05
9:3:456:ARG:HH22	13:7:327:ILE:CG2	1.63	1.05
11:5:755:LEU:CD1	11:5:761:ILE:CD1	2.34	1.04
3:C:105:PHE:CD2	3:C:170:GLU:OE1	2.11	1.04
5:E:577:ASP:OD1	5:E:634:ARG:HB3	1.57	1.03
8:2:854:ARG:HH21	8:2:858:ARG:CZ	1.72	1.03
10:4:709:LEU:HD11	10:4:711:LYS:HG2	1.39	1.03
4:D:255:CYS:SG	4:D:269:LEU:C	2.38	1.02
9:3:456:ARG:HH22	13:7:327:ILE:HG21	0.98	0.99
2:B:99:ASP:OD1	2:B:144:LYS:HE3	1.60	0.99
12:6:523:GLU:OE2	12:6:524:HIS:CD2	2.16	0.99
5:E:577:ASP:OD1	5:E:634:ARG:HB2	1.62	0.96
9:3:456:ARG:NH2	13:7:327:ILE:HB	1.80	0.95
4:D:255:CYS:HG	4:D:269:LEU:C	1.69	0.95
14:X:291:PHE:CG	14:X:474:GLU:HG2	2.00	0.95
8:2:854:ARG:CZ	8:2:858:ARG:NH2	2.31	0.93
8:2:839:LYS:HE3	8:2:843:ASP:OD2	1.68	0.93

	h h	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:104:PHE:HB3	3:C:170:GLU:OE2	1.69	0.93
5:E:292:TYR:CZ	5:E:296:GLN:NE2	2.35	0.93
2:B:146:GLN:HG3	11:5:47:ARG:HH11	1.36	0.91
8:2:670:THR:HG22	8:2:672:PRO:CD	2.01	0.90
2:B:105:GLU:OE1	2:B:113:SER:OG	1.90	0.89
12:6:569:ILE:HG23	12:6:710:ASP:OD2	1.73	0.89
9:3:451:GLU:HB2	11:5:460:ARG:HH22	1.39	0.89
19:4:1004:ADP:O3B	12:6:581:LYS:NZ	2.06	0.89
13:7:469:LEU:O	13:7:473:ILE:HG22	1.74	0.88
9:3:462:MET:HG2	9:3:489:VAL:CG1	2.03	0.88
4:D:255:CYS:SG	4:D:269:LEU:O	2.31	0.87
14:X:593:GLU:OE1	14:X:692:LYS:NZ	2.06	0.87
10:4:529:SER:OG	13:7:448:MET:SD	2.33	0.87
9:3:456:ARG:HH21	13:7:327:ILE:HB	1.42	0.84
8:2:670:THR:CG2	8:2:672:PRO:HD2	2.05	0.84
9:3:391:LYS:NZ	13:7:620:HIS:O	2.10	0.84
9:3:456:ARG:HH21	13:7:327:ILE:CG2	1.87	0.84
9:3:456:ARG:HH22	13:7:327:ILE:CD1	1.91	0.84
14:X:45:TYR:OH	14:X:87:ASP:OD1	1.96	0.83
8:2:591:LEU:HD11	8:2:631:ILE:HD12	1.60	0.83
8:2:364:CYS:SG	8:2:368:LYS:N	2.51	0.83
9:3:544:ASP:OD1	9:3:704:THR:OG1	1.95	0.83
12:6:509:SER:OG	12:6:511:ASP:OD1	1.96	0.83
13:7:246:THR:O	13:7:247:ARG:HG3	1.78	0.83
8:2:241:SER:OG	8:2:413:ASP:OD2	1.96	0.82
13:7:558:ASN:OD1	13:7:560:ARG:NH1	2.12	0.82
2:B:79:LEU:HB3	2:B:85:CYS:SG	2.19	0.82
8:2:839:LYS:CE	8:2:843:ASP:OD2	2.28	0.82
2:B:174:SER:OG	2:B:177:GLU:OE1	1.98	0.81
9:3:527:ARG:NH2	11:5:715:GLU:OE1	2.13	0.81
12:6:523:GLU:OE2	12:6:524:HIS:NE2	2.13	0.81
3:C:97:LEU:HD13	3:C:170:GLU:OE2	1.81	0.80
2:B:182:ARG:NH2	4:D:294:ILE:O	2.14	0.80
12:6:161:ARG:HG2	12:6:162:GLU:HG3	1.62	0.80
14:X:144:GLN:N	14:X:144:GLN:OE1	2.14	0.80
14:X:291:PHE:CD2	14:X:474:GLU:CG	2.65	0.79
12:6:584:PHE:O	12:6:588:VAL:HG23	1.83	0.79
14:X:87:ASP:O	14:X:91:ILE:HD12	1.83	0.79
13:7:420:PRO:O	13:7:625:GLN:NE2	2.17	0.78
12:6:406:ASP:OD1	12:6:408:THR:OG1	1.99	0.78
8:2:752:GLU:O	8:2:756:SER:OG	2.01	0.78

	t i a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:2:591:LEU:CD1	8:2:631:ILE:HD12	2.13	0.78
10:4:531:TYR:OH	10:4:719:GLU:OE1	2.01	0.78
8:2:190:LYS:NZ	14:X:87:ASP:OD2	2.13	0.77
16:2:1001:ATP:O1B	12:6:798:ARG:NH2	2.16	0.77
10:4:274:GLN:NE2	10:4:278:ASP:OD1	2.18	0.76
5:E:624:ASN:OD1	5:E:626:GLU:N	2.18	0.76
13:7:290:SER:O	13:7:293:GLN:NE2	2.18	0.76
5:E:292:TYR:CE2	5:E:296:GLN:NE2	2.54	0.76
2:B:190:ASP:OD1	2:B:193:ARG:NH2	2.18	0.76
8:2:794:ARG:NH2	11:5:558:ASP:OD2	2.19	0.75
11:5:659:ILE:O	11:5:662:SER:OG	2.03	0.75
11:5:375:ALA:HB1	11:5:378:ILE:HD12	1.69	0.75
2:B:1:MET:HG2	2:B:2:SER:N	1.98	0.75
11:5:374:ILE:HD12	11:5:428:PHE:HE1	1.49	0.75
9:3:451:GLU:OE2	11:5:460:ARG:NH1	2.20	0.75
12:6:711:LEU:HD21	12:6:806:LEU:HD11	1.67	0.75
13:7:101:ASP:OD2	13:7:104:SER:OG	2.01	0.74
4:D:98:ILE:HD12	4:D:133:LEU:HD12	1.69	0.74
11:5:449:LEU:HD22	11:5:493:ILE:HD11	1.68	0.74
9:3:462:MET:CG	9:3:489:VAL:HG11	2.10	0.74
5:E:232:GLU:O	5:E:236:VAL:HG23	1.88	0.74
5:E:630:ILE:HD11	5:E:632:ILE:HD11	1.70	0.74
13:7:258:ILE:HD13	13:7:300:MET:HE2	1.69	0.74
8:2:485:ARG:NH2	8:2:769:TYR:OH	2.21	0.73
5:E:76:ASP:OD1	5:E:117:ARG:NH1	2.22	0.73
6:F:47:DG:OP1	9:3:193:ARG:NH1	2.21	0.73
8:2:591:LEU:HD23	8:2:592:GLU:O	1.89	0.73
8:2:549:LYS:NZ	16:2:1001:ATP:O1G	2.15	0.73
9:3:244:GLU:OE1	13:7:14:TYR:OH	2.06	0.73
11:5:755:LEU:CD1	11:5:761:ILE:HD11	2.09	0.73
10:4:574:LYS:NZ	19:4:1001:ADP:O3B	2.22	0.73
2:B:1:MET:CG	2:B:2:SER:H	1.99	0.72
5:E:79:ASN:ND2	5:E:117:ARG:O	2.22	0.72
8:2:785:LYS:O	8:2:789:VAL:HG23	1.90	0.72
8:2:839:LYS:HD2	8:2:843:ASP:OD2	1.90	0.71
11:5:370:LEU:HD11	11:5:602:TYR:CE2	2.24	0.71
13:7:320:GLN:OE1	13:7:320:GLN:N	2.23	0.71
11:5:384:ILE:HD11	11:5:556:VAL:HG22	1.72	0.71
9:3:456:ARG:HH22	13:7:327:ILE:CB	1.93	0.71
4:D:270:THR:O	4:D:273:SER:OG	2.08	0.71
8:2:854:ARG:HH21	8:2:858:ARG:NH1	1.88	0.71

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
13:7:585:ASN:OD1	13:7:585:ASN:O	2.08	0.71
11:5:263:GLU:N	11:5:263:GLU:OE2	2.24	0.70
13:7:122:ASP:OD2	13:7:198:ARG:NH1	2.25	0.70
8:2:656:ARG:NH2	12:6:792:SER:O	2.25	0.70
11:5:209:ARG:NH1	11:5:239:ASP:OD1	2.24	0.70
8:2:510:ASP:OD1	8:2:511:ILE:N	2.25	0.70
8:2:425:GLU:OE2	8:2:459:ARG:NE	2.25	0.69
9:3:365:GLN:NE2	9:3:636:ALA:HB1	2.07	0.69
5:E:249:ASN:OD1	5:E:250:SER:N	2.23	0.69
13:7:605:SER:OG	13:7:607:ASP:OD1	2.09	0.69
4:D:205:GLU:OE2	4:D:205:GLU:N	2.25	0.69
9:3:343:THR:OG1	9:3:346:ASP:OD2	2.06	0.69
9:3:688:ASN:HD22	13:7:606:ARG:HE	1.39	0.69
1:A:6:GLY:O	1:A:10:VAL:HG23	1.93	0.69
8:2:364:CYS:SG	8:2:368:LYS:CA	2.81	0.68
2:B:99:ASP:OD1	2:B:144:LYS:NZ	2.25	0.68
6:F:25:DT:H2"	6:F:26:DG:C8	2.29	0.68
13:7:599:LEU:H	13:7:727:LEU:HD13	1.58	0.68
11:5:729:SER:HG	11:5:732:THR:HG1	0.69	0.68
9:3:366:SER:OG	9:3:651:VAL:O	2.12	0.68
13:7:709:ASP:OD1	13:7:710:ILE:HG22	1.93	0.68
12:6:642:ASP:OD2	12:6:683:ASN:N	2.26	0.68
14:X:194:ARG:NH1	14:X:276:GLU:O	2.26	0.68
5:E:75:ASP:OD1	5:E:76:ASP:N	2.27	0.67
8:2:839:LYS:CD	8:2:843:ASP:OD2	2.43	0.67
14:X:300:GLU:OE1	14:X:300:GLU:N	2.27	0.67
13:7:598:PHE:HA	13:7:727:LEU:HD13	1.76	0.67
5:E:124:ASP:OD1	5:E:125:ALA:N	2.28	0.67
10:4:683:ASN:HD22	10:4:686:LEU:CD1	2.07	0.67
12:6:765:LEU:HD11	12:6:804:ILE:HD12	1.77	0.67
9:3:456:ARG:NH2	13:7:327:ILE:CD1	2.57	0.67
14:X:207:ASN:O	14:X:211:ASN:ND2	2.27	0.66
13:7:420:PRO:C	13:7:625:GLN:HE22	1.98	0.66
9:3:572:LEU:HD11	11:5:613:ARG:NH2	2.11	0.66
13:7:723:SER:O	13:7:727:LEU:HD12	1.96	0.66
11:5:682:ARG:NH1	11:5:685:GLN:OE1	2.28	0.66
13:7:459:MET:HE2	13:7:597:LEU:HD21	1.78	0.66
4:D:209:ILE:O	4:D:218:MET:HE2	1.96	0.66
9:3:712:HIS:ND1	9:3:725:ASP:OD1	2.26	0.66
9:3:570:ARG:NE	11:5:614:LEU:HD11	2.11	0.66
8:2:344:CYS:SG	8:2:367:CYS:CB	2.85	0.65

	h h	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
12:6:607:GLY:O	12:6:627:ALA:N	2.29	0.65
13:7:428:VAL:O	13:7:432:LEU:HD22	1.97	0.65
8:2:781:MET:SD	8:2:782:ASP:N	2.70	0.65
9:3:456:ARG:HH21	13:7:327:ILE:CB	1.94	0.65
9:3:318:LYS:HE2	9:3:320:LEU:HD11	1.78	0.65
8:2:360:ARG:NH2	12:6:345:THR:OG1	2.30	0.65
9:3:410:ASP:O	9:3:415:LYS:NZ	2.30	0.65
9:3:476:ASP:OD1	11:5:757:LYS:NZ	2.29	0.65
12:6:366:ASN:OD1	12:6:367:GLU:N	2.29	0.64
4:D:255:CYS:SG	4:D:269:LEU:N	2.70	0.64
8:2:367:CYS:SG	18:2:1003:ZN:ZN	1.86	0.64
9:3:623:GLU:OE1	9:3:624:LYS:N	2.31	0.64
13:7:89:GLN:OE1	13:7:102:LEU:N	2.28	0.64
13:7:455:ASN:N	13:7:595:ASP:OD2	2.31	0.64
2:B:187:GLU:OE2	3:C:179:LYS:NZ	2.24	0.64
12:6:364:ASN:CG	12:6:394:ARG:HE	2.00	0.64
8:2:344:CYS:SG	8:2:367:CYS:HB3	2.36	0.64
13:7:596:ILE:HD11	13:7:695:LEU:HD11	1.79	0.63
14:X:302:LEU:HD12	14:X:438:LYS:HG2	1.81	0.63
8:2:578:ALA:O	8:2:633:LYS:NZ	2.31	0.63
8:2:761:GLU:OE1	8:2:761:GLU:N	2.32	0.63
11:5:374:ILE:HD12	11:5:428:PHE:CE1	2.32	0.63
11:5:667:GLU:OE2	11:5:675:ARG:NH2	2.32	0.63
14:X:351:LYS:O	14:X:351:LYS:NZ	2.24	0.63
15:Y:71:ASN:ND2	15:Y:71:ASN:O	2.31	0.63
8:2:591:LEU:HD23	11:5:270:MET:HE2	1.81	0.63
8:2:786:VAL:CG2	11:5:573:ILE:HD11	2.29	0.63
8:2:856:GLN:OE1	8:2:856:GLN:N	2.31	0.63
13:7:246:THR:O	13:7:247:ARG:CG	2.45	0.63
4:D:190:TRP:CZ3	4:D:209:ILE:HD11	2.34	0.63
4:D:190:TRP:HZ3	4:D:209:ILE:HD11	1.64	0.62
8:2:626:GLN:OE1	8:2:626:GLN:N	2.30	0.62
14:X:656:GLU:O	14:X:661:LYS:NZ	2.32	0.62
5:E:345:ASN:O	5:E:349:SER:N	2.32	0.62
11:5:448:GLY:O	11:5:468:ALA:N	2.32	0.62
13:7:420:PRO:C	13:7:625:GLN:NE2	2.52	0.62
4:D:147:ARG:NE	4:D:179:GLU:OE2	2.29	0.62
11:5:658:ARG:NH1	11:5:661:GLU:OE2	2.32	0.62
1:A:40:ILE:O	1:A:44:VAL:HG23	2.00	0.62
9:3:703:GLU:OE1	16:7:1001:ATP:O3'	2.17	0.62
1:A:154:SER:OG	1:A:197:GLU:OE2	2.17	0.62

	h h	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
11:5:353:GLU:OE1	11:5:353:GLU:N	2.33	0.62
2:B:180:GLU:OE1	3:C:187:THR:HG21	1.99	0.61
10:4:378:GLU:OE1	12:6:95:ARG:NH2	2.33	0.61
5:E:105:ILE:HD11	5:E:117:ARG:HB3	1.82	0.61
4:D:98:ILE:HD11	4:D:129:MET:HB3	1.82	0.61
1:A:36:ILE:HD12	1:A:36:ILE:H	1.66	0.61
8:2:552:ILE:O	8:2:556:VAL:HG13	2.00	0.61
9:3:671:LEU:HD21	9:3:706:ILE:HG23	1.82	0.61
8:2:591:LEU:HD22	11:5:270:MET:HE1	1.83	0.60
13:7:634:GLU:OE1	13:7:634:GLU:N	2.32	0.60
8:2:511:ILE:O	8:2:515:VAL:HG12	2.02	0.60
10:4:632:ASP:O	10:4:674:SER:OG	2.19	0.60
14:X:465:ASP:OD1	14:X:466:ARG:N	2.34	0.60
8:2:631:ILE:HD11	8:2:640:LEU:HD13	1.84	0.59
9:3:456:ARG:NH2	13:7:327:ILE:HD12	2.16	0.59
3:C:105:PHE:CE2	3:C:170:GLU:OE1	2.54	0.59
8:2:358:GLU:OE1	8:2:358:GLU:N	2.35	0.59
9:3:688:ASN:HD22	13:7:606:ARG:HH21	1.49	0.59
10:4:206:ARG:NH1	10:4:247:ASN:OD1	2.36	0.59
12:6:585:LEU:CD1	12:6:679:LEU:HD21	2.33	0.59
9:3:318:LYS:HE2	9:3:320:LEU:HD21	1.85	0.59
10:4:820:GLU:N	10:4:820:GLU:OE1	2.35	0.59
13:7:336:ASN:ND2	13:7:377:GLU:OE2	2.35	0.59
13:7:615:HIS:CE1	13:7:625:GLN:OE1	2.55	0.59
8:2:824:ARG:NH1	8:2:833:ASP:OD2	2.36	0.59
5:E:71:TYR:CD2	5:E:96:LEU:HD22	2.38	0.58
9:3:449:ASP:OD1	9:3:450:ARG:N	2.37	0.58
12:6:570:ASN:O	12:6:710:ASP:HB3	2.02	0.58
10:4:274:GLN:NE2	10:4:274:GLN:O	2.36	0.58
13:7:508:LEU:HD21	13:7:557:LEU:HD11	1.84	0.58
4:D:261:PRO:O	4:D:264:LYS:NZ	2.32	0.58
8:2:854:ARG:NE	8:2:858:ARG:NH2	2.51	0.58
10:4:374:ILE:N	10:4:374:ILE:HD12	2.18	0.58
11:5:350:THR:N	11:5:353:GLU:OE2	2.37	0.58
3:C:108:ALA:O	3:C:112:ILE:HG13	2.03	0.58
9:3:358:ASP:OD1	9:3:358:ASP:N	2.35	0.58
9:3:234:GLU:N	9:3:234:GLU:OE1	2.36	0.58
10:4:709:LEU:HD13	10:4:711:LYS:HG2	1.79	0.58
12:6:574:VAL:HG21	12:6:699:LEU:HD21	1.85	0.58
4:D:204:GLU:OE2	4:D:207:GLN:NE2	2.37	0.57
8:2:778:LEU:HD11	8:2:814:LEU:HD12	1.85	0.57

	juo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
10:4:199:MET:HE3	10:4:227:ILE:HD11	1.87	0.57
11:5:552:MET:CE	11:5:687:SER:OG	2.52	0.57
12:6:523:GLU:N	12:6:523:GLU:OE1	2.37	0.57
8:2:591:LEU:CD2	11:5:270:MET:HE2	2.34	0.57
9:3:98:ILE:HD11	9:3:157:PHE:CE1	2.40	0.57
11:5:552:MET:HE3	11:5:687:SER:OG	2.04	0.57
3:C:23:ASP:N	3:C:23:ASP:OD1	2.36	0.57
8:2:399:PRO:O	8:2:401:ARG:NH1	2.38	0.57
12:6:742:ILE:HG22	12:6:744:PRO:HD3	1.87	0.57
10:4:562:ILE:HA	10:4:703:ASP:OD2	2.05	0.56
14:X:84:LEU:HA	14:X:88:LEU:HD23	1.87	0.56
6:F:24:DG:O3'	14:X:401:ARG:NH2	2.39	0.56
8:2:591:LEU:HD22	11:5:270:MET:CE	2.35	0.56
9:3:688:ASN:ND2	13:7:606:ARG:HH21	2.03	0.56
12:6:609:THR:HG22	12:6:610:ALA:H	1.70	0.56
9:3:716:ARG:NH2	9:3:718:SER:OG	2.39	0.56
2:B:53:ILE:N	4:D:132:GLU:OE2	2.36	0.56
10:4:262:LEU:HD21	10:4:308:VAL:HG22	1.86	0.56
11:5:773:SER:O	11:5:773:SER:OG	2.21	0.56
13:7:607:ASP:OD1	13:7:607:ASP:N	2.39	0.56
14:X:291:PHE:HB2	14:X:474:GLU:OE2	2.06	0.56
10:4:709:LEU:CD1	10:4:711:LYS:CG	2.70	0.56
12:6:525:ILE:O	12:6:529:LEU:HD12	2.05	0.56
10:4:308:VAL:HG21	10:4:325:LEU:HD23	1.88	0.56
11:5:396:SER:OG	11:5:398:LYS:NZ	2.38	0.56
11:5:729:SER:OG	11:5:732:THR:OG1	1.96	0.56
13:7:709:ASP:OD1	13:7:710:ILE:N	2.39	0.56
12:6:262:VAL:HG13	12:6:262:VAL:O	2.06	0.55
11:5:602:TYR:OH	11:5:666:LEU:O	2.24	0.55
13:7:203:TYR:OH	13:7:336:ASN:O	2.22	0.55
10:4:583:LYS:NZ	13:7:447:GLY:O	2.39	0.55
12:6:576:ASP:OD1	12:6:689:TYR:N	2.40	0.55
14:X:517:LEU:HD23	14:X:572:LEU:HD21	1.88	0.55
10:4:705:VAL:O	10:4:705:VAL:HG13	2.06	0.55
13:7:599:LEU:O	13:7:727:LEU:HD22	2.06	0.55
2:B:146:GLN:CB	11:5:47:ARG:NH1	2.70	0.55
3:C:112:ILE:O	3:C:116:SER:N	2.40	0.55
10:4:516:GLU:OE1	10:4:516:GLU:N	2.37	0.55
10:4:547:GLY:N	10:4:560:GLY:O	2.37	0.55
9:3:235:ASP:OD1	9:3:236:THR:N	2.37	0.55
10:4:234:ARG:NE	10:4:284:ILE:HD11	2.22	0.55

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:D:151:ILE:HD11	4:D:175:LEU:HD22	1.88	0.55
8:2:636:ILE:O	8:2:638:THR:HG22	2.07	0.54
9:3:456:ARG:HH22	13:7:327:ILE:HD13	1.70	0.54
12:6:144:LYS:HA	12:6:196:LEU:HD13	1.90	0.54
11:5:393:MET:HE1	11:5:602:TYR:CE2	2.43	0.54
14:X:119:ALA:O	14:X:123:LYS:HE3	2.08	0.54
14:X:497:ASP:OD1	14:X:498:ILE:N	2.39	0.54
9:3:570:ARG:CZ	11:5:614:LEU:HD11	2.38	0.54
10:4:183:THR:OG1	10:4:185:VAL:HG22	2.07	0.54
8:2:789:VAL:HG22	8:2:864:TYR:CE1	2.42	0.54
10:4:713:ASP:OD1	10:4:714:GLU:N	2.40	0.54
11:5:162:LEU:HD21	11:5:328:ILE:CD1	2.38	0.54
5:E:411:ARG:NH2	5:E:486:ASP:OD1	2.40	0.54
9:3:416:SER:O	9:3:420:ARG:HG2	2.08	0.54
12:6:147:ASP:OD1	12:6:147:ASP:O	2.25	0.54
13:7:595:ASP:C	13:7:596:ILE:HD12	2.28	0.53
8:2:808:ARG:HG2	8:2:808:ARG:HH11	1.72	0.53
9:3:212:ARG:HH11	9:3:232:PRO:HG3	1.73	0.53
13:7:247:ARG:HD3	13:7:314:LYS:HD2	1.90	0.53
15:Y:62:ASP:OD1	15:Y:63:LYS:N	2.42	0.53
12:6:150:THR:OG1	12:6:384:ASP:OD2	2.26	0.53
14:X:96:GLU:O	14:X:96:GLU:OE1	2.27	0.53
9:3:676:ILE:HD11	13:7:617:THR:HG23	1.91	0.53
10:4:508:LYS:NZ	10:4:512:VAL:HG23	2.24	0.53
8:2:670:THR:HG22	8:2:671:GLU:N	2.24	0.53
13:7:453:ASP:OD2	13:7:562:SER:N	2.42	0.53
9:3:582:VAL:HG11	11:5:399:ILE:HG13	1.91	0.53
2:B:79:LEU:CB	2:B:85:CYS:SG	2.95	0.53
8:2:311:GLU:OE1	8:2:312:SER:N	2.42	0.53
10:4:375:ASP:OD1	14:X:681:ARG:NH1	2.41	0.53
14:X:187:ILE:HD13	14:X:277:PHE:CE2	2.44	0.53
9:3:216:ASP:OD1	9:3:217:ALA:N	2.42	0.53
11:5:633:LEU:HD13	11:5:647:PRO:CA	2.39	0.53
11:5:708:LEU:HA	11:5:711:ILE:HD12	1.91	0.52
10:4:532:GLU:O	10:4:533:LEU:HD12	2.10	0.52
5:E:294:LEU:O	5:E:298:GLU:HG3	2.09	0.52
5:E:609:PHE:CD2	5:E:630:ILE:HD13	2.44	0.52
9:3:412:SER:N	16:3:1001:ATP:O2B	2.42	0.52
11:5:719:LYS:HE3	11:5:755:LEU:HD21	1.90	0.52
13:7:615:HIS:HE1	13:7:625:GLN:OE1	1.92	0.52
5:E:259:LEU:HD22	5:E:264:GLU:O	2.09	0.52

	has pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
12:6:765:LEU:HD11	12:6:804:ILE:CD1	2.40	0.52
14:X:47:LEU:HD12	14:X:47:LEU:N	2.25	0.52
4:D:188:LEU:HD23	4:D:188:LEU:C	2.29	0.52
14:X:206:LEU:HD13	14:X:285:PRO:HB2	1.90	0.52
4:D:281:VAL:HG23	4:D:282:ILE:HG23	1.90	0.52
8:2:319:ARG:NH2	8:2:425:GLU:OE1	2.43	0.52
10:4:199:MET:HE3	10:4:199:MET:HA	1.92	0.52
13:7:464:VAL:HG23	13:7:466:LYS:HG3	1.92	0.52
3:C:104:PHE:CB	3:C:170:GLU:OE2	2.50	0.52
13:7:459:MET:CE	13:7:597:LEU:HD21	2.40	0.52
8:2:591:LEU:HD13	8:2:631:ILE:HD12	1.92	0.52
11:5:463:TYR:HA	11:5:509:ILE:HD13	1.92	0.52
10:4:758:ILE:O	10:4:759:HIS:ND1	2.43	0.51
13:7:598:PHE:HA	13:7:727:LEU:CD1	2.39	0.51
1:A:84:ARG:NH1	4:D:216:VAL:HG21	2.25	0.51
11:5:690:ASP:OD1	11:5:691:ALA:N	2.43	0.51
13:7:214:ARG:HG2	13:7:215:TYR:CD1	2.45	0.51
12:6:447:ASP:OD1	12:6:447:ASP:O	2.28	0.51
13:7:726:SER:O	13:7:727:LEU:HD23	2.10	0.51
9:3:225:ILE:HD12	9:3:225:ILE:H	1.75	0.51
5:E:92:LEU:HD13	5:E:140:ILE:HD11	1.92	0.51
9:3:450:ARG:NH1	9:3:450:ARG:O	2.43	0.51
9:3:648:PRO:HG2	9:3:650:LEU:HD13	1.93	0.51
9:3:688:ASN:ND2	13:7:606:ARG:HE	2.06	0.51
10:4:234:ARG:CD	10:4:284:ILE:HD11	2.41	0.51
1:A:7:ASN:O	1:A:11:LEU:HD23	2.11	0.51
12:6:668:ILE:O	12:6:668:ILE:HG23	2.10	0.51
10:4:709:LEU:HD12	10:4:709:LEU:O	2.10	0.51
11:5:371:THR:O	11:5:374:ILE:HG22	2.10	0.51
14:X:486:GLN:NE2	14:X:497:ASP:O	2.44	0.51
14:X:422:GLN:N	14:X:422:GLN:OE1	2.44	0.51
5:E:16:LEU:O	5:E:20:SER:OG	2.18	0.50
9:3:39:ARG:NH1	9:3:136:MET:CE	2.74	0.50
10:4:534:GLU:OE1	10:4:534:GLU:N	2.40	0.50
12:6:613:VAL:HG21	12:6:624:GLU:OE1	2.11	0.50
3:C:104:PHE:HB3	3:C:170:GLU:CD	2.30	0.50
9:3:688:ASN:HD22	13:7:606:ARG:NE	2.08	0.50
14:X:180:ILE:O	14:X:184:LEU:HG	2.10	0.50
14:X:768:LEU:HD23	15:Y:130:VAL:HG22	1.92	0.50
8:2:328:THR:O	8:2:386:GLN:NE2	2.43	0.50
10:4:718:ARG:HB2	13:7:665:ILE:HD11	1.92	0.50

Atom-1	Atom-2	Interatomic	Clash overlap (Å)	
110011-1	1100111-2	distance (Å)		
4:D:282:ILE:C	4:D:282:ILE:HD12	2.31	0.50	
8:2:184:GLU:O	8:2:187:SER:OG	2.29	0.50	
14:X:132:LEU:HD11	14:X:167:ILE:HD11	1.93	0.50	
14:X:301:LEU:HD21	14:X:426:ALA:HB1	1.93	0.50	
8:2:755:ILE:HD11	12:6:560:VAL:CG2	2.42	0.50	
10:4:769:GLU:OE2	10:4:822:VAL:HG21	2.12	0.50	
12:6:516:LEU:HD21	12:6:757:TYR:CG	2.46	0.50	
13:7:26:VAL:HG12	13:7:26:VAL:O	2.12	0.50	
9:3:449:ASP:OD2	9:3:452:THR:OG1	2.30	0.50	
11:5:393:MET:CE	11:5:602:TYR:CE2	2.95	0.50	
9:3:676:ILE:CG1	13:7:617:THR:HG21	2.42	0.50	
12:6:577:PRO:O	12:6:578:SER:OG	2.21	0.50	
9:3:308:GLN:OE1	11:5:209:ARG:NE	2.40	0.50	
10:4:241:LEU:HD23	10:4:276:ILE:HD11	1.94	0.50	
9:3:406:LEU:HD12	9:3:407:MET:N	2.27	0.49	
10:4:608:ASP:O	10:4:612:LYS:N	2.44	0.49	
8:2:488:SER:OG	8:2:824:ARG:O	2.24	0.49	
9:3:451:GLU:CD	11:5:460:ARG:HH12	2.13	0.49	
13:7:612:LEU:C	13:7:612:LEU:HD23	2.33	0.49	
7:G:4:DG:OP2	10:4:451:ARG:NH1	2.45	0.49	
8:2:707:HIS:NE2	12:6:763:PRO:O	2.44	0.49	
11:5:350:THR:OG1	11:5:353:GLU:OE1	2.23	0.49	
11:5:719:LYS:CE	11:5:755:LEU:HD21	2.43	0.49	
14:X:540:LEU:HA	14:X:543:VAL:HG12	1.93	0.49	
2:B:132:ASP:OD1	2:B:132:ASP:C	2.50	0.49	
5:E:624:ASN:OD1	5:E:625:PHE:N	2.45	0.49	
9:3:39:ARG:NH1	9:3:136:MET:HE2	2.28	0.49	
9:3:441:GLY:O	9:3:461:ALA:N	2.42	0.49	
9:3:570:ARG:HE	11:5:614:LEU:HD11	1.77	0.49	
10:4:656:ILE:HD11	10:4:665:LEU:HD11	1.94	0.49	
1:A:130:TYR:HB2	4:D:193:LEU:HD12	1.93	0.49	
11:5:420:THR:O	11:5:420:THR:HG22	2.13	0.49	
13:7:312:GLU:OE1	13:7:334:HIS:NE2	2.46	0.49	
10:4:629:CYS:N	10:4:670:SER:O	2.43	0.49	
10:4:652:GLN:HA	10:4:652:GLN:OE1	2.13	0.49	
10:4:683:ASN:HD22	10:4:686:LEU:HD13	1.78	0.49	
13:7:544:GLN:O	13:7:545:THR:OG1	2.26	0.49	
10:4:678:ILE:HD11	10:4:693:ASP:HB2	1.94	0.49	
13:7:510:GLY:HA3	13:7:514:VAL:HG21	1.93	0.49	
9:3:456:ARG:CZ	13:7:327:ILE:HD12	2.42	0.49	
14:X:400:LYS:HG3	14:X:401:ARG:N	2.28	0.49	

		Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (\AA)		
14:X:517:LEU:CD2	14:X:572:LEU:HD21	2.43	0.49	
14:X:28:ALA:HB2	14:X:83:ILE:HD11	1.95	0.48	
9:3:456:ARG:HH22	13:7:327:ILE:CG1	2.26	0.48	
14:X:592:ILE:HD12	14:X:675:TYR:CE1	2.48	0.48	
14:X:768:LEU:CD2	15:Y:130:VAL:HG22	2.43	0.48	
10:4:606:THR:OG1	10:4:607:ARG:N	2.46	0.48	
12:6:781:ARG:NH1	12:6:792:SER:OG	2.46	0.48	
9:3:580:GLU:HB2	9:3:581:PRO:HD2	1.96	0.48	
10:4:744:VAL:O	10:4:748:THR:HG23	2.14	0.48	
13:7:685:THR:O	13:7:688:THR:N	2.45	0.48	
10:4:696:PRO:N	10:4:697:PRO:HD2	2.28	0.48	
12:6:652:ILE:HG13	12:6:652:ILE:O	2.14	0.48	
14:X:291:PHE:CB	14:X:474:GLU:OE2	2.62	0.48	
4:D:209:ILE:O	4:D:218:MET:CE	2.61	0.48	
10:4:234:ARG:HD3	10:4:284:ILE:HD11	1.95	0.48	
13:7:517:ASP:OD1	13:7:518:ASN:N	2.47	0.48	
2:B:105:GLU:OE2	2:B:155:LYS:NZ	2.46	0.48	
2:B:164:ASN:OD1	2:B:164:ASN:N	2.46	0.48	
10:4:331:LEU:HD23	10:4:332:VAL:O	2.13	0.48	
8:2:562:ARG:NH1	8:2:600:ASP:O	2.47	0.48	
10:4:740:ASP:OD1	10:4:740:ASP:C	2.52	0.48	
12:6:393:ASP:OD1	12:6:393:ASP:C	2.52	0.48	
14:X:89:LEU:HD22	14:X:175:VAL:HG21	1.95	0.48	
9:3:673:GLN:OE1	9:3:677:ASN:ND2	2.39	0.48	
2:B:10:THR:OG1	2:B:11:PHE:N	2.47	0.48	
10:4:565:LEU:HD23	10:4:566:LEU:N	2.29	0.48	
11:5:708:LEU:H	11:5:708:LEU:HD22	1.76	0.48	
13:7:605:SER:OG	13:7:608:ASP:OD1	2.32	0.48	
4:D:255:CYS:SG	4:D:270:THR:N	2.85	0.47	
9:3:485:ALA:O	9:3:489:VAL:HG23	2.14	0.47	
12:6:807:SER:CB	12:6:824:ILE:HD13	2.44	0.47	
13:7:482:TYR:HA	13:7:522:CYS:HB2	1.94	0.47	
14:X:291:PHE:CB	14:X:474:GLU:HG2	2.43	0.47	
5:E:71:TYR:OH	5:E:98:ILE:HD11	2.14	0.47	
14:X:493:ASP:OD1	14:X:494:ASN:N	2.46	0.47	
2:B:150:GLU:OE2	11:5:47:ARG:HD3	2.13	0.47	
3:C:131:ARG:NH2	3:C:168:LYS:O	2.47	0.47	
5:E:466:LEU:HD11	5:E:470:ARG:NE	2.29	0.47	
9:3:192:VAL:HG21	9:3:284:ASP:OD1	2.15	0.47	
10:4:683:ASN:ND2	10:4:686:LEU:CD1	2.77	0.47	
10:4:692:ILE:HG22	10:4:692:ILE:O	2.14	0.47	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
11:5:648:ILE:HG21	11:5:653:LEU:HD23	1.96	0.47	
14:X:476:LEU:HD12	14:X:535:ALA:CB	2.44	0.47	
15:Y:94:PHE:CD1	15:Y:94:PHE:C	2.88	0.47	
1:A:38:ARG:HA	1:A:41:LEU:HD12	1.96	0.47	
2:B:146:GLN:HB3	11:5:47:ARG:NH1	2.29	0.47	
5:E:292:TYR:OH	5:E:296:GLN:NE2	2.28	0.47	
8:2:515:VAL:HG21	8:2:556:VAL:HG11	1.94	0.47	
9:3:470:VAL:CG1	9:3:512:VAL:HG22	2.44	0.47	
1:A:40:ILE:HG21	1:A:86:LEU:HD21	1.97	0.47	
4:D:98:ILE:HD12	4:D:133:LEU:CD1	2.43	0.47	
5:E:345:ASN:OD1	5:E:345:ASN:C	2.52	0.47	
8:2:790:TYR:OH	8:2:794:ARG:NH1	2.48	0.47	
9:3:34:THR:HG1	9:3:106:PHE:HE1	1.61	0.47	
9:3:318:LYS:CE	9:3:320:LEU:HD21	2.45	0.47	
13:7:517:ASP:OD1	13:7:517:ASP:C	2.53	0.47	
13:7:726:SER:C	13:7:727:LEU:HD23	2.35	0.47	
5:E:426:GLU:OE2	5:E:547:ARG:NH1	2.47	0.47	
9:3:442:LEU:CD1	9:3:486:ILE:HD11	2.45	0.47	
11:5:162:LEU:C	11:5:162:LEU:HD12	2.35	0.47	
11:5:648:ILE:HG21	11:5:653:LEU:CD2	2.45	0.47	
3:C:96:ASP:OD2	3:C:99:SER:OG	2.31	0.47	
5:E:622:ILE:O	5:E:622:ILE:HG22	2.13	0.47	
8:2:234:LEU:HD23	8:2:235:GLY:N	2.29	0.47	
8:2:695:LEU:O	8:2:699:VAL:HG23	2.14	0.47	
11:5:490:ARG:NH2	11:5:541:ASP:O	2.48	0.47	
11:5:755:LEU:HB3	11:5:761:ILE:HD12	1.97	0.47	
2:B:97:GLU:OE2	2:B:97:GLU:HA	2.15	0.47	
5:E:572:ILE:HD12	5:E:579:TYR:OH	2.15	0.47	
11:5:657:ILE:HG22	11:5:658:ARG:N	2.30	0.47	
14:X:463:GLU:CD	14:X:463:GLU:O	2.54	0.47	
7:G:11:DC:H2"	7:G:12:DT:H72	1.97	0.47	
8:2:472:ASP:O	8:2:475:SER:OG	2.32	0.47	
12:6:574:VAL:CG2	12:6:699:LEU:HD21	2.45	0.47	
13:7:246:THR:C	13:7:247:ARG:HG3	2.34	0.47	
13:7:414:LEU:HD12	13:7:638:MET:HG3	1.97	0.47	
13:7:546:ILE:O	13:7:557:LEU:N	2.44	0.47	
14:X:418:LEU:HD12	14:X:418:LEU:O	2.14	0.47	
6:F:25:DT:C4'	14:X:401:ARG:HH12	2.27	0.46	
11:5:361:SER:HA	11:5:366:LEU:HD22	1.96	0.46	
13:7:67:LEU:HD22	13:7:121:ILE:HG23	1.97	0.46	
1:A:77:LEU:HD11	3:C:53:ILE:HG21	1.97	0.46	

	in a second	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
5:E:635:GLU:OE2	5:E:635:GLU:N	2.45	0.46	
12:6:743:GLU:N	12:6:743:GLU:OE1	2.49	0.46	
14:X:463:GLU:OE2	14:X:466:ARG:HB3	2.16	0.46	
5:E:71:TYR:HH	5:E:103:TYR:HH	1.60	0.46	
11:5:266:PRO:HG2	11:5:269:GLU:HG3	1.98	0.46	
16:5:1001:ATP:N3	16:5:1001:ATP:C2'	2.79	0.46	
14:X:58:LEU:HD23	14:X:131:LEU:HD21	1.97	0.46	
11:5:392:LEU:HD11	11:5:432:VAL:HG11	1.97	0.46	
11:5:568:ILE:O	11:5:572:VAL:HG23	2.15	0.46	
13:7:263:ASP:OD1	13:7:263:ASP:N	2.41	0.46	
1:A:165:VAL:HG11	1:A:200:ILE:HD11	1.97	0.46	
4:D:125:PRO:O	4:D:129:MET:HG2	2.15	0.46	
8:2:591:LEU:CD2	11:5:270:MET:CE	2.92	0.46	
12:6:523:GLU:CD	12:6:524:HIS:CD2	2.86	0.46	
14:X:507:GLU:O	14:X:511:ILE:HG12	2.15	0.46	
8:2:364:CYS:SG	8:2:368:LYS:C	2.93	0.46	
9:3:698:THR:HG22	9:3:699:ALA:N	2.31	0.46	
10:4:422:GLU:HG2	10:4:423:LEU:N	2.29	0.46	
10:4:502:THR:OG1	10:4:505:ASP:OD2	2.28	0.46	
14:X:92:LEU:HD22	14:X:175:VAL:HG13	1.97	0.46	
5:E:18:ASN:ND2	5:E:79:ASN:OD1	2.46	0.46	
8:2:615:GLN:O	8:2:618:THR:OG1	2.29	0.46	
9:3:283:VAL:HG13	9:3:284:ASP:N	2.30	0.46	
9:3:576:TYR:O	9:3:577:LEU:C	7:LEU:C 2.52		
13:7:440:VAL:HG11	13:7:452:GLY:O	2.15	0.46	
14:X:97:ASN:O	14:X:101:LEU:HD22	2.15	0.46	
14:X:520:ALA:HB1	14:X:528:VAL:HG13	1.97	0.46	
8:2:797:SER:O	8:2:802:SER:OG	2.34	0.46	
10:4:709:LEU:HD12	10:4:709:LEU:C	2.35	0.46	
11:5:648:ILE:HG22	11:5:649:THR:N	2.31	0.46	
12:6:323:GLN:OE1	12:6:323:GLN:N	2.48	0.46	
5:E:45:LEU:HD21	5:E:255:ILE:HD12	1.97	0.46	
11:5:374:ILE:HG23	11:5:385:LYS:HD3	1.98	0.46	
13:7:455:ASN:ND2	13:7:541:MET:SD	2.89	0.46	
14:X:251:ASN:OD1	14:X:433:ASN:ND2	2.45	0.46	
8:2:597:VAL:HG21	8:2:640:LEU:HD23	1.98	0.46	
1:A:41:LEU:HD22	4:D:201:TYR:CD2	2.50	0.45	
8:2:255:ILE:HD11	8:2:259:PHE:CE1	2.51	0.45	
9:3:386:MET:O	9:3:714:LYS:NZ	2.36	0.45	
9:3:456:ARG:NH1	13:7:327:ILE:HD12	2.31	0.45	
12:6:96:ALA:HB2	14:X:221:THR:HG22	1.97	0.45	

		Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (\AA)		
12:6:629:MET:HE1	12:6:672:LEU:HD13	1.98	0.45	
12:6:679:LEU:C	12:6:679:LEU:HD23	2.37	0.45	
14:X:743:ASP:OD1	14:X:743:ASP:C	2.55	0.45	
8:2:783:MET:HG2	11:5:573:ILE:HG21	1.97	0.45	
12:6:710:ASP:O	12:6:711:LEU:HD23	2.16	0.45	
14:X:184:LEU:HA	14:X:187:ILE:HG22	1.99	0.45	
14:X:753:LEU:HD21	14:X:760:PHE:CE1	2.51	0.45	
8:2:778:LEU:CD1	8:2:814:LEU:HD12	2.46	0.45	
10:4:635:ASP:OD1	10:4:636:LYS:N	2.49	0.45	
13:7:492:GLY:O	13:7:494:THR:N	2.49	0.45	
8:2:367:CYS:HG	18:2:1003:ZN:ZN	1.28	0.45	
3:C:135:LEU:HD21	3:C:177:TYR:HB2	1.98	0.45	
9:3:638:ASN:ND2	9:3:644:GLY:O	2.50	0.45	
11:5:377:SER:OG	11:5:575:ILE:HD11	2.17	0.45	
5:E:145:ASP:OD1	5:E:146:GLY:N	2.49	0.45	
9:3:688:ASN:HD22	13:7:606:ARG:NH2	2.13	0.45	
5:E:229:GLN:O	5:E:232:GLU:HG2	2.17	0.45	
6:F:21:DT:H2"	6:F:22:DG:C8	2.51	0.45	
8:2:234:LEU:HD23	8:2:234:LEU:C	2.37	0.45	
11:5:450:THR:OG1	11:5:451:ALA:N	2.49	0.45	
11:5:749:ASP:N	11:5:749:ASP:OD1	2.49	0.45	
9:3:705:LEU:HD21	9:3:733:LEU:HD23	1.98	0.45	
13:7:347:ASP:OD1	13:7:348:ILE:N	2.49	0.45	
1:A:93:ARG:NH1	1:A:127:GLU:OE2	2.50	0.45	
8:2:536:ASP:OD2	8:2:627:GLN:NE2	2.44	0.45	
13:7:508:LEU:C	13:7:508:LEU:HD23	3:7:508:LEU:HD23 2.37		
2:B:118:ASN:OD1	2:B:118:ASN:O	2.34	0.45	
4:D:248:GLU:OE2	4:D:252:GLY:HA2	2.17	0.45	
8:2:814:LEU:O	8:2:818:GLU:HG3	2.17	0.45	
5:E:124:ASP:OD1	5:E:126:HIS:N	2.44	0.44	
5:E:393:ASP:OD1	5:E:393:ASP:C	2.55	0.44	
10:4:421:ASP:O	10:4:424:VAL:HG12	2.18	0.44	
11:5:541:ASP:OD1	11:5:541:ASP:N	2.50	0.44	
12:6:373:MET:SD	12:6:373:MET:N	2.90	0.44	
8:2:578:ALA:CB	8:2:591:LEU:HD21	2.47	0.44	
11:5:403:GLY:O	11:5:405:ARG:NH1	2.50	0.44	
5:E:27:LEU:HD11	5:E:82:LEU:HD23	2.00	0.44	
5:E:319:ASN:N	5:E:319:ASN:OD1	2.50	0.44	
9:3:347:ILE:O	9:3:350:ILE:HG22	2.18	0.44	
14:X:554:SER:HA	14:X:557:ILE:HD12	1.99	0.44	
10:4:401:GLU:OE2	10:4:413:HIS:N	2.45	0.44	

	h i o	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
11:5:761:ILE:HG22	11:5:762:GLN:N	2.33	0.44	
14:X:450:ASN:OD1	14:X:451:ILE:N	2.50	0.44	
8:2:397:VAL:HG12	8:2:398:PRO:O	2.18	0.44	
8:2:547:THR:HG21	8:2:683:VAL:CG1	2.46	0.44	
14:X:92:LEU:HD21	14:X:178:ALA:HB3	1.99	0.44	
3:C:33:ASN:OD1	3:C:33:ASN:O	2.36	0.44	
3:C:175:GLU:OE2	3:C:178:LYS:NZ	2.43	0.44	
5:E:579:TYR:CE2	5:E:637:LEU:HD22	2.51	0.44	
9:3:570:ARG:HG3	11:5:614:LEU:HD21	1.98	0.44	
10:4:686:LEU:HD12	10:4:686:LEU:H	1.83	0.44	
11:5:455:ARG:HD3	11:5:460:ARG:HG3	1.98	0.44	
12:6:402:ILE:HG21	12:6:455:LEU:HD12	1.99	0.44	
5:E:570:ALA:HB2	5:E:581:VAL:HG22	1.99	0.44	
9:3:702:LEU:O	9:3:702:LEU:HD23	2.17	0.44	
12:6:585:LEU:HD11	12:6:679:LEU:HD21	1.99	0.44	
15:Y:119:GLY:HA2	15:Y:125:LEU:HD23	1.98	0.44	
2:B:146:GLN:HB3	11:5:47:ARG:HH12	1.82	0.44	
9:3:436:GLY:O	9:3:438:SER:N	2.51	0.44	
11:5:472:ALA:O	11:5:517:THR:HG22	2.18	0.44	
1:A:52:GLU:OE1	1:A:52:GLU:HA	2.18	0.44	
5:E:151:THR:O	5:E:151:THR:OG1	2.27	0.44	
9:3:572:LEU:CD1	9:3:578:GLU:HB3	2.48	0.44	
10:4:686:LEU:HD12	10:4:686:LEU:N	2.33	0.44	
11:5:760:THR:HG22	11:5:761:ILE:HG13	1.99	0.44	
1:A:141:LEU:HD11	4:D:182:TYR:CD1	2.53	0.43	
5:E:71:TYR:CZ	5:E:98:ILE:HD11	2.53	0.43	
9:3:672:THR:OG1	9:3:720:THR:OG1	2.34	0.43	
12:6:124:VAL:HG12	12:6:135:VAL:CG2	2.48	0.43	
14:X:282:ILE:CG2	14:X:286:LEU:HD11	2.48	0.43	
5:E:357:LYS:NZ	8:2:236:GLU:OE2	2.40	0.43	
9:3:312:ASN:O	9:3:313:THR:OG1	2.31	0.43	
10:4:374:ILE:HD12	10:4:374:ILE:H	1.80	0.43	
15:Y:126:ARG:O	15:Y:130:VAL:HG23	2.18	0.43	
8:2:247:ARG:HB3	8:2:247:ARG:NH1	2.34	0.43	
8:2:786:VAL:HG21	11:5:573:ILE:HD11	1.98	0.43	
13:7:596:ILE:HD12	13:7:596:ILE:N	2.33	0.43	
14:X:344:GLN:OE1	14:X:344:GLN:HA	2.17	0.43	
14:X:734:SER:O	14:X:738:VAL:HG23	2.19	0.43	
10:4:199:MET:CE	10:4:227:ILE:HD11	2.48	0.43	
11:5:374:ILE:O	11:5:374:ILE:CG2	2.65	0.43	
15:Y:78:ILE:HD11	15:Y:91:ILE:HD11	2.00	0.43	

	t i a	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
6:F:31:DC:H2'	6:F:32:DT:H72	2.00	0.43	
14:X:540:LEU:HD11	14:X:598:VAL:HG22	1.99	0.43	
14:X:742:SER:O	14:X:743:ASP:C	2.57	0.43	
2:B:22:ASN:OD1	4:D:135:ARG:NH1	2.47	0.43	
9:3:451:GLU:HB2	11:5:460:ARG:NH2	2.21	0.43	
11:5:626:PHE:CD1	11:5:653:LEU:HD21	2.54	0.43	
12:6:511:ASP:OD1	12:6:512:GLU:N	2.51	0.43	
14:X:180:ILE:HD11	14:X:262:VAL:HA	2.00	0.43	
11:5:740:THR:HG22	11:5:742:ARG:NE	2.34	0.43	
10:4:263:ASN:ND2	13:7:136:ASP:OD2	2.52	0.43	
10:4:774:TYR:HD2	12:6:728:ALA:HB2	1.84	0.43	
11:5:400:LEU:HD12	11:5:404:MET:O	2.19	0.43	
11:5:402:ASP:OD1	11:5:403:GLY:N	2.52	0.43	
13:7:513:LEU:HD13	13:7:540:VAL:HG21	2.01	0.43	
3:C:39:THR:OG1	3:C:40:LYS:N	2.52	0.43	
5:E:609:PHE:CE2	5:E:630:ILE:HD13	2.54	0.43	
10:4:592:SER:OG	10:4:593:GLY:N	2.51	0.43	
11:5:162:LEU:HD11	11:5:258:LEU:CD2	2.49	0.43	
11:5:383:ASP:OD1	11:5:383:ASP:N	2.50	0.43	
4:D:248:GLU:OE1	4:D:249:ASN:O	2.36	0.42	
6:F:26:DG:H2"	6:F:27:DA:C8	2.54	0.42	
9:3:562:SER:O	9:3:566:LEU:HG	2.19	0.42	
12:6:143:MET:O	12:6:147:ASP:N	2.52	0.42	
13:7:146:ARG:NH1	13:7:268:GLU:O	2.51	0.42	
13:7:293:GLN:HB2	15:Y:105:LYS:HZ2	1.84	0.42	
13:7:409:ASP:O	13:7:410:VAL:C	2.57	0.42	
13:7:629:ASP:OD1	13:7:630:PHE:N	2.52	0.42	
14:X:546:THR:HG23	14:X:557:ILE:HD13	2.01	0.42	
2:B:15:GLU:OE1	4:D:71:ARG:NH1	2.51	0.42	
9:3:185:ILE:HD11	9:3:291:ARG:NH1	2.34	0.42	
10:4:432:ARG:HH11	10:4:432:ARG:HG3	1.84	0.42	
13:7:711:ASP:O	13:7:715:GLU:HG3	2.18	0.42	
8:2:653:ASN:N	8:2:666:ASN:O	2.49	0.42	
10:4:541:LEU:HD23	10:4:541:LEU:C	2.39	0.42	
14:X:540:LEU:O	14:X:543:VAL:HG12	2.19	0.42	
14:X:542:LEU:O	14:X:542:LEU:HD12	2.19	0.42	
6:F:31:DC:H2'	6:F:32:DT:C7	2.49	0.42	
8:2:264:PRO:HB3	8:2:317:LEU:HD13	2.01	0.42	
9:3:479:THR:HG22	9:3:480:ASP:N	2.34	0.42	
11:5:483:ASP:OD1	11:5:484:LYS:N	2.51	0.42	
13:7:440:VAL:HG22	13:7:441:ASP:N	2.34	0.42	

Atom 1	Atom 2	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (\AA)		
15:Y:70:LYS:HD2	15:Y:70:LYS:C	2.39	0.42	
1:A:5:LEU:N	1:A:5:LEU:HD22	2.35	0.42	
5:E:312:THR:O	5:E:315:THR:HG22	2.20	0.42	
13:7:481:VAL:O	13:7:522:CYS:HB2	2.20	0.42	
5:E:256:TYR:HE2	5:E:298:GLU:OE1	2.02	0.42	
6:F:29:DA:C8	6:F:30:DT:H72	2.55	0.42	
9:3:572:LEU:HD11	9:3:578:GLU:HB3	2.01	0.42	
10:4:616:LEU:O	10:4:616:LEU:HD23	2.20	0.42	
11:5:711:ILE:HG23	11:5:751:ALA:HB2	2.01	0.42	
13:7:414:LEU:HD13	13:7:414:LEU:HA	1.94	0.42	
14:X:484:LYS:HD2	14:X:538:GLU:OE2	2.20	0.42	
1:A:67:VAL:HG12	1:A:71:GLN:OE1	2.19	0.42	
13:7:599:LEU:N	13:7:727:LEU:HD13	2.31	0.42	
1:A:92:LEU:O	1:A:96:ILE:HG12	2.19	0.42	
9:3:456:ARG:NH2	13:7:327:ILE:CG1	2.80	0.42	
9:3:673:GLN:O	9:3:676:ILE:HG22	2.20	0.42	
10:4:833:ILE:O	10:4:834:LYS:CB	2.68	0.42	
8:2:311:GLU:OE1	8:2:311:GLU:N	2.53	0.42	
9:3:170:THR:O	9:3:170:THR:HG22	2.20	0.42	
12:6:101:LYS:HA	14:X:422:GLN:HE22	1.85	0.42	
1:A:94:THR:HG23	1:A:130:TYR:CE2	2.55	0.42	
2:B:146:GLN:HG3	11:5:47:ARG:NH1	2.13	0.42	
3:C:135:LEU:HD23	3:C:135:LEU:O	2.20	0.42	
9:3:687:ARG:NH2	13:7:602:ASP:OD1	2.53	0.42	
10:4:320:ASN:OD1	10:4:320:ASN:C	2.58	0.42	
10:4:549:ASN:OD1	10:4:559:ARG:NH2	2.53	0.42	
10:4:577:ILE:O	10:4:581:VAL:HG13	2.19	0.42	
13:7:441:ASP:O	13:7:442:LYS:C	2.58	0.42	
3:C:21:GLN:OE1	3:C:69:VAL:HG13	2.20	0.41	
8:2:578:ALA:HB1	8:2:591:LEU:HD21	2.02	0.41	
9:3:281:ASP:OD1	9:3:281:ASP:N	2.52	0.41	
11:5:450:THR:O	11:5:467:GLY:N	2.43	0.41	
11:5:486:ARG:NE	11:5:488:GLU:OE2	2.47	0.41	
9:3:107:ASP:OD1	9:3:109:SER:OG	2.37	0.41	
2:B:50:TRP:HD1	2:B:52:LEU:HD21	1.86	0.41	
4:D:209:ILE:HA	4:D:218:MET:HE1	2.02	0.41	
5:E:624:ASN:OD1	5:E:624:ASN:C	2.58	0.41	
8:2:812:SER:O	8:2:816:ILE:HG12	2.19	0.41	
10:4:508:LYS:HZ2	10:4:512:VAL:HG23	1.83	0.41	
11:5:755:LEU:HD23	11:5:755:LEU:HA	1.95	0.41	
3:C:163:SER:O	3:C:167:LEU:HD23	2.20	0.41	

	h i a	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
5:E:259:LEU:O	5:E:263:GLY:N	2.53	0.41	
8:2:612:MET:O	8:2:617:ARG:NH2	2.53	0.41	
9:3:48:TYR:CD1	9:3:92:LEU:HD23	2.56	0.41	
11:5:485:MET:SD	11:5:493:ILE:HD12	2.61	0.41	
14:X:139:LEU:O	14:X:140:ILE:HD13	2.20	0.41	
6:F:27:DA:C8	6:F:28:DT:H72	2.56	0.41	
9:3:676:ILE:CG1	13:7:617:THR:CG2	2.98	0.41	
11:5:162:LEU:CD1	11:5:258:LEU:HD21	2.50	0.41	
11:5:690:ASP:O	11:5:694:GLN:N	2.52	0.41	
14:X:348:ASN:ND2	14:X:725:PRO:O	2.53	0.41	
15:Y:93:GLN:O	15:Y:97:LEU:HD23	2.21	0.41	
3:C:105:PHE:HD2	3:C:170:GLU:OE1	1.89	0.41	
9:3:712:HIS:CD2	9:3:728:VAL:HG11	2.56	0.41	
10:4:709:LEU:HD13	10:4:711:LYS:CD	2.50	0.41	
14:X:554:SER:O	14:X:558:GLU:N	2.48	0.41	
5:E:572:ILE:HD12	5:E:579:TYR:CZ	2.55	0.41	
9:3:568:THR:CG2	11:5:400:LEU:HD11	2.50	0.41	
10:4:444:ILE:HD11	10:4:458:LYS:HB2	2.01	0.41	
10:4:579:GLN:O	10:4:583:LYS:HG3	2.20	0.41	
10:4:756:GLU:OE1	10:4:756:GLU:HA	2.20	0.41	
10:4:835:ASP:O	10:4:836:TYR:C	2.59	0.41	
4:D:194:VAL:HG21	4:D:209:ILE:HD12	2.03	0.41	
8:2:502:ALA:N	8:2:503:PRO:CD	2.84	0.41	
8:2:580:VAL:HG23	8:2:590:THR:O	2.21	0.41	
8:2:670:THR:CG2	8:2:671:GLU:N	2.83	0.41	
13:7:710:ILE:HD12	13:7:713:VAL:CG2	2.51	0.41	
1:A:37:ILE:HG22	1:A:41:LEU:HD11	2.02	0.41	
1:A:92:LEU:HD22	3:C:6:ILE:HD11	2.02	0.41	
1:A:204:TYR:C	1:A:205:LEU:HD12	2.42	0.41	
3:C:33:ASN:OD1	3:C:33:ASN:C	2.59	0.41	
6:F:27:DA:H2"	6:F:28:DT:C7	2.51	0.41	
8:2:684:ARG:HG2	8:2:686:LEU:CD2	2.51	0.41	
9:3:389:VAL:H	9:3:710:THR:HG21	1.86	0.41	
9:3:470:VAL:HG13	9:3:470:VAL:O	2.20	0.41	
9:3:676:ILE:HG12	13:7:617:THR:CG2	2.51	0.41	
10:4:742:LEU:HD13	10:4:746:PHE:HE1	1.86	0.41	
11:5:646:ILE:O	11:5:646:ILE:HG13	2.20	0.41	
12:6:527:ASP:OD1	12:6:527:ASP:N	2.54	0.41	
14:X:282:ILE:O	14:X:286:LEU:HG	2.21	0.41	
14:X:453:LEU:HD21	14:X:479:PHE:HE2	1.86	0.41	
14:X:765:PHE:CE1	15:Y:125:LEU:HD21	2.56	0.41	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
15:Y:129:ARG:HA	15:Y:132:LEU:HD12	2.01	0.41
10:4:632:ASP:OD2	10:4:633:GLU:HG2	2.21	0.41
10:4:709:LEU:HD13	10:4:711:LYS:CG	2.47	0.41
13:7:728:TYR:CG	13:7:729:GLN:N	2.86	0.41
8:2:431:LYS:NZ	8:2:452:GLU:OE1	2.43	0.40
10:4:239:SER:O	10:4:239:SER:OG	2.33	0.40
2:B:74:TRP:CD1	2:B:74:TRP:C	2.94	0.40
10:4:772:ARG:HD2	10:4:772:ARG:C	2.42	0.40
12:6:646:ILE:HD13	12:6:646:ILE:HA	2.00	0.40
13:7:77:SER:OG	13:7:338:THR:HG21	2.21	0.40
14:X:510:PHE:CD2	14:X:511:ILE:HD13	2.55	0.40
5:E:539:TYR:CE1	5:E:548:LEU:HD22	2.56	0.40
8:2:651:ASN:O	8:2:651:ASN:OD1	2.39	0.40
14:X:370:ASP:OD1	14:X:370:ASP:O	2.38	0.40
1:A:104:ASN:OD1	1:A:104:ASN:C	2.59	0.40
5:E:30:PHE:CD2	5:E:81:LEU:HD21	2.57	0.40
5:E:84:VAL:O	5:E:84:VAL:HG23	2.21	0.40
12:6:629:MET:CE	12:6:672:LEU:HD13	2.52	0.40
13:7:139:LEU:HD22	13:7:196:LEU:HD21	2.04	0.40
9:3:467:ARG:N	9:3:509:ARG:O	2.45	0.40
10:4:273:ASP:OD1	10:4:303:VAL:HG12	2.22	0.40
11:5:564:ARG:O	11:5:568:ILE:HG13	2.20	0.40
13:7:214:ARG:HG2	13:7:215:TYR:CE1	2.57	0.40
13:7:293:GLN:HB2	15:Y:105:LYS:NZ	2.37	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	А	190/208~(91%)	186 (98%)	4 (2%)	0	100 100	

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	В	185/213~(87%)	176 (95%)	8 (4%)	1 (0%)	25	59
3	С	168/217~(77%)	163 (97%)	5(3%)	0	100	100
4	D	216/294~(74%)	211 (98%)	5(2%)	0	100	100
5	Е	560/650~(86%)	548 (98%)	12 (2%)	0	100	100
8	2	649/868~(75%)	625~(96%)	24 (4%)	0	100	100
9	3	632/971~(65%)	613~(97%)	19 (3%)	0	100	100
10	4	603/933~(65%)	582 (96%)	19 (3%)	2~(0%)	37	68
11	5	623/775~(80%)	597~(96%)	26~(4%)	0	100	100
12	6	630/1017~(62%)	610 (97%)	20 (3%)	0	100	100
13	7	633/845~(75%)	603~(95%)	29~(5%)	1 (0%)	44	75
14	Х	699/1238~(56%)	683~(98%)	16 (2%)	0	100	100
15	Y	90/92~(98%)	86 (96%)	4 (4%)	0	100	100
All	All	5878/8321 (71%)	5683 (97%)	191 (3%)	4 (0%)	50	79

All (4) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
10	4	834	LYS
2	В	94	THR
13	7	493	LEU
10	4	694	LEU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Rotameric Outliers	
1	А	179/193~(93%)	179 (100%)	0	100 100
2	В	178/198~(90%)	176 (99%)	2(1%)	70 83
3	С	156/192~(81%)	155 (99%)	1 (1%)	84 91
4	D	213/279~(76%)	211 (99%)	2 (1%)	75 86

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
5	Ε	504/586~(86%)	500~(99%)	4 (1%)	79	88
8	2	576/770~(75%)	571 (99%)	5 (1%)	75	86
9	3	551/835~(66%)	546~(99%)	5(1%)	75	86
10	4	551/848~(65%)	545~(99%)	6 (1%)	70	83
11	5	577/688~(84%)	575 (100%)	2~(0%)	91	96
12	6	559/886~(63%)	553~(99%)	6 (1%)	70	83
13	7	560/753~(74%)	556~(99%)	4 (1%)	81	89
14	Х	639/1125~(57%)	625~(98%)	14 (2%)	47	70
15	Y	85/85~(100%)	84 (99%)	1 (1%)	67	82
All	All	$532\overline{8/7438}$ (72%)	5276~(99%)	52 (1%)	71	84

All (52) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	В	74	TRP
2	В	132	ASP
3	С	23	ASP
4	D	126	LEU
4	D	190	TRP
5	Ε	151	THR
5	Е	397	ASP
5	Е	578	THR
5	Е	607	MET
8	2	234	LEU
8	2	271	PHE
8	2	489	ARG
8	2	621	HIS
8	2	777	LYS
9	3	156	SER
9	3	358	ASP
9	3	404	ASN
9	3	421	PHE
9	3	738	LEU
10	4	361	ASP
10	4	404	ASP
10	4	519	TYR
10	4	531	TYR
10	4	616	LEU
10	4	746	PHE

Mol	Chain	Res	Type
11	5	90	PHE
11	5	644	SER
12	6	118	PHE
12	6	319	ASP
12	6	614	ARG
12	6	641	PHE
12	6	669	HIS
12	6	679	LEU
13	7	574	TYR
13	7	630	PHE
13	7	677	SER
13	7	728	TYR
14	Х	92	LEU
14	Х	94	ASP
14	Х	101	LEU
14	Х	115	PHE
14	Х	134	LEU
14	Х	237	ASP
14	Х	238	THR
14	Х	247	ASP
14	Х	256	SER
14	Х	293	PHE
14	Х	439	GLU
14	Х	536	PHE
14	Х	559	PHE
14	Х	713	PHE
15	Y	137	MET

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (8) such sidechains are listed below:

Mol	Chain	Res	Type
5	Е	296	GLN
9	3	522	GLN
9	3	688	ASN
10	4	274	GLN
10	4	683	ASN
13	7	332	ASN
13	7	585	ASN
13	7	615	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 16 ligands modelled in this entry, 10 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	$_{\rm sths}$	B	ond ang	gles
IVIOI	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
19	ADP	4	1004	-	24,29,29	0.91	0	29,45,45	1.19	2 (6%)
16	ATP	7	1001	17	28,33,33	0.64	0	34,52,52	0.97	1 (2%)
16	ATP	5	1001	17	28,33,33	0.73	0	34,52,52	1.25	3 (8%)
19	ADP	4	1001	17	24,29,29	0.90	0	29,45,45	1.30	2 (6%)
16	ATP	2	1001	17	28,33,33	0.65	0	34,52,52	0.94	2 (5%)
16	ATP	3	1001	17	28,33,33	0.64	0	34,52,52	1.19	3 (8%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
19	ADP	4	1004	-	-	5/12/32/32	0/3/3/3
16	ATP	7	1001	17	-	6/18/38/38	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
16	ATP	5	1001	17	-	5/18/38/38	0/3/3/3
19	ADP	4	1001	17	-	1/12/32/32	0/3/3/3
16	ATP	2	1001	17	-	7/18/38/38	0/3/3/3
16	ATP	3	1001	17	-	0/18/38/38	0/3/3/3

There are no bond length outliers.

All (13) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
16	3	1001	ATP	C4'-O4'-C1'	-4.47	105.83	109.92
16	5	1001	ATP	C4'-O4'-C1'	-4.28	106.00	109.92
19	4	1004	ADP	N3-C2-N1	-4.24	122.92	128.67
19	4	1001	ADP	N3-C2-N1	-4.15	123.04	128.67
16	5	1001	ATP	O2'-C2'-C3'	3.76	123.88	111.82
19	4	1001	ADP	C4-C5-N7	-2.53	106.67	109.34
16	7	1001	ATP	C5-C6-N6	2.33	123.85	120.31
16	3	1001	ATP	C5-C6-N6	2.28	123.78	120.31
16	2	1001	ATP	C5-C6-N6	2.27	123.76	120.31
16	5	1001	ATP	C5-C6-N6	2.22	123.69	120.31
19	4	1004	ADP	C4-C5-N7	-2.07	107.15	109.34
16	3	1001	ATP	O3'-C3'-C4'	-2.02	105.28	111.08
16	2	1001	ATP	O4'-C1'-N9	-2.00	106.09	108.75

There are no chirality outliers.

All (24) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
16	2	1001	ATP	PB-O3B-PG-O2G
16	5	1001	ATP	PB-O3B-PG-O3G
16	5	1001	ATP	C4'-C5'-O5'-PA
16	7	1001	ATP	PB-O3B-PG-O2G
16	7	1001	ATP	PB-O3B-PG-O3G
19	4	1001	ADP	PA-O3A-PB-O3B
19	4	1004	ADP	C5'-O5'-PA-O3A
16	2	1001	ATP	O4'-C4'-C5'-O5'
16	7	1001	ATP	O4'-C4'-C5'-O5'
19	4	1004	ADP	O4'-C4'-C5'-O5'
16	2	1001	ATP	PB-O3A-PA-O1A
16	5	1001	ATP	PB-O3B-PG-O1G
16	7	1001	ATP	PA-O3A-PB-O2B
16	7	1001	ATP	PB-O3A-PA-O2A

Mol	Chain	Res	Type	Atoms
19	4	1004	ADP	C3'-C4'-C5'-O5'
16	5	1001	ATP	C5'-O5'-PA-O1A
19	4	1004	ADP	C5'-O5'-PA-O1A
16	5	1001	ATP	PA-O3A-PB-O1B
16	2	1001	ATP	PB-O3A-PA-O5'
16	2	1001	ATP	C4'-C5'-O5'-PA
16	2	1001	ATP	C3'-C4'-C5'-O5'
16	7	1001	ATP	PA-O3A-PB-O1B
19	4	1004	ADP	C4'-C5'-O5'-PA
16	2	1001	ATP	PB-O3B-PG-O1G

There are no ring outliers.

6 monomers are involved in 7 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
19	4	1004	ADP	1	0
16	7	1001	ATP	1	0
16	5	1001	ATP	1	0
19	4	1001	ADP	1	0
16	2	1001	ATP	2	0
16	3	1001	ATP	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-47471. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal standard-deviation projections (False-color) (i)

This section was not generated.

6.5 Orthogonal surface views (i)

This section was not generated.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

