

Dec 21, 2024 – 07:47 pm GMT

PDB	ID	:	8QIE
EMDB	ID	:	EMD-18437
Т	itle	:	CRYO-EM STRUCTURE OF LEISHMANIA MAJOR 80S RIBOSOME :
			LM32Cs1C1 mutant snoRNA overexpression, class 4
Auth	ors	:	Rajan, K.S.; Yonath, A.; Bashan, A.
Deposited	on	:	2023-09-12
Resolut	ion	:	2.43 Å(reported)
Th	is is	a F	ull wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.43 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures		
	$(\# { m Entries})$	$(\# { m Entries})$		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	Quality of chain							
1	1	1782	63%	26%	· 10%						
2	2	1526	51% 22%	•	24%						
3	3	216	55% 16%	•	28%						
4	4	184	77%		22% •						
5	5	135	62%	22%	• 15%						
6	6	73	52%	40%	5% •						
7	7	171	70%		25% • •						
8	8	123	80%		16% •						

Continue	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
9	А	260	97%	•••
10	В	419	93%	• 5%
11	С	373	95%	• •
12	D	188	83%	• 16%
13	Е	190	95%	• •
14	F	195	74%	24%
15	G	264	84%	• 14%
16	Н	222	96%	• •
17	Ι	220	92%	• 5%
18	J	139	96%	••
19	K	175	95%	• •
20	L	145	97%	••
21	М	204	98%	•
22	Ν	213	87%	6% 7%
23	Ο	305	89%	• 10%
24	Р	198	97%	••
25	Q	254	72% •	26%
26	R	179	98%	••
27	S	159	94%	5%•
28	S1	2204	59% 21% ·	19%
29	S4	76	32% · 3	34%
30	SA	264	83%	• 15%
31	SB	246	77% 7%	15%
32	SC	219	92%	5% •
33	SD	190	83%	5% 12%

Mol	Chain	Length	Quality of chain		
34	SE	273	93%		• 5%
35	\mathbf{SF}	265	81%		18%
36	SG	249	88%		• 7%
37	SH	190	92%		• •
38	SI	200	96%		•
39	SJ	130	96%		
40	SK	220	80%	•	17%
41	SL	149	• 95%		
42	SM	116	84%		• 12%
43	SN	168	55% •	41%	
44	SO	144	90%		• 6%
45	SP	143	93%		6% •
46	SQ	141	68%		29%
47	SR	153	81%		• 15%
48	SS	57	96%		
49	ST	151	92%		• 6%
50	SU	173	86%		• 10%
51	SV	143	48%	50%	
52	SW	152	6 8%	6%	26%
53	SX	161	• 92%		• 6%
54	SY	164	49%	49%	
55	SZ	137	87%		6% 7%
56	Sa	120	56%	<u>л</u> 1%	
57	Sb	119	960/	71 /0	6% 8%
58	Sc	86	84%		• 15%

Continued from previous page...

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol 59 Sd 87 72% 24% . 60 Se 66 73% 5% 23% 7% 61 Sf 15220% 78% . Sg 62 31294% • • 9% \mathbf{Sh} 63 23552% 5% 43% Т 6416689% 9% . U 129 6589% 9% • V 66 14579% 19% • W 67 14380% 17% Х 6812450% 48% Υ 69 134. . 95% Ζ 706% • 14793% . . 71127 \mathbf{a} 94% . . 7270b 93% 73252 \mathbf{c} 89% 9% 74 \mathbf{d} 104 83% 6% 12% 75188е 93% • • \mathbf{f} 76133• 6% 92% ••• 77144g 98% 78168h 72% 24% . 79i 10580% 16% • 80 83 •• j 96% 81 k 83 84% 13% • 82 1 5192% 6% • 83 128 60% m 37%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
84	n	34	94%	
85	О	92	89%	7% •
86	р	106	91%	• 8%

2 Entry composition (i)

There are 91 unique types of molecules in this entry. The entry contains 206527 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called LSUa_rRNA_chain_1.

Mol	Chain	Residues		1	AltConf	Trace			
1	1	1611	Total 34568	C 15451	N 6340	O 11166	Р 1611	0	0

• Molecule 2 is a RNA chain called LSUb_rRNA_chain_2.

Mol	Chain	Residues		A	AltConf	Trace			
2	2	1159	Total 24802	C 11101	N 4482	O 8060	Р 1159	0	0

• Molecule 3 is a RNA chain called SR1_chain_3.

Mol	Chain	Residues		Α	AltConf	Trace			
3	3	156	Total 3312	C 1481	N 576	O 1099	Р 156	0	0

• Molecule 4 is a RNA chain called SR2_chain_4.

Mol	Chain	Residues		Α	AltConf	Trace			
4	4	184	Total 3937	C 1756	N 712	O 1285	Р 184	0	0

• Molecule 5 is a RNA chain called SR4_chain_5.

Mol	Chain	Residues		At	AltConf	Trace			
5	5	115	Total 2453	C 1094	N 439	O 805	Р 115	0	0

• Molecule 6 is a RNA chain called SR6_chain_6.

Mol	Chain	Residues		A	toms			AltConf	Trace
6	6	71	Total 1506	C 675	N 271	0 489	Р 71	0	0

• Molecule 7 is a RNA chain called 5.8S_rRNA_chain_7.

Mol	Chain	Residues		Α	toms			AltConf	Trace
7	7	164	Total 3494	C 1566	N 621	0 1144	Р 163	0	0

• Molecule 8 is a RNA chain called 5S_rRNA_chain_8.

Mol	Chain	Residues		At	AltConf	Trace			
8	8	119	Total 2531	C 1132	N 452	O 828	Р 119	0	0

• Molecule 9 is a protein called Putative 60S ribosomal protein L2.

Mol	Chain	Residues		At	AltConf	Trace			
9	А	255	Total 1908	C 1189	N 390	O 319	S 10	1	0

• Molecule 10 is a protein called Putative ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	В	399	Total 3051	C 1932	N 599	0 507	S 13	0	0

• Molecule 11 is a protein called Putative ribosomal protein L1a.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	С	366	Total 2777	C 1740	N 556	0 466	S 15	0	0

• Molecule 12 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	D	158	Total 1008	C 629	N 203	0 170	S 6	0	0

• Molecule 13 is a protein called Putative 60S ribosomal protein L9.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Е	186	Total 1395	C 889	N 267	O 233	S 6	0	0

• Molecule 14 is a protein called Putative 60S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	F	148	Total 1067	C 686	N 203	O 176	${ m S} { m 2}$	0	0

• Molecule 15 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	G	226	Total 1731	C 1097	N 344	O 283	${f S}{7}$	0	0

• Molecule 16 is a protein called Putative 60S ribosomal protein L13a.

Mol	Chain	Residues		At	AltConf	Trace			
16	Н	220	Total 1734	C 1101	N 349	0 277	S 7	0	0

• Molecule 17 is a protein called Putative 60S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	Ι	208	Total 1603	C 1001	N 326	O 269	${ m S} 7$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	203	ARG	ASN	conflict	UNP E9AEA8

• Molecule 18 is a protein called Putative 60S ribosomal protein L23.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
18	J	137	Total 999	C 631	N 190	0 172	S 6	0	0

• Molecule 19 is a protein called Putative 40S ribosomal protein L14.

Mol	Chain	Residues		At	AltConf	Trace			
19	K	170	Total 1266	C 794	N 252	0 213	S 7	0	0

• Molecule 20 is a protein called Putative 60S ribosomal protein L27A/L29.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	L	144	Total 1124	C 707	N 226	O 185	S 6	0	0

• Molecule 21 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		At	AltConf	Trace			
21	М	203	Total 1696	C 1071	N 361	O 256	S 8	0	0

• Molecule 22 is a protein called Putative 60S ribosomal protein L10.

Mol	Chain	Residues		At	AltConf	Trace			
22	N	199	Total 1607	C 1013	N 320	O 260	S 14	0	0

• Molecule 23 is a protein called Putative 60S ribosomal protein L5.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
23	О	276	Total 1975	C 1260	N 379	O 333	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	Р	197	Total 1528	C 961	N 305	O 256	S 6	0	0

• Molecule 25 is a protein called Putative 60S ribosomal protein L19.

Mol	Chain	Residues		At	oms		AltConf	Trace	
25	Q	187	Total 1433	C 892	N 316	O 219	S 6	0	0

• Molecule 26 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	R	178	Total 1413	C 904	N 273	0 231	${f S}{5}$	0	0

• Molecule 27 is a protein called Putative 60S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	S	157	Total 1234	C 784	N 240	O 206	$\frac{S}{4}$	0	0

• Molecule 28 is a RNA chain called SSU_rRNA_chain_S1.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
28	S1	1787	Total 38240	C 17106	N 6918	O 12429	Р 1787	0	0

• Molecule 29 is a RNA chain called E-site_tRNA_chain_S4.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
29	S4	50	Total 1072	C 478	N 200	0 345	Р 49	0	0

• Molecule 30 is a protein called 40S ribosomal protein S3a.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	SA	225	Total 1820	C 1141	N 346	0 321	S 12	1	0

• Molecule 31 is a protein called 40S ribosomal protein SA.

Mol	Chain	Residues		At	AltConf	Trace			
31	SB	208	Total 1627	C 1034	N 297	0 284	S 12	0	0

• Molecule 32 is a protein called Putative 40S ribosomal protein S3.

Mol	Chain	Residues		At	AltConf	Trace			
32	\mathbf{SC}	212	Total 1624	C 1029	N 296	O 286	S 13	1	0

• Molecule 33 is a protein called Putative 40S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	SD	167	Total 1366	C 863	N 270	0 225	S 8	0	0

• Molecule 34 is a protein called 40S ribosomal protein S4.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	SE	260	Total 2050	C 1299	N 393	O 349	S 9	0	0

• Molecule 35 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		Ate	AltConf	Trace			
35	SF	218	Total 1662	C 1063	N 297	O 293	S 9	0	0

• Molecule 36 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		Atoms					Trace
36	SG	231	Total 1831	C 1144	N 374	0 310	$\frac{S}{3}$	0	0

• Molecule 37 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		Atoms					Trace
37	SH	182	Total 1436	C 892	N 278	O 259	S 7	0	0

• Molecule 38 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
38	SI	199	Total 1619	C 1032	N 313	O 267	S 7	0	0

• Molecule 39 is a protein called Putative 40S ribosomal protein S15A.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	SJ	129	Total 1021	C 646	N 188	O 179	S 8	0	0

• Molecule 40 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	SK	182	Total 1443	C 906	N 305	O 230	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 41 is a protein called Putative 40S ribosomal protein S16.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	SL	143	Total 1124	С 724	N 206	0 191	${ m S} { m 3}$	0	0

• Molecule 42 is a protein called Putative ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	SM	102	Total 796	C 498	N 145	0 151	${ m S} { m 2}$	0	0

• Molecule 43 is a protein called Putative 40S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	SN	99	Total 808	C 518	N 141	0 142	${f S}{7}$	0	0

• Molecule 44 is a protein called 40S ribosomal protein S14.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	SO	135	Total 1010	C 624	N 197	0 181	S 8	0	0

• Molecule 45 is a protein called Putative 40S ribosomal protein S23.

Mol	Chain	Residues		At	AltConf	Trace			
45	SP	141	Total 1100	C 694	N 217	0 186	${ m S} { m 3}$	0	0

• Molecule 46 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	SQ	100	Total 679	C 419	N 122	0 133	${ m S}{ m 5}$	0	0

• Molecule 47 is a protein called Putative 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	SR	130	Total 1034	C 655	N 201	0 174	$\frac{S}{4}$	0	0

• Molecule 48 is a protein called Putative ribosomal protein S29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
48	\mathbf{SS}	56	Total 452	C 279	N 94	O 73	S 6	0	0

• Molecule 49 is a protein called Putative 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
49	ST	142	Total 1155	C 728	N 229	O 190	S 8	0	0

• Molecule 50 is a protein called Putative 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
50	SU	156	Total 1253	C 796	N 247	O 205	${ m S}{ m 5}$	0	0

• Molecule 51 is a protein called Putative 40S ribosomal protein S17.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
51	SV	71	Total 577	C 368	N 110	O 97	${ m S} { m 2}$	0	0

• Molecule 52 is a protein called Putative 40S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
52	SW	113	Total 907	C 578	N 172	0 153	S 4	0	0

• Molecule 53 is a protein called 40S ribosomal protein S19-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	SX	152	Total 1202	С 764	N 237	0 197	${f S}$ 4	0	0

• Molecule 54 is a protein called Putative 40S ribosomal protein S21.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	SY	84	Total 616	C 381	N 115	0 116	$\frac{S}{4}$	0	0

• Molecule 55 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	SZ	127	Total 1031	C 662	N 200	O 166	${ m S} { m 3}$	0	0

• Molecule 56 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
56	Sa	71	Total 558	C 356	N 99	O 100	${ m S} { m 3}$	0	0

• Molecule 57 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	AltConf	Trace			
57	Sb	103	Total 816	C 505	N 175	O 129	${ m S} 7$	0	0

• Molecule 58 is a protein called Putative 40S ribosomal protein S27-1.

Mol	Chain	Residues		At	oms			AltConf	Trace
58	Sc	73	Total 570	C 358	N 107	0 101	${S \atop 4}$	0	0

• Molecule 59 is a protein called Putative 40S ribosomal protein S33.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
59	Sd	66	Total 483	C 295	N 97	0 87	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 60 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
60	Se	51	Total	С	Ν	0	\mathbf{S}	0	0
00	50	01	401	252	86	62	1	0	0

• Molecule 61 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
61	Sf	33	Total 295	C 193	N 58	O 43	S 1	0	0

• Molecule 62 is a protein called Guanine nucleotide-binding protein subunit beta-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
62	Sg	300	Total 2284	C 1438	N 406	O 428	S 12	0	0

• Molecule 63 is a protein called Putative RNA binding protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
63	Sh	134	Total 948	C 603	N 179	0 164	${S \over 2}$	0	0

• Molecule 64 is a protein called Putative 60S ribosomal protein L17.

Mol	Chain	Residues		A	toms	AltConf	Trace		
64	Т	151	Total 1211	C 757	N 240	O 203	S 11	0	0

• Molecule 65 is a protein called Putative 60S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	U	118	Total 801	C 514	N 152	0 133	${ m S} { m 2}$	0	0

• Molecule 66 is a protein called Putative 60S ribosomal protein L23a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
66	V	118	Total 926	C 587	N 178	0 159	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 67 is a protein called Putative 60S ribosomal protein L26.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
67	W	118	Total 937	C 586	N 197	O 150	${f S}$ 4	0	0

• Molecule 68 is a protein called Putative ribosomal protein L24.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
68	Х	64	Total 548	C 359	N 105	O 80	${f S}$ 4	0	0

• Molecule 69 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
69	Y	132	Total 1027	C 661	N 206	O 157	${ m S} { m 3}$	0	0

• Molecule 70 is a protein called Putative 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	Z	145	Total 1095	C 671	N 234	0 185	${ m S}{ m 5}$	0	0

• Molecule 71 is a protein called Putative 60S ribosomal protein L35.

Mol	Chain	Residues		At	oms	AltConf	Trace		
71	a	123	Total 1006	C 630	N 211	0 161	$\frac{S}{4}$	0	0

• Molecule 72 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
72	b	68	Total 546	C 335	N 125	O 86	0	0

• Molecule 73 is a protein called Putative 60S ribosomal protein L7.

Mol	Chain	Residues		At	AltConf	Trace			
73	с	229	Total 1862	C 1185	N 358	O 308	S 11	0	0

• Molecule 74 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
74	d	92	Total 705	C 438	N 129	0 133	${ m S}{ m 5}$	0	0

• Molecule 75 is a protein called Putative 60S ribosomal subunit protein L31.

Mol	Chain	Residues		At	oms	AltConf	Trace		
75	е	180	Total 1421	C 895	N 288	0 234	${S \atop 4}$	0	0

• Molecule 76 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
76	f	125	Total 1011	C 636	N 201	O 170	$\frac{S}{4}$	0	0

• Molecule 77 is a protein called Putative ribosomal protein l35a.

Mol	Chain	Residues	Atoms				AltConf	Trace	
77	g	142	Total 1142	C 710	N 239	0 188	${ m S}{ m 5}$	0	0

• Molecule 78 is a protein called Putative 60S ribosomal protein L34.

Mol	Chain	Residues	Atoms				AltConf	Trace	
78	h	127	Total 1018	C 626	N 221	0 165	S 6	0	0

• Molecule 79 is a protein called Putative 60S Ribosomal protein L36.

Mol	Chain	Residues	Atoms				AltConf	Trace	
79	i	88	Total 689	C 438	N 143	O 106	${ m S} { m 2}$	0	0

• Molecule 80 is a protein called Ribosomal protein L37.

Mol	Chain	Residues	Atoms				AltConf	Trace	
80	j	81	Total 668	C 407	N 154	0 101	S 6	0	0

• Molecule 81 is a protein called Putative ribosomal protein L38.

Mol	Chain	Residues	Atoms					AltConf	Trace
Q1	ŀ	79	Total	С	Ν	Ο	S	0	0
01	К	12	534	338	105	88	3	0	U

• Molecule 82 is a protein called Putative 60S ribosomal protein L39.

Mol	Chain	Residues	Atoms				AltConf	Trace	
82	1	50	Total 450	C 291	N 95	O 63	${ m S}$ 1	0	0

• Molecule 83 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues	Atoms				AltConf	Trace	
83	m	51	Total 378	C 238	N 74	O 59	${ m S} 7$	0	0

• Molecule 84 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues	Atoms				AltConf	Trace	
84	n	33	Total 292	C 178	N 75	O 37	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 85 is a protein called 60S ribosomal protein L37a.

Mol	Chain	Residues	Atoms				AltConf	Trace	
85	О	88	Total 688	C 428	N 142	0 112	S 6	0	0

• Molecule 86 is a protein called Putative 60S ribosomal protein L44.

Mol	Chain	Residues	Atoms			AltConf	Trace		
86	р	97	Total 775	C 491	N 157	0 123	$\frac{S}{4}$	0	0

• Molecule 87 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
87	1	58	TotalMg5858	0
87	2	66	TotalMg6666	0
87	4	3	Total Mg 3 3	0
87	5	3	Total Mg 3 3	0
87	6	1	Total Mg 1 1	0
87	7	2	Total Mg 2 2	0
87	8	1	Total Mg 1 1	0
87	А	2	Total Mg 2 2	0
87	J	1	Total Mg 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
87	S	1	Total Mg 1 1	0
87	S1	79	TotalMg7979	0
87	SX	1	Total Mg 1 1	0
87	Sb	1	Total Mg 1 1	0

• Molecule 88 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	AltConf
88	1	11	Total Na 11 11	0
88	2	10	Total Na 10 10	0
88	4	3	Total Na 3 3	0
88	S1	9	Total Na 9 9	0
88	S4	1	Total Na 1 1	0

• Molecule 89 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
89	1	9	Total K 9 9	0
89	2	3	Total K 3 3	0
89	S1	4	Total K 4 4	0

• Molecule 90 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
90	р	1	Total Zn 1 1	0

• Molecule 91 is water.

Mol	Chain	Residues	Atoms	AltConf
91	1	617	Total O 617 617	0
91	2	478	Total O 478 478	0
91	3	21	Total O 21 21	0
91	4	62	Total O 62 62	0
91	5	24	Total O 24 24	0
91	6	5	Total O 5 5	0
91	7	43	Total O 43 43	0
91	8	5	Total O 5 5	0
91	А	20	Total O 20 20	0
91	В	38	Total O 38 38	0
91	С	18	Total O 18 18	0
91	D	1	Total O 1 1	0
91	F	1	Total O 1 1	0
91	G	1	Total O 1 1	0
91	Н	9	Total O 9 9	0
91	Ι	10	Total O 10 10	0
91	J	4	Total O 4 4	0
91	L	12	Total O 12 12	0
91	М	22	Total O 22 22	0
91	Ν	1	Total O 1 1	0
91	Р	8	Total O 8 8	0
91	Q	2	Total O 2 2	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
91	R	1	Total O 1 1	0
91	S	2	Total O 2 2	0
91	S1	802	Total O 802 802	0
91	S4	3	Total O 3 3	0
91	SA	7	Total O 7 7	0
91	SB	1	Total O 1 1	0
91	SC	1	Total O 1 1	0
91	SD	4	Total O 4 4	0
91	SE	13	Total O 13 13	0
91	SF	6	Total O 6 6	0
91	SG	1	Total O 1 1	0
91	SH	6	Total O 6 6	0
91	SJ	12	Total O 12 12	0
91	SK	13	Total O 13 13	0
91	SL	3	Total O 3 3	0
91	SM	6	Total O 6 6	0
91	SN	2	Total O 2 2	0
91	SO	7	Total O 7 7	0
91	SP	12	Total O 12 12	0
91	SR	4	Total O 4 4	0
91	SS	1	Total O 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
91	ST	19	Total O 19 19	0
91	SU	5	Total O 5 5	0
91	SX	5	Total O 5 5	0
91	Sa	2	Total O 2 2	0
91	Sb	23	Total O 23 23	0
91	Sc	5	Total O 5 5	0
91	Т	9	Total O 9 9	0
91	V	4	Total O 4 4	0
91	W	2	Total O 2 2	0
91	Х	2	Total O 2 2	0
91	Z	1	Total O 1 1	0
91	b	3	Total O 3 3	0
91	с	5	Total O 5 5	0
91	е	3	Total O 3 3	0
91	f	14	Total O 14 14	0
91	g	11	Total O 11 11	0
91	h	7	Total O 7 7	0
91	i	1	Total O 1 1	0
91	j	12	Total O 12 12	0
91	1	5	Total O 5 5	0
91	n	5	Total O 5 5	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
91	О	8	Total O 8 8	0
91	р	5	Total O 5 5	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: LSUa_rRNA_chain_1

A158 G159 C160 C161 A168 A169 G170 G170 C173 U177 U184

• Molecule 5: SR4_chain_5

Chain 5:	62%	22% •	15%
U 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	С С С С С С С С С С С С С С С С С С С	000 000 000 000 000 000 000 000 000 00	691 492 699 0105 6106 6109 6110
U112 0113 0113 0113 0116 0116 0125 0125 0134 0 0 0 0 0			
• Molecule 6: SR6_chair	n_6		
Chain 6:	52%	40%	5% •
U C C C C C C C C C C C C C C C C C C C	633 641 644 645 645 645 645 645 645 652 652 852 855 855 855	050 064 065 065 066 067 067 067 072 072 072 072 072	
• Molecule 7: 5.8S_rRN	A_chain_7		
Chain 7:	70%	25%	• •
A1 A2 A2 46 06 06 01 A16 A19 C29 C29 C29 C29 C29 C29 V32 C29 V32 C29 V32 C29 V32 C29 V32 C29 C29 V31 C29 V31 C20 V31 C30 C30 C30 C30 C30 C30 C30 C30 C30 C30	433 443 459 459 459 465 663 663 663 663 663 771 472 472 472 675	480 U 288 0885 0885 0885 0885 0885 0885 0885 0	A95 A96 A103 A104 C105 C111 C111 C111
6120 6127 0128 0128 0128 0128 0128 0128 0138 0138 0138 0138 0138 0138 0138 013	A109 G		
• Molecule 8: 5S_rRNA	_chain_8		
Chain 8:	80%	1	6% •
с и с с с с с 3 3 4 2 4 2 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	445 446 452 652 663 669 669 669 693 894	005 104 114 114 114 114 1123	
• Molecule 9: Putative 6	0S ribosomal protein L	.2	
Chain A:	97%		
MET 62 62 62 62 148 8247 8247 8128 8128 8128 8128 8128 8128 8128 812			
• Molecule 10: Putative :	ribosomal protein L3		
Chain B:	93%		• 5%

 \bullet Molecule 17: Putative 60S ribosomal protein L13

Chain I:	92%	• 5%
MET P2 K14 K15 K15 H16 P132 P132 P132 T152 R175 K175 C17 C10	ALA ALA LYS CUU CUU CUU CUV CUV CVS	
• Molecule 18: Putative	60S ribosomal protein L23	
Chain J:	96%	
MET GLY N7 N7 N122 N122 V139		
• Molecule 19: Putative	40S ribosomal protein L14	
Chain K:	95%	
MET V2 K23 R23 R35 R131 T135 R171 L178 ALA L178 L178 L178 L178		
• Molecule 20: Putative	$60\mathrm{S}$ ribosomal protein L27A/L29	
Chain L:	97%	
MET P2 H60 R63 R63 A145 A145		
• Molecule 21: Ribosoma	al protein L15	
Chain M:	98%	
MET 62 824 N117 N117 N124 R189 R204		
• Molecule 22: Putative	60S ribosomal protein L10	
Chain N:	87%	6% 7%
MET A2 C12 C12 P28 R39 R39 R39 R39 R39 R39 R39 R39 R39 R39	MG7 K101 NET LEU SER CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	
• Molecule 23: Putative	60S ribosomal protein L5	
Chain O:	89%	• 10%
MET PRO PRO PRO PRO PRO VAL K5 V53 PSO 066 193 8130 8130 8130 8130 ASP ASP ASP ASP ASP	ASP ASP ASP ASP ASP E144 E144 ASN ASN ASN ASN ASP CUU CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	VAL ALA H275 L303 GLY LYS
• Molecule 24: 60S ribos	omal protein L18	

PROTEIN DATA BANK

Chain P:	97%
MET G2 H17 K72 P106	
• Molecule	e 25: Putative 60S ribosomal protein L19
Chain Q:	72% · 26%
MET V2 N36 D115 D116 D116	K179 K179 ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG
ALA ALA ALA ALA ALA PRO ALA ALA THR	GLI A ALA ALA ALA ALA LIYS SER LIYS LIYS
• Molecule	e 26: 60S ribosomal protein L18a
Chain R:	98%
MET V2 H138 R156	
• Molecule	e 27: Putative 60S ribosomal protein L21
Chain S:	94% 5% ·
MET VAL 828 828 R49 R49	R70 R97 K98 V115 V115 V150
• Molecule	e 28: SSU_rRNA_chain_S1
Chain S1:	59% 21% • 19%
61 A2 U3 U8 U12	C17 C18 C18 C28 A56 C25 A56 C33 C33 C33 C33 C33 C33 C33 C33 C33 C3
C128 U129 C133 C133 C133 U U U U	A 144 A 144 A 144 A 144 A 144 A 144 A 144 A 144 A 144 A 145 A 146 A 147 A 145 A 146 A 166 A 166
4 ひ ひ 4 D ひ ひ m	C C C C C C C C C C C C C C C C C C C
A316 G321 C322 U U G G G	U327 U326 U326 U336 U336 A341 C349 A341 C349 C349 C349 C364 A385 C349 C364 C365 C385 C385 C385 C385 C385 C385 C385 C38
G477 C478 A479 A480 A481 U482	C486 C487 A5 02 A5 02 A5 02 A5 02 A5 02 A5 02 A5 02 A5 02 A5 12 A5 15 A5 12 A5 15 A5

Chain SE:	93%	• 5%
MET A2 L35 L35 H68 D140 V158	K105 K261 AIA AIA AIA AIA AIA AIA AIA AIA AIA AI	
• Molecule 35:	40S ribosomal protein S2	
Chain SF:	81% • 18	3%
MET ALA ASP ASP ASP GLN GLN GLN GLU ALA ALA	ALA THR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	A260
• Molecule 36:	40S ribosomal protein S6	
Chain SG:	88% •	7%
M1 Y7 R52 871 889	R96 N104 N104 N104 N108 N108 N108 N149 ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 37:	40S ribosomal protein S5	
Chain SH:	92%	•••
MET 82 82 85 85 96 86 76 86 76 86 76 86 76	RI13 SER GLY GLY GLY RI21 N189 N189 N189	
• Molecule 38:	40S ribosomal protein S7	
Chain SI:	96%	·
MET Q2 L19 V54 K76 R88	K1 04 K1 62 K1 63 K1 63K	
• Molecule 39:	Putative 40S ribosomal protein S15A	
Chain SJ:	96%	
MET T2 R23 S30 B54 S118		
• Molecule 40:	40S ribosomal protein S8	
Chain SK:	80% • 1	7%
MET 62 544 158 158 158 176 176	L121 L121 ASP ASP ASP ASP ASP ASP ASP ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LYS LYS LYS

• Molecule 41: Putative 40S ribosomal protein S16

Chain SL:	95% ••	
MET PRO ALA ASP LYS SER YT	1142 1148	
• Molecule	42: Putative ribosomal protein S20	
Chain SM:	84% • 12%	
MET ASP TYR PRO LYS LYS ASN GLN AI A	ALA ALA GLU GLU GLU GLU CI CI CI CI CI CI CI CI CI CI CI CI CI	
• Molecule	43: Putative 40S ribosomal protein S10	
Chain SN:	55% · 41%	
MET 82 13 74 F17 K26	V 44 V 44 N 80 N 80 N 80 N 80 N 80 N 80 N 80 N 80	GLY GLY GLY
GLY GLU ARG MET ASN TYR ARG ALA	ALA ALA SER ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA	
• Molecule	44: 40S ribosomal protein S14	
Chain SO:	90% · 6%	
MET SER LYS LYS GLN GLN VAL LYS LYS	ALA R77 1126 1126 1126 1126 1126 1126	
• Molecule	45: Putative 40S ribosomal protein S23	
Chain SP:	93% 6% •	
MET T2 Q7 K37 V72	ASN ASN ASN ASN	
• Molecule	46: 40S ribosomal protein S12	
Chain SQ:	21% 68% · 29%	
MET ALA GLU GLU GLU THR VAL ARG VAL	valu Valu Vali Vali Vali Vali Vali Vali Vali Vali	K82 Q83 R85 R85 E93 E93
E95 R106 D107 VAL A109 G110	E111 V112 T113 F125 GLU Alk LEU LEU	

 \bullet Molecule 47: Putative 40S ribosomal protein S18

Chain SR:	81%	• 15%
MET S2 K35 K35 E63	E70 B100 B122 B131 C122 C127 C127 C127 C127 C127 C127 C12	
• Molecule	48: Putative ribosomal protein S29	
Chain SS:	96%	•••
MET G2 T54 R57		
• Molecule	49: Putative 40S ribosomal protein S13	
Chain ST:	92%	• 6%
MET V2 S30 R104 R124	8143 SER ALA ALA MAT ALA ALA	
• Molecule	50: Putative 40S ribosomal protein S11	
Chain SU:	86%	• 10%
MET PRO D14 R25	M33 K67 R82 R82 R82 R82 R82 R82 R82 R82 R916 R153 R153 R153 R153 R153 R153 R153 R153	
• Molecule	51: Putative 40S ribosomal protein S17	
Chain SV:	48% • 50%	
MET G2 G2 F6 F6 K7 K7 D37	K72 LEU GLU GLU GLU GLU GLU GLU GLU GLU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	GLN ARG CLU GLU GLU GLU GLY VAL ARG ARG ARG VAL LYS ARG
ALA ASP ALA ALA ALA VAL LYS VAL	ALA ALA ARG ARG GLN GLN CLN SER SER SER LVS SER LVS	
• Molecule	52: Putative 40S ribosomal protein S15	
Chain SW:	68% 6%	26%
MET ALA SER ASN THR ALA GLU	TARG TARG CLU CFS CLU CFS CLU CFS CLVS CLVS CFS CFS CFS CFS CFS CFS CFS CFS CFS CF	GLY VAL GLY GLY ALA ALA ALA HIS SER SER SER PHE TLE TLE TLE TLE VS
• Molecule	53: 40S ribosomal protein S19-like protein	
Chain SX:	92%	• 6%
MET THR ALA PRO ARG NG	R26 R33 G157 G157 ALA	
	WORLDWIDE PROTEIN DATA BANK	
• Molecule 54	4: Putative 405 ribosomai protein 521	
--	--	---
Chain SY:	49% ·	49%
MET ALA THR 14 N8 D15 D15 P46	TST TST LVS LVS LVS LVS LVS SER LVS SER LVS SER LVS GLV ALA ALA ALA ALA ALA ALA ALA ALA ALA A	PRO PRO ALA ALA GLN GLN GLN ALA ARG PRO PRO GLN ALA ALA ALA ALA ARG ARG PRO
ALA GLN GLN LYS GLY ALA ARG PRO PRO PRO CLN GLN	LLYS GLY ARG PRO PRO PRO ALA ALA ALA ALA ALA ARS ASN ARS ALA ALA ALA ALA ALA ALA ALA ALA ALA	
• Molecule 55	5: 40S ribosomal protein S24	
Chain SZ:	87%	6% 7%
MET VAL F3 V30 H36 H36 V41	K65 H07 H107 H107 H125 H125 H126 H126 H128 H128 H128	
• Molecule 56	5: 40S ribosomal protein S25	
Chain Sa:	56% .	41%
MET PRO PRO LYS LYS GLY GLN THR LYS LYS	ALA ALA MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	K87 V105 GLM GLM GLM ALA ALA ALA ALA ALA ALA ALA ALA ALA A
• Molecule 57	7: 40S ribosomal protein S26	
Chain Sb:	86%	6% 8%
Chain Sb:	T87 178 170 PHE LVS LVS LVS LVS LVS	6% 8%
Chain Sb:	86% 문문왕 문화	6% 8%
Chain Sb:	86% E B B B B B B B B B B B 8: Putative 40S ribosomal protein S27-1 84%	6% 8% • 15%
Chain Sb:	86% E 整整 整整 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基	6% 8% • 15%
Chain Sb: Molecule 58 Chain Sc: Chain Sc: Chain Sc: Molecule 58	86% E E E E E E E E E E E E E E E E E E E	6% 8% • 15%
Chain Sb:	86% Second protein S27-1 84% Second protein S27-1 84% Second protein S33 Second protein S33	6% 8% • 15%
Chain Sb: Molecule 58 Chain Sc: Chain Sc: Molecule 58 Chain Sc: Chain Sc: Molecule 58 Chain Sc: Molecule 58	86% Second protein S27-1 84% Second protein S27-1 84% Second protein S33 Putative 40S ribosomal protein S33 Pi Putative 40S ribosomal protein S33 72%	6% 8% • 15%
Chain Sb: Molecule 58 Chain Sc: Chain Sc: Molecule 59 Chain Sd: Chain Sd: Molecule 60	36% 1 </td <td>6% 8% • 15% • 24%</td>	6% 8% • 15% • 24%

 \bullet Molecule 66: Putative 60S ribosomal protein L23a

Chain V:	79%	• 19%
MET PRO PRO GLN LYS LYS LYS LYS	ALA ALA ALA PRUS LYS LYS ALA ALA ALA ALA ALA VAL THR TTR TTR TTR TTR TTR TTR TTR TTR TTR	
• Molecule 67	: Putative 60S ribosomal protein L26	
Chain W:	80%	• 17%
MET ALA SER SER TILE K15 E64 V82	V92 K107 SER SER SER SER SER SER SER ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 68	: Putative ribosomal protein L24	
Chain X:	50%	48%
M1 R59 LYS THR THR	THR ASP ARS ARS ARS ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	VAL ARG ALA ALA ALA ARG CLU ARG CLU CYS SER ALA ALA ALA ALA ALA
GLU ARG LYS ALA ALA LYS LYS LYS		
• Molecule 69	: 60S ribosomal protein L27	
Chain Y:	95%	•••
MET THR K3 K9 K104 R105	8106 113 134 134	
• Molecule 70	: Putative 60S ribosomal protein L28	
Chain Z:	93%	6% ·
MET S2 N35 N35 R75 R75	V87 R113 S138 R139 ASN	
• Molecule 71	: Putative 60S ribosomal protein L35	
Chain a:	94%	
MET SER H4 C81 C81 T92 K117	K126 TLE	
• Molecule 72	: 60S ribosomal protein L29	

Chain b:	93%	
MET A2 R18 K33 K33	KSA NSA	
• Molecule	e 73: Putative 60S ribosomal protein L7	
Chain c:	89%	• 9%
MET ALA THR HIS SER VAL TYR	ALA ALA ALA ALA ALA ALA ARA ARA ALA ALA	
• Molecule	e 74: 60S ribosomal protein L30	
Chain d:	83%	6% 12%
MET ALA LYS LYS LYS LYS SER SER	VLI VLI 822 873 873 873 873 873 873 873 873 873 873	
• Molecule	e 75: Putative 60S ribosomal subunit protein L31	
Chain e:	93%	• •
MET 12 829 R30 M45	E48 K123 K123 E156 E156 E156 ASN LVS GLV GLV GLV	
• Molecule	e 76: 60S ribosomal protein L32	
Chain f:	92%	• 6%
MET V2 K3 V87 V87 K126	ALCO LYS ALLA ASN GLN	
• Molecule	e 77: Putative ribosomal protein l35a	
Chain g:	98%	
MET THR 13 13 13 14 14		
• Molecule	e 78: Putative 60S ribosomal protein L34	
Chain h:	72% •	24%
MET S2 M12 V47	ACC Response R	GLY SER LYS LEU VAL LYS LYS

• Molecule 79: Putative 60S Ribosomal protein L36

Chain i:	80%	• 16%
MET SER A3 A3 A2 R25 PR0 SER SER	A SN A SP A LA A LA A LA V A L A P A P A P A P A P A P A P A P A P A P	
• Molecule 80:	Ribosomal protein L37	
Chain j:	96%	
MET T2 R33 K82 ALA		
• Molecule 81:	Putative ribosomal protein L38	
Chain k:	84%	• 13%
MET P2 C15 R40 S59 P62	873 HIS ALA LYS THR ALA ALA GLY GLN	
• Molecule 82:	Putative 60S ribosomal protein L39	
Chain l:	92%	6% •
MET G 2 L 29 W37 N 38 E 39 F 51		
• Molecule 83:	Ubiquitin-60S ribosomal protein L40	
Chain m:	37% •	60%
MET GLN GLN CLLE VAL LYS THR LYS CLYS CLYS	THR ALA ALA CLU CLU CLU CLU CLU CLU CLU ASP CLU ASP CLU CLV CLU CLV CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLAN ARG LIEU TILEU TILEU TILEU GLU GLU GLU GLU GLU GLU GLU SER ASP ASP ASP
ILE CIM CIM CIM CIU CIU CIU CIU CIU CIU CIU CIU CIU	ARC LEU ARC GLY VTT ATS ATS CII5 CII5 CII5 CII5 CI15 CI15 CI15 CI15	
• Molecule 84:	60S ribosomal protein L41	
Chain n:	94%	• •
MET G2 R27 K34		
• Molecule 85:	60S ribosomal protein L37a	
Chain o:	89%	7% •
MET A2 840 540 541 642 747	R80 L18 L17S L17S L1LE	
	WORLDWID PROTEIN DATA BAN	E

• Molecule 86: Putative 60S ribosomal protein L44

Chain p: 91% · 8%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	178107	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	0.94	Depositor
Minimum defocus (nm)	700	Depositor
Maximum defocus (nm)	1300	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.181	Depositor
Minimum map value	-0.087	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.005	Depositor
Recommended contour level	0.008	Depositor
Map size (Å)	395.76, 395.76, 395.76	wwPDB
Map dimensions	480, 480, 480	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.8245, 0.8245, 0.8245	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, OMC, ZN, OMG, 5MC, 7MG, OMU, A2M, MA6, PSU, B8N, K, 1MA, NA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.40	0/37788	0.94	92/58914~(0.2%)	
2	2	0.39	0/26311	0.94	66/40996~(0.2%)	
3	3	0.36	0/3671	0.96	19/5704~(0.3%)	
4	4	0.39	0/4376	0.92	10/6822~(0.1%)	
5	5	0.40	0/2739	1.02	6/4263~(0.1%)	
6	6	0.33	0/1683	0.93	5/2618~(0.2%)	
7	7	0.37	0/3758	0.92	7/5847~(0.1%)	
8	8	0.34	0/2829	0.87	4/4405~(0.1%)	
9	А	0.28	0/1950	0.61	0/2622	
10	В	0.27	0/3117	0.57	0/4212	
11	С	0.28	0/2827	0.59	0/3808	
12	D	0.27	0/1026	0.50	0/1395	
13	Ε	0.27	0/1415	0.58	0/1914	
14	F	0.28	0/1089	0.55	0/1486	
15	G	0.26	0/1755	0.56	0/2370	
16	Н	0.27	0/1769	0.57	0/2381	
17	Ι	0.31	0/1636	0.58	0/2202	
18	J	0.29	0/1016	0.57	0/1375	
19	Κ	0.27	0/1285	0.53	0/1736	
20	L	0.29	0/1151	0.58	0/1538	
21	М	0.29	0/1736	0.60	0/2320	
22	Ν	0.30	0/1639	0.62	0/2194	
23	0	0.29	0/2012	0.55	0/2724	
24	Р	0.29	0/1553	0.58	0/2080	
25	Q	0.27	0/1452	0.59	0/1939	
26	R	0.29	0/1447	0.53	0/1957	
27	S	0.30	0/1263	0.57	0/1705	
28	S1	0.33	0/41642	0.89	$6\overline{9/64864} \ (0.1\%)$	
29	S4	0.33	0/1194	1.05	$\overline{5/1850}~(0.3\%)$	
30	SA	0.27	0/1848	0.57	0/2487	
31	SB	0.28	0/1660	0.58	1/2246~(0.0%)	
32	SC	0.27	0/1652	0.53	0/2212	

Mol Chair		Bo	ond lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	SD	0.26	0/1393	0.57	0/1874	
34	SE	0.27	0/2088	0.58	0/2814	
35	SF	0.28	0/1698	0.56	1/2301~(0.0%)	
36	SG	0.28	0/1853	0.62	1/2475~(0.0%)	
37	SH	0.25	0/1458	0.53	0/1955	
38	SI	0.27	0/1649	0.55	0/2220	
39	SJ	0.28	0/1038	0.54	0/1391	
40	SK	0.27	0/1465	0.62	0/1964	
41	SL	0.26	0/1145	0.50	0/1540	
42	SM	0.24	0/806	0.56	0/1093	
43	SN	0.27	0/831	0.53	0/1127	
44	SO	0.29	0/1025	0.60	0/1377	
45	SP	0.25	0/1120	0.54	0/1500	
46	SQ	0.27	0/682	0.52	0/927	
47	SR	0.26	0/1052	0.55	0/1414	
48	SS	0.24	0/458	0.55	0/607	
49	ST	0.30	0/1178	0.56	0/1580	
50	SU	0.27	0/1283	0.55	0/1729	
51	SV	0.26	0/584	0.52	0/777	
52	SW	0.28	0/926	0.55	0/1245	
53	SX	0.25	0/1233	0.52	0/1656	
54	SY	0.53	1/625~(0.2%)	0.88	3/851~(0.4%)	
55	SZ	0.26	0/1051	0.54	0/1399	
56	Sa	0.27	0/563	0.60	0/757	
57	Sb	0.32	0/833	0.61	0/1116	
58	Sc	0.26	0/580	0.56	0/780	
59	Sd	0.25	0/485	0.58	0/652	
60	Se	1.54	1/407~(0.2%)	0.81	1/540~(0.2%)	
61	Sf	0.26	0/301	0.55	0/396	
62	Sg	0.26	0/2339	0.53	0/3183	
63	Sh	0.28	0/957	0.55	0/1291	
64	Т	0.29	0/1235	0.58	0/1656	
65	U	0.27	0/810	0.54	0/1086	
66	V	0.27	0/941	0.56	0/1269	
67	W	0.27	0/951	0.59	0/1270	
68	X	0.28	$\overline{0/569}$	0.58	0/767	
69	Y	0.29	0/1048	0.57	0/1409	
70	Z	0.28	0/1111	0.58	$0/1\overline{492}$	
71	a	0.28	0/1016	0.58	0/1351	
72	b	0.27	0/557	0.57	0/743	
73	С	0.31	$\overline{0/1896}$	0.58	$\overline{0/2540}$	
74	d	0.28	0/715	0.54	0/968	
75	е	0.27	0/1439	0.56	0/1912	

Mal	Chain	Bo	ond lengths	Bond angles		
INIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
76	f	0.30	0/1031	0.60	0/1380	
77	g	0.28	0/1165	0.59	0/1563	
78	h	0.28	0/1034	0.62	0/1378	
79	i	0.27	0/699	0.55	0/929	
80	j	0.27	0/682	0.66	0/910	
81	k	0.27	0/542	0.53	0/733	
82	1	0.28	0/463	0.59	0/617	
83	m	0.29	0/384	0.70	1/518~(0.2%)	
84	n	0.32	0/296	0.76	0/386	
85	0	0.30	0/700	0.64	0/933	
86	р	0.30	0/788	0.55	0/1043	
All	All	0.34	$2/215467 \ (0.0\%)$	0.81	291/316570~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
42	SM	0	1
49	ST	0	1
57	Sb	0	1
All	All	0	3

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
60	Se	27	PRO	N-CD	-30.60	1.05	1.47
54	SY	46	PRO	CG-CD	-10.96	1.14	1.50

All (291) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
54	SY	46	PRO	N-CD-CG	-14.37	81.64	103.20
60	Se	27	PRO	N-CD-CG	12.94	122.61	103.20
54	SY	46	PRO	CA-CB-CG	-12.65	79.96	104.00
2	2	1236	С	N1-C2-O2	12.65	126.49	118.90
83	m	78	MET	CG-SD-CE	10.13	116.41	100.20
7	7	111	С	N1-C2-O2	9.24	124.44	118.90
2	2	602	А	O5'-P-OP1	-9.20	97.42	105.70
31	SB	53	ASP	CB-CG-OD1	8.84	126.26	118.30
35	\mathbf{SF}	90	ASP	CB-CG-OD1	8.63	126.07	118.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	3	34	С	C2-N1-C1'	8.55	128.20	118.80
3	3	112	С	N1-C2-O2	8.48	123.99	118.90
1	1	447	G	O4'-C1'-N9	8.36	114.89	108.20
7	7	111	С	N3-C2-O2	-8.29	116.10	121.90
1	1	7	С	C5-C6-N1	8.26	125.13	121.00
1	1	886	G	O4'-C1'-N9	8.19	114.75	108.20
3	3	34	С	N1-C2-O2	8.01	123.70	118.90
3	3	112	С	N3-C2-O2	-7.97	116.32	121.90
7	7	111	С	C2-N1-C1'	7.78	127.36	118.80
3	3	112	С	C6-N1-C2	-7.67	117.23	120.30
1	1	1588	G	O4'-C1'-N9	7.63	114.30	108.20
1	1	1122	U	C2-N1-C1'	7.62	126.85	117.70
2	2	61	С	N1-C2-O2	7.58	123.45	118.90
2	2	1063	С	C2-N1-C1'	7.58	127.14	118.80
29	S4	70	С	C2-N1-C1'	7.49	127.04	118.80
2	2	61	С	C2-N1-C1'	7.39	126.93	118.80
3	3	112	С	C2-N1-C1'	7.29	126.82	118.80
1	1	191	U	C2-N1-C1'	7.27	126.43	117.70
28	S1	1788	U	N3-C2-O2	-7.27	117.11	122.20
1	1	1122	U	N1-C2-O2	7.27	127.89	122.80
28	S1	746	С	N3-C2-O2	-7.27	116.81	121.90
2	2	1222	С	N3-C2-O2	-7.20	116.86	121.90
2	2	1236	С	N3-C2-O2	-7.19	116.86	121.90
29	S4	41	С	N3-C2-O2	-7.17	116.88	121.90
36	SG	172	ASP	CB-CG-OD2	7.13	124.72	118.30
2	2	1063	С	N1-C2-O2	7.11	123.16	118.90
7	7	111	С	C6-N1-C2	-7.01	117.50	120.30
1	1	1746	С	O4'-C1'-N1	6.95	113.76	108.20
28	S1	1788	U	N1-C2-O2	6.94	127.66	122.80
3	3	179	U	C2-N1-C1'	6.86	125.94	117.70
28	S1	2182	G	C4-N9-C1'	6.85	135.41	126.50
28	S1	630	U	C2-N1-C1'	6.82	125.89	117.70
1	1	1122	U	N3-C2-O2	-6.79	117.45	122.20
1	1	625	С	C2-N1-C1'	6.74	126.21	118.80
1	1	1212	С	N3-C2-O2	-6.72	117.20	121.90
5	5	89	С	C6-N1-C2	-6.71	117.62	120.30
3	3	34	С	N3-C2-O2	-6.70	117.21	121.90
1	1	973	U	C2-N1-C1'	6.70	125.74	117.70
1	1	1779	G	N3-C4-N9	-6.60	122.04	126.00
1	1	1212	C	N1-C2-O2	6.59	122.86	118.90
2	2	1236	С	C2-N1-C1'	6.59	126.06	118.80
1	1	1600	U	C2-N1-C1'	6.58	125.60	117.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	2	978	С	N3-C2-O2	-6.57	117.30	121.90
28	S1	1510	С	N3-C2-O2	-6.49	117.36	121.90
2	2	811	U	C2-N1-C1'	6.46	125.46	117.70
1	1	348	G	O4'-C1'-N9	6.43	113.35	108.20
3	3	179	U	N1-C2-O2	6.40	127.28	122.80
7	7	28	С	C2-N1-C1'	6.37	125.80	118.80
1	1	1600	U	N1-C2-O2	6.27	127.19	122.80
28	S1	1788	U	C2-N1-C1'	6.23	125.17	117.70
28	S1	486	С	C2-N1-C1'	6.22	125.64	118.80
1	1	1514	С	N3-C2-O2	-6.22	117.55	121.90
2	2	1305	С	C2-N1-C1'	6.21	125.63	118.80
28	S1	1181	С	C2-N1-C1'	6.16	125.58	118.80
2	2	4	С	N3-C2-O2	-6.16	117.59	121.90
1	1	172	G	O4'-C1'-N9	6.16	113.12	108.20
2	2	345	С	C2-N1-C1'	6.14	125.56	118.80
4	4	161	С	N3-C2-O2	-6.14	117.60	121.90
28	S1	2135	U	N3-C2-O2	-6.12	117.91	122.20
1	1	1096	С	O4'-C1'-N1	6.12	113.10	108.20
28	S1	1987	G	O4'-C1'-N9	6.08	113.07	108.20
2	2	44	С	C2-N1-C1'	6.08	125.48	118.80
2	2	1290	С	O4'-C1'-N1	6.07	113.06	108.20
1	1	133	С	N1-C2-O2	6.07	122.54	118.90
2	2	1222	С	C2-N1-C1'	6.06	125.47	118.80
3	3	34	С	C6-N1-C1'	-6.06	113.53	120.80
2	2	756	С	C2-N1-C1'	6.05	125.46	118.80
2	2	808	С	C2-N1-C1'	6.05	125.46	118.80
2	2	1065	С	N1-C2-O2	6.05	122.53	118.90
28	S1	2040	С	C6-N1-C2	-6.05	117.88	120.30
8	8	39	С	C2-N1-C1'	6.04	125.45	118.80
2	2	1023	С	N1-C2-O2	6.04	122.52	118.90
28	S1	1510	С	N1-C2-O2	6.03	122.52	118.90
1	1	563	С	N1-C2-O2	6.01	122.50	118.90
1	1	1261	U	C2-N1-C1'	5.97	124.87	117.70
1	1	331	С	N1-C2-O2	5.94	122.47	118.90
3	3	139	С	N3-C2-O2	-5.92	117.76	121.90
28	S1	1510	C	C2-N1-C1'	5.92	125.31	118.80
3	3	179	U	N3-C2-O2	-5.92	118.06	122.20
1	1	1046	U	C2-N1-C1'	5.91	124.80	117.70
1	1	148	U	N1-C1'-C2'	-5.90	105.51	112.00
2	2	1222	C	N1-C2-O2	5.90	122.44	118.90
1	1	1089	C	$C2-\overline{N1}-\overline{C1}$	5.88	$1\overline{25.27}$	118.80
2	2	664	G	C4-N9-C1'	-5.88	118.85	126.50

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
28	S1	782	С	N1-C2-O2	5.88	122.43	118.90
28	S1	2182	G	C8-N9-C1'	-5.87	119.37	127.00
1	1	1600	U	N3-C2-O2	-5.86	118.10	122.20
7	7	5	U	C5-C6-N1	5.86	125.63	122.70
1	1	914	U	C2-N1-C1'	5.86	124.73	117.70
2	2	61	С	N3-C2-O2	-5.85	117.81	121.90
2	2	1143	U	N3-C2-O2	-5.85	118.11	122.20
1	1	1419	С	C2-N1-C1'	5.84	125.23	118.80
28	S1	197	U	C2-N1-C1'	5.83	124.70	117.70
28	S1	1404	U	N3-C2-O2	-5.83	118.12	122.20
28	S1	511	С	C2-N1-C1'	5.82	125.20	118.80
28	S1	2040	С	N3-C2-O2	-5.82	117.83	121.90
1	1	334	G	OP1-P-O3'	5.82	118.00	105.20
29	S4	70	С	C6-N1-C1'	-5.81	113.83	120.80
4	4	177	U	N3-C2-O2	-5.80	118.14	122.20
2	2	7	С	C2-N1-C1'	5.79	125.17	118.80
3	3	188	С	C2-N1-C1'	5.78	125.16	118.80
28	S1	2182	G	O4'-C1'-N9	5.78	112.83	108.20
1	1	191	U	N1-C2-O2	5.77	126.84	122.80
2	2	955	С	N3-C2-O2	-5.76	117.87	121.90
3	3	104	С	C2-N1-C1'	5.75	125.13	118.80
1	1	423	U	N1-C1'-C2'	-5.75	105.68	112.00
2	2	1151	U	N3-C2-O2	-5.73	118.19	122.20
1	1	191	U	N3-C2-O2	-5.72	118.19	122.20
1	1	518	С	C2-N1-C1'	5.72	125.10	118.80
2	2	460	A	O4'-C1'-N9	5.72	112.78	108.20
28	S1	336	U	N3-C2-O2	-5.71	118.20	122.20
5	5	90	С	C2-N1-C1'	5.71	125.08	118.80
6	6	11	G	O4'-C1'-N9	5.71	112.76	108.20
2	2	1222	С	P-O3'-C3'	5.70	126.55	119.70
4	4	138	C	C2-N1-C1'	5.70	125.07	118.80
2	2	134	С	N1-C2-O2	5.70	122.32	118.90
28	S1	354	C	C2-N1-C1'	5.70	125.07	118.80
1	1	542	C	N1-C2-O2	5.68	122.31	118.90
2	2	44	C	N3-C2-O2	-5.68	117.92	121.90
54	SY	46	PRO	CA-N-CD	-5.67	103.56	111.50
2	2	664	G	C8-N9-C1'	5.67	134.38	127.00
8	8	123	C	C2-N1-C1'	5.67	125.04	118.80
28	S1	298	C	N1-C2-O2	5.67	122.30	118.90
2	2	735	C	N1-C2-O2	5.66	122.30	118.90
2	2	1217	C	O4'-C1'-N1	5.66	112.73	108.20
1	1	331	C	N3-C2-O2	-5.66	117.94	121.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	613	С	N3-C2-O2	-5.65	117.94	121.90
2	2	1456	С	C2-N1-C1'	5.65	125.02	118.80
2	2	479	С	N3-C2-O2	-5.64	117.95	121.90
1	1	1216	U	C2-N1-C1'	5.63	124.45	117.70
4	4	65	С	O4'-C1'-N1	5.62	112.70	108.20
2	2	741	С	N3-C2-O2	-5.62	117.97	121.90
2	2	134	С	C2-N1-C1'	5.60	124.96	118.80
1	1	727	С	N1-C2-O2	5.59	122.26	118.90
5	5	5	С	C2-N1-C1'	5.59	124.95	118.80
28	S1	336	U	C2-N1-C1'	5.57	124.38	117.70
2	2	1023	С	N3-C2-O2	-5.57	118.00	121.90
1	1	890	С	C2-N1-C1'	5.56	124.92	118.80
4	4	128	U	C2-N1-C1'	5.56	124.38	117.70
28	S1	1956	С	N1-C2-O2	5.55	122.23	118.90
1	1	993	U	N3-C2-O2	-5.55	118.31	122.20
28	S1	784	С	N1-C2-O2	5.53	122.22	118.90
2	2	7	С	N1-C2-O2	5.53	122.22	118.90
2	2	1063	С	C6-N1-C1'	-5.52	114.18	120.80
1	1	719	U	O4'-C1'-N1	5.51	112.61	108.20
2	2	461	С	C5-C6-N1	5.50	123.75	121.00
2	2	479	С	N1-C2-O2	5.50	122.20	118.90
3	3	131	С	C2-N1-C1'	5.50	124.85	118.80
28	S1	1572	С	C2-N1-C1'	5.50	124.85	118.80
1	1	414	А	O4'-C1'-N9	5.50	112.60	108.20
2	2	1236	С	C6-N1-C1'	-5.49	114.22	120.80
28	S1	340	G	O4'-C1'-N9	5.48	112.59	108.20
2	2	479	С	C2-N1-C1'	5.48	124.83	118.80
1	1	518	С	N1-C2-O2	5.47	122.18	118.90
1	1	793	U	C2-N1-C1'	5.47	124.26	117.70
1	1	486	С	N1-C2-O2	5.47	122.18	118.90
1	1	914	U	N3-C2-O2	-5.46	118.38	122.20
4	4	161	С	C2-N1-C1'	5.46	124.80	118.80
2	2	390	A	O4'-C1'-N9	5.43	112.55	108.20
1	1	563	С	N3-C2-O2	-5.42	118.10	121.90
28	S1	1600	С	N3-C2-O2	-5.42	118.10	121.90
1	1	1779	G	C5-C6-O6	5.42	131.85	128.60
1	1	744	С	O4'-C1'-N1	5.42	112.53	108.20
1	1	133	C	N3-C2-O2	-5.42	118.11	121.90
1	1	514	С	N3-C2-O2	-5.42	118.11	121.90
1	1	890	C	N3-C2-O2	-5.42	118.11	121.90
1	1	254	U	N3-C2-O2	-5.41	118.41	122.20
28	S1	1600	С	C2-N1-C1'	5.41	124.75	118.80

3

3

119

С

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$ $ Ideal(o)
1	1	1238	С	C2-N1-C1'	5.40	124.74	118.80
2	2	41	А	O4'-C1'-N9	5.39	112.51	108.20
1	1	736	С	C6-N1-C2	-5.39	118.14	120.30
1	1	133	С	C2-N1-C1'	5.39	124.73	118.80
1	1	853	С	C2-N1-C1'	5.39	124.73	118.80
28	S1	67	С	N1-C2-O2	5.38	122.13	118.90
1	1	484	А	O4'-C1'-N9	5.38	112.51	108.20
2	2	1115	U	N3-C2-O2	-5.38	118.43	122.20
1	1	625	С	C6-N1-C1'	-5.38	114.35	120.80
5	5	111	С	C2-N1-C1'	5.38	124.71	118.80
28	S1	310	U	C2-N1-C1'	5.37	124.15	117.70
7	7	29	С	C2-N1-C1'	5.36	124.70	118.80
4	4	177	U	N1-C2-O2	5.36	126.55	122.80
1	1	1216	U	N1-C2-O2	5.36	126.55	122.80
6	6	57	U	N3-C2-O2	-5.36	118.45	122.20
28	S1	746	С	N1-C2-O2	5.36	122.11	118.90
28	S1	283	С	N1-C2-O2	5.35	122.11	118.90
28	S1	283	С	C2-N1-C1'	5.34	124.67	118.80
28	S1	133	G	C8-N9-C4	-5.33	104.27	106.40
1	1	414	А	N1-C2-N3	5.31	131.95	129.30
6	6	23	А	P-O3'-C3'	5.31	126.07	119.70
2	2	4	С	C6-N1-C1'	5.31	127.17	120.80
28	S1	1572	С	N3-C2-O2	-5.30	118.19	121.90
2	2	1115	U	N1-C2-O2	5.29	126.51	122.80
28	S1	1510	С	C6-N1-C2	-5.29	118.18	120.30
28	S1	147	U	C2-N1-C1'	5.29	124.05	117.70
2	2	1305	С	C6-N1-C2	-5.29	118.18	120.30
28	S1	589	U	C2-N1-C1'	5.29	124.04	117.70
1	1	7	С	C2-N1-C1'	5.28	124.61	118.80
28	S1	114	U	N3-C2-O2	-5.28	118.51	122.20
28	S1	133	G	N7-C8-N9	5.27	115.73	113.10
3	3	131	С	N1-C2-O2	5.26	122.06	118.90
28	S1	167	С	C2-N1-C1'	5.26	124.58	118.80
2	2	1063	С	N3-C2-O2	-5.26	118.22	121.90
6	6	67	С	N1-C2-O2	5.26	122.05	118.90
29	S4	41	С	N1-C2-O2	5.25	122.05	118.90
2	2	1065	С	N3-C2-O2	-5.24	118.23	121.90
2	2	61	С	C6-N1-C1'	-5.24	114.52	120.80
2	2	134	С	N3-C2-O2	-5.23	118.24	121.90
28	S1	1572	С	C6-N1-C2	-5.23	118.21	120.30
1	1	1728	A	O4'-C1'-N9	5.23	112.38	108.20

Continued from previous page...

Continued on next page...

124.55

118.80

5.23

C2-N1-C1'

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
28	S1	1212	С	C2-N1-C1'	5.22	124.55	118.80
3	3	34	С	C6-N1-C2	-5.22	118.21	120.30
28	S1	630	U	N1-C2-O2	5.22	126.45	122.80
28	S1	155	U	C2-N1-C1'	5.22	123.96	117.70
28	S1	109	С	C2-N1-C1'	5.21	124.54	118.80
29	S4	69	G	N9-C4-C5	-5.21	103.32	105.40
28	S1	659	G	C4-N9-C1'	5.21	133.27	126.50
2	2	735	С	C2-N1-C1'	5.21	124.53	118.80
2	2	975	А	N7-C8-N9	5.20	116.40	113.80
1	1	166	G	O4'-C1'-N9	5.20	112.36	108.20
28	S1	67	С	C2-N1-C1'	5.19	124.51	118.80
1	1	1276	U	N3-C2-O2	-5.18	118.57	122.20
1	1	22	С	C2-N1-C1'	5.18	124.50	118.80
1	1	853	С	N3-C2-O2	-5.18	118.27	121.90
28	S1	2059	С	C2-N1-C1'	5.18	124.50	118.80
2	2	1021	А	N7-C8-N9	5.17	116.39	113.80
28	S1	298	С	N3-C2-O2	-5.17	118.28	121.90
2	2	1221	U	C2-N1-C1'	5.16	123.89	117.70
1	1	924	С	P-O3'-C3'	5.16	125.89	119.70
2	2	1305	С	N3-C2-O2	-5.16	118.29	121.90
1	1	483	С	C2-N1-C1'	5.15	124.47	118.80
28	S1	1273	А	N1-C6-N6	5.15	121.69	118.60
2	2	756	С	N3-C2-O2	-5.15	118.30	121.90
28	S1	1779	U	N3-C2-O2	-5.14	118.60	122.20
28	S1	1278	U	C2-N1-C1'	5.14	123.87	117.70
28	S1	784	С	C2-N1-C1'	5.13	124.44	118.80
1	1	117	G	O4'-C1'-N9	5.12	112.30	108.20
28	S1	1600	С	C6-N1-C2	-5.12	118.25	120.30
28	S1	589	U	N1-C2-O2	5.12	126.38	122.80
1	1	442	А	O4'-C1'-N9	5.11	112.29	108.20
1	1	1252	С	C2-N1-C1'	5.11	124.42	118.80
5	5	112	U	C2-N1-C1'	5.11	123.83	117.70
3	3	139	С	C2-N1-C1'	5.11	124.42	118.80
28	S1	2137	U	N1-C2-N3	5.11	117.96	114.90
1	1	563	С	C2-N1-C1'	5.10	124.41	118.80
28	S1	1973	С	N1-C2-O2	5.10	121.96	118.90
1	1	254	U	C2-N1-C1'	5.10	123.81	117.70
8	8	92	U	N3-C2-O2	-5.09	118.64	122.20
28	S1	1973	C	N3-C2-O2	-5.09	118.34	121.90
1	1	100	G	C8-N9-C1'	-5.09	120.39	127.00
28	S1	147	U	N3-C2-O2	-5.09	118.64	122.20
1	1	191	U	O4'-C1'-N1	5.08	112.27	108.20

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
28	S1	65	А	OP1-P-O3'	5.08	116.39	105.20
1	1	563	С	C6-N1-C2	-5.08	118.27	120.30
1	1	1571	С	C6-N1-C2	-5.08	118.27	120.30
1	1	1779	G	N3-C4-C5	5.08	131.14	128.60
1	1	170	U	P-O3'-C3'	5.07	125.78	119.70
1	1	1219	G	O4'-C1'-N9	5.07	112.26	108.20
4	4	95	U	C2-N1-C1'	5.06	123.77	117.70
2	2	4	С	C2-N1-C1'	-5.06	113.24	118.80
1	1	853	С	N1-C2-O2	5.05	121.93	118.90
2	2	1510	А	C8-N9-C4	5.05	107.82	105.80
28	S1	1961	G	O4'-C1'-N9	5.05	112.24	108.20
2	2	1157	U	N3-C2-O2	-5.05	118.67	122.20
1	1	1514	С	N1-C2-O2	5.04	121.92	118.90
2	2	811	U	C6-N1-C1'	-5.04	114.15	121.20
8	8	123	С	N1-C2-O2	5.03	121.92	118.90
6	6	65	С	N1-C2-O2	5.03	121.92	118.90
1	1	22	С	N1-C2-O2	5.02	121.91	118.90
1	1	613	С	C2-N1-C1'	5.02	124.32	118.80
4	4	138	С	N3-C2-O2	-5.02	118.39	121.90
5	5	125	U	O4'-C1'-N1	5.02	112.21	108.20
4	4	161	С	C4-C5-C6	5.01	119.91	117.40
1	1	100	G	C4-N9-C1'	5.01	133.02	126.50
1	1	208	С	C2-N1-C1'	5.01	124.31	118.80
28	S1	782	С	C2-N1-C1'	5.01	124.31	118.80
1	1	219	U	C2-N1-C1'	5.01	123.71	117.70
28	S1	1181	С	N1-C2-O2	5.01	121.91	118.90
1	1	727	С	C2-N1-C1'	5.01	124.31	118.80
28	S1	92	U	C2-N1-C1'	5.01	123.71	117.70
1	1	148	U	O4'-C1'-N1	5.00	112.20	108.20
28	S1	964	U	N3-C2-O2	-5.00	118.70	122.20

Continued from previous page...

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
42	SM	65	THR	Peptide
49	ST	124	ARG	Sidechain
57	Sb	10	ARG	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
9	А	254/260~(98%)	248 (98%)	6 (2%)	0	100	100
10	В	397/419~(95%)	389~(98%)	8 (2%)	0	100	100
11	С	364/373~(98%)	351 (96%)	13 (4%)	0	100	100
12	D	152/188~(81%)	143 (94%)	9 (6%)	0	100	100
13	Е	184/190~(97%)	172 (94%)	12 (6%)	0	100	100
14	F	144/195~(74%)	136 (94%)	8 (6%)	0	100	100
15	G	222/264~(84%)	216 (97%)	6 (3%)	0	100	100
16	Н	218/222 (98%)	217 (100%)	1 (0%)	0	100	100
17	Ι	206/220~(94%)	199 (97%)	5 (2%)	2 (1%)	13	13
18	J	135/139~(97%)	131 (97%)	4 (3%)	0	100	100
19	K	168/175~(96%)	162 (96%)	6 (4%)	0	100	100
20	L	142/145~(98%)	136 (96%)	6 (4%)	0	100	100
21	М	201/204~(98%)	199 (99%)	2 (1%)	0	100	100
22	Ν	195/213~(92%)	190 (97%)	5 (3%)	0	100	100
23	Ο	268/305~(88%)	261 (97%)	7 (3%)	0	100	100
24	Р	195/198~(98%)	187 (96%)	8 (4%)	0	100	100
25	Q	185/254~(73%)	185 (100%)	0	0	100	100
26	R	176/179~(98%)	172 (98%)	4 (2%)	0	100	100
27	S	$\overline{155/159}~(98\%)$	151 (97%)	4 (3%)	0	100	100
30	SA	224/264~(85%)	216 (96%)	8 (4%)	0	100	100
31	SB	206/246~(84%)	194 (94%)	12 (6%)	0	100	100

Continued	from	previous	page
00100000000	110110	proceedao	pagon

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
32	\mathbf{SC}	211/219~(96%)	208 (99%)	3 (1%)	0	100	100
33	SD	165/190~(87%)	165 (100%)	0	0	100	100
34	SE	258/273~(94%)	253~(98%)	5 (2%)	0	100	100
35	\mathbf{SF}	216/265~(82%)	214 (99%)	2 (1%)	0	100	100
36	SG	229/249~(92%)	224 (98%)	4 (2%)	1 (0%)	30	36
37	SH	178/190~(94%)	174 (98%)	4 (2%)	0	100	100
38	SI	197/200~(98%)	194 (98%)	3 (2%)	0	100	100
39	SJ	127/130~(98%)	126 (99%)	1 (1%)	0	100	100
40	SK	178/220~(81%)	174 (98%)	4 (2%)	0	100	100
41	SL	141/149~(95%)	137 (97%)	4 (3%)	0	100	100
42	SM	100/116~(86%)	99 (99%)	1 (1%)	0	100	100
43	SN	97/168~(58%)	92 (95%)	5 (5%)	0	100	100
44	SO	133/144 (92%)	129 (97%)	4 (3%)	0	100	100
45	SP	139/143~(97%)	137 (99%)	2 (1%)	0	100	100
46	SQ	96/141~(68%)	94 (98%)	2 (2%)	0	100	100
47	SR	128/153~(84%)	127 (99%)	1 (1%)	0	100	100
48	SS	54/57~(95%)	54 (100%)	0	0	100	100
49	ST	140/151~(93%)	135 (96%)	5 (4%)	0	100	100
50	SU	154/173~(89%)	149 (97%)	5 (3%)	0	100	100
51	SV	69/143~(48%)	66 (96%)	3 (4%)	0	100	100
52	SW	111/152~(73%)	109 (98%)	2 (2%)	0	100	100
53	SX	150/161~(93%)	144 (96%)	6 (4%)	0	100	100
54	SY	82/164~(50%)	78 (95%)	4 (5%)	0	100	100
55	SZ	125/137~(91%)	123 (98%)	2 (2%)	0	100	100
56	Sa	69/120~(58%)	69 (100%)	0	0	100	100
57	Sb	101/112~(90%)	99 (98%)	2 (2%)	0	100	100
58	Sc	67/86~(78%)	64 (96%)	3 (4%)	0	100	100
59	Sd	64/87~(74%)	63 (98%)	1 (2%)	0	100	100
60	Se	47/66 (71%)	47 (100%)	0	0	100	100
61	Sf	29/152~(19%)	26 (90%)	3 (10%)	0	100	100
62	Sg	290/312~(93%)	284 (98%)	6 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
63	Sh	120/235~(51%)	113 (94%)	7 (6%)	0	100	100
64	Т	149/166~(90%)	143 (96%)	6 (4%)	0	100	100
65	U	114/129~(88%)	109 (96%)	5 (4%)	0	100	100
66	V	116/145~(80%)	116 (100%)	0	0	100	100
67	W	116/143~(81%)	114 (98%)	2 (2%)	0	100	100
68	X	62/124~(50%)	61 (98%)	1 (2%)	0	100	100
69	Y	130/134~(97%)	127 (98%)	3 (2%)	0	100	100
70	Z	143/147~(97%)	140 (98%)	3 (2%)	0	100	100
71	a	121/127~(95%)	119 (98%)	2 (2%)	0	100	100
72	b	66/70~(94%)	64 (97%)	2 (3%)	0	100	100
73	с	227/252~(90%)	219 (96%)	8 (4%)	0	100	100
74	d	90/104 (86%)	88 (98%)	2 (2%)	0	100	100
75	е	176/188~(94%)	173 (98%)	3 (2%)	0	100	100
76	f	123/133~(92%)	119 (97%)	4 (3%)	0	100	100
77	g	140/144~(97%)	140 (100%)	0	0	100	100
78	h	125/168~(74%)	122 (98%)	2 (2%)	1 (1%)	16	18
79	i	84/105 (80%)	83 (99%)	1 (1%)	0	100	100
80	j	79/83~(95%)	78~(99%)	1 (1%)	0	100	100
81	k	70/83~(84%)	68~(97%)	2 (3%)	0	100	100
82	1	48/51~(94%)	47 (98%)	1 (2%)	0	100	100
83	m	49/128~(38%)	47 (96%)	2 (4%)	0	100	100
84	n	31/34 (91%)	29 (94%)	2 (6%)	0	100	100
85	0	86/92~(94%)	79 (92%)	7 (8%)	0	100	100
86	р	95/106~(90%)	92 (97%)	3 (3%)	0	100	100
All	All	11096/12926~(86%)	10802 (97%)	290 (3%)	4 (0%)	100	100

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
36	SG	172	ASP
78	h	62	HIS
17	Ι	16	HIS
17	Ι	152	THR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
9	А	190/204~(93%)	187~(98%)	3~(2%)	58	71
10	В	303/351~(86%)	295~(97%)	8~(3%)	41	54
11	С	277/301~(92%)	264~(95%)	13~(5%)	22	30
12	D	61/162~(38%)	59~(97%)	2(3%)	33	44
13	Е	139/172~(81%)	133 (96%)	6 (4%)	25	34
14	F	99/153~(65%)	95~(96%)	4 (4%)	27	36
15	G	170/221~(77%)	166 (98%)	4 (2%)	44	57
16	Н	175/188~(93%)	169 (97%)	6(3%)	32	43
17	Ι	161/183~(88%)	157 (98%)	4 (2%)	42	55
18	J	100/111~(90%)	97~(97%)	3 (3%)	36	48
19	K	118/145~(81%)	114 (97%)	4 (3%)	32	43
20	L	113/114 (99%)	110 (97%)	3 (3%)	40	52
21	М	174/180~(97%)	170 (98%)	4 (2%)	45	58
22	Ν	166/179~(93%)	153 (92%)	13 (8%)	10	12
23	О	162/242~(67%)	157 (97%)	5(3%)	35	47
24	Р	159/164~(97%)	154 (97%)	5(3%)	35	47
25	Q	125/198~(63%)	121 (97%)	4 (3%)	34	45
26	R	146/159~(92%)	143 (98%)	3(2%)	48	62
27	S	126/134~(94%)	118 (94%)	8 (6%)	15	19
30	SA	197/222~(89%)	190 (96%)	7 (4%)	30	41
31	SB	173/202~(86%)	154 (89%)	19 (11%)	5	4
32	SC	170/184~(92%)	160 (94%)	10 (6%)	16	21
33	SD	144/164~(88%)	135 (94%)	9 (6%)	15	19
34	SE	$\overline{215/225}~(96\%)$	210 (98%)	5 (2%)	45	58
35	SF	174/208~(84%)	170 (98%)	4 (2%)	45	58
36	SG	189/208~(91%)	177 (94%)	12 (6%)	15	19

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
37	SH	151/159~(95%)	143~(95%)	8 (5%)	19	25
38	SI	175/186~(94%)	167 (95%)	8 (5%)	23	31
39	SJ	110/111 (99%)	106 (96%)	4 (4%)	30	41
40	SK	141/176~(80%)	135 (96%)	6 (4%)	25	34
41	SL	113/120~(94%)	111 (98%)	2(2%)	54	67
42	SM	92/104~(88%)	89~(97%)	3(3%)	33	44
43	SN	86/128~(67%)	80 (93%)	6 (7%)	12	15
44	SO	103/113~(91%)	97~(94%)	6 (6%)	17	21
45	SP	114/117~(97%)	106 (93%)	8 (7%)	12	15
46	SQ	58/120~(48%)	54 (93%)	4 (7%)	13	15
47	SR	107/130~(82%)	101 (94%)	6 (6%)	17	22
48	SS	47/49~(96%)	46 (98%)	1 (2%)	48	62
49	ST	124/132~(94%)	122 (98%)	2(2%)	58	71
50	SU	132/152~(87%)	125 (95%)	7 (5%)	19	25
51	SV	62/126~(49%)	59~(95%)	3~(5%)	21	29
52	SW	95/130~(73%)	86 (90%)	9 (10%)	7	7
53	SX	121/131~(92%)	117 (97%)	4 (3%)	33	44
54	SY	64/116~(55%)	62 (97%)	2(3%)	35	47
55	SZ	109/118~(92%)	101 (93%)	8 (7%)	11	13
56	Sa	63/95~(66%)	59~(94%)	4 (6%)	15	19
57	Sb	84/93~(90%)	78~(93%)	6 (7%)	12	14
58	Sc	60/76~(79%)	59~(98%)	1 (2%)	56	69
59	Sd	49/75~(65%)	46 (94%)	3~(6%)	15	20
60	Se	41/54~(76%)	39~(95%)	2(5%)	21	28
61	Sf	32/126~(25%)	29 (91%)	3~(9%)	7	7
62	Sg	243/265~(92%)	236 (97%)	7(3%)	37	49
63	Sh	80/177~(45%)	68~(85%)	12 (15%)	2	1
64	Т	127/143~(89%)	124 (98%)	3 (2%)	44	57
65	U	57/114 (50%)	54 (95%)	3~(5%)	19	25
66	V	96/124~(77%)	92~(96%)	4 (4%)	25	35
67	W	99/122 (81%)	95~(96%)	4 (4%)	27	36

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
68	Х	58/104~(56%)	56~(97%)	2 (3%)	32	43
69	Y	100/116~(86%)	95~(95%)	5 (5%)	20	28
70	Ζ	108/118~(92%)	99~(92%)	9 (8%)	9	10
71	a	106/118~(90%)	103~(97%)	3 (3%)	38	51
72	b	56/58~(97%)	53~(95%)	3(5%)	18	24
73	с	191/209~(91%)	186 (97%)	5 (3%)	41	54
74	d	80/89~(90%)	74 (92%)	6 (8%)	11	13
75	е	148/158~(94%)	143 (97%)	5 (3%)	32	43
76	f	106/115~(92%)	104 (98%)	2 (2%)	52	65
77	g	119/121~(98%)	118 (99%)	1 (1%)	79	87
78	h	104/146~(71%)	99~(95%)	5 (5%)	21	29
79	i	68/88~(77%)	64 (94%)	4 (6%)	16	21
80	j	67/70~(96%)	66~(98%)	1 (2%)	60	73
81	k	52/74~(70%)	50 (96%)	2 (4%)	28	39
82	1	46/47~(98%)	43 (94%)	3 (6%)	14	17
83	m	37/113~(33%)	34 (92%)	3 (8%)	9	11
84	n	30/32~(94%)	29~(97%)	1 (3%)	33	44
85	О	69/74~(93%)	63 (91%)	6 (9%)	8	8
86	р	80/92~(87%)	79~(99%)	1 (1%)	65	77
All	All	8886/10798~(82%)	8502 (96%)	384 (4%)	27	34

Continued from previous page...

All (384) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
9	А	148	LEU
9	А	218	HIS
9	А	247	ARG
10	В	45	SER
10	В	73	VAL
10	В	101	THR
10	В	217	SER
10	В	246	LYS
10	В	283	LEU
10	В	308	THR
10	В	310	LYS

Mol	Chain	Res	Type
11	С	13	SER
11	С	37	LYS
11	С	70	ARG
11	С	94	MET
11	С	121	PHE
11	С	146	VAL
11	С	204	ARG
11	С	285	THR
11	С	289	ARG
11	С	344	ARG
11	С	353	ARG
11	С	354	LYS
11	С	356	LYS
12	D	71	CYS
12	D	125	TYR
13	Е	18	VAL
13	Е	24	LYS
13	Е	28	THR
13	Е	88	ARG
13	Е	108	ASN
13	Е	176	ASP
14	F	55	LYS
14	F	91	VAL
14	F	94	SER
14	F	144	THR
15	G	46	ASP
15	G	189	ASP
15	G	219	VAL
15	G	254	ASN
16	Н	79	ARG
16	Н	86	LYS
16	Н	111	LYS
16	Н	155	THR
16	Н	184	SER
16	Н	203	GLU
17	Ι	14	LYS
17	Ι	68	VAL
17	Ι	132	PRO
17	Ι	175	ARG
18	J	7	ASN
18	J	66	LYS
18	J	122	LYS

Mol	Chain	Res	Type
19	K	23	ARG
19	K	35	ARG
19	K	131	LYS
19	K	135	THR
20	L	60	HIS
20	L	63	ARG
20	L	104	SER
21	М	24	ARG
21	М	117	ASN
21	М	124	ASP
21	М	189	ARG
22	N	12	CYS
22	N	28	ASP
22	N	32	ARG
22	N	39	ARG
22	N	43	VAL
22	N	44	ASP
22	N	51	HIS
22	N	71	GLN
22	N	87	MET
22	N	125	VAL
22	N	140	THR
22	N	208	MET
22	N	209	ARG
23	0	53	VAL
23	0	66	GLN
23	0	93	THR
23	0	130	SER
23	0	202	ARG
24	Р	17	HIS
24	Р	72	LYS
24	Р	106	ARG
24	Р	118	GLN
24	Р	144	TYR
25	Q	36	ASN
25	Q	115	ILE
25	Q	117	ARG
25	Q	179	LYS
26	R	2	VAL
26	R	138	HIS
26	R	156	ARG
27	S	28	SER

Mol	Chain	Res	Type
27	S	49	ARG
27	S	70	ARG
27	S	84	THR
27	S	97	ARG
27	S	98	LYS
27	S	115	TYR
27	S	150	VAL
30	SA	59	ASP
30	SA	75	GLN
30	SA	110	ASP
30	SA	172	LYS
30	SA	194	VAL
30	SA	215	ARG
30	SA	221	ARG
31	SB	12	ARG
31	SB	14	LYS
31	SB	19	GLN
31	SB	25	ARG
31	SB	53	ASP
31	SB	83	ARG
31	SB	88	ARG
31	SB	96	HIS
31	SB	100	SER
31	SB	102	HIS
31	SB	123	ARG
31	SB	143	VAL
31	SB	158	GLU
31	SB	160	VAL
31	SB	166	CYS
31	SB	176	MET
31	SB	194	ARG
31	SB	207	TYR
31	SB	208	ARG
32	SC	75	ARG
32	SC	131	LYS
32	SC	142	LYS
32	SC	144	GLN
32	SC	155	TYR
32	SC	163	HIS
32	SC	164	LYS
32	SC	173	HIS
32	SC	175	TYR

Mol	Chain	Res	Type
32	SC	200	SER
33	SD	1	MET
33	SD	20	LYS
33	SD	21	GLU
33	SD	60	THR
33	SD	68	ARG
33	SD	93	ASP
33	SD	150	SER
33	SD	153	ARG
33	SD	167	ARG
34	SE	35	LEU
34	SE	68	HIS
34	SE	140	ASP
34	SE	158	VAL
34	SE	165	LYS
35	SF	64	GLU
35	SF	80	ASP
35	SF	90	ASP
35	SF	234	TYR
36	SG	7	TYR
36	SG	32	ARG
36	SG	52	ARG
36	SG	71	SER
36	SG	89	ARG
36	SG	96	ARG
36	SG	104	VAL
36	SG	108	ASP
36	SG	149	ASN
36	SG	172	ASP
36	SG	196	LYS
36	SG	230	LYS
37	SH	25	ARG
37	SH	51	ARG
37	SH	52	MET
37	SH	64	PHE
37	SH	67	ARG
37	SH	113	ARG
37	SH	121	ARG
37	SH	189	ASN
38	SI	19	LEU
38	SI	54	VAL
38	SI	76	LYS

Mol	Chain	Res	Type
38	SI	88	ARG
38	SI	104	LYS
38	SI	141	ARG
38	SI	162	ARG
38	SI	164	ARG
39	SJ	23	ARG
39	SJ	30	SER
39	SJ	54	ASP
39	SJ	118	SER
40	SK	44	SER
40	SK	58	LEU
40	SK	76	VAL
40	SK	81	VAL
40	SK	184	VAL
40	SK	213	LYS
41	SL	27	VAL
41	SL	142	THR
42	SM	35	GLN
42	SM	97	LYS
42	SM	115	ASP
43	SN	4	TYR
43	SN	17	PHE
43	SN	26	LYS
43	SN	44	VAL
43	SN	60	ASN
43	SN	94	MET
44	SO	15	LYS
44	SO	77	ARG
44	SO	110	ARG
44	SO	123	GLU
44	SO	126	THR
44	SO	135	ARG
45	SP	7	GLN
45	SP	37	LYS
45	SP	72	VAL
45	SP	78	ASP
45	SP	105	PHE
45	SP	118	VAL
45	SP	119	ARG
45	SP	127	ASN
46	SQ	62	CYS
46	SQ	73	TYR

Mol	Chain	Res	Type
46	SQ	94	ARG
46	SQ	106	ARG
47	SR	32	ARG
47	SR	35	LYS
47	SR	63	GLU
47	SR	70	GLU
47	SR	100	SER
47	SR	122	ARG
48	SS	54	THR
49	ST	30	SER
49	ST	104	ARG
50	SU	14	ASP
50	SU	25	ARG
50	SU	33	MET
50	SU	67	LYS
50	SU	82	ARG
50	SU	116	GLN
50	SU	153	ASN
51	SV	5	ARG
51	SV	7	LYS
51	SV	37	ASP
52	SW	22	PHE
52	SW	44	VAL
52	SW	50	ARG
52	SW	71	LYS
52	SW	72	LYS
52	SW	73	HIS
52	SW	107	HIS
52	SW	130	TYR
52	SW	131	ARG
53	SX	19	LEU
53	SX	26	ARG
53	SX	33	ARG
53	SX	138	ARG
54	SY	8	ASN
54	SY	15	ASP
55	SZ	30	VAL
55	SZ	36	HIS
55	SZ	41	VAL
55	SZ	55	LYS
55	SZ	103	PHE
55	SZ	107	ARG

Mol	Chain	Res	Type
55	SZ	125	ARG
55	SZ	127	LYS
56	Sa	37	GLN
56	Sa	46	THR
56	Sa	70	LYS
56	Sa	87	LYS
57	Sb	65	ASN
57	Sb	70	ARG
57	Sb	74	LYS
57	Sb	87	THR
57	Sb	88	VAL
57	Sb	103	LYS
58	Sc	4	PHE
59	Sd	20	GLN
59	Sd	32	ARG
59	Sd	81	GLU
60	Se	7	SER
60	Se	42	ARG
61	Sf	81	THR
61	Sf	89	ARG
61	Sf	111	TYR
62	Sg	46	ASP
62	Sg	113	VAL
62	Sg	174	ASN
62	Sg	230	PHE
62	Sg	249	TRP
62	Sg	250	MET
62	Sg	280	SER
63	Sh	73	VAL
63	Sh	81	VAL
63	Sh	87	ARG
63	Sh	121	VAL
63	Sh	162	VAL
63	Sh	174	TYR
63	Sh	185	LYS
63	Sh	189	GLU
63	Sh	194	GLU
63	Sh	195	PHE
63	Sh	196	ARG
63	Sh	215	ARG
64	Т	23	ARG
64	Т	66	LYS

Mol	Chain	Res	Type
64	Т	137	THR
65	U	73	ASN
65	U	104	ARG
65	U	108	ARG
66	V	34	GLN
66	V	77	LYS
66	V	91	SER
66	V	108	VAL
67	W	64	GLU
67	W	82	VAL
67	W	92	VAL
67	W	107	LYS
68	Х	20	ARG
68	Х	59	TYR
69	Y	9	LYS
69	Y	83	THR
69	Y	104	LYS
69	Y	106	SER
69	Y	113	ARG
70	Ζ	17	ARG
70	Z	35	ASN
70	Ζ	62	CYS
70	Ζ	75	ARG
70	Ζ	87	VAL
70	Ζ	113	ARG
70	Ζ	129	LYS
70	Ζ	138	SER
70	Ζ	139	ARG
71	a	81	CYS
71	a	92	THR
71	a	117	LYS
72	b	18	ARG
72	b	33	LYS
72	b	69	LYS
73	с	43	ARG
73	с	60	LYS
73	с	131	LYS
73	с	225	ARG
73	с	237	TYR
74	d	21	LYS
74	d	22	SER
74	d	38	GLN

Mol	Chain	Res	Type
74	d	73	SER
74	d	90	CYS
74	d	97	VAL
75	е	29	SER
75	е	30	ARG
75	е	45	MET
75	е	123	LYS
75	е	148	ARG
76	f	3	LYS
76	f	87	VAL
77	g	14	LEU
78	h	2	SER
78	h	12	MET
78	h	47	TRP
78	h	69	SER
78	h	116	LEU
79	i	21	THR
79	i	25	ARG
79	i	79	ARG
79	i	98	ARG
80	j	33	ARG
81	k	15	CYS
81	k	40	ARG
82	1	29	LEU
82	1	37	TRP
82	1	39	GLU
83	m	115	CYS
83	m	117	HIS
83	m	122	ARG
84	n	27	ARG
85	0	8	MET
85	0	40	SER
85	0	41	PHE
85	0	42	CYS
85	0	47	PHE
85	0	80	ARG
86	р	16	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such side chains are listed below:

Mol	Chain	\mathbf{Res}	Type
17	Ι	13	GLN

Continued from previous page...

Mol	Chain	Res	Type
22	N	71	GLN
44	SO	13	ASN
50	SU	116	GLN
62	Sg	2	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	1600/1782~(89%)	410 (25%)	33~(2%)
2	2	1147/1526~(75%)	307~(26%)	25~(2%)
28	S1	1759/2204 (79%)	410 (23%)	25~(1%)
29	S4	45/76~(59%)	24 (53%)	1 (2%)
3	3	151/216~(69%)	31 (20%)	5(3%)
4	4	183/184~(99%)	37 (20%)	1 (0%)
5	5	112/135~(82%)	26 (23%)	2(1%)
6	6	70/73~(95%)	31 (44%)	3~(4%)
7	7	160/171~(93%)	34 (21%)	3(1%)
8	8	118/123 (95%)	17 (14%)	0
All	All	5345/6490 (82%)	1327 (24%)	98(1%)

All (1327) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	7	С
1	1	8	U
1	1	16	G
1	1	24	А
1	1	29	С
1	1	38	А
1	1	41	А
1	1	47	С
1	1	55	А
1	1	58	А
1	1	63	А
1	1	64	А
1	1	67	С
1	1	70	С
1	1	72	G
1	1	84	G
1	1	86	G
1	1	87	А

Mol	Chain	Res	Type
1	1	91	G
1	1	98	А
1	1	110	А
1	1	117	G
1	1	118	С
1	1	127	G
1	1	129	С
1	1	131	U
1	1	134	А
1	1	135	А
1	1	136	G
1	1	141	U
1	1	142	G
1	1	144	G
1	1	145	U
1	1	146	U
1	1	147	G
1	1	149	G
1	1	153	С
1	1	165	U
1	1	170	U
1	1	171	U
1	1	172	G
1	1	173	G
1	1	176	С
1	1	178	G
1	1	179	G
1	1	182	U
1	1	188	А
1	1	191	U
1	1	192	С
1	1	197	G
1	1	199	A
1	1	201	A
1	1	205	А
1	1	209	С
1	1	216	G
1	1	218	А
1	1	219	U
1	1	223	A
1	1	224	С
1	1	226	С
L	~ .		

Mol	Chain	Res	Type
1	1	233	U
1	1	234	G
1	1	237	U
1	1	242	А
1	1	243	G
1	1	257	U
1	1	265	U
1	1	266	G
1	1	273	А
1	1	280	А
1	1	292	А
1	1	293	С
1	1	305	A2M
1	1	306	G
1	1	307	U
1	1	322	A
1	1	323	U
1	1	324	G
1	1	332	А
1	1	335	U
1	1	336	U
1	1	342	G
1	1	343	U
1	1	344	А
1	1	357	А
1	1	367	А
1	1	368	G
1	1	369	А
1	1	371	U
1	1	373	G
1	1	374	G
1	1	383	U
1	1	391	A
1	1	392	A
1	1	409	U
1	1	410	U
1	1	416	A
1	1	417	G
1	1	419	A
1	1	424	G
1	1	439	U
1	1	440	A

Mol	Chain	Res	Type
1	1	443	А
1	1	444	С
1	1	461	G
1	1	463	С
1	1	464	А
1	1	471	G
1	1	477	С
1	1	485	А
1	1	486	С
1	1	488	G
1	1	489	С
1	1	494	А
1	1	501	С
1	1	502	U
1	1	504	C
1	1	510	U
1	1	515	U
1	1	518	С
1	1	521	G
1	1	522	G
1	1	524	U
1	1	527	A
1	1	535	С
1	1	536	G
1	1	538	G
1	1	542	С
1	1	543	G
1	1	546	G
1	1	547	U
1	1	551	A
1	1	552	G
1	1	553	A
1	1	560	G
1	1	561	G
1	1	565	U
1	1	569	G
1	1	570	A
1	1	571	A
1	1	572	A
1	1	573	U
1	1	574	G
1	1	577	С

1 1 578 G 1 1 580 A 1 1 585 U 1 1 586 U 1 1 590 C 1 1 591 U 1 1 592 G 1 1 597 C 1 1 597 C 1 1 599 G 1 1 601 G 1 1 607 C 1 1 607 C 1 1 611 C 1 1 612 G 1 1 612 U 1 1 623 U 1 1 623 U 1 1 633 U 1 1 633 U 1 1 634 G <t< th=""><th>Mol</th><th>Chain</th><th>Res</th><th>Type</th></t<>	Mol	Chain	Res	Type
1 1 580 A 1 1 585 U 1 1 586 U 1 1 590 C 1 1 591 U 1 1 592 G 1 1 592 G 1 1 597 C 1 1 597 C 1 1 599 G 1 1 601 G 1 1 607 C 1 1 607 C 1 1 612 G 1 1 616 U 1 1 617 G 1 1 623 U 1 1 623 U 1 1 630 U 1 1 633 U 1 1 633 U 1 1 634 G 1 1 648 A </td <td>1</td> <td>1</td> <td>578</td> <td>G</td>	1	1	578	G
1 1 585 U 1 1 586 U 1 1 590 C 1 1 591 U 1 1 592 G 1 1 592 G 1 1 592 G 1 1 594 G 1 1 597 C 1 1 599 G 1 1 601 G 1 1 607 C 1 1 607 C 1 1 611 C 1 1 617 G 1 1 623 U 1 1 623 U 1 1 630 U 1 1 633 U 1 1 633 U 1 1 635 C <t< td=""><td>1</td><td>1</td><td>580</td><td>А</td></t<>	1	1	580	А
1 1 586 U 1 1 590 C 1 1 591 U 1 1 592 G 1 1 592 G 1 1 597 C 1 1 597 C 1 1 599 G 1 1 601 G 1 1 606 C 1 1 607 C 1 1 607 C 1 1 611 C 1 1 612 G 1 1 617 G 1 1 623 U 1 1 623 U 1 1 630 U 1 1 631 G 1 1 633 U 1 1 633 U 1 1 635 C 1 1 648 A </td <td>1</td> <td>1</td> <td>585</td> <td>U</td>	1	1	585	U
1 1 590 C 1 1 591 U 1 1 592 G 1 1 594 G 1 1 597 C 1 1 598 G 1 1 599 G 1 1 601 G 1 1 606 C 1 1 607 C 1 1 607 C 1 1 611 C 1 1 612 G 1 1 616 U 1 1 623 U 1 1 623 U 1 1 623 U 1 1 630 U 1 1 632 A 1 1 633 U 1 1 634 G 1 1 635 C 1 1 648 A </td <td>1</td> <td>1</td> <td>586</td> <td>U</td>	1	1	586	U
1 1 591 U 1 1 592 G 1 1 594 G 1 1 597 C 1 1 598 G 1 1 599 G 1 1 601 G 1 1 606 C 1 1 607 C 1 1 607 C 1 1 611 C 1 1 612 G 1 1 617 G 1 1 623 U 1 1 623 U 1 1 625 C 1 1 630 U 1 1 633 U 1 1 633 U 1 1 634 G 1 1 634 G 1 1 648 A 1 1 653 A </td <td>1</td> <td>1</td> <td>590</td> <td>С</td>	1	1	590	С
1 1 592 G 1 1 594 G 1 1 597 C 1 1 598 G 1 1 599 G 1 1 601 G 1 1 607 C 1 1 607 C 1 1 611 C 1 1 612 G 1 1 616 U 1 1 621 U 1 1 623 U 1 1 625 C 1 1 630 U 1 1 632 A 1 1 633 U 1 1 634 G 1 1 634 G 1 1 634 G 1 1 648 A 1 1 653 A 1 1 653 A </td <td>1</td> <td>1</td> <td>591</td> <td>U</td>	1	1	591	U
1 1 594 G 1 1 597 C 1 1 598 G 1 1 599 G 1 1 601 G 1 1 607 C 1 1 607 C 1 1 607 C 1 1 611 C 1 1 612 G 1 1 612 G 1 1 617 G 1 1 623 U 1 1 623 U 1 1 623 U 1 1 627 C 1 1 630 U 1 1 633 U 1 1 633 U 1 1 634 G 1 1 648 A 1 1 652 A 1 1 653 A </td <td>1</td> <td>1</td> <td>592</td> <td>G</td>	1	1	592	G
1 1 597 C 1 1 598 G 1 1 599 G 1 1 601 G 1 1 606 C 1 1 607 C 1 1 607 C 1 1 607 C 1 1 611 C 1 1 612 G 1 1 616 U 1 1 621 U 1 1 623 U 1 1 623 U 1 1 627 C 1 1 630 U 1 1 633 U 1 1 633 U 1 1 633 U 1 1 634 G 1 1 639 A 1 1 641 G 1 1 652 A </td <td>1</td> <td>1</td> <td>594</td> <td>G</td>	1	1	594	G
1 1 598 G 1 1 599 G 1 1 601 G 1 1 606 C 1 1 607 C 1 1 607 C 1 1 607 C 1 1 611 C 1 1 612 G 1 1 616 U 1 1 617 G 1 1 623 U 1 1 623 U 1 1 625 C 1 1 630 U 1 1 631 G 1 1 633 U 1 1 633 U 1 1 634 G 1 1 635 C 1 1 641 G 1 1 652 A 1 1 653 A </td <td>1</td> <td>1</td> <td>597</td> <td>С</td>	1	1	597	С
1 1 599 G 1 1 601 G 1 1 606 C 1 1 607 C 1 1 607 C 1 1 611 C 1 1 612 G 1 1 616 U 1 1 621 U 1 1 623 U 1 1 623 U 1 1 625 C 1 1 627 C 1 1 630 U 1 1 633 U 1 1 633 U 1 1 634 G 1 1 635 C 1 1 648 A 1 1 651 G 1 1 653 A 1 1 653 A 1 1 666 C </td <td>1</td> <td>1</td> <td>598</td> <td>G</td>	1	1	598	G
1 1 601 G 1 1 606 C 1 1 607 C 1 1 609 C 1 1 611 C 1 1 612 G 1 1 616 U 1 1 621 U 1 1 623 U 1 1 625 C 1 1 630 U 1 1 631 G 1 1 633 U 1 1 633 U 1 1 633 U 1 1 634 G 1 1 635 C 1 1 648 A 1 1 652 A 1 1 653 A 1 1 653 A 1 1 666 C 1 1 667 C </td <td>1</td> <td>1</td> <td>599</td> <td>G</td>	1	1	599	G
1 1 606 C 1 1 607 C 1 1 609 C 1 1 611 C 1 1 612 G 1 1 616 U 1 1 617 G 1 1 623 U 1 1 630 U 1 1 633 U 1 1 633 U 1 1 634 G 1 1 648 A 1 1 653 A 1 1 653 A 1	1	1	601	G
1 1 607 C 1 1 609 C 1 1 611 C 1 1 612 G 1 1 616 U 1 1 617 G 1 1 621 U 1 1 623 U 1 1 630 U 1 1 633 U 1 1 633 U 1 1 634 G 1 1 634 G 1 1 635 C 1 1 648 A 1 1 652 A 1 1 666 C 1	1	1	606	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	607	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	609	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	611	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	612	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	616	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	617	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	621	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	623	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	625	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	627	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	630	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	631	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	632	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	633	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	634	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	635	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	639	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	641	G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	648	A
1 1 652 A 1 1 653 A 1 1 666 C 1 1 666 C 1 1 668 C 1 1 669 C 1 1 678 A2M 1 1 680 C 1 1 681 A2M 1 1 681 A2M 1 1 682 A	1	1	651	G
1 1 653 A 1 1 666 C 1 1 668 C 1 1 669 C 1 1 678 A2M 1 1 680 C 1 1 681 A2M 1 1 681 A2M 1 1 681 A2M	1	1	652	A
1 1 666 C 1 1 668 C 1 1 669 C 1 1 678 A2M 1 1 680 C 1 1 680 C 1 1 681 A2M 1 1 681 A2M 1 1 692 A	1	1	653	A
1 1 668 C 1 1 669 C 1 1 678 A2M 1 1 680 C 1 1 681 A2M 1 1 681 A2M 1 1 681 A2M	1	1	666	C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	668	С
1 1 678 A2M 1 1 680 C 1 1 681 A2M 1 1 692 A	1	1	669	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	678	A2M
1 1 681 A2M 1 1 692 A	1	1	680	С
1 1 692 A	1	1	681	A2M
	1	1	692	А

Mol	Chain	Res	Type
1	1	694	U
1	1	709	А
1	1	710	G
1	1	718	A
1	1	719	U
1	1	721	U
1	1	722	G
1	1	728	С
1	1	735	U
1	1	736	С
1	1	740	С
1	1	741	G
1	1	743	A
1	1	744	С
1	1	745	U
1	1	748	A
1	1	753	А
1	1	761	А
1	1	763	U
1	1	771	U
1	1	775	G
1	1	778	С
1	1	779	А
1	1	782	С
1	1	783	G
1	1	790	С
1	1	792	G
1	1	794	U
1	1	795	U
1	1	803	С
1	1	810	C
1	1	818	С
1	1	823	G
1	1	828	U
1	1	832	G
1	1	835	G
1	1	836	G
1	1	838	G
1	1	850	G
1	1	852	A
1	1	868	A
1	1	895	G

Mol	Chain	Res	Type
1	1	900	С
1	1	903	А
1	1	905	G
1	1	912	С
1	1	922	U
1	1	925	U
1	1	930	U
1	1	947	А
1	1	948	U
1	1	957	С
1	1	965	А
1	1	967	G
1	1	968	А
1	1	972	A
1	1	975	G
1	1	976	А
1	1	985	G
1	1	988	G
1	1	995	С
1	1	998	А
1	1	1011	PSU
1	1	1013	А
1	1	1025	G
1	1	1030	U
1	1	1031	А
1	1	1036	U
1	1	1045	G
1	1	1053	А
1	1	1061	G
1	1	1063	G
1	1	1064	G
1	1	1089	С
1	1	1092	U
1	1	1093	U
1	1	1094	С
1	1	1097	A
1	1	1098	А
1	1	1100	С
1	1	1108	G
1	1	1114	A
1	1	1116	А
1	1	1121	G

Mol	Chain	Res	Type
1	1	1122	U
1	1	1123	G
1	1	1124	С
1	1	1129	G
1	1	1133	А
1	1	1135	U
1	1	1136	G
1	1	1137	С
1	1	1141	G
1	1	1144	G
1	1	1148	А
1	1	1150	А
1	1	1153	A
1	1	1156	A
1	1	1159	А
1	1	1161	А
1	1	1162	G
1	1	1165	А
1	1	1171	PSU
1	1	1172	G
1	1	1174	G
1	1	1188	G
1	1	1196	G
1	1	1201	U
1	1	1207	А
1	1	1210	А
1	1	1216	U
1	1	1217	U
1	1	1220	G
1	1	1231	G
1	1	1239	U
1	1	1240	U
1	1	1242	U
1	1	1243	G
1	1	1249	A
1	1	$1\overline{250}$	U
1	1	1251	U
1	1	1252	С
1	1	1253	U
1	1	1254	C
1	1	1258	A
1	1	1261	U

Mol	Chain	Res	Type
1	1	1262	G
1	1	1263	А
1	1	1267	G
1	1	1274	G
1	1	1280	U
1	1	1351	С
1	1	1352	С
1	1	1364	А
1	1	1367	U
1	1	1369	G
1	1	1371	OMU
1	1	1378	U
1	1	1379	А
1	1	1388	U
1	1	1389	А
1	1	1390	G
1	1	1391	U
1	1	1395	U
1	1	1401	U
1	1	1413	U
1	1	1420	G
1	1	1421	G
1	1	1422	А
1	1	1423	А
1	1	1424	A
1	1	1426	А
1	1	1427	А
1	1	1438	А
1	1	1439	А
1	1	1441	U
1	1	1445	G
1	1	1446	C
1	1	1455	U
1	1	1464	G
1	1	1465	G
1	1	1470	G
1	1	1476	A
1	1	1480	С
1	1	1489	U
1	1	1490	G
1	1	1504	A
1	1	1505	U

Mol	Chain	Res	Type
1	1	1508	А
1	1	1509	С
1	1	1519	G
1	1	1524	OMG
1	1	1527	OMC
1	1	1536	С
1	1	1540	OMG
1	1	1545	G
1	1	1547	U
1	1	1557	А
1	1	1560	U
1	1	1566	А
1	1	1569	U
1	1	1574	C
1	1	1575	G
1	1	1586	G
1	1	1590	G
1	1	1613	С
1	1	1636	А
1	1	1639	U
1	1	1653	U
1	1	1654	А
1	1	1655	U
1	1	1661	U
1	1	1662	G
1	1	1663	U
1	1	1666	G
1	1	1667	G
1	1	1672	U
1	1	1674	A
1	1	1676	G
1	1	1723	A
1	1	1724	C
1	1	1726	G
1	1	1727	A
1	1	1728	A
1	1	1729	A
1	1	1730	A
1	1	1731	G
1	1	1734	G
1	1	1737	A
1	1	1739	A

Mol	Chain	Res	Type
1	1	1743	А
1	1	1744	А
1	1	1746	С
1	1	1747	U
1	1	1751	А
1	1	1757	U
1	1	1758	U
1	1	1762	А
1	1	1763	А
1	1	1766	G
1	1	1771	U
1	1	1772	G
1	1	1776	G
1	1	1780	G
2	2	4	С
2	2	5	А
2	2	6	А
2	2	7	С
2	2	22	А
2	2	25	А
2	2	29	С
2	2	49	А
2	2	61	С
2	2	62	А
2	2	63	U
2	2	68	А
2	2	69	А
2	2	75	С
2	2	77	С
2	2	90	G
2	2	97	A
2	2	98	G
2	2	122	PSU
2	2	123	G
2	2	125	С
2	2	127	С
2	2	134	С
2	2	340	A
2	2	342	U
2	2	343	U
2	2	347	A
2	2	348	А

Mol	Chain	Res	Type
2	2	349	С
2	2	350	U
2	2	351	С
2	2	358	G
2	2	368	G
2	2	377	А
2	2	386	U
2	2	388	А
2	2	404	А
2	2	415	U
2	2	416	G
2	2	434	А
2	2	436	U
2	2	444	A
2	2	451	U
2	2	452	G
2	2	453	А
2	2	454	А
2	2	455	U
2	2	456	G
2	2	458	С
2	2	459	А
2	2	460	А
2	2	461	С
2	2	471	U
2	2	472	PSU
2	2	478	А
2	2	490	А
2	2	492	G
2	2	495	G
2	2	496	G
2	2	497	G
2	2	498	А
2	2	499	G
2	2	500	U
2	2	501	A
2	2	502	A
2	2	503	С
2	2	504	U
2	2	506	U
2	2	$50\overline{7}$	G
2	2	511	С

Mol	Chain	Res	Type
2	2	518	G
2	2	519	G
2	2	527	A2M
2	2	529	G
2	2	530	С
2	2	534	OMG
2	2	544	U
2	2	552	С
2	2	554	С
2	2	556	U
2	2	559	А
2	2	561	G
2	2	571	G
2	2	580	U
2	2	582	U
2	2	602	А
2	2	616	G
2	2	619	А
2	2	620	С
2	2	621	G
2	2	623	А
2	2	637	G
2	2	639	G
2	2	640	G
2	2	643	А
2	2	648	A
2	2	649	G
2	2	650	А
2	2	657	U
2	2	658	G
2	2	688	G
2	2	695	G
2	2	696	А
2	2	697	G
2	2	698	G
2	2	703	G
2	2	709	G
2	2	711	G
2	2	712	G
2	2	714	А
2	2	715	G
2	2	716	С

Mol	Chain	Res	Type
2	2	718	С
2	2	720	A
2	2	724	С
2	2	725	A
2	2	726	A
2	2	728	U
2	2	731	А
2	2	732	A
2	2	733	U
2	2	734	A
2	2	735	С
2	2	738	С
2	2	739	C
2	2	741	С
2	2	745	G
2	2	746	A
2	2	747	A
2	2	748	С
2	2	749	G
2	2	750	U
2	2	751	U
2	2	752	G
2	2	758	С
2	2	760	U
2	2	761	A
2	2	777	А
2	2	778	A
2	2	779	U
2	2	783	U
2	2	784	U
2	2	789	G
2	2	799	G
2	2	805	G
2	2	808	С
2	2	810	G
2	2	811	U
2	2	819	U
2	2	820	G
2	2	822	G
2	2	823	A
2	2	824	G
2	2	825	U

Mol	Chain	Res	Type
2	2	845	С
2	2	846	G
2	2	848	С
2	2	851	С
2	2	947	U
2	2	951	G
2	2	952	G
2	2	953	U
2	2	954	А
2	2	955	С
2	2	974	G
2	2	975	А
2	2	976	А
2	2	979	А
2	2	980	А
2	2	1004	G
2	2	1010	U
2	2	1011	G
2	2	1012	U
2	2	1019	А
2	2	1020	С
2	2	1021	А
2	2	1025	G
2	2	1033	G
2	2	1034	G
2	2	1041	G
2	2	1046	OMG
2	2	1053	А
2	2	1058	PSU
2	2	1064	А
2	2	1075	G
2	2	1078	OMG
2	2	1079	U
2	2	1083	А
2	2	1084	А
2	2	1096	U
2	2	1101	А
2	2	1111	С
2	2	1112	А
2	2	1115	U
2	2	1116	А
2	2	1118	А

Mol	Chain	Res	Type
2	2	1121	А
2	2	1122	С
2	2	1123	А
2	2	1129	А
2	2	1132	А
2	2	1137	G
2	2	1139	U
2	2	1141	G
2	2	1147	С
2	2	1148	G
2	2	1156	G
2	2	1157	U
2	2	1161	А
2	2	1162	A
2	2	1165	G
2	2	1171	G
2	2	1178	С
2	2	1179	А
2	2	1180	А
2	2	1181	G
2	2	1185	A2M
2	2	1189	А
2	2	1199	А
2	2	1201	G
2	2	1203	А
2	2	1204	U
2	2	1206	G
2	2	1207	G
2	2	1209	А
2	2	1215	А
2	2	1216	А
2	2	1217	С
2	2	1218	A
2	2	1223	A
2	2	1229	OMG
2	2	1233	U
2	2	1234	G
2	2	1237	A
2	2	1238	G
2	2	1239	А
2	2	1240	A
2	2	1241	U

Mol	Chain	Res	Type
2	2	1246	А
2	2	1248	OMC
2	2	1252	G
2	2	1255	А
2	2	1271	G
2	2	1274	С
2	2	1278	С
2	2	1281	U
2	2	1283	А
2	2	1284	U
2	2	1288	G
2	2	1289	А
2	2	1290	С
2	2	1291	G
2	2	1294	G
2	2	1297	U
2	2	1300	U
2	2	1305	С
2	2	1309	G
2	2	1313	U
2	2	1314	С
2	2	1325	А
2	2	1336	G
2	2	1337	С
2	2	1342	G
2	2	1349	А
2	2	1354	PSU
2	2	1361	PSU
2	2	1363	С
2	2	1365	С
2	2	1366	С
2	2	1373	С
2	2	1374	A
2	2	1379	A
2	2	1380	С
2	2	1385	G
2	2	1389	G
2	2	1392	U
2	2	1409	A
2	2	1416	U
2	2	1421	C
2	2	1428	U

Mol	Chain	Res	Type
2	2	1433	G
2	2	1437	А
2	2	1441	С
2	2	1443	А
2	2	1444	G
2	2	1445	А
2	2	1448	А
2	2	1450	G
2	2	1454	А
2	2	1455	U
2	2	1458	G
2	2	1463	А
2	2	1465	G
2	2	1492	G
2	2	1494	G
2	2	1500	U
2	2	1501	G
2	2	1503	G
2	2	1504	U
2	2	1510	А
2	2	1511	U
2	2	1512	G
2	2	1513	G
2	2	1514	U
2	2	1522	U
2	2	1524	A
2	2	1525	С
3	3	35	А
3	3	41	А
3	3	42	U
3	3	59	U
3	3	60	U
3	3	63	U
3	3	64	U
3	3	99	U
3	3	109	U
3	3	110	U
3	3	111	A
3	3	112	С
3	3	113	U
3	3	116	U
3	3	124	U

3 3 125 U 3 3 142 G 3 3 149 A 3 3 150 A	
3 3 142 G 3 3 149 A 3 3 150 A	
3 3 149 A 3 3 150 A	
3 3 150 A	
3 3 151 A	
3 3 180 U	
3 3 181 G	
3 3 184 A	
3 3 187 U	
3 3 188 C	
3 3 192 G	
3 3 199 A	
3 3 201 C	
3 3 202 A	
3 3 210 G	
3 3 214 U	
4 4 4 G	
4 4 9 G	
4 4 16 G	
4 4 24 A	
4 4 40 G	
4 4 50 G	
4 4 51 U	
4 4 52 A	
4 4 60 A	
4 4 61 A	
4 4 64 C	
4 4 65 C	
4 4 66 C	
4 4 <u>69</u> G	
4 4 83 U	
4 4 85 C	
4 4 86 U	
4 4 102 G	
4 4 106 G	
4 4 114 A	
4 4 120 U	
4 4 121 C	
4 4 127 G	
4 4 128 U	
4 4 133 C	
4 4 144 G	

Mol	Chain	Res	Type
4	4	148	С
4	4	149	U
4	4	150	А
4	4	151	А
4	4	153	С
4	4	157	А
4	4	158	А
4	4	159	G
4	4	168	А
4	4	170	G
4	4	173	С
5	5	6	G
5	5	15	С
5	5	24	G
5	5	29	U
5	5	39	G
5	5	50	С
5	5	51	А
5	5	52	U
5	5	53	G
5	5	65	U
5	5	68	G
5	5	87	U
5	5	88	С
5	5	89	С
5	5	92	А
5	5	99	G
5	5	105	U
5	5	106	G
5	5	109	G
5	5	113	G
5	5	117	U
5	5	118	U
5	5	119	U
5	5	120	С
5	5	123	G
5	5	124	C
6	6	5	С
6	6	7	A
6	6	12	С
6	6	15	C
6	6	22	G

Mol	Chain	Res	Type
6	6	24	С
6	6	25	U
6	6	26	G
6	6	33	G
6	6	39	U
6	6	40	С
6	6	41	G
6	6	42	А
6	6	43	А
6	6	44	G
6	6	45	G
6	6	51	А
6	6	52	G
6	6	54	A
6	6	55	U
6	6	56	A
6	6	57	U
6	6	64	U
6	6	65	С
6	6	67	С
6	6	68	А
6	6	69	А
6	6	70	G
6	6	71	А
6	6	72	C
6	6	73	А
7	7	2	А
7	7	5	U
7	7	6	G
7	7	16	А
7	7	19	A
7	7	22	U
7	7	31	А
7	7	33	U
7	7	43	A2M
7	7	59	A
7	7	62	A
7	7	63	G
7	7	71	A
7	7	72	A
7	7	84	U
7	7	85	U

Mol	Chain	Res	Type
7	7	87	А
7	7	88	А
7	7	89	U
7	7	90	U
7	7	94	G
7	7	96	А
7	7	103	А
7	7	104	А
7	7	105	С
7	7	110	А
7	7	119	G
7	7	120	G
7	7	127	С
7	7	128	U
7	7	136	G
7	7	157	U
7	7	158	U
7	7	169	А
8	8	11	G
8	8	22	А
8	8	26	А
8	8	34	А
8	8	37	U
8	8	45	G
8	8	46	А
8	8	52	G
8	8	57	U
8	8	63	С
8	8	67	С
8	8	68	A
8	8	70	G
8	8	94	A
8	8	95	U
8	8	104	A
8	8	114	G
28	S1	3	U
28	S1	17	С
28	S1	25	С
28	S1	26	A
28	S1	34	G
28	S1	42	G
28	S1	45	U

Mol	Chain	Res	Type
28	S1	47	А
28	S1	55	А
28	S1	61	С
28	S1	65	А
28	S1	66	U
28	S1	68	А
28	S1	98	A2M
28	S1	102	А
28	S1	103	A
28	S1	109	С
28	S1	112	А
28	S1	114	U
28	S1	117	G
28	S1	122	A
28	S1	129	U
28	S1	133	G
28	S1	144	А
28	S1	145	А
28	S1	146	U
28	S1	147	U
28	S1	149	G
28	S1	150	А
28	S1	158	G
28	S1	164	С
28	S1	165	G
28	S1	167	С
28	S1	168	А
28	S1	170	G
28	S1	171	С
28	S1	174	А
28	S1	175	U
28	S1	181	A
28	S1	182	A
28	S1	194	U
28	S1	195	U
28	S1	197	U
28	S1	198	С
28	S1	199	C
28	S1	232	С
28	S1	234	C
28	S1	235	С
28	S1	237	A

Mol	Chain	\mathbf{Res}	Type
28	S1	247	U
28	S1	249	A
28	S1	252	G
28	S1	253	U
28	S1	254	А
28	S1	255	A
28	S1	264	С
28	S1	275	A
28	S1	276	G
28	S1	277	U
28	S1	278	А
28	S1	284	С
28	S1	285	A
28	S1	287	С
28	S1	288	A
28	S1	295	A
28	S1	308	С
28	S1	309	G
28	S1	310	U
28	S1	311	G
28	S1	316	А
28	S1	321	G
28	S1	327	U
28	S1	329	С
28	S1	340	G
28	S1	341	A
28	S1	349	С
28	S1	356	А
28	S1	358	С
28	S1	360	G
28	S1	364	G
28	S1	381	G
28	S1	382	A
28	S1	387	С
28	S1	396	G
28	S1	404	С
28	S1	433	G
28	S1	443	A
28	S1	444	A
28	S1	445	U
28	S1	446	A
28	S1	447	G

Mol	Chain	Res	Type
28	S1	451	С
28	S1	454	С
28	S1	462	G
28	S1	464	G
28	S1	467	С
28	S1	469	G
28	S1	474	С
28	S1	477	G
28	S1	481	А
28	S1	482	U
28	S1	487	С
28	S1	497	А
28	S1	500	A
28	S1	501	A
28	S1	502	A
28	S1	516	А
28	S1	523	А
28	S1	525	А
28	S1	528	G
28	S1	548	G
28	S1	551	А
28	S1	552	U
28	S1	553	U
28	S1	554	U
28	S1	555	С
28	S1	556	А
28	S1	559	G
28	S1	565	U
28	S1	566	А
28	S1	569	U
28	S1	574	С
28	S1	576	А
28	S1	580	А
28	S1	581	A
28	S1	585	С
$\overline{28}$	S1	588	G
28	S1	590	A
28	S1	591	А
28	S1	592	С
28	S1	594	A
28	S1	606	G
28	S1	614	С

Mol	Chain	Res	Type
28	S1	617	G
28	S1	628	А
28	S1	631	U
28	S1	632	С
28	S1	643	А
28	S1	660	U
28	S1	668	A2M
28	S1	669	А
28	S1	671	G
28	S1	672	G
28	S1	673	G
28	S1	685	A
28	S1	688	G
28	S1	689	U
28	S1	690	G
28	S1	693	С
28	S1	698	С
28	S1	749	U
28	S1	754	G
28	S1	755	С
28	S1	757	С
28	S1	760	G
28	S1	772	А
28	S1	773	А
28	S1	775	С
28	S1	776	А
28	S1	777	А
28	S1	778	G
28	S1	782	С
28	S1	785	G
28	S1	786	G
28	S1	788	А
28	S1	790	U
28	S1	791	G
28	S1	792	G
28	S1	793	G
28	S1	794	U
28	S1	810	G
28	S1	815	U
28	S1	816	C
28	S1	818	U
28	S1	819	G

Mol	Chain	Res	Type
28	S1	820	С
28	S1	825	С
28	S1	826	А
28	S1	827	G
28	S1	833	G
28	S1	834	U
28	S1	839	G
28	S1	840	А
28	S1	844	U
28	S1	845	U
28	S1	856	A
28	S1	857	А
28	S1	866	G
28	S1	867	A
28	S1	868	С
28	S1	879	A
28	S1	882	U
28	S1	883	G
28	S1	886	U
28	S1	887	U
28	S1	890	A
28	S1	892	U
28	S1	895	A
28	S1	914	G
28	S1	916	G
28	S1	917	С
28	S1	918	А
28	S1	950	U
28	S1	951	U
28	S1	953	U
28	S1	954	A
28	S1	955	A
28	S1	956	A
28	S1	964	U
28	S1	965	G
28	S1	968	G
28	S1	969	A
28	S1	970	U
28	S1	972	A
28	S1	976	A
28	S1	977	G
28	S1	978	С

Mol	Chain	Res	Type
28	S1	984	G
28	S1	986	С
28	S1	987	А
28	S1	989	А
28	S1	990	U
28	S1	991	G
28	S1	992	С
28	S1	993	U
28	S1	994	U
28	S1	996	С
28	S1	1015	G
28	S1	1016	G
28	S1	1039	U
28	S1	1102	G
28	S1	1105	А
28	S1	1108	А
28	S1	1109	А
28	S1	1115	G
28	S1	1119	U
28	S1	1123	G
28	S1	1130	А
28	S1	1133	U
28	S1	1139	G
28	S1	1160	А
28	S1	1170	А
28	S1	1180	А
28	S1	1181	С
28	S1	1182	А
28	S1	1197	С
28	S1	1198	А
28	S1	1199	А
28	S1	1207	U
28	S1	1210	С
28	S1	1213	А
28	S1	1235	А
28	S1	1245	A
28	S1	1251	A
28	S1	1252	А
28	S1	1271	С
28	S1	1272	A
28	S1	1273	А
28	S1	1275	С

Mol	Chain	Res	Type
28	S1	1404	U
28	S1	1443	U
28	S1	1444	G
28	S1	1446	G
28	S1	1448	U
28	S1	1449	U
28	S1	1452	А
28	S1	1466	G
28	S1	1467	U
28	S1	1490	А
28	S1	1502	G
28	S1	1510	С
28	S1	1531	G
28	S1	1537	U
28	S1	1546	А
28	S1	1548	А
28	S1	1551	G
28	S1	1552	G
28	S1	1554	А
28	S1	1566	PSU
28	S1	1569	G
28	S1	1570	G
28	S1	1581	G
28	S1	1591	U
28	S1	1595	G
28	S1	1596	U
28	S1	1597	G
28	S1	1606	С
28	S1	1611	С
28	S1	1613	С
28	S1	1614	U
28	S1	1616	А
28	S1	1621	OMU
28	S1	1637	A
28	S1	1638	U
28	S1	1640	G
28	S1	1651	G
28	S1	1653	U
28	S1	1658	U
28	S1	1666	U
28	S1	1667	U
28	S1	1673	А

Mol	Chain	Res	Type
28	S1	1675	С
28	S1	1676	G
28	S1	1677	G
28	S1	1679	С
28	S1	1688	А
28	S1	1689	G
28	S1	1690	С
28	S1	1693	С
28	S1	1694	С
28	S1	1696	А
28	S1	1699	А
28	S1	1703	U
28	S1	1706	А
28	S1	1712	G
28	S1	1713	С
28	S1	1718	А
28	S1	1719	G
28	S1	1720	G
28	S1	1725	С
28	S1	1764	U
28	S1	1767	G
28	S1	1773	U
28	S1	1782	G
28	S1	1788	U
28	S1	1789	U
28	S1	1806	А
28	S1	1814	U
28	S1	1816	U
28	S1	1825	А
28	S1	1826	G
28	S1	1828	А
28	S1	1829	OMG
28	S1	1832	С
28	S1	1833	OMU
28	S1	1836	G
28	S1	1860	С
28	S1	1861	А
28	S1	1867	A
28	S1	$187\overline{2}$	A
28	S1	1879	OMG
$\overline{28}$	S1	1880	U
28	S1	1884	А

Mol	Chain	Res	Type
28	S1	1887	А
28	S1	1889	G
28	S1	1890	А
28	S1	1891	А
28	S1	1906	G
28	S1	1907	А
28	S1	1908	А
28	S1	1916	G
28	S1	1918	U
28	S1	1923	А
28	S1	1926	G
28	S1	1928	G
28	S1	1933	А
28	S1	1948	U
28	S1	1949	А
28	S1	1950	G
28	S1	1954	С
28	S1	1955	А
28	S1	1956	С
28	S1	1961	G
28	S1	1977	U
28	S1	1979	OMU
28	S1	1988	С
28	S1	1989	А
28	S1	2004	G
28	S1	2010	G
28	S1	2016	С
28	S1	2020	А
28	S1	2021	A2M
28	S1	2030	G
28	S1	2031	А
$\overline{28}$	S1	2036	G
28	S1	2054	С
$\overline{28}$	S1	2055	A
$\overline{28}$	S1	2069	U
$\overline{28}$	S1	2078	A
28	S1	2080	G
28	S1	2095	A
$\overline{28}$	S1	2097	С
$\overline{28}$	S1	2099	G
$\overline{28}$	S1	2101	C
28	S1	2118	G

Mol	Chain	Res	Type
28	S1	2119	С
28	S1	2120	С
28	S1	2121	С
28	S1	2125	А
28	S1	2134	А
28	S1	2136	А
28	S1	2137	U
28	S1	2144	А
28	S1	2145	А
28	S1	2151	OMG
28	S1	2152	А
28	S1	2158	А
28	S1	2159	А
28	S1	2160	G
28	S1	2163	G
28	S1	2169	A
28	S1	2170	G
28	S1	2172	U
28	S1	2183	G
28	S1	2195	G
28	S1	2196	G
28	S1	2197	G
28	S1	2199	С
28	S1	2202	PSU
28	S1	2203	U
29	S4	2	С
29	S4	4	С
29	S4	5	G
29	S4	14	А
29	S4	15	G
29	S4	16	U
29	S4	22	G
29	S4	25	С
29	S4	27	G
29	S4	31	A
29	S4	44	G
29	S4	46	G
29	S4	51	U
29	S4	63	G
29	S4	64	A
29	S4	65	G
29	S4	66	U

Continued from previous page...

Mol	Chain	Res	Type
29	S4	68	С
29	S4	69	G
29	S4	70	С
29	S4	71	G
29	S4	73	А
29	S4	74	С
29	S4	76	А

All (98) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	141	U
1	1	148	U
1	1	170	U
1	1	172	G
1	1	208	С
1	1	215	U
1	1	334	G
1	1	415	А
1	1	423	U
1	1	488	G
1	1	509	U
1	1	560	G
1	1	584	U
1	1	589	G
1	1	606	С
1	1	611	С
1	1	620	U
1	1	679	А
1	1	774	U
1	1	835	G
1	1	947	А
1	1	967	G
1	1	1011	PSU
1	1	1030	U
1	1	1044	G
1	1	1171	PSU
1	1	1390	G
1	1	1479	А
1	1	1565	А
1	1	1574	С
1	1	1662	G

Mol	Chain	Res	Type
1	1	1730	А
1	1	1742	G
2	2	4	С
2	2	122	PSU
2	2	350	U
2	2	443	OMC
2	2	496	G
2	2	497	G
2	2	510	PSU
2	2	618	А
2	2	696	А
2	2	748	С
2	2	1083	А
2	2	1122	С
2	2	1131	A
2	2	1136	U
2	2	1146	А
2	2	1156	G
2	2	1170	U
2	2	1188	G
2	2	1222	С
2	2	1239	А
2	2	1313	U
2	2	1388	G
2	2	1416	U
2	2	1437	А
2	2	1512	G
3	3	112	С
3	3	149	А
3	3	150	А
3	3	179	U
3	3	180	U
4	4	149	U
5	5	51	A
5	5	106	G
6	6	23	A
6	6	51	A
6	6	71	А
7	7	71	A
7	7	93	С
7	7	95	A
28	S1	65	А

	0	1	1 0
\mathbf{Mol}	Chain	Res	Type
28	S1	128	С
28	S1	236	С
28	S1	276	G
28	S1	284	С
28	S1	294	G
28	S1	308	С
28	S1	310	U
28	S1	328	С
28	S1	550	С
28	S1	568	U
28	S1	777	А
28	S1	790	U
28	S1	889	А
28	S1	1209	С
28	S1	1403	А
28	S1	1639	G
28	S1	1672	С
28	S1	1879	OMG
28	S1	1889	G
28	S1	1907	A
28	S1	1915	U
28	S1	2035	С
28	S1	2119	С
28	S1	2151	OMG
29	S4	13	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

153 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Chain	Chain	Chain	Chain	Dec		Bond lengths			Bond angles		
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2		
1	OMG	1	1540	1,2	18,26,27	2.52	8 (44%)	19,38,41	1.46	4 (21%)		
1	PSU	1	1664	1	18,21,22	4.56	7 (38%)	22,30,33	1.71	4 (18%)		

Mol	Type	Chain	Dog	Link	B	ond leng	gths	Bond angles		
	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	OMG	2	655	2	18,26,27	2.60	8 (44%)	19,38,41	1.50	4 (21%)
1	PSU	1	239	1	18,21,22	4.52	7 (38%)	22,30,33	1.87	5 (22%)
28	OMU	S1	1833	28	19,22,23	3.02	8 (42%)	26,31,34	1.85	5 (19%)
2	PSU	2	122	2	18,21,22	4.54	8 (44%)	22,30,33	1.95	6 (27%)
28	A2M	S1	668	87,28	18,25,26	4.14	7 (38%)	18,36,39	2.83	4 (22%)
28	5MC	S1	2061	28	18,22,23	3.56	7 (38%)	26,32,35	0.99	3 (11%)
2	OMC	2	583	2	19,22,23	2.97	8 (42%)	26,31,34	0.68	0
2	PSU	2	1264	2	18,21,22	4.50	8 (44%)	22,30,33	1.75	4 (18%)
28	A2M	S1	479	28	18,25,26	4.18	7 (38%)	18,36,39	2.70	3 (16%)
7	OMG	7	75	7	18,26,27	2.55	8 (44%)	19,38,41	1.47	4 (21%)
1	OMC	1	1010	1	19,22,23	2.98	8 (42%)	26,31,34	0.73	0
2	A2M	2	628	2	18,25,26	4.19	7 (38%)	18,36,39	2.84	3 (16%)
28	OMC	S1	2140	28	19,22,23	3.01	8 (42%)	26,31,34	0.79	0
28	OMG	S1	600	28	18,26,27	2.60	8 (44%)	19,38,41	1.45	4 (21%)
28	A2M	S1	512	28	18,25,26	4.21	6 (33%)	18,36,39	2.58	3 (16%)
28	PSU	S1	1246	28	18,21,22	4.47	7 (38%)	22,30,33	1.89	5 (22%)
28	OMC	S1	1866	28	19,22,23	3.02	8 (42%)	26,31,34	0.80	0
1	A2M	1	1539	87,1,2	18,25,26	4.22	7 (38%)	18,36,39	2.75	4 (22%)
28	OMC	S1	38	28	19,22,23	2.98	8 (42%)	26,31,34	0.75	0
2	OMG	2	1229	2	18,26,27	2.58	8 (44%)	19,38,41	1.46	4 (21%)
28	PSU	S1	2202	28	18,21,22	4.50	8 (44%)	22,30,33	1.67	5 (22%)
2	OMC	2	443	2	19,22,23	3.00	8 (42%)	26,31,34	0.75	0
1	PSU	1	1402	1	18,21,22	4.45	9 (50%)	22,30,33	1.68	4 (18%)
2	A2M	2	570	1,2	18,25,26	0.61	0	18,36,39	0.87	1 (5%)
2	A2M	2	382	2	18,25,26	4.22	6 (33%)	18,36,39	2.62	3 (16%)
2	PSU	2	1144	2	18,21,22	4.49	7 (38%)	22,30,33	1.92	5 (22%)
2	OMC	2	1248	2	19,22,23	2.99	8 (42%)	26,31,34	0.84	0
28	PSU	S1	1841	28	18,21,22	4.52	8 (44%)	22,30,33	1.66	4 (18%)
2	PSU	2	1060	2	18,21,22	4.50	7 (38%)	22,30,33	1.93	5 (22%)
2	PSU	2	1318	2	18,21,22	4.50	7 (38%)	22,30,33	1.80	5 (22%)
1	OMG	1	1524	1	18,26,27	2.60	8 (44%)	19,38,41	1.55	4 (21%)
28	PSU	S1	609	28	18,21,22	4.53	7 (38%)	22,30,33	1.81	5 (22%)
4	OMG	4	74	4	18,26,27	2.56	8 (44%)	19,38,41	1.40	4 (21%)
1	OMG	1	1626	1	18,26,27	2.56	8 (44%)	19,38,41	1.45	4 (21%)
1	OMU	1	1371	1	19,22,23	3.12	8 (42%)	26,31,34	1.88	6 (23%)

Mal	Tune	Chain	Dec	Tink	B	ond leng	gths	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	A2M	1	235	1	18,25,26	4.23	7 (38%)	18,36,39	2.72	3 (16%)
2	A2M	2	1185	2	18,25,26	4.23	8 (44%)	18,36,39	2.72	3 (16%)
28	PSU	S1	33	28	18,21,22	4.54	7 (38%)	22,30,33	1.87	5 (22%)
1	OMU	1	1659	1	19,22,23	3.02	8 (42%)	26,31,34	1.71	5 (19%)
28	PSU	S1	2046	28	18,21,22	4.44	7 (38%)	22,30,33	1.80	5 (22%)
2	A2M	2	1372	2	18,25,26	4.26	6 (33%)	18,36,39	2.66	3 (16%)
2	PSU	2	593	2	18,21,22	4.50	8 (44%)	22,30,33	1.72	5 (22%)
1	PSU	1	1528	1	18,21,22	4.57	7 (38%)	22,30,33	1.77	5 (22%)
2	OMU	2	1077	2	19,22,23	3.06	8 (42%)	26,31,34	1.76	5 (19%)
28	OMC	S1	18	28	19,22,23	2.97	8 (42%)	26,31,34	0.76	0
28	OMG	S1	1623	87,28	18,26,27	2.59	8 (44%)	19,38,41	1.46	4 (21%)
28	PSU	S1	607	28	18,21,22	4.55	8 (44%)	22,30,33	1.69	4 (18%)
1	A2M	1	681	1	18,25,26	0.62	0	18,36,39	0.75	1 (5%)
1	OMG	1	1190	1	18,26,27	2.57	8 (44%)	19,38,41	1.52	4 (21%)
2	OMC	2	1317	2	19,22,23	2.95	8 (42%)	26,31,34	0.77	0
2	PSU	2	1354	2	18,21,22	4.49	8 (44%)	22,30,33	1.68	5 (22%)
28	PSU	S1	1566	28	18,21,22	4.54	8 (44%)	22,30,33	1.69	4 (18%)
1	OMG	1	959	1	18,26,27	2.60	8 (44%)	19,38,41	1.46	4 (21%)
28	PSU	S1	1192	28	18,21,22	4.51	7 (38%)	22,30,33	1.75	5 (22%)
1	OMC	1	695	1	19,22,23	2.97	8 (42%)	26,31,34	0.74	0
2	PSU	2	512	2	18,21,22	4.53	7 (38%)	22,30,33	1.72	<mark>5 (22%)</mark>
2	PSU	2	1382	2	18,21,22	0.87	1 (5%)	22,30,33	0.69	0
2	PSU	2	437	2	18,21,22	4.48	7 (38%)	22,30,33	1.76	4 (18%)
28	A2M	S1	98	87,28	18,25,26	4.23	8 (44%)	18,36,39	2.60	3 (16%)
1	PSU	1	1011	1,2	18,21,22	4.46	9 (50%)	22,30,33	1.71	<u>6 (27%)</u>
1	A2M	1	927	1	18,25,26	4.18	7 (38%)	18,36,39	2.73	3 (16%)
7	PSU	7	74	7	18,21,22	4.51	7 (38%)	22,30,33	1.76	5 (22%)
2	PSU	2	1413	2	18,21,22	4.49	7 (38%)	22,30,33	1.75	5 (22%)
2	A2M	2	572	2	18,25,26	4.18	7 (38%)	18,36,39	2.79	<mark>3 (16%)</mark>
28	7MG	S1	1995	28	22,26,27	4.32	10 (45%)	29,39,42	1.99	9 (31%)
7	A2M	7	162	1,7	18,25,26	4.20	7 (38%)	18,36,39	2.89	3 (16%)
1	OMG	1	856	1	18,26,27	2.58	8 (44%)	19,38,41	1.45	4 (21%)
1	PSU	1	1017	1	18,21,22	4.50	7 (38%)	22,30,33	1.83	5 (22%)
28	A2M	S1	2021	28	18,25,26	4.21	8 (44%)	18,36,39	2.73	3 (16%)
1	OMC	1	1527	1	19,22,23	2.97	8 (42%)	26,31,34	0.72	0

Mal	Trune	Chain	Dec	Tinle	B	ond leng	gths	Bond angles		
NIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	5MC	2	524	87,2	18,22,23	3.51	7 (38%)	$26,\!32,\!35$	1.01	2 (7%)
1	OMU	1	845	1	19,22,23	2.99	8 (42%)	26,31,34	2.31	8 (30%)
28	PSU	S1	12	28	18,21,22	4.49	7 (38%)	22,30,33	1.81	5 (22%)
28	PSU	S1	1533	28	18,21,22	4.53	7 (38%)	22,30,33	1.81	5 (22%)
28	MA6	S1	2185	28	18,26,27	1.16	2 (11%)	19,38,41	2.84	2 (10%)
28	OMU	S1	8	87,28	19,22,23	2.99	8 (42%)	26,31,34	1.80	5 (19%)
1	PSU	1	1533	1,2	18,21,22	4.52	7 (38%)	22,30,33	1.85	<u>6 (27%)</u>
1	A2M	1	305	1	18,25,26	4.10	8 (44%)	18,36,39	2.73	3 (16%)
28	OMU	S1	661	28	19,22,23	3.02	8 (42%)	26,31,34	1.70	5 (19%)
2	A2M	2	604	1,2	18,25,26	4.22	7 (38%)	18,36,39	2.67	3 (16%)
2	OMC	2	359	2	19,22,23	3.00	8 (42%)	26,31,34	0.67	0
28	OMG	S1	2151	89,28	18,26,27	2.55	8 (44%)	19,38,41	1.47	4 (21%)
2	OMC	2	1397	2	19,22,23	2.91	8 (42%)	26,31,34	0.74	0
1	A2M	1	407	1	18,25,26	4.27	7 (38%)	18,36,39	2.62	3 (16%)
2	OMU	2	667	2	19,22,23	3.03	8 (42%)	26,31,34	1.78	5 (19%)
2	OMG	2	1046	2	18,26,27	2.58	8 (44%)	19,38,41	1.46	4 (21%)
28	PSU	S1	1657	28	18,21,22	4.48	7 (38%)	22,30,33	1.75	5 (22%)
28	OMG	S1	1865	28	18,26,27	2.58	8 (44%)	19,38,41	1.47	4 (21%)
28	5MC	S1	1544	28	18,22,23	<mark>3.61</mark>	7 (38%)	26,32,35	0.99	1 (3%)
28	OMG	S1	1879	28	18,26,27	2.60	8 (44%)	19,38,41	1.49	4 (21%)
1	PSU	1	422	1	18,21,22	4.52	7 (38%)	22,30,33	1.78	5 (22%)
2	PSU	2	1303	2	18,21,22	4.50	7 (38%)	22,30,33	1.89	<u>6 (27%)</u>
2	OMC	2	1159	2	19,22,23	<mark>3.00</mark>	8 (42%)	26,31,34	0.84	0
2	A2M	2	527	87,2	18,25,26	4.00	7 (38%)	18,36,39	2.65	3 (16%)
2	PSU	2	1403	2	18,21,22	4.52	7 (38%)	22,30,33	1.88	<u>6 (27%)</u>
7	PSU	7	69	7	18,21,22	4.52	7 (38%)	22,30,33	1.91	6 (27%)
2	PSU	2	597	2	18,21,22	4.49	7 (38%)	22,30,33	1.84	5 (22%)
28	PSU	S1	104	28	18,21,22	4.52	7 (38%)	22,30,33	1.87	5 (22%)
1	PSU	1	672	87,1	18,21,22	0.87	1 (5%)	22,30,33	0.65	0
2	A2M	2	591	2	18,25,26	4.19	7 (38%)	18,36,39	2.68	3 (16%)
28	PSU	S1	1539	28	18,21,22	4.52	8 (44%)	22,30,33	1.71	4 (18%)
28	PSU	S1	455	28	18,21,22	4.50	8 (44%)	22,30,33	1.68	4 (18%)
2	PSU	2	662	87,2	18,21,22	4.51	7 (38%)	22,30,33	1.90	6 (27%)
2	5MC	2	1308	2	18,22,23	4.65	13 (72%)	26,32,35	1.35	2 (7%)
1	1MA	1	677	87,1	16,25,26	0.80	0	18,37,40	0.70	0

Mol	Type	Chain	Bog	Link	Bond lengths			Bond angles		
Moi Type		Chan	ries		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	A2M	2	1384	87,2	18,25,26	0.62	0	18,36,39	0.96	1 (5%)
2	PSU	2	626	2	18,21,22	4.45	7 (38%)	22,30,33	1.73	5 (22%)
2	PSU	2	510	2	18,21,22	4.54	7 (38%)	22,30,33	1.82	5 (22%)
1	A2M	1	697	1	18,25,26	4.20	7 (38%)	18,36,39	2.60	3 (16%)
2	PSU	2	1265	2	18,21,22	4.51	7 (38%)	22,30,33	1.83	5 (22%)
2	OMG	2	1078	2	18,26,27	2.94	8 (44%)	19,38,41	1.83	6 (31%)
28	PSU	S1	1156	28	18,21,22	4.54	7 (38%)	22,30,33	1.77	5 (22%)
2	PSU	2	1058	2	18,21,22	4.45	7 (38%)	22,30,33	1.70	4 (18%)
2	PSU	2	472	2	18,21,22	4.43	7 (38%)	22,30,33	1.85	5 (22%)
28	OMG	S1	1829	87,28	18,26,27	2.57	8 (44%)	19,38,41	1.47	4 (21%)
1	A2M	1	678	1,2	18,25,26	0.60	0	18,36,39	0.73	1 (5%)
2	OMG	2	71	2	18,26,27	2.59	8 (44%)	19,38,41	1.55	4 (21%)
1	PSU	1	940	1	18,21,22	4.49	7 (38%)	22,30,33	1.91	5 (22%)
28	B8N	S1	1543	28	24,29,30	3.06	5 (20%)	29,42,45	1.72	6 (20%)
1	PSU	1	1181	1	18,21,22	4.58	8 (44%)	22,30,33	1.63	3 (13%)
28	OMU	S1	29	28	19,22,23	3.06	8 (42%)	26,31,34	1.68	5 (19%)
3	OMU	3	13	3	19,22,23	3.04	8 (42%)	26,31,34	1.68	5 (19%)
2	OMU	2	1359	2	19,22,23	3.05	8 (42%)	26,31,34	1.68	5 (19%)
1	A2M	1	858	1	18,25,26	4.19	7 (38%)	18,36,39	2.68	3 (16%)
2	OMU	2	1419	2	19,22,23	0.24	0	26,31,34	0.42	0
2	OMU	2	560	87,2	19,22,23	2.98	8 (42%)	26,31,34	2.13	7 (26%)
2	OMG	2	1253	2	18,26,27	2.59	8 (44%)	19,38,41	1.45	4 (21%)
1	PSU	1	1171	1	18,21,22	4.44	8 (44%)	22,30,33	1.77	4 (18%)
2	PSU	2	1194	2	18,21,22	4.48	7 (38%)	22,30,33	1.84	5 (22%)
28	OMG	S1	1478	28	18,26,27	2.55	8 (44%)	19,38,41	1.47	4 (21%)
2	OMG	2	1360	2	18,26,27	2.59	8 (44%)	19,38,41	1.48	4 (21%)
28	OMU	S1	1979	28	19,22,23	3.08	8 (42%)	26,31,34	1.66	5 (19%)
2	OMG	2	1231	2	18,26,27	2.58	8 (44%)	19,38,41	1.49	4 (21%)
7	OMU	7	7	1,7	19,22,23	2.99	8 (42%)	26,31,34	1.76	5 (19%)
28	OMG	S1	1550	28	18,26,27	2.60	8 (44%)	19,38,41	1.49	4 (21%)
28	OMG	S1	1647	28	18,26,27	2.60	8 (44%)	19,38,41	1.52	4 (21%)
1	OMU	1	847	1	19,22,23	3.00	8 (42%)	26,31,34	1.66	5 (19%)
2	OMU	2	56	1,2	19,22,23	3.00	8 (42%)	26,31,34	1.73	5 (19%)
28	OMU	S1	1621	28	19,22,23	3.02	8 (42%)	26,31,34	1.71	5 (19%)
2	OMU	2	73	2	19,22,23	2.97	8 (42%)	26,31,34	1.50	4 (15%)

Mal	Type	Chain	Res	Link	Bond lengths			Bond angles		
IVIOI					Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
28	MA6	S1	2184	28	18,26,27	1.16	2 (11%)	19,38,41	2.86	2 (10%)
1	OMU	1	1107	1	19,22,23	3.02	8 (42%)	26,31,34	1.78	6 (23%)
2	PSU	2	1361	2	18,21,22	4.52	7 (38%)	22,30,33	1.87	5 (22%)
2	A2M	2	95	2	18,25,26	4.30	7 (38%)	18,36,39	2.66	3 (16%)
28	PSU	S1	2048	28	18,21,22	0.86	1 (5%)	22,30,33	0.62	0
1	A2M	1	955	1	18,25,26	4.19	7 (38%)	18,36,39	2.75	3 (16%)
1	PSU	1	1039	1	18,21,22	4.52	7 (38%)	22,30,33	1.70	4 (18%)
2	PSU	2	78	2	18,21,22	4.52	7 (38%)	22,30,33	1.80	5 (22%)
2	OMG	2	641	87,2	18,26,27	2.56	8 (44%)	19,38,41	1.45	3 (15%)
2	OMG	2	534	2	18,26,27	2.60	8 (44%)	19,38,41	1.51	4 (21%)
7	A2M	7	43	7	18,25,26	4.22	7 (38%)	18,36,39	2.80	3 (16%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	OMG	1	1540	1,2	-	2/5/27/28	0/3/3/3
1	PSU	1	1664	1	_	0/7/25/26	0/2/2/2
2	OMG	2	655	2	-	1/5/27/28	0/3/3/3
1	PSU	1	239	1	-	0/7/25/26	0/2/2/2
28	OMU	S1	1833	28	-	2/9/27/28	0/2/2/2
2	PSU	2	122	2	-	2/7/25/26	0/2/2/2
28	A2M	S1	668	87,28	-	3/5/27/28	0/3/3/3
28	5MC	S1	2061	28	-	0/7/25/26	0/2/2/2
2	OMC	2	583	2	-	0/9/27/28	0/2/2/2
2	PSU	2	1264	2	-	2/7/25/26	0/2/2/2
28	A2M	S1	479	28	-	0/5/27/28	0/3/3/3
7	OMG	7	75	7	-	1/5/27/28	0/3/3/3
1	OMC	1	1010	1	-	2/9/27/28	0/2/2/2
2	A2M	2	628	2	-	0/5/27/28	0/3/3/3
28	OMC	S1	2140	28	-	0/9/27/28	0/2/2/2
28	OMG	S1	600	28	-	0/5/27/28	0/3/3/3
28	A2M	S1	512	28	-	1/5/27/28	0/3/3/3
28	PSU	S1	1246	28	-	0/7/25/26	0/2/2/2
28	OMC	S1	1866	28	_	0/9/27/28	0/2/2/2
1	A2M	1	1539	87,1,2	_	1/5/27/28	0/3/3/3
28	OMC	S1	38	28	-	0/9/27/28	0/2/2/2

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
0 0100010 0000	J. 01.0	proceed as	P ~ 9 0 · · · ·

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	OMG	2	1229	2	-	2/5/27/28	0/3/3/3
28	PSU	S1	2202	28	-	1/7/25/26	0/2/2/2
2	OMC	2	443	2	-	4/9/27/28	0/2/2/2
1	PSU	1	1402	1	-	0/7/25/26	0/2/2/2
2	A2M	2	570	1,2	-	1/5/27/28	0/3/3/3
2	A2M	2	382	2	-	1/5/27/28	0/3/3/3
2	PSU	2	1144	2	_	0/7/25/26	0/2/2/2
2	OMC	2	1248	2	-	2/9/27/28	0/2/2/2
28	PSU	S1	1841	28	-	2/7/25/26	0/2/2/2
2	PSU	2	1060	2	-	0/7/25/26	0/2/2/2
2	PSU	2	1318	2	-	0/7/25/26	0/2/2/2
1	OMG	1	1524	1	-	0/5/27/28	0/3/3/3
28	PSU	S1	609	28	-	0/7/25/26	0/2/2/2
4	OMG	4	74	4	-	0/5/27/28	0/3/3/3
1	OMG	1	1626	1	-	0/5/27/28	0/3/3/3
1	OMU	1	1371	1	-	3/9/27/28	0/2/2/2
1	A2M	1	235	1	-	0/5/27/28	0/3/3/3
2	A2M	2	1185	2	-	2/5/27/28	0/3/3/3
28	PSU	S1	33	28	-	0/7/25/26	0/2/2/2
1	OMU	1	1659	1	-	0/9/27/28	0/2/2/2
28	PSU	S1	2046	28	-	0/7/25/26	0/2/2/2
2	A2M	2	1372	2	-	0/5/27/28	0/3/3/3
2	PSU	2	593	2	-	0/7/25/26	0/2/2/2
1	PSU	1	1528	1	-	0/7/25/26	0/2/2/2
2	OMU	2	1077	2	-	0/9/27/28	0/2/2/2
28	OMC	S1	18	28	-	0/9/27/28	0/2/2/2
28	OMG	S1	1623	87,28	-	1/5/27/28	0/3/3/3
28	PSU	S1	607	28	-	3/7/25/26	0/2/2/2
1	A2M	1	681	1	-	3/5/27/28	0/3/3/3
1	OMG	1	1190	1	-	0/5/27/28	0/3/3/3
2	OMC	2	1317	2	-	0/9/27/28	0/2/2/2
2	PSU	2	1354	2	-	1/7/25/26	0/2/2/2
28	PSU	S1	1566	28	-	2/7/25/26	0/2/2/2
1	OMG	1	959	1	-	0/5/27/28	0/3/3/3
28	PSU	S1	1192	28	-	2/7/25/26	0/2/2/2
1	OMC	1	695	1	-	0/9/27/28	0/2/2/2
2	PSU	2	512	2	-	0/7/25/26	0/2/2/2
2	PSU	2	1382	2	-	0/7/25/26	0/2/2/2
2	PSU	2	437	2	-	0/7/25/26	0/2/2/2
28	A2M	S1	98	87,28	-	2/5/27/28	0/3/3/3

Conti			is puye.	••			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	PSU	1	1011	1,2	-	1/7/25/26	0/2/2/2
1	A2M	1	927	1	-	0/5/27/28	0/3/3/3
7	PSU	7	74	7	-	0/7/25/26	0/2/2/2
2	PSU	2	1413	2	-	0/7/25/26	0/2/2/2
2	A2M	2	572	2	-	0/5/27/28	0/3/3/3
28	7MG	S1	1995	28	-	2/7/37/38	0/3/3/3
7	A2M	7	162	1,7	-	1/5/27/28	0/3/3/3
1	OMG	1	856	1	-	0/5/27/28	0/3/3/3
1	PSU	1	1017	1	-	0/7/25/26	0/2/2/2
28	A2M	S1	2021	28	-	3/5/27/28	0/3/3/3
1	OMC	1	1527	1	-	1/9/27/28	0/2/2/2
2	5MC	2	524	87,2	-	0/7/25/26	0/2/2/2
1	OMU	1	845	1	-	3/9/27/28	0/2/2/2
28	PSU	S1	12	28	-	0/7/25/26	0/2/2/2
28	PSU	S1	1533	28	-	0/7/25/26	0/2/2/2
28	MA6	S1	2185	28	-	1/7/29/30	0/3/3/3
28	OMU	S1	8	87,28	-	7/9/27/28	0/2/2/2
1	PSU	1	1533	1,2	-	0/7/25/26	0/2/2/2
1	A2M	1	305	1	-	2/5/27/28	0/3/3/3
28	OMU	S1	661	28	-	0/9/27/28	0/2/2/2
2	A2M	2	604	1,2	-	0/5/27/28	0/3/3/3
2	OMC	2	359	2	-	0/9/27/28	0/2/2/2
28	OMG	S1	2151	89,28	-	2/5/27/28	0/3/3/3
2	OMC	2	1397	2	-	0/9/27/28	0/2/2/2
1	A2M	1	407	1	-	0/5/27/28	0/3/3/3
2	OMU	2	667	2	-	0/9/27/28	0/2/2/2
2	OMG	2	1046	2	-	3/5/27/28	0/3/3/3
28	PSU	S1	1657	28	-	1/7/25/26	0/2/2/2
28	OMG	S1	1865	28	-	0/5/27/28	0/3/3/3
28	5MC	S1	1544	28	-	2/7/25/26	0/2/2/2
28	OMG	S1	1879	28	-	3/5/27/28	0/3/3/3
1	PSU	1	422	1	-	0/7/25/26	0/2/2/2
2	PSU	2	1303	2	-	0/7/25/26	0/2/2/2
2	OMC	2	1159	2	-	0/9/27/28	0/2/2/2
2	A2M	2	527	87,2	-	2/5/27/28	0/3/3/3
2	PSU	2	1403	2	-	0/7/25/26	0/2/2/2
7	PSU	7	69	7	-	0/7/25/26	0/2/2/2
2	PSU	2	597	2	-	0/7/25/26	0/2/2/2
28	PSU	S1	104	28	-	0/7/25/26	0/2/2/2
1	PSU	1	672	87.1	-	0/7/25/26	0/2/2/2

$\alpha \cdot \cdot \cdot \cdot$	C	•	
1 Continued	trom	nromanic	naae
	110116	$p_{1}c_{0}a_{0}a_{0}$	puyc
		1	1 0

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	A2M	2	591	2	-	1/5/27/28	0/3/3/3
28	PSU	S1	1539	28	-	0/7/25/26	0/2/2/2
28	PSU	S1	455	28	-	3/7/25/26	0/2/2/2
2	PSU	2	662	87,2	-	0/7/25/26	0/2/2/2
2	5MC	2	1308	2	-	4/7/25/26	0/2/2/2
1	1MA	1	677	87,1	-	0/3/25/26	0/3/3/3
2	A2M	2	1384	87,2	-	1/5/27/28	0/3/3/3
2	PSU	2	626	2	-	0/7/25/26	0/2/2/2
2	PSU	2	510	2	-	0/7/25/26	0/2/2/2
1	A2M	1	697	1	-	0/5/27/28	0/3/3/3
2	PSU	2	1265	2	-	0/7/25/26	0/2/2/2
2	OMG	2	1078	2	-	2/5/27/28	0/3/3/3
28	PSU	S1	1156	28	-	0/7/25/26	0/2/2/2
2	PSU	2	1058	2	-	2/7/25/26	0/2/2/2
2	PSU	2	472	2	-	0/7/25/26	0/2/2/2
28	OMG	S1	1829	87,28	-	1/5/27/28	0/3/3/3
1	A2M	1	678	1,2	-	2/5/27/28	0/3/3/3
2	OMG	2	71	2	-	0/5/27/28	0/3/3/3
1	PSU	1	940	1	-	0/7/25/26	0/2/2/2
28	B8N	S1	1543	28	-	9/16/34/35	0/2/2/2
1	PSU	1	1181	1	-	2/7/25/26	0/2/2/2
28	OMU	S1	29	28	-	1/9/27/28	0/2/2/2
3	OMU	3	13	3	-	0/9/27/28	0/2/2/2
2	OMU	2	1359	2	-	0/9/27/28	0/2/2/2
1	A2M	1	858	1	-	0/5/27/28	0/3/3/3
2	OMU	2	1419	2	-	0/9/27/28	0/2/2/2
2	OMU	2	560	87,2	-	2/9/27/28	0/2/2/2
2	OMG	2	1253	2	-	0/5/27/28	0/3/3/3
1	PSU	1	1171	1	-	4/7/25/26	0/2/2/2
2	PSU	2	1194	2	-	0/7/25/26	0/2/2/2
28	OMG	S1	1478	28	-	1/5/27/28	0/3/3/3
2	OMG	2	1360	2	-	1/5/27/28	0/3/3/3
28	OMU	S1	1979	28	-	3/9/27/28	0/2/2/2
2	OMG	2	1231	2	-	0/5/27/28	0/3/3/3
7	OMU	7	7	1,7	-	1/9/27/28	0/2/2/2
28	OMG	S1	1550	28	-	0/5/27/28	0/3/3/3
28	OMG	S1	1647	28	-	0/5/27/28	0/3/3/3
1	OMU	1	847	1	-	0/9/27/28	0/2/2/2
2	OMU	2	56	1,2	-	0/9/27/28	0/2/2/2
28	OMU	S1	1621	28	-	1/9/27/28	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	OMU	2	73	2	-	0/9/27/28	0/2/2/2
28	MA6	S1	2184	28	-	0/7/29/30	0/3/3/3
1	OMU	1	1107	1	-	0/9/27/28	0/2/2/2
2	PSU	2	1361	2	-	1/7/25/26	0/2/2/2
2	A2M	2	95	2	-	0/5/27/28	0/3/3/3
28	PSU	S1	2048	28	-	0/7/25/26	0/2/2/2
1	A2M	1	955	1	-	1/5/27/28	0/3/3/3
1	PSU	1	1039	1	-	0/7/25/26	0/2/2/2
2	PSU	2	78	2	-	0/7/25/26	0/2/2/2
2	OMG	2	641	87,2	-	0/5/27/28	0/3/3/3
2	OMG	2	534	2	-	2/5/27/28	0/3/3/3
7	A2M	7	43	7	-	0/5/27/28	0/3/3/3

All (1085) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2	95	A2M	O4'-C1'	15.48	1.62	1.41
1	1	407	A2M	O4'-C1'	15.45	1.62	1.41
1	1	1539	A2M	O4'-C1'	15.25	1.62	1.41
7	7	43	A2M	O4'-C1'	15.25	1.62	1.41
2	2	1372	A2M	O4'-C1'	15.23	1.62	1.41
28	S1	98	A2M	O4'-C1'	15.21	1.62	1.41
2	2	604	A2M	O4'-C1'	15.17	1.62	1.41
28	S1	512	A2M	O4'-C1'	15.17	1.62	1.41
2	2	382	A2M	O4'-C1'	15.16	1.62	1.41
2	2	1185	A2M	O4'-C1'	15.14	1.62	1.41
1	1	235	A2M	O4'-C1'	15.06	1.62	1.41
1	1	697	A2M	O4'-C1'	15.06	1.62	1.41
2	2	572	A2M	O4'-C1'	15.01	1.62	1.41
28	S1	2021	A2M	O4'-C1'	15.00	1.62	1.41
1	1	955	A2M	O4'-C1'	15.00	1.62	1.41
1	1	927	A2M	O4'-C1'	14.98	1.62	1.41
2	2	628	A2M	O4'-C1'	14.97	1.62	1.41
28	S1	479	A2M	O4'-C1'	14.96	1.62	1.41
7	7	162	A2M	O4'-C1'	14.96	1.62	1.41
2	2	591	A2M	O4'-C1'	14.88	1.61	1.41
1	1	858	A2M	O4'-C1'	14.87	1.61	1.41
28	S1	668	A2M	O4'-C1'	14.59	1.61	1.41
1	1	305	A2M	O4'-C1'	14.48	1.61	1.41
2	2	527	A2M	O4'-C1'	14.15	1.60	1.41
1	1	1181	PSU	C6-C5	12.07	1.49	1.35
1	1	1664	PSU	C6-C5	11.96	1.49	1.35

Contre	naca jion	i previe	rus puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	1	1528	PSU	C6-C5	11.94	1.49	1.35
28	S1	1566	PSU	C6-C5	11.92	1.49	1.35
1	1	1171	PSU	C6-C5	11.91	1.49	1.35
2	2	1058	PSU	C6-C5	11.90	1.49	1.35
7	7	69	PSU	C6-C5	11.87	1.49	1.35
28	S1	607	PSU	C6-C5	11.87	1.49	1.35
2	2	510	PSU	C6-C5	11.84	1.49	1.35
2	2	1264	PSU	C6-C5	11.84	1.49	1.35
28	S1	1539	PSU	C6-C5	11.83	1.49	1.35
1	1	422	PSU	C6-C5	11.80	1.49	1.35
2	2	512	PSU	C6-C5	11.80	1.49	1.35
28	S1	609	PSU	C6-C5	11.79	1.49	1.35
28	S1	1156	PSU	C6-C5	11.78	1.49	1.35
28	S1	33	PSU	C6-C5	11.78	1.49	1.35
7	7	74	PSU	C6-C5	11.77	1.49	1.35
1	1	1017	PSU	C6-C5	11.75	1.49	1.35
28	S1	455	PSU	C6-C5	11.75	1.49	1.35
2	2	593	PSU	C6-C5	11.75	1.49	1.35
28	S1	1533	PSU	C6-C5	11.74	1.49	1.35
28	S1	1841	PSU	C6-C5	11.74	1.49	1.35
28	S1	104	PSU	C6-C5	11.73	1.49	1.35
2	2	1413	PSU	C6-C5	11.72	1.49	1.35
2	2	437	PSU	C6-C5	11.72	1.49	1.35
28	S1	1192	PSU	C6-C5	11.72	1.49	1.35
2	2	1318	PSU	C6-C5	11.71	1.49	1.35
2	2	122	PSU	C6-C5	11.70	1.48	1.35
2	2	1403	PSU	C6-C5	11.70	1.48	1.35
1	1	1039	PSU	C6-C5	11.70	1.48	1.35
1	1	1533	PSU	C6-C5	11.70	1.48	1.35
2	2	662	PSU	C6-C5	11.69	1.48	1.35
1	1	940	PSU	C6-C5	11.69	1.48	1.35
28	S1	2202	PSU	C6-C5	11.69	1.48	1.35
2	2	78	PSU	C6-C5	11.68	1.48	1.35
2	2	1354	PSU	C6-C5	11.67	1.48	1.35
28	S1	12	PSU	C6-C5	11.67	1.48	1.35
2	2	1144	PSU	C6-C5	11.66	1.48	1.35
2	2	1265	PSU	C6-C5	11.66	1.48	1.35
2	2	597	PSU	C6-C5	11.65	1.48	1.35
2	2	1060	PSU	C6-C5	11.65	1.48	1.35
2	2	1303	PSU	C6-C5	11.64	1.48	1.35
2	2	1361	PSU	C6-C5	11.63	1.48	1.35
1	1	239	PSU	C6-C5	11.63	1.48	1.35

Conti	nued fron	n previo	pus page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	1	1402	PSU	C6-C5	11.63	1.48	1.35
2	2	626	PSU	C6-C5	11.60	1.48	1.35
2	2	1194	PSU	C6-C5	11.60	1.48	1.35
28	S1	1246	PSU	C6-C5	11.54	1.48	1.35
1	1	1011	PSU	C6-C5	11.50	1.48	1.35
28	S1	1657	PSU	C6-C5	11.49	1.48	1.35
28	S1	2046	PSU	C6-C5	11.47	1.48	1.35
28	S1	1995	7MG	C8-N9	11.45	1.52	1.46
2	2	472	PSU	C6-C5	11.27	1.48	1.35
1	1	1181	PSU	C2-N1	9.97	1.50	1.36
1	1	1528	PSU	C2-N1	9.85	1.50	1.36
2	2	510	PSU	C2-N1	9.82	1.50	1.36
2	2	1361	PSU	C2-N1	9.82	1.50	1.36
2	2	78	PSU	C2-N1	9.80	1.50	1.36
1	1	239	PSU	C2-N1	9.79	1.50	1.36
1	1	1533	PSU	C2-N1	9.79	1.50	1.36
28	S1	33	PSU	C2-N1	9.79	1.50	1.36
28	S1	607	PSU	C2-N1	9.79	1.50	1.36
28	S1	1156	PSU	C2-N1	9.78	1.50	1.36
28	S1	104	PSU	C2-N1	9.76	1.49	1.36
28	S1	1533	PSU	C2-N1	9.75	1.49	1.36
2	2	1264	PSU	C2-N1	9.75	1.49	1.36
2	2	1403	PSU	C2-N1	9.75	1.49	1.36
2	2	512	PSU	C2-N1	9.74	1.49	1.36
1	1	1664	PSU	C2-N1	9.73	1.49	1.36
2	2	122	PSU	C2-N1	9.73	1.49	1.36

d fa α n tin

28	S1	1246	PSU	C6-C5	11.54	1.48	1.35
1	1	1011	PSU	C6-C5	11.50	1.48	1.35
28	S1	1657	PSU	C6-C5	11.49	1.48	1.35
28	S1	2046	PSU	C6-C5	11.47	1.48	1.35
28	S1	1995	7MG	C8-N9	11.45	1.52	1.46
2	2	472	PSU	C6-C5	11.27	1.48	1.35
1	1	1181	PSU	C2-N1	9.97	1.50	1.36
1	1	1528	PSU	C2-N1	9.85	1.50	1.36
2	2	510	PSU	C2-N1	9.82	1.50	1.36
2	2	1361	PSU	C2-N1	9.82	1.50	1.36
2	2	78	PSU	C2-N1	9.80	1.50	1.36
1	1	239	PSU	C2-N1	9.79	1.50	1.36
1	1	1533	PSU	C2-N1	9.79	1.50	1.36
28	S1	33	PSU	C2-N1	9.79	1.50	1.36
28	S1	607	PSU	C2-N1	9.79	1.50	1.36
28	S1	1156	PSU	C2-N1	9.78	1.50	1.36
28	S1	104	PSU	C2-N1	9.76	1.49	1.36
28	S1	1533	PSU	C2-N1	9.75	1.49	1.36
2	2	1264	PSU	C2-N1	9.75	1.49	1.36
2	2	1403	PSU	C2-N1	9.75	1.49	1.36
2	2	512	PSU	C2-N1	9.74	1.49	1.36
1	1	1664	PSU	C2-N1	9.73	1.49	1.36
2	2	122	PSU	C2-N1	9.73	1.49	1.36
1	1	1039	PSU	C2-N1	9.72	1.49	1.36
2	2	1303	PSU	C2-N1	9.71	1.49	1.36
2	2	1318	PSU	C2-N1	9.70	1.49	1.36
1	1	940	PSU	C2-N1	9.70	1.49	1.36
28	S1	1192	PSU	C2-N1	9.70	1.49	1.36
2	2	1060	PSU	C2-N1	9.70	1.49	1.36
2	2	1194	PSU	C2-N1	9.69	1.49	1.36
28	S1	1657	PSU	C2-N1	9.69	1.49	1.36
7	7	74	PSU	C2-N1	9.69	1.49	1.36
28	S1	1995	7MG	C5-N7	9.69	1.46	1.35
28	S1	609	PSU	C2-N1	9.68	1.49	1.36
2	2	593	PSU	C2-N1	9.68	1.49	1.36
2	2	597	PSU	C2-N1	9.68	1.49	1.36
28	S1	1566	PSU	C2-N1	9.68	1.49	1.36
2	2	1265	PSU	C2-N1	9.67	1.49	1.36
28	S1	1841	PSU	C2-N1	9.65	1.49	1.36
						Continued on a	next page

L D W I D E

COntic	nueu fron	i previc	vus puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2	1413	PSU	C2-N1	9.65	1.49	1.36
28	S1	455	PSU	C2-N1	9.65	1.49	1.36
28	S1	12	PSU	C2-N1	9.64	1.49	1.36
2	2	662	PSU	C2-N1	9.64	1.49	1.36
28	S1	2202	PSU	C2-N1	9.62	1.49	1.36
1	1	1017	PSU	C2-N1	9.60	1.49	1.36
1	1	422	PSU	C2-N1	9.60	1.49	1.36
28	S1	1246	PSU	C2-N1	9.60	1.49	1.36
2	2	1144	PSU	C2-N1	9.60	1.49	1.36
28	S1	1539	PSU	C2-N1	9.58	1.49	1.36
2	2	437	PSU	C2-N1	9.58	1.49	1.36
2	2	1354	PSU	C2-N1	9.53	1.49	1.36
2	2	472	PSU	C2-N1	9.51	1.49	1.36
1	1	1011	PSU	C2-N1	9.51	1.49	1.36
7	7	69	PSU	C2-N1	9.50	1.49	1.36
2	2	626	PSU	C2-N1	9.45	1.49	1.36
28	S1	2046	PSU	C2-N1	9.44	1.49	1.36
1	1	1402	PSU	C2-N1	9.40	1.49	1.36
28	S1	2061	5MC	C6-C5	9.28	1.49	1.34
28	S1	1544	5MC	C6-C5	9.27	1.49	1.34
2	2	1308	5MC	C6-C5	9.24	1.49	1.34
1	1	1171	PSU	C2-N1	9.12	1.49	1.36
2	2	524	5MC	C6-C5	9.04	1.49	1.34
2	2	1058	PSU	C2-N1	9.02	1.48	1.36
2	2	1308	5MC	C3'-C4'	-8.59	1.31	1.53
28	S1	1543	B8N	C6-N1	8.29	1.57	1.36
2	2	472	PSU	C2-N3	7.74	1.50	1.37
2	2	122	PSU	C2-N3	7.67	1.50	1.37
2	2	1265	PSU	C2-N3	7.66	1.50	1.37
28	S1	1533	PSU	C2-N3	7.63	1.50	1.37
2	2	662	PSU	C2-N3	7.63	1.50	1.37
1	1	1371	OMU	C2-N1	7.63	1.50	1.38
2	2	1058	PSU	C2-N3	7.62	1.50	1.37
28	S1	33	PSU	C2-N3	7.61	1.50	1.37
28	S1	1841	PSU	C2-N3	7.61	1.50	1.37
28	S1	2046	PSU	C2-N3	7.61	1.50	1.37
28	S1	1539	PSU	C2-N3	7.60	1.50	1.37
28	S1	607	PSU	C2-N3	7.58	1.50	1.37
1	1	1533	PSU	C2-N3	7.58	1.50	1.37
1	1	239	PSU	C2-N3	7.57	1.50	1.37
1	1	422	PSU	C2-N3	7.56	1.50	1.37
28	S1	609	PSU	C2-N3	7.56	1.50	1.37
		1				1	1

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	S1	1156	PSU	C2-N3	7.56	1.50	1.37
28	S1	1566	PSU	C2-N3	7.56	1.50	1.37
1	1	1039	PSU	C2-N3	7.54	1.50	1.37
2	2	510	PSU	C2-N3	7.53	1.50	1.37
2	2	1403	PSU	C2-N3	7.53	1.50	1.37
28	S1	12	PSU	C2-N3	7.53	1.50	1.37
1	1	1171	PSU	C2-N3	7.53	1.50	1.37
28	S1	2202	PSU	C2-N3	7.53	1.50	1.37
28	S1	104	PSU	C2-N3	7.53	1.50	1.37
1	1	1011	PSU	C2-N3	7.52	1.50	1.37
1	1	1664	PSU	C2-N3	7.51	1.50	1.37
1	1	1017	PSU	C2-N3	7.51	1.50	1.37
2	2	512	PSU	C2-N3	7.51	1.50	1.37
28	S1	1192	PSU	C2-N3	7.51	1.50	1.37
2	2	1354	PSU	C2-N3	7.50	1.50	1.37
2	2	1144	PSU	C2-N3	7.50	1.50	1.37
28	S1	1246	PSU	C2-N3	7.50	1.50	1.37
7	7	69	PSU	C2-N3	7.49	1.50	1.37
1	1	845	OMU	C2-N1	7.49	1.50	1.38
2	2	1303	PSU	C2-N3	7.48	1.50	1.37
2	2	1194	PSU	C2-N3	7.48	1.50	1.37
2	2	1361	PSU	C2-N3	7.48	1.50	1.37
2	2	1060	PSU	C2-N3	7.48	1.50	1.37
1	1	1528	PSU	C2-N3	7.47	1.50	1.37
28	S1	455	PSU	C2-N3	7.46	1.50	1.37
28	S1	1657	PSU	C2-N3	7.46	1.50	1.37
7	7	74	PSU	C2-N3	7.45	1.50	1.37
2	2	597	PSU	C2-N3	7.45	1.50	1.37
1	1	1402	PSU	C2-N3	7.45	1.50	1.37
2	2	626	PSU	C2-N3	7.43	1.50	1.37
2	2	78	PSU	C2-N3	7.41	1.50	1.37
28	S1	1543	B8N	C4-N3	-7.40	1.26	1.40
2	2	437	PSU	C2-N3	7.39	1.50	1.37
2	2	1318	PSU	C2-N3	7.38	1.50	1.37
1	1	940	PSU	C2-N3	7.37	1.50	1.37
1	1	1181	PSU	C2-N3	7.36	1.50	1.37
2	2	593	PSU	C2-N3	7.35	1.50	1.37
2	2	1413	PSU	C2-N3	7.29	1.50	1.37
28	S1	1995	7MG	C4-N9	7.25	1.46	1.37
28	S1	1979	OMU	C2-N1	7.17	1.49	1.38
2	2	1264	PSU	C2-N3	7.16	1.49	1.37
$\overline{2}$	2	1308	$5 \mathrm{MC}$	O4'-C4'	$7.\overline{10}$	1.60	$1.\overline{45}$

COUU	naca jion	i previe	ius puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2	560	OMU	C2-N1	7.09	1.49	1.38
28	S1	29	OMU	C2-N1	7.08	1.49	1.38
2	2	1077	OMU	C2-N1	7.07	1.49	1.38
2	2	1359	OMU	C2-N1	7.04	1.49	1.38
28	S1	1979	OMU	C2-N3	7.00	1.50	1.38
2	2	56	OMU	C2-N1	6.98	1.49	1.38
1	1	847	OMU	C2-N1	6.98	1.49	1.38
28	S1	1833	OMU	C2-N1	6.98	1.49	1.38
3	3	13	OMU	C2-N1	6.97	1.49	1.38
1	1	1107	OMU	C2-N1	6.94	1.49	1.38
2	2	1077	OMU	C2-N3	6.91	1.50	1.38
28	S1	1833	OMU	C2-N3	6.89	1.50	1.38
1	1	1371	OMU	C2-N3	6.89	1.50	1.38
28	S1	29	OMU	C2-N3	6.86	1.50	1.38
28	S1	661	OMU	C2-N1	6.86	1.49	1.38
1	1	1659	OMU	C2-N1	6.85	1.49	1.38
1	1	1107	OMU	C2-N3	6.84	1.50	1.38
28	S1	1621	OMU	C2-N1	6.82	1.49	1.38
7	7	7	OMU	C2-N1	6.80	1.49	1.38
2	2	73	OMU	C2-N1	6.80	1.49	1.38
28	S1	668	A2M	O4'-C4'	-6.79	1.29	1.45
2	2	667	OMU	C2-N1	6.78	1.49	1.38
28	S1	8	OMU	C2-N1	6.78	1.49	1.38
3	3	13	OMU	C2-N3	6.78	1.50	1.38
1	1	1659	OMU	C2-N3	6.77	1.50	1.38
1	1	847	OMU	C2-N3	6.77	1.50	1.38
28	S1	1621	OMU	C2-N3	6.76	1.50	1.38
2	2	1359	OMU	C2-N3	6.75	1.50	1.38
2	2	667	OMU	C2-N3	6.73	1.50	1.38
28	S1	661	OMU	C2-N3	6.70	1.49	1.38
1	1	858	A2M	O4'-C4'	-6.70	1.30	1.45
7	7	7	OMU	C2-N3	6.70	1.49	1.38
2	2	1078	OMG	C2-N3	6.66	1.49	1.33
2	2	56	OMU	C2-N3	6.63	1.49	1.38
28	S1	8	OMU	C2-N3	6.58	1.49	1.38
2	2	560	OMU	C2-N3	6.58	1.49	1.38
2	2	1372	A2M	O4'-C4'	-6.57	1.30	1.45
2	2	628	A2M	04'-C4'	-6.55	1.30	1.45
1	1	235	A2M	O4'-C4'	-6.50	1.30	1.45
28	S1	1544	5MC	C4-N3	6.48	1.45	1.34
2	2	73	OMU	C2-N3	6.48	1.49	1.38
28	S1	2140	OMC	C2-N3	6.48	1.49	1.36

Ă)

Mol	nuea fron	n previa	us page.	Atoms	7	Obsorved(Å)	Ideal(
10101 - 20		2021	ADM	$\Delta toms$	6.46	$\frac{1}{20}$	1 45
20	1	305	$\frac{A2M}{\Delta 2M}$	04 - 04	-0.40	1.30	1.40
$\frac{1}{2}$	2	501	$\Delta 2M$	04 - 04	-0.43	1.30	1.45
1	1	845	OMU OMU	$\begin{array}{c} 04 - 04 \\ \hline 02 \text{ N3} \end{array}$	6.41	1.50	1.40
$\frac{1}{2}$	2	1185		O_2 -NS	6.41	1.49	1.50
<u> </u>	1	695	OMC	C2-N3	6 38	1.50	1.40
$\frac{1}{2}$	2	524	5MC	C4 N3	6.36	1.43	1.30
1	1	024 027	$\frac{5000}{42M}$	$O4^{-}C4^{\prime}$	-6.36	1.44	1.54
$\frac{1}{7}$	7	162	A2M	O4'-C4'	-6.35	1.30	1.45
1	1	955	A2M	04'-C4'	-6.34	1.30	1.45
1	1	1010	OMC	C2-N3	6.33	1.50	1.10
28	S1	2061	5MC	C4-N3	6.32	1.15	1.30
$\frac{20}{28}$	S1 S1	1866	OMC	C2-N3	6.32	1.11	1.01
1	1	697	A2M	04'-C4'	-6.31	1.10	1.00
28	S1	479	A2M	04'-C4'	-6.30	1.30	1.10
2	2	95	A2M	04'-C4'	-6.30	1.30	1.45
1	1	1539	A2M	04'-C4'	-6.28	1.31	1.45
28	S1	18	OMC	C2-N3	6.26	1.49	1.36
2	2	359	OMC	C2-N3	6.26	1.49	1.36
2	2	572	A2M	04'-C4'	-6.26	1.31	1.45
2	2	382	A2M	04'-C4'	-6.25	1.31	1.45
28	S1	1995	7MG	C2-N3	6.25	1.48	1.33
2	2	604	A2M	O4'-C4'	-6.24	1.31	1.45
28	S1	98	A2M	O4'-C4'	-6.23	1.31	1.45
2	2	1078	OMG	C4-N3	6.23	1.52	1.37
2	2	443	OMC	C2-N3	6.22	1.49	1.36
28	S1	38	OMC	C2-N3	6.21	1.49	1.36
2	2	1159	OMC	C2-N3	6.20	1.48	1.36
28	S1	512	A2M	O4'-C4'	-6.18	1.31	1.45
2	2	527	A2M	O4'-C4'	-6.18	1.31	1.45
1	1	407	A2M	O4'-C4'	-6.17	1.31	1.45
2	2	583	OMC	C2-N3	6.17	1.48	1.36
2	2	1248	OMC	C2-N3	6.15	1.48	1.36
1	1	1527	OMC	C2-N3	6.13	1.48	1.36
28	S1	1544	5MC	C2-N3	6.11	1.48	1.36
2	2	1308	5MC	C4-N3	6.07	1.44	1.34
2	2	443	OMC	C6-C5	6.07	1.49	1.35
2	2	1317	OMC	C6-C5	6.05	1.49	1.35
2	2	1317	OMC	C2-N3	6.05	1.48	1.36
7	7	43	A2M	O4'-C4'	-6.04	1.31	1.45
2	2	1248	OMC	C6-C5	6.03	1.49	1.35
28	S1	38	OMC	C6-C5	6.02	1.49	1.35

Continued from previous page...

OOnu	паса јгоп	i previe	rus puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2	524	5MC	C2-N3	6.02	1.48	1.36
2	2	583	OMC	C6-C5	6.00	1.49	1.35
2	2	1397	OMC	C6-C5	5.99	1.49	1.35
2	2	1159	OMC	C6-C5	5.95	1.48	1.35
28	S1	1866	OMC	C6-C5	5.94	1.48	1.35
2	2	1078	OMG	C2-N2	5.94	1.48	1.34
28	S1	18	OMC	C6-C5	5.93	1.48	1.35
2	2	359	OMC	C6-C5	5.92	1.48	1.35
1	1	1527	OMC	C6-C5	5.91	1.48	1.35
28	S1	2061	5MC	C2-N3	5.90	1.48	1.36
1	1	695	OMC	C6-C5	5.89	1.48	1.35
2	2	1397	OMC	C2-N3	5.84	1.48	1.36
28	S1	2140	OMC	C6-C5	5.84	1.48	1.35
2	2	1308	5MC	C2-N3	5.83	1.48	1.36
28	S1	1543	B8N	C2-N1	5.82	1.56	1.39
1	1	1010	OMC	C6-C5	5.80	1.48	1.35
2	2	1359	OMU	C6-C5	5.79	1.48	1.35
2	2	667	OMU	C6-C5	5.77	1.48	1.35
28	S1	8	OMU	C6-C5	5.77	1.48	1.35
2	2	73	OMU	C6-C5	5.75	1.48	1.35
28	S1	661	OMU	C6-C5	5.74	1.48	1.35
28	S1	1621	OMU	C6-C5	5.74	1.48	1.35
2	2	1077	OMU	C6-C5	5.73	1.48	1.35
3	3	13	OMU	C6-C5	5.72	1.48	1.35
1	1	1659	OMU	C6-C5	5.69	1.48	1.35
28	S1	29	OMU	C6-C5	5.69	1.48	1.35
7	7	7	OMU	C6-C5	5.68	1.48	1.35
28	S1	600	OMG	C2-N3	5.66	1.46	1.33
1	1	847	OMU	C6-C5	5.64	1.48	1.35
2	2	655	OMG	C2-N3	5.64	1.46	1.33
1	1	1181	PSU	C6-N1	5.63	1.45	1.36
2	2	534	OMG	C2-N3	5.62	1.46	1.33
28	S1	1979	OMU	C6-C5	5.61	1.48	1.35
2	2	56	OMU	C6-C5	5.60	1.48	1.35
1	1	1371	OMU	C6-C5	5.59	1.48	1.35
2	2	1360	OMG	C2-N3	5.57	1.46	1.33
2	2	71	OMG	C2-N3	5.56	1.46	1.33
28	S1	1623	OMG	C2-N3	5.56	1.46	1.33
2	2	1253	OMG	C2-N3	5.55	1.46	1.33
4	4	74	OMG	C2-N3	5.54	1.46	1.33
28	S1	1829	OMG	C2-N3	5.53	1.46	1.33
2	2	1231	OMG	C2-N3	5.53	1.46	1.33

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	S1	1550	OMG	C2-N3	5.53	1.46	1.33
1	1	856	OMG	C2-N3	5.52	1.46	1.33
28	S1	1879	OMG	C2-N3	5.51	1.46	1.33
2	2	1229	OMG	C2-N3	5.51	1.46	1.33
2	2	560	OMU	C6-C5	5.51	1.47	1.35
1	1	1107	OMU	C6-C5	5.50	1.47	1.35
2	2	1361	PSU	C6-N1	5.50	1.45	1.36
1	1	1039	PSU	C6-N1	5.48	1.45	1.36
1	1	1528	PSU	C6-N1	5.47	1.45	1.36
28	S1	1478	OMG	C2-N3	5.46	1.46	1.33
1	1	959	OMG	C2-N3	5.46	1.46	1.33
1	1	1664	PSU	C6-N1	5.46	1.45	1.36
1	1	1626	OMG	C2-N3	5.46	1.46	1.33
28	S1	1647	OMG	C2-N3	5.45	1.46	1.33
2	2	641	OMG	C2-N3	5.45	1.46	1.33
2	2	1046	OMG	C2-N3	5.44	1.46	1.33
28	S1	1865	OMG	C2-N3	5.43	1.46	1.33
1	1	1524	OMG	C2-N3	5.42	1.46	1.33
28	S1	607	PSU	C6-N1	5.42	1.45	1.36
28	S1	1156	PSU	C6-N1	5.42	1.45	1.36
2	2	78	PSU	C6-N1	5.41	1.45	1.36
2	2	1264	PSU	C6-N1	5.41	1.45	1.36
28	S1	1841	PSU	C6-N1	5.41	1.45	1.36
2	2	512	PSU	C6-N1	5.41	1.45	1.36
28	S1	1833	OMU	C6-C5	5.40	1.47	1.35
28	S1	1995	7MG	C4-N3	5.39	1.47	1.34
28	S1	1533	PSU	C6-N1	5.39	1.45	1.36
1	1	1190	OMG	C2-N3	5.39	1.46	1.33
28	S1	1192	PSU	C6-N1	5.39	1.45	1.36
28	S1	1543	B8N	C6-C5	5.37	1.42	1.34
2	2	593	PSU	C6-N1	5.37	1.45	1.36
28	S1	1566	PSU	C6-N1	5.37	1.45	1.36
28	S1	1657	PSU	C6-N1	5.36	1.45	1.36
2	2	1413	PSU	C6-N1	5.36	1.45	1.36
2	2	510	PSU	C6-N1	5.35	1.45	1.36
28	S1	33	PSU	C6-N1	5.34	1.45	1.36
28	S1	455	PSU	C6-N1	5.34	1.45	1.36
7	7	75	OMG	C2-N3	5.33	1.46	1.33
28	S1	609	PSU	C6-N1	5.33	1.45	1.36
2	2	1403	PSU	C6-N1	5.33	1.45	1.36
2	2	1318	PSU	C6-N1	5.32	1.45	1.36
7	7	69	PSU	C6-N1	5.32	1.45	1.36

COULU	naca jion	i previe	ius puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2	597	PSU	C6-N1	5.31	1.45	1.36
28	S1	104	PSU	C6-N1	5.31	1.45	1.36
28	S1	12	PSU	C6-N1	5.30	1.45	1.36
28	S1	2140	OMC	C4-N3	5.30	1.45	1.34
28	S1	2151	OMG	C2-N3	5.29	1.46	1.33
1	1	1540	OMG	C2-N3	5.29	1.46	1.33
1	1	422	PSU	C6-N1	5.28	1.45	1.36
7	7	74	PSU	C6-N1	5.28	1.45	1.36
1	1	239	PSU	C6-N1	5.27	1.45	1.36
2	2	1060	PSU	C6-N1	5.26	1.45	1.36
2	2	437	PSU	C6-N1	5.26	1.45	1.36
28	S1	1539	PSU	C6-N1	5.25	1.44	1.36
2	2	1354	PSU	C6-N1	5.25	1.44	1.36
1	1	1010	OMC	C4-N3	5.24	1.45	1.34
2	2	1303	PSU	C6-N1	5.24	1.44	1.36
2	2	1265	PSU	C6-N1	5.22	1.44	1.36
2	2	359	OMC	C4-N3	5.22	1.45	1.34
28	S1	2202	PSU	C6-N1	5.22	1.44	1.36
1	1	1533	PSU	C6-N1	5.21	1.44	1.36
1	1	845	OMU	C6-C5	5.20	1.47	1.35
2	2	534	OMG	C4-N3	5.19	1.50	1.37
2	2	662	PSU	C6-N1	5.17	1.44	1.36
28	S1	600	OMG	C4-N3	5.17	1.49	1.37
2	2	655	OMG	C4-N3	5.17	1.49	1.37
2	2	443	OMC	C4-N3	5.17	1.44	1.34
1	1	940	PSU	C6-N1	5.16	1.44	1.36
2	2	1159	OMC	C4-N3	5.16	1.44	1.34
28	S1	38	OMC	C4-N3	5.16	1.44	1.34
2	2	1253	OMG	C4-N3	5.16	1.49	1.37
28	S1	1866	OMC	C4-N3	5.16	1.44	1.34
2	2	1194	PSU	C6-N1	5.15	1.44	1.36
1	1	1017	PSU	C6-N1	5.15	1.44	1.36
1	1	1011	PSU	C6-N1	5.13	1.44	1.36
2	2	1144	PSU	C6-N1	5.12	1.44	1.36
28	S1	1246	PSU	C6-N1	5.12	1.44	1.36
28	S1	18	OMC	C4-N3	5.10	1.44	1.34
28	S1	1829	OMG	C4-N3	5.09	1.49	1.37
2	2	626	PSU	C6-N1	5.09	1.44	1.36
28	S1	1623	OMG	C4-N3	5.08	1.49	1.37
2	2	472	PSU	C6-N1	5.08	1.44	1.36
2	2	71	OMG	C4-N3	5.07	1.49	1.37
28	S1	1550	OMG	C4-N3	5.07	1.49	1.37

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	J	1	I J

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2	1231	OMG	C4-N3	5.07	1.49	1.37
1	1	1402	PSU	C6-N1	5.07	1.44	1.36
1	1	959	OMG	C4-N3	5.07	1.49	1.37
1	1	1527	OMC	C4-N3	5.07	1.44	1.34
1	1	1626	OMG	C4-N3	5.06	1.49	1.37
4	4	74	OMG	C4-N3	5.06	1.49	1.37
2	2	122	PSU	C6-N1	5.05	1.44	1.36
1	1	856	OMG	C4-N3	5.05	1.49	1.37
2	2	1360	OMG	C4-N3	5.05	1.49	1.37
28	S1	2046	PSU	C6-N1	5.04	1.44	1.36
2	2	1229	OMG	C4-N3	5.04	1.49	1.37
2	2	1308	5MC	O4'-C1'	-5.04	1.30	1.42
1	1	1524	OMG	C4-N3	5.03	1.49	1.37
28	S1	1647	OMG	C4-N3	5.03	1.49	1.37
28	S1	1879	OMG	C4-N3	5.01	1.49	1.37
2	2	1046	OMG	C4-N3	5.00	1.49	1.37
1	1	695	OMC	C4-N3	5.00	1.44	1.34
2	2	641	OMG	C4-N3	4.99	1.49	1.37
2	2	1058	PSU	C6-N1	4.99	1.44	1.36
2	2	1248	OMC	C4-N3	4.99	1.44	1.34
7	7	75	OMG	C4-N3	4.98	1.49	1.37
1	1	1190	OMG	C4-N3	4.96	1.49	1.37
28	S1	1865	OMG	C4-N3	4.96	1.49	1.37
2	2	583	OMC	C4-N3	4.95	1.44	1.34
28	S1	1478	OMG	C4-N3	4.92	1.49	1.37
2	2	1397	OMC	C4-N3	4.91	1.44	1.34
28	S1	2151	OMG	C4-N3	4.90	1.49	1.37
1	1	1171	PSU	C6-N1	4.88	1.44	1.36
2	2	359	OMC	C4-N4	4.85	1.45	1.33
28	S1	1866	OMC	C4-N4	4.85	1.45	1.33
2	2	443	OMC	C4-N4	4.83	1.45	1.33
28	S1	38	OMC	C4-N4	4.80	1.45	1.33
28	S1	2140	OMC	C4-N4	4.79	1.45	1.33
28	S1	18	OMC	C4-N4	4.79	1.45	1.33
1	1	1524	OMG	C2-N2	4.78	1.45	1.34
2	2	1317	OMC	C4-N4	4.78	1.45	1.33
1	1	1540	OMG	C4-N3	4.78	1.49	1.37
2	2	1317	OMC	C4-N3	4.77	1.44	1.34
2	2	1360	OMG	C2-N2	4.77	1.45	1.34
28	S1	1550	OMG	C2-N2	4.77	1.45	1.34
2	2	1159	OMC	C4-N4	4.76	1.45	1.33
1	1	1527	OMC	C4-N4	4.76	1.45	1.33

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2	1248	OMC	C4-N4	4.75	1.45	1.33
2	2	583	OMC	C4-N4	4.74	1.45	1.33
28	S1	1623	OMG	C2-N2	4.73	1.45	1.34
2	2	1231	OMG	C2-N2	4.73	1.45	1.34
28	S1	1544	5MC	C6-N1	4.73	1.46	1.38
28	S1	1829	OMG	C2-N2	4.73	1.45	1.34
28	S1	1879	OMG	C2-N2	4.72	1.45	1.34
2	2	71	OMG	C2-N2	4.72	1.45	1.34
1	1	1010	OMC	C4-N4	4.72	1.45	1.33
28	S1	1647	OMG	C2-N2	4.72	1.45	1.34
1	1	959	OMG	C2-N2	4.71	1.45	1.34
28	S1	1865	OMG	C2-N2	4.70	1.45	1.34
28	S1	2061	5MC	C6-N1	4.69	1.46	1.38
1	1	1190	OMG	C2-N2	4.69	1.45	1.34
2	2	1046	OMG	C2-N2	4.68	1.45	1.34
2	2	655	OMG	C2-N2	4.68	1.45	1.34
1	1	856	OMG	C2-N2	4.68	1.45	1.34
1	1	695	OMC	C4-N4	4.67	1.44	1.33
28	S1	600	OMG	C2-N2	4.67	1.45	1.34
2	2	1229	OMG	C2-N2	4.64	1.45	1.34
2	2	534	OMG	C2-N2	4.62	1.45	1.34
2	2	1397	OMC	C4-N4	4.62	1.44	1.33
7	7	75	OMG	C2-N2	4.61	1.45	1.34
2	2	1253	OMG	C2-N2	4.61	1.45	1.34
28	S1	2140	OMC	C2-N1	4.60	1.50	1.40
4	4	74	OMG	C2-N2	4.60	1.45	1.34
2	2	641	OMG	C2-N2	4.59	1.45	1.34
1	1	1626	OMG	C2-N2	4.58	1.45	1.34
28	S1	2151	OMG	C2-N2	4.58	1.45	1.34
2	2	1248	OMC	C2-N1	4.58	1.49	1.40
1	1	1540	OMG	C2-N2	4.57	1.45	1.34
28	S1	1478	OMG	C2-N2	4.57	1.45	1.34
2	2	1308	5MC	C6-N1	4.57	1.45	1.38
2	2	1159	OMC	C2-N1	4.56	1.49	1.40
1	1	940	PSU	C1'-C5	-4.52	1.39	1.50
2	2	1060	PSU	C1'-C5	-4.51	1.39	1.50
28	S1	1866	OMC	C2-N1	4.50	1.49	1.40
28	S1	1246	PSU	C1'-C5	-4.47	1.40	1.50
28	S1	1543	B8N	C1'-C5	-4.45	1.40	1.50
2	2	1144	PSU	C1'-C5	-4.45	1.40	1.50
1	1	1010	OMC	C2-N1	4.44	1.49	1.40
1	1	1527	OMC	C2-N1	4.44	1.49	1.40

~			
Continued	from	nremions	паае
Contracta	110110	precious	page

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	S1	104	PSU	C1'-C5	-4.44	1.40	1.50
2	2	524	5MC	C6-N1	4.40	1.45	1.38
1	1	695	OMC	C2-N1	4.39	1.49	1.40
1	1	239	PSU	C1'-C5	-4.39	1.40	1.50
28	S1	33	PSU	C1'-C5	-4.38	1.40	1.50
2	2	122	PSU	C1'-C5	-4.38	1.40	1.50
7	7	69	PSU	C1'-C5	-4.37	1.40	1.50
2	2	1303	PSU	C1'-C5	-4.37	1.40	1.50
2	2	1317	OMC	C2-N1	4.36	1.49	1.40
2	2	662	PSU	C1'-C5	-4.36	1.40	1.50
28	S1	18	OMC	C2-N1	4.36	1.49	1.40
28	S1	1544	5MC	C4-N4	4.35	1.45	1.34
28	S1	609	PSU	C1'-C5	-4.35	1.40	1.50
2	2	583	OMC	C2-N1	4.35	1.49	1.40
2	2	472	PSU	C1'-C5	-4.34	1.40	1.50
28	S1	2061	$5 \mathrm{MC}$	C4-N4	4.34	1.45	1.34
2	2	359	OMC	C2-N1	4.34	1.49	1.40
28	S1	1533	PSU	C1'-C5	-4.33	1.40	1.50
28	S1	1833	OMU	C4-N3	4.32	1.46	1.38
2	2	1403	PSU	C1'-C5	-4.31	1.40	1.50
28	S1	1657	PSU	C1'-C5	-4.31	1.40	1.50
2	2	1194	PSU	C1'-C5	-4.31	1.40	1.50
1	1	422	PSU	C1'-C5	-4.29	1.40	1.50
2	2	510	PSU	C1'-C5	-4.29	1.40	1.50
7	7	74	PSU	C1'-C5	-4.28	1.40	1.50
2	2	1361	PSU	C1'-C5	-4.28	1.40	1.50
1	1	1107	OMU	C4-N3	4.27	1.46	1.38
28	S1	2046	PSU	C1'-C5	-4.27	1.40	1.50
28	S1	1979	OMU	C4-N3	4.26	1.46	1.38
28	S1	1544	5MC	C2-N1	4.26	1.49	1.40
28	S1	1156	PSU	C1'-C5	-4.25	1.40	1.50
2	2	597	PSU	C1'-C5	-4.25	1.40	1.50
2	2	443	OMC	C2-N1	4.25	1.49	1.40
2	2	1308	5MC	C4-N4	4.24	1.45	1.34
1	1	1017	PSU	C1'-C5	-4.24	1.40	1.50
28	S1	1621	OMU	C4-N3	4.24	1.46	1.38
1	1	1533	PSU	C1'-C5	-4.24	1.40	1.50
2	2	524	5MC	C4-N4	4.23	1.45	1.34
2	2	437	PSU	C1'-C5	-4.22	1.40	1.50
2	2	78	PSU	C1'-C5	-4.22	1.40	1.50
1	1	1039	PSU	C1'-C5	-4.22	1.40	1.50
2	2	1265	PSU	C1'-C5	-4.21	1.40	1.50

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	S1	38	OMC	C2-N1	4.21	1.49	1.40
2	2	1397	OMC	C2-N1	4.21	1.49	1.40
2	2	1413	PSU	C1'-C5	-4.18	1.40	1.50
2	2	1318	PSU	C1'-C5	-4.17	1.40	1.50
28	S1	2202	PSU	C1'-C5	-4.17	1.40	1.50
2	2	1354	PSU	C1'-C5	-4.17	1.40	1.50
28	S1	29	OMU	C4-N3	4.17	1.46	1.38
2	2	593	PSU	C1'-C5	-4.17	1.40	1.50
1	1	1659	OMU	C4-N3	4.16	1.46	1.38
2	2	1058	PSU	C4-N3	4.16	1.46	1.38
28	S1	12	PSU	C1'-C5	-4.16	1.40	1.50
1	1	1528	PSU	C1'-C5	-4.15	1.40	1.50
2	2	1077	OMU	C4-N3	4.14	1.46	1.38
28	S1	1841	PSU	C1'-C5	-4.12	1.40	1.50
2	2	626	PSU	C1'-C5	-4.12	1.40	1.50
28	S1	607	PSU	C1'-C5	-4.11	1.40	1.50
28	S1	1192	PSU	C1'-C5	-4.11	1.40	1.50
3	3	13	OMU	C4-N3	4.11	1.45	1.38
2	2	1359	OMU	C4-N3	4.11	1.45	1.38
2	2	667	OMU	C4-N3	4.11	1.45	1.38
1	1	1664	PSU	C1'-C5	-4.09	1.40	1.50
28	S1	1539	PSU	C1'-C5	-4.07	1.40	1.50
2	2	524	5MC	C2-N1	4.07	1.48	1.40
2	2	512	PSU	C1'-C5	-4.06	1.40	1.50
28	S1	1539	PSU	C4-N3	4.04	1.46	1.38
2	2	626	PSU	C4-N3	4.03	1.46	1.38
2	2	512	PSU	C4-N3	4.02	1.46	1.38
1	1	1371	OMU	C4-N3	4.02	1.45	1.38
28	S1	1566	PSU	C4-N3	4.02	1.46	1.38
28	S1	455	PSU	C1'-C5	-4.02	1.41	1.50
28	S1	661	OMU	C4-N3	4.02	1.45	1.38
1	1	1402	PSU	C1'-C5	-4.02	1.41	1.50
1	1	1171	PSU	C4-N3	4.00	1.46	1.38
2	2	56	OMU	C4-N3	3.99	1.45	1.38
28	S1	609	PSU	C4-N3	3.99	1.46	1.38
28	S1	2061	$5 \mathrm{MC}$	C2-N1	3.98	1.48	1.40
28	S1	607	PSU	C4-N3	3.98	1.46	1.38
$\overline{28}$	S1	1841	PSU	C4-N3	3.98	1.46	1.38
$\overline{28}$	$\overline{S1}$	$15\overline{66}$	PSU	C1'-C5	-3.97	1.41	1.50
2	2	1308	5MC	C2-N1	3.97	1.48	1.40
1	1	1011	PSU	C4-N3	3.96	1.46	1.38
1	1	1011	PSU	C1'-C5	-3.95	1.41	1.50

COmu	Continuea from previous page						
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	S1	2046	PSU	C4-N3	3.95	1.46	1.38
28	S1	1657	PSU	C4-N3	3.94	1.46	1.38
2	2	122	PSU	C4-N3	3.93	1.46	1.38
2	2	662	PSU	C4-N3	3.93	1.46	1.38
2	2	1265	PSU	C4-N3	3.93	1.46	1.38
2	2	472	PSU	C4-N3	3.93	1.46	1.38
28	S1	8	OMU	C4-N3	3.93	1.45	1.38
7	7	7	OMU	C4-N3	3.92	1.45	1.38
1	1	1039	PSU	C4-N3	3.92	1.46	1.38
28	S1	1533	PSU	C4-N3	3.91	1.46	1.38
28	S1	455	PSU	C4-N3	3.91	1.46	1.38
1	1	1402	PSU	C4-N3	3.90	1.46	1.38
28	S1	104	PSU	C4-N3	3.90	1.46	1.38
28	S1	1156	PSU	C4-N3	3.89	1.46	1.38
28	S1	1192	PSU	C4-N3	3.89	1.46	1.38
1	1	1181	PSU	C1'-C5	-3.89	1.41	1.50
1	1	1017	PSU	C4-N3	3.89	1.46	1.38
2	2	1264	PSU	C1'-C5	-3.88	1.41	1.50
1	1	239	PSU	C4-N3	3.87	1.46	1.38
2	2	560	OMU	C4-N3	3.87	1.45	1.38
1	1	422	PSU	C4-N3	3.87	1.46	1.38
2	2	1318	PSU	C4-N3	3.87	1.46	1.38
2	2	1354	PSU	C4-N3	3.87	1.46	1.38
2	2	1303	PSU	C4-N3	3.87	1.46	1.38
1	1	1533	PSU	C4-N3	3.86	1.46	1.38
28	S1	33	PSU	C4-N3	3.86	1.46	1.38
7	7	74	PSU	C4-N3	3.86	1.46	1.38
2	2	1194	PSU	C4-N3	3.86	1.46	1.38
28	S1	1246	PSU	C4-N3	3.86	1.46	1.38
2	2	510	PSU	C4-N3	3.84	1.46	1.38
2	2	1144	PSU	C4-N3	3.83	1.45	1.38
2	2	437	PSU	C4-N3	3.83	1.45	1.38
2	2	1413	PSU	C4-N3	3.81	1.45	1.38
7	7	69	PSU	C4-N3	3.80	1.45	1.38
1	1	1664	PSU	C4-N3	3.80	1.45	1.38
1	1	1528	PSU	C4-N3	3.80	1.45	1.38
28	S1	12	PSU	C4-N3	3.80	1.45	1.38
2	2	78	PSU	C4-N3	3.80	1.45	1.38
2	2	1361	PSU	C4-N3	3.78	1.45	1.38
28	S1	2202	PSU	C4-N3	3.78	1.45	1.38
2	2	593	PSU	C4-N3	3.77	1.45	1.38
2	2	597	PSU	C4-N3	3.77	1.45	1.38

Continued from previous page								
Mol	Chain	Res	Type	Atoms	Z			
2	2	1403	PSU	C4-N3	3.76			
2	2	73	OMU	C4-N3	3.76			
2	2	1060	PSU	C4-N3	3.76			
1	1	847	OMU	C4-N3	3.75			
28	S1	1647	OMG	C6-N1	3.75			
28	S1	1995	7MG	C6-N1	3.73			
2	2	1264	PSU	C4-N3	3.73			
28	S1	1623	OMG	C6-N1	3 71			

Jfa α . . : .

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2	1403	PSU	C4-N3	3.76	1.45	1.38
2	2	73	OMU	C4-N3	3.76	1.45	1.38
2	2	1060	PSU	C4-N3	3.76	1.45	1.38
1	1	847	OMU	C4-N3	3.75	1.45	1.38
28	S1	1647	OMG	C6-N1	3.75	1.43	1.37
28	S1	1995	7MG	C6-N1	3.73	1.45	1.38
2	2	1264	PSU	C4-N3	3.73	1.45	1.38
28	S1	1623	OMG	C6-N1	3.71	1.43	1.37
1	1	1181	PSU	C4-N3	3.71	1.45	1.38
28	S1	2151	OMG	C6-N1	3.69	1.43	1.37
1	1	1524	OMG	C6-N1	3.69	1.43	1.37
28	S1	1865	OMG	C6-N1	3.67	1.43	1.37
2	2	1046	OMG	C6-N1	3.65	1.43	1.37
1	1	940	PSU	C4-N3	3.65	1.45	1.38
1	1	959	OMG	C6-N1	3.64	1.43	1.37
1	1	1190	OMG	C6-N1	3.64	1.43	1.37
1	1	1540	OMG	C6-N1	3.63	1.43	1.37
28	S1	1879	OMG	C6-N1	3.62	1.43	1.37
1	1	845	OMU	O2-C2	-3.61	1.16	1.23
28	S1	1995	7MG	C2-N1	3.60	1.46	1.37
28	S1	1550	OMG	C6-N1	3.59	1.43	1.37
7	7	75	OMG	C6-N1	3.59	1.43	1.37
28	S1	600	OMG	C6-N1	3.57	1.43	1.37
28	S1	1478	OMG	C6-N1	3.55	1.43	1.37
2	2	534	OMG	C6-N1	3.54	1.43	1.37
28	S1	1829	OMG	C6-N1	3.54	1.43	1.37
2	2	1360	OMG	C6-N1	3.54	1.43	1.37
28	S1	1995	7MG	C5-C6	3.53	1.52	1.43
2	2	1058	PSU	C1'-C5	-3.51	1.42	1.50
1	1	1626	OMG	C6-N1	3.49	1.43	1.37
2	2	1229	OMG	C6-N1	3.49	1.43	1.37
2	2	1253	OMG	C6-N1	3.47	1.43	1.37
1	1	856	OMG	C6-N1	3.47	1.43	1.37
2	2	655	OMG	C6-N1	3.45	1.43	1.37
4	4	74	OMG	C6-N1	3.45	1.43	1.37
2	2	71	OMG	C6-N1	3.42	1.43	1.37
2	2	1231	OMG	C6-N1	3.41	1.42	1.37
2	2	641	OMG	C6-N1	3.39	1.42	1.37
2	2	1317	OMC	C6-N1	3.38	1.46	1.38
1	1	672	PSU	C6-C5	3.38	1.39	1.35
28	S1	1866	OMC	C6-N1	3.38	1.46	1.38
2	2	1382	PSU	C6-C5	3.37	1.39	1.35

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	previous	page
0 0	J	<i>r</i> · · · · · · · · · · · · · · · · · · ·	r - g - · · ·

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2	1159	OMC	C6-N1	3.35	1.46	1.38
1	1	1527	OMC	C6-N1	3.35	1.46	1.38
2	2	1397	OMC	C6-N1	3.35	1.46	1.38
28	S1	1995	7MG	C2-N2	3.35	1.42	1.34
2	2	583	OMC	C6-N1	3.34	1.46	1.38
28	S1	2048	PSU	C6-C5	3.33	1.39	1.35
1	1	1171	PSU	C1'-C5	-3.33	1.42	1.50
1	1	695	OMC	C6-N1	3.31	1.46	1.38
2	2	359	OMC	C6-N1	3.29	1.45	1.38
28	S1	38	OMC	C6-N1	3.29	1.45	1.38
2	2	1248	OMC	C6-N1	3.27	1.45	1.38
28	S1	18	OMC	C6-N1	3.25	1.45	1.38
2	2	443	OMC	C6-N1	3.24	1.45	1.38
28	S1	1833	OMU	O4-C4	-3.23	1.18	1.24
1	1	959	OMG	C5-C6	3.21	1.53	1.47
7	7	162	A2M	O2'-C2'	3.21	1.50	1.42
1	1	1540	OMG	C5-C6	3.19	1.53	1.47
2	2	560	OMU	O4-C4	-3.18	1.18	1.24
1	1	235	A2M	O3'-C3'	-3.16	1.35	1.43
2	2	667	OMU	O4-C4	-3.16	1.18	1.24
1	1	845	OMU	C4-N3	3.15	1.44	1.38
28	S1	2140	OMC	C6-N1	3.15	1.45	1.38
28	S1	2021	A2M	C6-N6	3.15	1.45	1.34
1	1	1626	OMG	C5-C6	3.15	1.53	1.47
7	7	162	A2M	O3'-C3'	-3.14	1.35	1.43
1	1	235	A2M	C6-N6	3.14	1.45	1.34
2	2	56	OMU	O4-C4	-3.13	1.18	1.24
2	2	95	A2M	C6-N6	3.13	1.45	1.34
1	1	845	OMU	O4-C4	-3.13	1.18	1.24
28	S1	1550	OMG	C5-C6	3.13	1.53	1.47
2	2	641	OMG	C5-C6	3.12	1.53	1.47
28	S1	1879	OMG	C5-C6	3.11	1.53	1.47
28	S1	8	OMU	O4-C4	-3.11	1.18	1.24
7	7	162	A2M	C6-N6	3.11	1.45	1.34
2	2	591	A2M	O3'-C3'	-3.11	1.35	1.43
2	2	655	OMG	C5-C6	3.11	1.53	1.47
2	2	$137\overline{2}$	A2M	C6-N6	3.11	1.45	1.34
2	2	1046	OMG	C5-C6	3.11	1.53	1.47
1	1	305	A2M	C6-N6	3.11	1.45	1.34
1	1	927	A2M	C6-N6	3.11	1.45	1.34
28	S1	98	A2M	C6-N6	3.10	1.45	1.34
1	1	1010	OMC	C6-N1	3.10	1.45	1.38

Continuea from previous page							
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	S1	1995	7MG	O6-C6	-3.10	1.17	1.23
7	7	43	A2M	C6-N6	3.10	1.45	1.34
28	S1	479	A2M	C6-N6	3.10	1.45	1.34
2	2	572	A2M	C6-N6	3.10	1.45	1.34
2	2	591	A2M	C6-N6	3.10	1.45	1.34
28	S1	2151	OMG	C5-C6	3.10	1.53	1.47
1	1	1539	A2M	C6-N6	3.10	1.45	1.34
1	1	1524	OMG	C5-C6	3.09	1.53	1.47
28	S1	668	A2M	C6-N6	3.09	1.45	1.34
28	S1	661	OMU	O4-C4	-3.09	1.18	1.24
1	1	407	A2M	C6-N6	3.09	1.45	1.34
2	2	1253	OMG	C5-C6	3.09	1.53	1.47
28	S1	512	A2M	C6-N6	3.09	1.45	1.34
2	2	604	A2M	C6-N6	3.08	1.45	1.34
2	2	1185	A2M	C6-N6	3.08	1.45	1.34
7	7	43	A2M	O3'-C3'	-3.08	1.35	1.43
28	S1	2021	A2M	O2'-C2'	3.08	1.50	1.42
1	1	858	A2M	C6-N6	3.07	1.45	1.34
2	2	95	A2M	O3'-C3'	-3.07	1.35	1.43
28	S1	1865	OMG	C5-C6	3.07	1.53	1.47
2	2	73	OMU	O4-C4	-3.06	1.18	1.24
1	1	1107	OMU	O4-C4	-3.06	1.18	1.24
1	1	1371	OMU	O4-C4	-3.06	1.18	1.24
1	1	1190	OMG	C5-C6	3.05	1.53	1.47
1	1	856	OMG	C5-C6	3.05	1.53	1.47
3	3	13	OMU	O4-C4	-3.05	1.18	1.24
2	2	382	A2M	C6-N6	3.05	1.45	1.34
1	1	697	A2M	C6-N6	3.04	1.45	1.34
2	2	628	A2M	C6-N6	3.04	1.45	1.34
2	2	1359	OMU	C6-N1	3.04	1.45	1.38
2	2	1308	5MC	O2'-C2'	-3.04	1.35	1.43
2	2	1078	OMG	C6-N1	3.03	1.42	1.37
28	S1	1647	OMG	C5-C6	3.02	1.53	1.47
1	1	847	OMU	O4-C4	-3.02	1.18	1.24
1	1	955	A2M	C6-N6	3.02	1.45	1.34
2	2	73	OMU	C6-N1	3.02	1.45	1.38
1	1	407	A2M	O3'-C3'	-3.01	1.35	1.43
7	7	7	OMU	C6-N1	3.01	1.45	1.38
2	2	1231	OMG	C5-C6	3.01	1.53	1.47
2	2	667	OMU	C6-N1	3.01	1.45	1.38
2	2	1229	OMG	C5-C6	3.01	1.53	1.47
28	S1	98	A2M	03'-C3'	-3.00	1.35	1.43

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	S1	29	OMU	C6-N1	3.00	1.45	1.38
2	2	382	A2M	O2'-C2'	3.00	1.50	1.42
2	2	1359	OMU	O4-C4	-3.00	1.18	1.24
1	1	1659	OMU	C6-N1	2.99	1.45	1.38
7	7	75	OMG	C5-C6	2.99	1.53	1.47
2	2	1185	A2M	O3'-C3'	-2.99	1.35	1.43
3	3	13	OMU	C6-N1	2.99	1.45	1.38
28	S1	1621	OMU	O4-C4	-2.99	1.18	1.24
2	2	443	OMC	O2-C2	-2.98	1.18	1.23
28	S1	1979	OMU	C6-N1	2.98	1.45	1.38
28	S1	661	OMU	C6-N1	2.98	1.45	1.38
2	2	95	A2M	O2'-C2'	2.97	1.50	1.42
4	4	74	OMG	C5-C6	2.97	1.53	1.47
1	1	955	A2M	O3'-C3'	-2.97	1.36	1.43
2	2	1077	OMU	C6-N1	2.97	1.45	1.38
28	S1	1621	OMU	C6-N1	2.96	1.45	1.38
2	2	1360	OMG	C5-C6	2.96	1.53	1.47
28	S1	600	OMG	C5-C6	2.96	1.53	1.47
7	7	7	OMU	O4-C4	-2.96	1.18	1.24
2	2	382	A2M	O3'-C3'	-2.96	1.36	1.43
28	S1	29	OMU	O4-C4	-2.96	1.18	1.24
28	S1	1478	OMG	C5-C6	2.96	1.53	1.47
1	1	1659	OMU	O4-C4	-2.95	1.18	1.24
1	1	1371	OMU	C6-N1	2.95	1.45	1.38
28	S1	668	A2M	O2'-C2'	2.94	1.50	1.42
1	1	847	OMU	C6-N1	2.94	1.45	1.38
28	S1	1623	OMG	C5-C6	2.94	1.53	1.47
2	2	572	A2M	O3'-C3'	-2.93	1.36	1.43
1	1	235	A2M	O2'-C2'	2.92	1.50	1.42
1	1	858	A2M	O3'-C3'	-2.92	1.36	1.43
28	S1	1829	OMG	C5-C6	2.92	1.53	1.47
28	S1	1979	OMU	O4-C4	-2.91	1.18	1.24
2	2	1077	OMU	O4-C4	-2.90	1.18	1.24
2	2	1264	PSU	O4-C4	-2.89	1.18	1.23
1	1	927	A2M	O3'-C3'	-2.89	1.36	1.43
2	2	71	OMG	C5-C6	2.88	1.53	1.47
28	S1	8	OMU	C6-N1	2.88	1.44	1.38
2	2	78	PSU	O4-C4	-2.87	1.18	1.23
2	2	527	A2M	C6-N6	2.87	1.44	1.34
2	2	56	OMU	C6-N1	2.86	1.44	1.38
2	2	1372	A2M	O3'-C3'	-2.86	1.36	1.43
2	2	604	A2M	03'-C3 [,]	-2.86	1.36	1.43

001000	nucu jion	" P'COUC	we page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	S1	479	A2M	O2'-C2'	2.86	1.49	1.42
2	2	1397	OMC	O2-C2	-2.86	1.18	1.23
28	S1	2021	A2M	O3'-C3'	-2.85	1.36	1.43
28	S1	512	A2M	O3'-C3'	-2.85	1.36	1.43
2	2	1317	OMC	O2-C2	-2.85	1.18	1.23
2	2	527	A2M	C5-C4	-2.85	1.33	1.40
2	2	534	OMG	C5-C6	2.84	1.53	1.47
2	2	560	OMU	C6-N1	2.84	1.44	1.38
1	1	697	A2M	O3'-C3'	-2.84	1.36	1.43
2	2	628	A2M	O3'-C3'	-2.84	1.36	1.43
2	2	572	A2M	C5-C4	-2.83	1.33	1.40
1	1	858	A2M	O2'-C2'	2.83	1.49	1.42
2	2	591	A2M	O2'-C2'	2.83	1.49	1.42
2	2	604	A2M	O2'-C2'	2.83	1.49	1.42
1	1	697	A2M	O2'-C2'	2.83	1.49	1.42
1	1	1527	OMC	O2-C2	-2.83	1.18	1.23
28	S1	479	A2M	O3'-C3'	-2.81	1.36	1.43
1	1	305	A2M	O3'-C3'	-2.81	1.36	1.43
1	1	955	A2M	O2'-C2'	2.80	1.49	1.42
28	S1	38	OMC	O2-C2	-2.80	1.18	1.23
2	2	359	OMC	O2-C2	-2.80	1.18	1.23
28	S1	98	A2M	O2'-C2'	2.79	1.49	1.42
28	S1	2185	MA6	C5-C4	-2.79	1.33	1.40
2	2	583	OMC	O2-C2	-2.79	1.18	1.23
28	S1	668	A2M	O3'-C3'	-2.79	1.36	1.43
2	2	1248	OMC	O2-C2	-2.78	1.18	1.23
2	2	1308	5MC	O2-C2	-2.78	1.18	1.23
7	7	43	A2M	O2'-C2'	2.78	1.49	1.42
2	2	626	PSU	O4-C4	-2.78	1.18	1.23
2	2	527	A2M	O2'-C2'	2.78	1.49	1.42
2	2	1372	A2M	O2'-C2'	2.78	1.49	1.42
2	2	628	A2M	C5-C4	-2.78	1.33	1.40
2	2	1078	OMG	C5-C6	2.78	1.53	1.47
1	1	1539	A2M	O3'-C3'	-2.77	1.36	1.43
28	S1	1833	OMU	C6-N1	2.77	1.44	1.38
1	1	1107	OMU	C6-N1	2.77	1.44	1.38
1	1	858	A2M	C5-C4	-2.76	1.33	1.40
2	2	1159	OMC	O2-C2	-2.76	1.18	1.23
28	S1	$51\overline{2}$	A2M	$O2'-\overline{C2'}$	$2.7\overline{6}$	1.49	1.42
1	1	235	A2M	C5-C4	-2.76	1.33	1.40
1	1	1664	PSU	O4-C4	-2.76	1.18	1.23
2	2	1372	A2M	C5-C4	-2.75	1.33	1.40

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	1	239	PSU	O4-C4	-2.75	1.18	1.23
1	1	697	A2M	C5-C4	-2.75	1.33	1.40
2	2	572	A2M	O2'-C2'	2.75	1.49	1.42
28	S1	18	OMC	O2-C2	-2.75	1.18	1.23
1	1	407	A2M	C5-C4	-2.75	1.33	1.40
2	2	437	PSU	O4-C4	-2.75	1.18	1.23
1	1	305	A2M	C5-C4	-2.74	1.33	1.40
1	1	1181	PSU	O4-C4	-2.74	1.18	1.23
28	S1	512	A2M	C5-C4	-2.74	1.33	1.40
28	S1	1866	OMC	O2-C2	-2.74	1.18	1.23
1	1	927	A2M	C5-C4	-2.73	1.33	1.40
2	2	1185	A2M	O2'-C2'	2.73	1.49	1.42
1	1	1528	PSU	O4-C4	-2.73	1.18	1.23
1	1	695	OMC	O2-C2	-2.73	1.18	1.23
1	1	927	A2M	O2'-C2'	2.72	1.49	1.42
28	S1	2061	5MC	O2-C2	-2.72	1.18	1.23
28	S1	1865	OMG	C2-N1	2.72	1.44	1.37
2	2	628	A2M	O2'-C2'	2.72	1.49	1.42
2	2	1413	PSU	O4-C4	-2.72	1.18	1.23
28	S1	1879	OMG	C2-N1	2.71	1.44	1.37
7	7	43	A2M	C5-C4	-2.71	1.33	1.40
2	2	1403	PSU	O4-C4	-2.71	1.18	1.23
2	2	524	5MC	O2-C2	-2.71	1.18	1.23
2	2	591	A2M	C5-C4	-2.71	1.33	1.40
2	2	604	A2M	C5-C4	-2.71	1.33	1.40
28	S1	1623	OMG	C2-N1	2.70	1.44	1.37
2	2	1046	OMG	C2-N1	2.70	1.44	1.37
2	2	1360	OMG	C2-N1	2.70	1.44	1.37
1	1	959	OMG	C2-N1	2.69	1.44	1.37
1	1	1539	A2M	O2'-C2'	2.69	1.49	1.42
1	1	955	A2M	C5-C4	-2.69	1.33	1.40
28	S1	1829	OMG	C2-N1	2.69	1.44	1.37
7	7	162	A2M	C5-C4	-2.69	1.33	1.40
2	2	662	PSU	O4-C4	-2.68	1.18	1.23
28	S1	1478	OMG	C2-N1	2.68	1.44	1.37
28	S1	668	A2M	C5-C4	-2.68	1.33	1.40
28	S1	1647	OMG	C2-N1	2.68	1.44	1.37
28	S1	2021	A2M	C5-C4	-2.68	1.33	1.40
28	S1	98	A2M	C5-C4	-2.68	1.33	1.40
1	1	1010	OMC	O2-C2	-2.68	1.18	1.23
1	1	407	A2M	O2'-C2'	2.68	1.49	1.42
1	1	1524	OMG	C2-N1	2.68	1.44	1.37

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	5	1	1 0

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2	1308	5MC	O3'-C3'	2.67	1.49	1.43
28	S1	2046	PSU	O4-C4	-2.67	1.18	1.23
28	S1	1544	5MC	O2-C2	-2.67	1.18	1.23
2	2	593	PSU	O4-C4	-2.67	1.18	1.23
1	1	1533	PSU	O4-C4	-2.66	1.18	1.23
2	2	1361	PSU	O4-C4	-2.66	1.18	1.23
1	1	1524	OMG	C5-C4	-2.66	1.36	1.43
2	2	382	A2M	C5-C4	-2.66	1.33	1.40
2	2	1318	PSU	O4-C4	-2.65	1.18	1.23
1	1	1540	OMG	C2-N1	2.65	1.44	1.37
2	2	1229	OMG	C2-N1	2.65	1.44	1.37
2	2	1185	A2M	C5-C4	-2.65	1.33	1.40
1	1	1171	PSU	O4-C4	-2.65	1.18	1.23
1	1	1190	OMG	C5-C4	-2.64	1.36	1.43
2	2	534	OMG	C2-N1	2.64	1.44	1.37
1	1	1017	PSU	O4-C4	-2.63	1.18	1.23
1	1	1539	A2M	C5-C4	-2.63	1.34	1.40
28	S1	600	OMG	C2-N1	2.63	1.44	1.37
28	S1	1657	PSU	O4-C4	-2.63	1.18	1.23
2	2	583	OMC	C5-C4	2.63	1.48	1.42
7	7	75	OMG	C2-N1	2.63	1.44	1.37
2	2	1144	PSU	O4-C4	-2.63	1.18	1.23
7	7	69	PSU	O4-C4	-2.63	1.18	1.23
1	1	305	A2M	O2'-C2'	2.63	1.49	1.42
28	S1	1550	OMG	C2-N1	2.63	1.44	1.37
2	2	71	OMG	C2-N1	2.63	1.44	1.37
2	2	1253	OMG	C2-N1	2.63	1.44	1.37
1	1	1039	PSU	O4-C4	-2.63	1.18	1.23
2	2	1194	PSU	O4-C4	-2.62	1.18	1.23
1	1	422	PSU	O4-C4	-2.62	1.18	1.23
2	2	71	OMG	C5-C4	-2.62	1.36	1.43
1	1	1402	PSU	O4-C4	-2.62	1.18	1.23
28	S1	479	A2M	C5-C4	-2.62	1.34	1.40
2	2	1354	PSU	O4-C4	-2.61	1.18	1.23
7	7	74	PSU	O4-C4	-2.61	1.18	1.23
2	2	1303	PSU	04-C4	-2.61	1.18	1.23
1	1	856	OMG	C2-N1	2.60	1.44	1.37
2	2	641	OMG	C2-N1	2.60	1.44	1.37
2	2	597	PSU	O4-C4	-2.60	1.18	1.23
2	2	95	A2M	C5-C4	-2.60	1.34	1.40
2	2	443	OMC	C5-C4	2.59	1.48	1.42
28	S1	2151	OMG	C2-N1	2.59	1.44	1.37

$\alpha \cdot \cdot \cdot \cdot$	C	•	
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	2	1248	OMC	C5-C4	2.59	1.48	1.42
28	S1	2140	OMC	O2-C2	-2.59	1.18	1.23
28	S1	2184	MA6	C5-C4	-2.59	1.34	1.40
2	2	641	OMG	C5-C4	-2.58	1.36	1.43
2	2	1231	OMG	C2-N1	2.58	1.44	1.37
2	2	527	A2M	O3'-C3'	-2.58	1.36	1.43
4	4	74	OMG	C2-N1	2.58	1.44	1.37
2	2	122	PSU	O4-C4	-2.58	1.18	1.23
1	1	940	PSU	O4-C4	-2.58	1.18	1.23
28	S1	33	PSU	O4-C4	-2.58	1.18	1.23
2	2	655	OMG	C2-N1	2.57	1.44	1.37
2	2	1231	OMG	C5-C4	-2.57	1.36	1.43
2	2	1060	PSU	O4-C4	-2.57	1.18	1.23
28	S1	1647	OMG	C5-C4	-2.57	1.36	1.43
2	2	122	PSU	O4'-C1'	-2.57	1.40	1.43
28	S1	455	PSU	O4-C4	-2.57	1.18	1.23
7	7	75	OMG	C5-C4	-2.56	1.36	1.43
28	S1	12	PSU	O4-C4	-2.56	1.18	1.23
28	S1	2202	PSU	O4-C4	-2.56	1.18	1.23
28	S1	1866	OMC	C5-C4	2.55	1.48	1.42
1	1	1626	OMG	C2-N1	2.55	1.44	1.37
28	S1	1865	OMG	C5-C4	-2.55	1.36	1.43
2	2	1397	OMC	C5-C4	2.55	1.48	1.42
1	1	1190	OMG	C2-N1	2.55	1.44	1.37
1	1	856	OMG	C5-C4	-2.55	1.36	1.43
2	2	1046	OMG	C5-C4	-2.54	1.36	1.43
2	2	1058	PSU	O4-C4	-2.54	1.18	1.23
2	2	359	OMC	C5-C4	2.54	1.48	1.42
1	1	1626	OMG	C5-C4	-2.54	1.36	1.43
28	S1	1841	PSU	O4-C4	-2.53	1.18	1.23
28	S1	607	PSU	O4-C4	-2.53	1.18	1.23
28	S1	1550	OMG	C5-C4	-2.53	1.36	1.43
2	2	512	PSU	O4-C4	-2.53	1.18	1.23
28	S1	38	OMC	C5-C4	2.53	1.48	1.42
2	2	472	PSU	O4-C4	-2.52	1.18	1.23
2	2	1159	OMC	C5-C4	2.52	1.48	1.42
2	2	1360	OMG	C5-C4	-2.52	1.36	1.43
28	S1	1192	PSU	O4-C4	-2.52	1.18	1.23
28	S1	1246	PSU	O4-C4	-2.52	1.18	1.23
2	2	1265	PSU	O4-C4	-2.52	1.18	1.23
1	1	1371	OMU	O2-C2	-2.51	1.18	1.23
28	S1	1478	OMG	C5-C4	-2.51	1.36	1.43

Continued	from	nrevious	naae
Commueu	jrom	previous	page

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	S1	609	PSU	O4-C4	-2.51	1.18	1.23
1	1	1010	OMC	C5-C4	2.51	1.48	1.42
28	S1	1829	OMG	C5-C4	-2.51	1.36	1.43
28	S1	2151	OMG	C5-C4	-2.51	1.36	1.43
2	2	1253	OMG	C5-C4	-2.50	1.36	1.43
2	2	510	PSU	O4-C4	-2.50	1.18	1.23
2	2	1317	OMC	C5-C4	2.49	1.48	1.42
2	2	667	OMU	C5-C4	2.49	1.49	1.43
28	S1	8	OMU	C5-C4	2.49	1.49	1.43
28	S1	1566	PSU	O4-C4	-2.49	1.18	1.23
28	S1	1621	OMU	C5-C4	2.49	1.49	1.43
28	S1	1533	PSU	O4-C4	-2.48	1.18	1.23
28	S1	1539	PSU	O4-C4	-2.48	1.18	1.23
1	1	305	A2M	O5'-C5'	-2.48	1.38	1.44
1	1	959	OMG	C5-C4	-2.48	1.36	1.43
28	S1	1156	PSU	O4-C4	-2.48	1.18	1.23
28	S1	661	OMU	C5-C4	2.47	1.49	1.43
2	2	1359	OMU	C5-C4	2.47	1.49	1.43
1	1	1011	PSU	O4-C4	-2.47	1.18	1.23
2	2	534	OMG	C5-C4	-2.47	1.36	1.43
1	1	1527	OMC	C5-C4	2.46	1.48	1.42
1	1	1659	OMU	O2-C2	-2.46	1.18	1.23
2	2	1077	OMU	C5-C4	2.45	1.49	1.43
1	1	1540	OMG	C5-C4	-2.45	1.36	1.43
28	S1	1879	OMG	C5-C4	-2.45	1.36	1.43
1	1	1107	OMU	C5-C4	2.45	1.49	1.43
2	2	1229	OMG	C5-C4	-2.45	1.36	1.43
1	1	695	OMC	C5-C4	2.44	1.48	1.42
28	S1	1623	OMG	C5-C4	-2.44	1.36	1.43
28	S1	104	PSU	O4-C4	-2.44	1.19	1.23
2	2	1078	OMG	C2-N1	2.44	1.43	1.37
4	4	74	OMG	C5-C4	-2.43	1.36	1.43
2	2	1078	OMG	O6-C6	-2.42	1.18	1.23
28	S1	18	OMC	C5-C4	2.42	1.48	1.42
1	1	1171	PSU	O4'-C1'	-2.40	1.40	1.43
28	S1	600	OMG	C5-C4	-2.40	1.37	1.43
3	3	13	OMU	C5-C4	$2.4\overline{0}$	1.48	1.43
28	S1	29	OMU	C5-C4	2.40	1.48	1.43
2	2	1253	OMG	O6-C6	-2.40	1.18	1.23
2	2	73	OMU	C5-C4	2.40	1.48	1.43
2	2	73	OMU	O2-C2	-2.40	1.18	1.23
2	2	56	OMU	C5-C4	2.40	1.48	1.43

Contentaca front prettoas page							
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	3	13	OMU	O2-C2	-2.40	1.18	1.23
28	S1	661	OMU	O2-C2	-2.40	1.18	1.23
1	1	1659	OMU	C5-C4	2.39	1.48	1.43
2	2	71	OMG	O6-C6	-2.39	1.18	1.23
7	7	7	OMU	C5-C4	2.38	1.48	1.43
2	2	655	OMG	C5-C4	-2.38	1.37	1.43
7	7	7	OMU	O2-C2	-2.37	1.18	1.23
1	1	845	OMU	C6-N1	2.37	1.43	1.38
1	1	856	OMG	O6-C6	-2.36	1.18	1.23
2	2	534	OMG	O6-C6	-2.36	1.18	1.23
2	2	667	OMU	O2-C2	-2.35	1.18	1.23
2	2	527	A2M	O5'-C5'	-2.35	1.39	1.44
1	1	847	OMU	O2-C2	-2.35	1.18	1.23
2	2	1077	OMU	O2-C2	-2.35	1.18	1.23
2	2	1078	OMG	C5-C4	-2.35	1.37	1.43
2	2	95	A2M	C2-N3	2.34	1.35	1.32
28	S1	2140	OMC	C5-C4	2.34	1.48	1.42
2	2	1231	OMG	O6-C6	-2.34	1.18	1.23
2	2	56	OMU	O2-C2	-2.33	1.18	1.23
2	2	655	OMG	O6-C6	-2.32	1.18	1.23
2	2	1229	OMG	O6-C6	-2.32	1.18	1.23
28	S1	1979	OMU	C5-C4	2.32	1.48	1.43
28	S1	8	OMU	O2-C2	-2.32	1.18	1.23
2	2	560	OMU	O2-C2	-2.31	1.18	1.23
1	1	1011	PSU	O4'-C1'	-2.31	1.40	1.43
28	S1	1550	OMG	O6-C6	-2.29	1.18	1.23
2	2	641	OMG	O6-C6	-2.29	1.18	1.23
4	4	74	OMG	O6-C6	-2.28	1.18	1.23
1	1	1371	OMU	C5-C4	2.28	1.48	1.43
1	1	847	OMU	C5-C4	2.28	1.48	1.43
2	2	1359	OMU	O2-C2	-2.27	1.18	1.23
1	1	1107	OMU	O2-C2	-2.27	1.18	1.23
2	2	1360	OMG	O6-C6	-2.26	1.18	1.23
1	1	1011	PSU	C4-C5	2.26	1.50	1.44
28	S1	1647	OMG	O6-C6	-2.25	1.18	1.23
28	S1	1833	OMU	C5-C4	2.25	1.48	1.43
1	1	1626	OMG	O6-C6	-2.25	1.18	1.23
2	2	1046	OMG	O6-C6	-2.25	1.18	1.23
28	S1	29	OMU	O2-C2	-2.24	1.18	1.23
28	S1	1979	OMU	O2-C2	-2.24	1.18	1.23
28	S1	600	OMG	06-C6	-2.24	1.18	1.23
2	2	628	A2M	05'-C5'	-2.24	1.39	1.44

Continued from previous page							
Mol	Chain	Res	Type	Atoms			
00	01	1000	OMO	00.00			

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	S1	1623	OMG	O6-C6	-2.23	1.18	1.23
28	S1	2184	MA6	C2-N3	2.23	1.35	1.32
1	1	959	OMG	O6-C6	-2.23	1.18	1.23
28	S1	1833	OMU	O2-C2	-2.22	1.19	1.23
28	S1	1478	OMG	O6-C6	-2.21	1.18	1.23
1	1	1540	OMG	O6-C6	-2.21	1.18	1.23
28	S1	1865	OMG	O6-C6	-2.21	1.18	1.23
2	2	560	OMU	C5-C4	2.20	1.48	1.43
1	1	1190	OMG	O6-C6	-2.20	1.18	1.23
28	S1	1621	OMU	O2-C2	-2.20	1.19	1.23
7	7	75	OMG	O6-C6	-2.19	1.18	1.23
28	S1	1566	PSU	C4-C5	2.19	1.50	1.44
1	1	845	OMU	C5-C4	2.19	1.48	1.43
28	S1	2151	OMG	O6-C6	-2.18	1.18	1.23
28	S1	479	A2M	C2-N3	2.17	1.35	1.32
1	1	1524	OMG	O6-C6	-2.16	1.18	1.23
28	S1	1879	OMG	O6-C6	-2.16	1.18	1.23
1	1	1402	PSU	C4-C5	2.16	1.50	1.44
1	1	955	A2M	O5'-C5'	-2.15	1.39	1.44
7	7	43	A2M	O5'-C5'	-2.14	1.39	1.44
28	S1	668	A2M	O5'-C5'	-2.14	1.39	1.44
28	S1	607	PSU	C4-C5	2.13	1.50	1.44
28	S1	1829	OMG	O6-C6	-2.12	1.19	1.23
28	S1	455	PSU	C4-C5	2.12	1.50	1.44
2	2	1354	PSU	C4-C5	2.12	1.50	1.44
2	2	604	A2M	C2-N3	2.10	1.35	1.32
1	1	927	A2M	O5'-C5'	-2.09	1.39	1.44
28	S1	2202	PSU	C4-C5	2.09	1.50	1.44
2	2	1308	5MC	O5'-C5'	-2.08	1.39	1.44
1	1	1539	A2M	O5'-C5'	-2.08	1.39	1.44
2	2	591	A2M	O5'-C5'	-2.08	1.39	1.44
7	7	162	A2M	O5'-C5'	-2.08	1.39	1.44
28	S1	98	A2M	C2-N3	2.07	1.35	1.32
2	2	1185	A2M	O5'-C5'	-2.07	1.39	1.44
1	1	858	A2M	O5'-C5'	-2.06	1.39	1.44
28	S1	2185	MA6	C2-N3	2.05	1.35	1.32
1	1	235	A2M	C2-N3	2.05	1.35	1.32
28	S1	2021	A2M	C2-N3	2.05	1.35	1.32
28	S1	1539	PSU	C4-C5	2.05	1.50	1.44
2	2	572	A2M	O5'-C5'	-2.05	1.39	1.44
1	1	305	A2M	C2-N3	2.03	1.35	1.32
28	S1	2021	A2M	O5'-C5'	-2.03	1.39	1.44

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	1	407	A2M	C2-N3	2.02	1.35	1.32
2	2	593	PSU	C4-C5	2.02	1.49	1.44
2	2	1185	A2M	C2-N3	2.02	1.35	1.32
28	S1	98	A2M	O5'-C5'	-2.02	1.39	1.44
1	1	697	A2M	C2-N3	2.01	1.35	1.32
28	S1	1841	PSU	C4-C5	2.01	1.49	1.44
2	2	1264	PSU	C4-C5	2.01	1.49	1.44
1	1	1402	PSU	O4'-C1'	-2.01	1.41	1.43
1	1	1181	PSU	C4-C5	2.00	1.49	1.44

All (568) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
28	S1	2184	MA6	N1-C6-N6	-10.93	105.55	117.06
28	S1	2185	MA6	N1-C6-N6	-10.76	105.73	117.06
7	7	162	A2M	C5-C6-N6	8.44	133.18	120.35
28	S1	668	A2M	C5-C6-N6	8.33	133.01	120.35
2	2	628	A2M	C5-C6-N6	8.23	132.86	120.35
7	7	43	A2M	C5-C6-N6	8.22	132.84	120.35
1	1	1539	A2M	C5-C6-N6	8.21	132.82	120.35
1	1	955	A2M	C5-C6-N6	8.12	132.69	120.35
1	1	927	A2M	C5-C6-N6	8.11	132.68	120.35
2	2	572	A2M	C5-C6-N6	8.08	132.63	120.35
2	2	1185	A2M	C5-C6-N6	8.01	132.52	120.35
28	S1	479	A2M	C5-C6-N6	7.99	132.50	120.35
1	1	305	A2M	C5-C6-N6	7.99	132.49	120.35
2	2	591	A2M	C5-C6-N6	7.99	132.49	120.35
28	S1	2021	A2M	C5-C6-N6	7.94	132.42	120.35
2	2	604	A2M	C5-C6-N6	7.91	132.37	120.35
1	1	235	A2M	C5-C6-N6	7.88	132.33	120.35
1	1	858	A2M	C5-C6-N6	7.87	132.31	120.35
2	2	95	A2M	C5-C6-N6	7.83	132.26	120.35
28	S1	98	A2M	C5-C6-N6	7.77	132.16	120.35
1	1	407	A2M	C5-C6-N6	7.72	132.08	120.35
2	2	1372	A2M	C5-C6-N6	7.71	132.07	120.35
2	2	382	A2M	C5-C6-N6	7.67	132.01	120.35
28	S1	512	A2M	C5-C6-N6	7.67	132.01	120.35
1	1	697	A2M	C5-C6-N6	7.58	131.87	120.35
2	2	527	A2M	C5-C6-N6	7.53	131.80	120.35
1	1	845	OMU	C4-N3-C2	-6.29	118.29	126.58
2	2	572	A2M	N3-C2-N1	-5.96	119.37	128.68
7	7	43	A2M	N3-C2-N1	-5.89	119.47	128.68

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page
	2	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	7	162	A2M	N3-C2-N1	-5.83	119.57	128.68
2	2	591	A2M	N3-C2-N1	-5.81	119.61	128.68
2	2	628	A2M	N3-C2-N1	-5.79	119.63	128.68
1	1	697	A2M	N3-C2-N1	-5.78	119.64	128.68
1	1	845	OMU	N3-C2-N1	5.77	122.55	114.89
2	2	1372	A2M	N3-C2-N1	-5.73	119.73	128.68
1	1	235	A2M	N3-C2-N1	-5.72	119.73	128.68
1	1	927	A2M	N3-C2-N1	-5.69	119.79	128.68
2	2	560	OMU	C4-N3-C2	-5.69	119.08	126.58
28	S1	1833	OMU	C4-N3-C2	-5.68	119.08	126.58
28	S1	2021	A2M	N3-C2-N1	-5.65	119.84	128.68
28	S1	512	A2M	N3-C2-N1	-5.63	119.87	128.68
1	1	858	A2M	N3-C2-N1	-5.62	119.90	128.68
2	2	604	A2M	N3-C2-N1	-5.61	119.90	128.68
2	2	527	A2M	N3-C2-N1	-5.60	119.92	128.68
28	S1	668	A2M	N3-C2-N1	-5.60	119.93	128.68
1	1	407	A2M	N3-C2-N1	-5.58	119.95	128.68
28	S1	2184	MA6	N3-C2-N1	-5.58	119.95	128.68
1	1	955	A2M	N3-C2-N1	-5.58	119.96	128.68
28	S1	479	A2M	N3-C2-N1	-5.55	120.01	128.68
28	S1	98	A2M	N3-C2-N1	-5.53	120.03	128.68
1	1	1107	OMU	C4-N3-C2	-5.52	119.29	126.58
2	2	1185	A2M	N3-C2-N1	-5.52	120.05	128.68
2	2	667	OMU	C4-N3-C2	-5.51	119.31	126.58
1	1	305	A2M	N3-C2-N1	-5.49	120.09	128.68
28	S1	668	A2M	N6-C6-N1	-5.48	107.19	118.57
7	7	162	A2M	N6-C6-N1	-5.48	107.21	118.57
7	7	7	OMU	C4-N3-C2	-5.47	119.36	126.58
2	2	56	OMU	C4-N3-C2	-5.47	119.36	126.58
2	2	1077	OMU	C4-N3-C2	-5.47	119.37	126.58
28	S1	8	OMU	C4-N3-C2	-5.46	119.37	126.58
1	1	1539	A2M	N6-C6-N1	-5.46	107.25	118.57
2	2	628	A2M	N6-C6-N1	-5.46	107.25	118.57
2	2	382	A2M	N3-C2-N1	-5.45	120.16	128.68
1	1	1539	A2M	N3-C2-N1	-5.40	120.23	128.68
28	S1	2185	MA6	N3-C2-N1	-5.39	120.25	128.68
7	7	43	A2M	N6-C6-N1	-5.38	107.40	118.57
28	S1	661	OMU	C4-N3-C2	-5.38	119.48	126.58
1	1	955	A2M	N6-C6-N1	-5.37	107.42	118.57
1	1	1659	OMU	C4-N3-C2	-5.36	119.50	126.58
28	S1	1621	OMU	C4-N3-C2	-5.35	119.52	126.58
2	2	572	A2M	N6-C6-N1	-5.32	107.54	118.57

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
28	S1	479	A2M	N6-C6-N1	-5.31	107.54	118.57
2	2	1185	A2M	N6-C6-N1	-5.31	107.55	118.57
2	2	604	A2M	N6-C6-N1	-5.27	107.62	118.57
28	S1	2021	A2M	N6-C6-N1	-5.27	107.64	118.57
1	1	235	A2M	N6-C6-N1	-5.26	107.65	118.57
2	2	95	A2M	N6-C6-N1	-5.25	107.67	118.57
2	2	95	A2M	N3-C2-N1	-5.22	120.52	128.68
1	1	305	A2M	N6-C6-N1	-5.21	107.75	118.57
1	1	927	A2M	N6-C6-N1	-5.20	107.77	118.57
1	1	858	A2M	N6-C6-N1	-5.20	107.78	118.57
2	2	1359	OMU	C4-N3-C2	-5.17	119.76	126.58
2	2	382	A2M	N6-C6-N1	-5.15	107.88	118.57
2	2	527	A2M	N6-C6-N1	-5.14	107.91	118.57
28	S1	29	OMU	C4-N3-C2	-5.10	119.86	126.58
1	1	407	A2M	N6-C6-N1	-5.08	108.02	118.57
2	2	591	A2M	N6-C6-N1	-5.08	108.03	118.57
28	S1	98	A2M	N6-C6-N1	-5.08	108.03	118.57
3	3	13	OMU	C4-N3-C2	-5.07	119.89	126.58
1	1	1371	OMU	C4-N3-C2	-5.01	119.97	126.58
28	S1	512	A2M	N6-C6-N1	-5.00	108.20	118.57
28	S1	1543	B8N	C5-C4-N3	4.98	125.40	116.17
28	S1	1979	OMU	C4-N3-C2	-4.98	120.01	126.58
1	1	847	OMU	C4-N3-C2	-4.98	120.01	126.58
2	2	1372	A2M	N6-C6-N1	-4.94	108.33	118.57
28	S1	1995	7MG	C5-C6-N1	4.93	119.67	110.99
1	1	697	A2M	N6-C6-N1	-4.91	108.38	118.57
2	2	78	PSU	C4-N3-C2	-4.72	119.53	126.34
2	2	1361	PSU	C4-N3-C2	-4.71	119.55	126.34
1	1	239	PSU	C4-N3-C2	-4.69	119.58	126.34
2	2	1318	PSU	C4-N3-C2	-4.67	119.61	126.34
2	2	437	PSU	C4-N3-C2	-4.67	119.61	126.34
28	S1	33	PSU	C4-N3-C2	-4.66	119.62	126.34
2	2	1403	PSU	C4-N3-C2	-4.65	119.63	126.34
2	2	1144	PSU	C4-N3-C2	-4.65	119.64	126.34
7	7	69	PSU	C4-N3-C2	-4.64	119.66	126.34
1	1	1017	PSU	C4-N3-C2	-4.64	119.66	126.34
2	2	1060	PSU	C4-N3-C2	-4.63	119.67	126.34
28	S1	1657	PSU	C4-N3-C2	-4.63	119.67	126.34
2	2	662	PSU	C4-N3-C2	-4.60	119.70	126.34
1	1	1533	PSU	C4-N3-C2	-4.58	119.73	126.34
2	2	1264	PSU	C4-N3-C2	-4.56	119.77	126.34
28	S1	104	PSU	C4-N3-C2	-4.55	119.79	126.34

α \cdot \cdot \cdot	C	•	
Continued	trom	nremons	naae
Contracta	110110	precious	pagem

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	2	73	OMU	C4-N3-C2	-4.54	120.59	126.58
1	1	940	PSU	C4-N3-C2	-4.54	119.80	126.34
2	2	597	PSU	C4-N3-C2	-4.51	119.84	126.34
7	7	74	PSU	C4-N3-C2	-4.50	119.85	126.34
28	S1	12	PSU	C4-N3-C2	-4.50	119.85	126.34
2	2	1060	PSU	N1-C2-N3	4.50	120.23	115.13
2	2	1144	PSU	N1-C2-N3	4.50	120.22	115.13
28	S1	1246	PSU	C4-N3-C2	-4.48	119.89	126.34
2	2	1194	PSU	C4-N3-C2	-4.48	119.89	126.34
1	1	1664	PSU	C4-N3-C2	-4.47	119.90	126.34
2	2	1303	PSU	C4-N3-C2	-4.46	119.91	126.34
1	1	422	PSU	C4-N3-C2	-4.46	119.92	126.34
28	S1	1533	PSU	C4-N3-C2	-4.45	119.92	126.34
2	2	1413	PSU	C4-N3-C2	-4.44	119.94	126.34
7	7	69	PSU	N1-C2-N3	4.44	120.16	115.13
2	2	510	PSU	C4-N3-C2	-4.43	119.95	126.34
1	1	940	PSU	N1-C2-N3	4.43	120.15	115.13
1	1	1528	PSU	C4-N3-C2	-4.42	119.97	126.34
2	2	626	PSU	C4-N3-C2	-4.40	120.01	126.34
28	S1	1156	PSU	C4-N3-C2	-4.38	120.02	126.34
2	2	1265	PSU	N1-C2-N3	4.38	120.09	115.13
2	2	1361	PSU	N1-C2-N3	4.36	120.07	115.13
2	2	593	PSU	C4-N3-C2	-4.36	120.06	126.34
28	S1	609	PSU	C4-N3-C2	-4.36	120.06	126.34
2	2	472	PSU	C4-N3-C2	-4.36	120.06	126.34
2	2	1194	PSU	N1-C2-N3	4.35	120.06	115.13
28	S1	1192	PSU	C4-N3-C2	-4.34	120.08	126.34
28	S1	104	PSU	N1-C2-N3	4.34	120.05	115.13
2	2	512	PSU	C4-N3-C2	-4.33	120.10	126.34
28	S1	1246	PSU	N1-C2-N3	4.33	120.03	115.13
28	S1	2046	PSU	C4-N3-C2	-4.33	120.11	126.34
28	S1	1995	7MG	C2-N3-C4	4.33	120.01	112.30
2	2	122	PSU	C4-N3-C2	-4.31	120.13	126.34
1	1	1017	PSU	N1-C2-N3	4.31	120.01	115.13
28	S1	33	PSU	N1-C2-N3	4.31	120.01	115.13
2	2	597	PSU	N1-C2-N3	4.31	120.01	115.13
28	S1	1566	PSU	C4-N3-C2	-4.30	120.14	126.34
2	2	1308	5MC	C5-C6-N1	-4.29	118.92	123.34
2	2	1303	PSU	N1-C2-N3	4.29	119.99	115.13
1	1	1039	PSU	C4-N3-C2	-4.29	120.16	126.34
2	2	122	PSU	N1-C2-N3	4.28	119.98	115.13
2	2	662	PSU	N1-C2-N3	4.28	119.98	115.13

a 1	C		
Continued	from	previous	page
		1	1 0

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	2	472	PSU	N1-C2-N3	4.26	119.96	115.13
2	2	1265	PSU	C4-N3-C2	-4.25	120.22	126.34
1	1	239	PSU	N1-C2-N3	4.24	119.94	115.13
2	2	1403	PSU	N1-C2-N3	4.23	119.92	115.13
1	1	1533	PSU	N1-C2-N3	4.22	119.91	115.13
28	S1	2046	PSU	N1-C2-N3	4.21	119.90	115.13
28	S1	609	PSU	N1-C2-N3	4.21	119.90	115.13
28	S1	2202	PSU	C4-N3-C2	-4.21	120.28	126.34
2	2	1354	PSU	C4-N3-C2	-4.19	120.30	126.34
28	S1	607	PSU	C4-N3-C2	-4.19	120.30	126.34
2	2	1318	PSU	N1-C2-N3	4.19	119.87	115.13
28	S1	12	PSU	N1-C2-N3	4.17	119.86	115.13
28	S1	1539	PSU	C4-N3-C2	-4.16	120.35	126.34
28	S1	1543	B8N	C4-N3-C2	-4.16	120.20	125.46
28	S1	1192	PSU	N1-C2-N3	4.15	119.84	115.13
1	1	1181	PSU	C4-N3-C2	-4.15	120.36	126.34
28	S1	455	PSU	C4-N3-C2	-4.15	120.36	126.34
1	1	1402	PSU	C4-N3-C2	-4.14	120.38	126.34
28	S1	1156	PSU	N1-C2-N3	4.13	119.81	115.13
28	S1	1841	PSU	C4-N3-C2	-4.12	120.40	126.34
7	7	74	PSU	N1-C2-N3	4.11	119.79	115.13
1	1	1528	PSU	N1-C2-N3	4.11	119.79	115.13
1	1	845	OMU	C1'-N1-C2	4.11	125.01	117.57
28	S1	1533	PSU	N1-C2-N3	4.11	119.78	115.13
1	1	422	PSU	N1-C2-N3	4.11	119.78	115.13
2	2	1413	PSU	N1-C2-N3	4.10	119.78	115.13
2	2	78	PSU	N1-C2-N3	4.10	119.78	115.13
2	2	1264	PSU	N1-C2-N3	4.09	119.76	115.13
1	1	1171	PSU	C6-N1-C2	-4.08	118.51	122.68
2	2	510	PSU	N1-C2-N3	4.06	119.72	115.13
28	S1	1657	PSU	N1-C2-N3	4.05	119.72	115.13
28	S1	2202	PSU	N1-C2-N3	4.05	119.72	115.13
28	S1	1539	PSU	N1-C2-N3	4.05	119.71	115.13
28	S1	1833	OMU	C5-C4-N3	4.04	120.89	114.84
2	2	1077	OMU	N3-C2-N1	4.03	120.25	114.89
1	1	1011	PSU	$C4-N3-\overline{C2}$	-4.02	120.54	126.34
2	2	593	PSU	N1-C2-N3	4.02	119.69	115.13
28	S1	1566	PSU	N1-C2-N3	4.01	119.67	115.13
2	2	626	PSU	N1-C2-N3	4.00	119.67	115.13
28	S1	607	PSU	N1-C2-N3	3.98	119.64	115.13
28	S1	455	PSU	N1-C2-N3	3.97	119.62	115.13
2	2	1354	PSU	N1-C2-N3	3.96	119.61	115.13

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	previous	page
00100000000	J. 00	proceed as	p @g o

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	1371	OMU	C1'-N1-C2	3.95	124.73	117.57
1	1	1402	PSU	N1-C2-N3	3.95	119.61	115.13
2	2	512	PSU	N1-C2-N3	3.95	119.61	115.13
1	1	1664	PSU	N1-C2-N3	3.94	119.59	115.13
1	1	1011	PSU	N1-C2-N3	3.93	119.59	115.13
2	2	1078	OMG	N2-C2-N3	3.93	127.39	119.74
2	2	437	PSU	N1-C2-N3	3.92	119.57	115.13
1	1	1039	PSU	N1-C2-N3	3.91	119.56	115.13
2	2	1078	OMG	C5-C6-N1	3.91	120.85	113.95
2	2	560	OMU	C2'-C1'-N1	-3.90	106.64	114.22
1	1	1659	OMU	N3-C2-N1	3.89	120.06	114.89
28	S1	1841	PSU	N1-C2-N3	3.89	119.54	115.13
2	2	1359	OMU	N3-C2-N1	3.89	120.05	114.89
2	2	1058	PSU	C4-N3-C2	-3.85	120.79	126.34
28	S1	1995	7MG	C5-C4-N3	-3.84	120.82	128.13
28	S1	661	OMU	N3-C2-N1	3.84	119.98	114.89
2	2	667	OMU	N3-C2-N1	3.84	119.98	114.89
7	7	7	OMU	N3-C2-N1	3.82	119.97	114.89
28	S1	1833	OMU	O4-C4-C5	-3.82	118.44	125.16
1	1	1181	PSU	N1-C2-N3	3.80	119.43	115.13
1	1	847	OMU	N3-C2-N1	3.77	119.89	114.89
2	2	560	OMU	N3-C2-N1	3.76	119.88	114.89
1	1	1171	PSU	C4-N3-C2	-3.74	120.95	126.34
28	S1	8	OMU	N3-C2-N1	3.72	119.82	114.89
28	S1	29	OMU	N3-C2-N1	3.67	119.76	114.89
2	2	1058	PSU	C6-N1-C2	-3.62	118.98	122.68
2	2	56	OMU	N3-C2-N1	3.62	119.70	114.89
1	1	1371	OMU	N3-C2-N1	3.62	119.69	114.89
28	S1	1621	OMU	N3-C2-N1	3.62	119.69	114.89
2	2	1058	PSU	N1-C2-N3	3.61	119.22	115.13
2	2	1060	PSU	C6-C5-C4	3.61	120.72	118.20
28	S1	8	OMU	C5-C4-N3	3.60	120.22	114.84
2	2	534	OMG	C5-C6-N1	3.60	120.30	113.95
2	2	56	OMU	C5-C4-N3	3.59	120.22	114.84
2	2	1231	OMG	C5-C6-N1	3.59	120.30	113.95
1	1	1107	OMU	C5-C4-N3	3.59	120.21	114.84
1	1	1171	PSU	N1-C2-N3	3.59	119.19	115.13
7	7	7	OMU	C5-C4-N3	3.58	120.20	114.84
2	2	560	OMU	C5-C4-N3	3.56	120.16	114.84
28	S1	1621	OMU	C5-C4-N3	3.55	120.14	114.84
2	2	71	OMG	C5-C6-N1	3.53	120.19	113.95
2	2	655	OMG	C5-C6-N1	3.53	120.18	113.95

 $Observed(^{o}) \mid Ideal(^{o})$

Continued from previous page							
Mol	Chain	Res	Type	Atoms			
28	S1	1246	PSU	C6-C5-C4	3.53		
2	2	667	OMU	C5-C4-N3	3.52		
28	S1	1550	OMG	C5-C6-N1	3.52		
3	3	13	OMU	N3-C2-N1	3.52		
2	2	524	5MC	C5-C6-N1	-3.50		
28	S1	2046	PSU	C6-N1-C2	-3.50		
28	S1	661	OMU	C5-C4-N3	3.50		
2	2	472	PSU	C6-N1-C2	-3.50		
2	2	1253	OMG	C5-C6-N1	3.48		
28	S1	1979	OMU	N3-C2-N1	3.48		

2 2 667 OMU C5-C4-N3 3.52 120.11 28 S1 1550 OMG C5-C6-N1 3.52 120.17	114.84 113.95
28 S1 1550 OMG C5-C6-N1 3.52 120.17	113.95
3 3 13 OMU N3-C2-N1 3.52 119.56	114.89
2 2 524 5MC C5-C6-N1 -3.50 119.73	123.34
28 S1 2046 PSU C6-N1-C2 -3.50 119.10	122.68
28 S1 661 OMU C5-C4-N3 3.50 120.08	114.84
2 2 472 PSU C6-N1-C2 -3.50 119.10	122.68
2 2 1253 OMG C5-C6-N1 3.48 120.09	113.95
28 S1 1979 OMU N3-C2-N1 3.48 119.50	114.89
1 1 1107 OMU N3-C2-N1 3.47 119.49	114.89
2 2 122 PSU C6-N1-C2 -3.46 119.14	122.68
2 2 1265 PSU C6-N1-C2 -3.46 119.14	122.68
28 S1 1544 5MC C5-C6-N1 -3.46 119.78	123.34
2 2 1303 PSU C6-C5-C4 3.46 120.61	118.20
28 S1 1623 OMG C5-C6-N1 3.44 120.02	113.95
2 2 73 OMU N3-C2-N1 3.44 119.45	114.89
3 3 13 OMU C5-C4-N3 3.43 119.98	114.84
1 1 940 PSU C6-C5-C4 3.42 120.59	118.20
1 1 1626 OMG C5-C6-N1 3.42 119.98	113.95
28 S1 2061 5MC C5-C6-N1 -3.40 119.84	123.34
28 S1 1865 OMG C5-C6-N1 3.40 119.95	113.95
2 2 1046 OMG C5-C6-N1 3.39 119.94	113.95
28 S1 1879 OMG C5-C6-N1 3.38 119.92	113.95
1 1 959 OMG C5-C6-N1 3.38 119.92	113.95
1 1 1524 OMG C5-C6-N1 3.38 119.91	113.95
1 1 1659 OMU C5-C4-N3 3.37 119.89	114.84
1 1 1190 OMG C5-C6-N1 3.37 119.91	113.95
1 1 856 OMG C5-C6-N1 3.37 119.91	113.95
28 S1 600 OMG C5-C6-N1 3.37 119.91	113.95
28 S1 1647 OMG C5-C6-N1 3.37 119.90	113.95
2 2 1144 PSU C6-C5-C4 3.36 120.54	118.20
2 2 1360 OMG C5-C6-N1 3.35 119.86	113.95
28 S1 1979 OMU C5-C4-N3 3.34 119.84	114.84
28 S1 1478 OMG C5-C6-N1 3.34 119.85	113.95
28 S1 1829 OMG C5-C6-N1 3.34 119.85	113.95
2 2 1229 OMG C5-C6-N1 3.33 119.84	113.95
2 2 1359 OMU C5-C4-N3 3.33 119.83	114.84
2 2 662 PSU C6-C5-C4 3.33 120.53	118.20
28 S1 29 OMU C5-C4-N3 3.33 119.82	114.84
7 75 OMG C5-C6-N1 3.32 119.81	113.95
1 1 845 OMU C6-C5-C4 3.32 124.05	$1\overline{19.52}$

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	2	1077	OMU	C5-C4-N3	3.32	119.80	114.84
1	1	1371	OMU	C5-C4-N3	3.30	119.77	114.84
1	1	1540	OMG	C5-C6-N1	3.26	119.70	113.95
2	2	534	OMG	C2-N1-C6	-3.25	119.12	125.10
2	2	1403	PSU	C6-C5-C4	3.25	120.47	118.20
2	2	1308	5MC	C4'-O4'-C1'	-3.24	102.32	109.47
4	4	74	OMG	C5-C6-N1	3.24	119.67	113.95
7	7	69	PSU	C6-C5-C4	3.23	120.46	118.20
28	S1	2151	OMG	C5-C6-N1	3.22	119.64	113.95
2	2	641	OMG	C5-C6-N1	3.22	119.64	113.95
2	2	560	OMU	O3'-C3'-C4'	3.20	120.31	111.05
28	S1	104	PSU	C6-C5-C4	3.19	120.43	118.20
2	2	655	OMG	C2-N1-C6	-3.19	119.23	125.10
1	1	1107	OMU	O4-C4-C5	-3.18	119.57	125.16
28	S1	1539	PSU	C6-N1-C2	-3.15	119.46	122.68
28	S1	1995	7MG	C4-C5-N7	3.15	109.91	105.53
28	S1	1995	7MG	C5-C4-N9	3.15	110.44	106.35
2	2	1046	OMG	C2-N1-C6	-3.15	119.30	125.10
28	S1	1833	OMU	N3-C2-N1	3.13	119.05	114.89
2	2	73	OMU	C5-C4-N3	3.13	119.53	114.84
1	1	847	OMU	C5-C4-N3	3.12	119.51	114.84
2	2	1194	PSU	C6-N1-C2	-3.12	119.49	122.68
1	1	239	PSU	C6-C5-C4	3.12	120.38	118.20
1	1	845	OMU	O2-C2-N3	-3.11	115.72	121.50
28	S1	1192	PSU	C6-N1-C2	-3.11	119.51	122.68
2	2	71	OMG	C2-N1-C6	-3.08	119.43	125.10
28	S1	600	OMG	C2-N1-C6	-3.08	119.43	125.10
28	S1	609	PSU	C6-N1-C2	-3.07	119.55	122.68
28	S1	1841	PSU	C6-N1-C2	-3.06	119.55	122.68
2	2	1253	OMG	C2-N1-C6	-3.06	119.47	125.10
2	2	1265	PSU	C6-C5-C4	3.06	120.34	118.20
28	S1	1533	PSU	C6-C5-C4	3.06	120.34	118.20
28	S1	1879	OMG	C2-N1-C6	-3.05	119.48	125.10
1	1	1540	OMG	C2-N1-C6	-3.04	119.50	125.10
28	S1	1829	OMG	C2-N1-C6	-3.04	119.51	125.10
2	2	1229	OMG	C2-N1-C6	-3.03	119.52	125.10
28	S1	1550	OMG	C2-N1-C6	-3.03	119.52	125.10
1	1	1039	PSU	C6-N1-C2	-3.02	119.59	122.68
28	S1	1979	OMU	O4-C4-C5	-3.02	119.85	125.16
28	S1	607	PSU	C6-N1-C2	-3.02	119.60	122.68
2	2	1360	OMG	C2-N1-C6	-3.02	119.55	125.10
28	S1	1623	OMG	C2-N1-C6	-3.02	119.55	125.10

α \cdot \cdot \cdot	C	•	
Continued	trom	nremous	naae
Contentaca	<i>J</i> 10110	proceeduo	pagc

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	2	1231	OMG	C2-N1-C6	-3.01	119.56	125.10
1	1	959	OMG	C2-N1-C6	-2.99	119.60	125.10
1	1	940	PSU	C6-N1-C2	-2.98	119.63	122.68
28	S1	33	PSU	C6-C5-C4	2.98	120.28	118.20
28	S1	1478	OMG	C2-N1-C6	-2.98	119.61	125.10
28	S1	1647	OMG	C2-N1-C6	-2.98	119.61	125.10
1	1	1402	PSU	C6-N1-C2	-2.97	119.64	122.68
1	1	1011	PSU	C6-N1-C2	-2.97	119.65	122.68
2	2	641	OMG	C8-N7-C5	2.96	108.63	102.99
1	1	1524	OMG	C2-N1-C6	-2.96	119.65	125.10
1	1	1626	OMG	C2-N1-C6	-2.96	119.66	125.10
28	S1	1543	B8N	N3-C2-N1	2.95	120.93	116.76
2	2	641	OMG	C2-N1-C6	-2.95	119.67	125.10
28	S1	1621	OMU	O4-C4-C5	-2.95	119.98	125.16
28	S1	1865	OMG	C2-N1-C6	-2.94	119.69	125.10
28	S1	455	PSU	C6-N1-C2	-2.94	119.68	122.68
1	1	856	OMG	C2-N1-C6	-2.93	119.70	125.10
1	1	1371	OMU	O4-C4-C5	-2.93	120.00	125.16
28	S1	2202	PSU	C6-N1-C2	-2.91	119.71	122.68
2	2	1361	PSU	C6-N1-C2	-2.90	119.72	122.68
2	2	472	PSU	O2-C2-N1	-2.90	119.60	122.79
28	S1	29	OMU	O4-C4-C5	-2.89	120.08	125.16
28	S1	1156	PSU	C6-N1-C2	-2.89	119.73	122.68
7	7	75	OMG	C2-N1-C6	-2.89	119.78	125.10
1	1	1533	PSU	C6-C5-C4	2.89	120.22	118.20
2	2	597	PSU	C6-C5-C4	2.89	120.22	118.20
4	4	74	OMG	C2-N1-C6	-2.89	119.78	125.10
2	2	1303	PSU	C6-N1-C2	-2.89	119.73	122.68
3	3	13	OMU	O4-C4-C5	-2.88	120.09	125.16
1	1	1528	PSU	C6-N1-C2	-2.88	119.74	122.68
2	2	1144	PSU	C6-N1-C2	-2.87	119.74	122.68
28	S1	1246	PSU	C6-N1-C2	-2.87	119.75	122.68
2	2	597	PSU	C6-N1-C2	-2.87	119.75	122.68
28	S1	104	PSU	C6-N1-C2	-2.87	119.75	122.68
2	2	1060	PSU	C6-N1-C2	-2.86	119.76	122.68
28	S1	33	PSU	C6-N1-C2	-2.85	119.77	122.68
2	2	560	OMU	O4-C4-C5	-2.84	120.16	125.16
2	2	1078	OMG	N1-C2-N3	-2.84	118.02	123.32
1	1	1533	PSU	C6-N1-C2	-2.83	119.79	122.68
2	2	1354	PSU	C6-N1-C2	-2.83	119.79	122.68
1	1	1190	OMG	C2-N1-C6	-2.83	119.89	125.10
1	1	1181	PSU	C6-N1-C2	-2.82	119.80	122.68

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	<i>paae</i>
• • • • • • • • • • • •	J	P · · · · · · · · · · · · · · · · · · ·	r - g - · · ·

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
28	S1	609	PSU	C6-C5-C4	2.82	120.17	118.20
2	2	667	OMU	O4-C4-C5	-2.82	120.21	125.16
28	S1	2151	OMG	C2-N1-C6	-2.81	119.92	125.10
2	2	510	PSU	C6-N1-C2	-2.80	119.82	122.68
1	1	1659	OMU	O4-C4-C5	-2.80	120.24	125.16
2	2	1077	OMU	O4-C4-C5	-2.80	120.24	125.16
2	2	1058	PSU	O2-C2-N1	-2.79	119.72	122.79
1	1	422	PSU	C6-N1-C2	-2.79	119.83	122.68
2	2	122	PSU	C6-C5-C4	2.79	120.15	118.20
1	1	856	OMG	C8-N7-C5	2.79	108.31	102.99
28	S1	1995	7MG	C2-N1-C6	-2.78	120.02	125.10
2	2	1361	PSU	C6-C5-C4	2.78	120.14	118.20
1	1	1017	PSU	C6-N1-C2	-2.78	119.84	122.68
28	S1	12	PSU	C6-N1-C2	-2.78	119.84	122.68
28	S1	1995	7MG	O6-C6-C5	-2.78	120.72	127.54
28	S1	1533	PSU	C6-N1-C2	-2.78	119.84	122.68
28	S1	1657	PSU	C6-C5-C4	2.77	120.13	118.20
28	S1	12	PSU	C6-C5-C4	2.77	120.13	118.20
2	2	56	OMU	O4-C4-C5	-2.77	120.30	125.16
2	2	512	PSU	C6-N1-C2	-2.76	119.86	122.68
2	2	1413	PSU	C6-N1-C2	-2.76	119.87	122.68
2	2	626	PSU	C6-N1-C2	-2.75	119.87	122.68
2	2	662	PSU	C6-N1-C2	-2.75	119.88	122.68
2	2	1194	PSU	C6-C5-C4	2.75	120.12	118.20
28	S1	1647	OMG	C8-N7-C5	2.74	108.20	102.99
1	1	1190	OMG	C8-N7-C5	2.74	108.20	102.99
28	S1	1566	PSU	C6-N1-C2	-2.73	119.89	122.68
28	S1	8	OMU	O4-C4-C5	-2.73	120.36	125.16
7	7	69	PSU	C6-N1-C2	-2.73	119.90	122.68
1	1	239	PSU	C6-N1-C2	-2.72	119.90	122.68
1	1	1626	OMG	C8-N7-C5	2.72	108.17	102.99
2	2	1265	PSU	O2-C2-N1	-2.72	119.80	122.79
7	7	7	OMU	O4-C4-C5	-2.71	120.40	125.16
7	7	75	OMG	C8-N7-C5	2.70	108.14	102.99
1	1	1540	OMG	C8-N7-C5	2.70	108.14	102.99
2	2	122	PSU	O2-C2-N1	-2.70	119.82	122.79
7	7	74	PSU	C6-N1-C2	-2.70	119.92	122.68
2	2	662	PSU	02-C2-N1	-2.70	119.82	122.79
28	S1	1829	OMG	C8-N7-C5	2.69	108.12	102.99
1	1	847	OMU	O4-C4-C5	-2.68	120.44	125.16
2	2	655	OMG	C8-N7-C5	2.68	108.10	102.99
28	S1	1543	B8N	04-C4-N3	-2.68	115.43	119.98

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	1524	OMG	C8-N7-C5	2.67	108.08	102.99
28	S1	2046	PSU	O2-C2-N1	-2.67	119.85	122.79
2	2	510	PSU	C6-C5-C4	2.66	120.06	118.20
28	S1	1539	PSU	O2-C2-N1	-2.65	119.87	122.79
28	S1	1550	OMG	C8-N7-C5	2.65	108.05	102.99
28	S1	1156	PSU	C6-C5-C4	2.65	120.05	118.20
1	1	1664	PSU	C6-N1-C2	-2.65	119.97	122.68
2	2	626	PSU	O2-C2-N1	-2.64	119.88	122.79
2	2	1359	OMU	O4-C4-C5	-2.63	120.53	125.16
1	1	1017	PSU	C6-C5-C4	2.63	120.04	118.20
2	2	593	PSU	C6-N1-C2	-2.62	120.00	122.68
2	2	1360	OMG	C8-N7-C5	2.62	107.98	102.99
28	S1	661	OMU	O4-C4-C5	-2.62	120.55	125.16
1	1	422	PSU	C6-C5-C4	2.61	120.02	118.20
2	2	1253	OMG	C8-N7-C5	2.61	107.96	102.99
2	2	1229	OMG	C8-N7-C5	2.61	107.96	102.99
2	2	1046	OMG	C8-N7-C5	2.61	107.96	102.99
28	S1	1478	OMG	C8-N7-C5	2.61	107.95	102.99
1	1	1528	PSU	C6-C5-C4	2.59	120.01	118.20
1	1	1533	PSU	O2-C2-N1	-2.59	119.94	122.79
2	2	71	OMG	C8-N7-C5	2.59	107.92	102.99
1	1	959	OMG	C8-N7-C5	2.59	107.92	102.99
28	S1	1879	OMG	C8-N7-C5	2.58	107.91	102.99
28	S1	2151	OMG	C8-N7-C5	2.58	107.91	102.99
2	2	1403	PSU	C6-N1-C2	-2.58	120.04	122.68
2	2	437	PSU	C6-C5-C4	2.58	120.00	118.20
28	S1	1657	PSU	C6-N1-C2	-2.58	120.05	122.68
2	2	1264	PSU	C6-N1-C2	-2.58	120.05	122.68
4	4	74	OMG	C8-N7-C5	2.58	107.90	102.99
2	2	1231	OMG	C8-N7-C5	2.57	107.89	102.99
2	2	1318	PSU	C6-C5-C4	2.57	120.00	118.20
1	1	1011	PSU	O2-C2-N1	-2.57	119.96	122.79
2	2	667	OMU	O2-C2-N1	-2.57	119.37	122.79
2	2	1144	PSU	O2-C2-N1	-2.57	119.96	122.79
2	2	1194	PSU	O2-C2-N1	-2.57	119.97	122.79
28	S1	1623	OMG	C8-N7-C5	2.55	107.85	102.99
28	S1	600	OMG	C8-N7-C5	2.55	107.85	102.99
2	2	534	OMG	O6-C6-C5	-2.55	119.40	124.37
1	1	1171	PSU	O2-C2-N1	-2.54	119.99	122.79
28	S1	1865	OMG	C8-N7-C5	2.54	107.82	102.99
1	1	1659	OMU	O2-C2-N1	-2.53	119.43	122.79
2	2	1318	PSU	C6-N1-C2	-2.52	120.10	122.68

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
0 0	J	P	r

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	2	472	PSU	C6-C5-C4	2.52	119.96	118.20
2	2	71	OMG	O6-C6-C5	-2.52	119.46	124.37
2	2	534	OMG	C8-N7-C5	2.51	107.78	102.99
7	7	7	OMU	O2-C2-N1	-2.51	119.45	122.79
28	S1	1246	PSU	O2-C2-N1	-2.50	120.04	122.79
28	S1	609	PSU	O2-C2-N1	-2.49	120.04	122.79
2	2	1078	OMG	O6-C6-C5	-2.49	119.50	124.37
7	7	74	PSU	C6-C5-C4	2.48	119.93	118.20
2	2	78	PSU	C6-N1-C2	-2.48	120.15	122.68
2	2	1078	OMG	C8-N7-C5	2.47	107.69	102.99
28	S1	1621	OMU	O2-C2-N1	-2.47	119.51	122.79
28	S1	1829	OMG	O6-C6-C5	-2.46	119.57	124.37
28	S1	2202	PSU	C6-C5-C4	2.46	119.92	118.20
2	2	78	PSU	C6-C5-C4	2.45	119.91	118.20
28	S1	8	OMU	O2-C2-N1	-2.43	119.56	122.79
2	2	122	PSU	C3'-C2'-C1'	2.42	104.46	101.64
2	2	560	OMU	CM2-O2'-C2'	-2.42	108.17	114.52
1	1	940	PSU	O2-C2-N1	-2.42	120.13	122.79
1	1	239	PSU	O2-C2-N1	-2.42	120.13	122.79
2	2	1077	OMU	O2-C2-N1	-2.40	119.59	122.79
2	2	73	OMU	O4-C4-C5	-2.39	120.95	125.16
2	2	1354	PSU	O2-C2-N1	-2.39	120.16	122.79
28	S1	1865	OMG	O6-C6-C5	-2.38	119.72	124.37
28	S1	600	OMG	O6-C6-C5	-2.38	119.72	124.37
2	2	593	PSU	C6-C5-C4	2.38	119.86	118.20
1	1	1107	OMU	O2-C2-N1	-2.38	119.63	122.79
28	S1	33	PSU	O2-C2-N1	-2.37	120.18	122.79
28	S1	1841	PSU	O2-C2-N1	-2.37	120.18	122.79
28	S1	1623	OMG	O6-C6-C5	-2.37	119.74	124.37
28	S1	1543	B8N	C32-C31-N3	-2.37	107.56	112.00
28	S1	1657	PSU	O2-C2-N1	-2.36	120.19	122.79
2	2	1360	OMG	O6-C6-C5	-2.36	119.77	124.37
28	S1	104	PSU	O2-C2-N1	-2.35	120.20	122.79
1	1	1402	PSU	O2-C2-N1	-2.35	120.21	122.79
2	2	1403	PSU	O2-C2-N1	-2.34	120.21	122.79
1	1	422	PSU	O2-C2-N1	-2.34	120.22	122.79
2	2	1229	OMG	O6-C6-C5	-2.33	119.82	124.37
1	1	1017	PSU	O2-C2-N1	-2.33	120.23	122.79
28	S1	1647	OMG	O6-C6-C5	-2.32	119.84	124.37
28	S1	1192	PSU	C6-C5-C4	2.32	119.82	118.20
28	S1	661	OMU	O2-C2-N1	-2.32	119.70	122.79
28	S1	1533	PSU	O2-C2-N1	-2.32	120.24	122.79

α \cdot \cdot \cdot	C	•	
Continued	trom	nremous	naae
Contentaca	<i>J</i> 10110	proceeduo	pagc

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	1524	OMG	O6-C6-C5	-2.31	119.86	124.37
1	1	1011	PSU	O4'-C1'-C2'	2.31	108.40	105.14
2	2	570	A2M	C5-C6-N6	2.31	123.86	120.35
28	S1	1478	OMG	O6-C6-C5	-2.31	119.87	124.37
2	2	1384	A2M	C5-C6-N6	2.30	123.85	120.35
1	1	845	OMU	C5-C4-N3	2.30	118.28	114.84
2	2	1413	PSU	C6-C5-C4	2.30	119.80	118.20
28	S1	12	PSU	O2-C2-N1	-2.29	120.27	122.79
28	S1	607	PSU	O2-C2-N1	-2.29	120.27	122.79
2	2	1303	PSU	O2-C2-N1	-2.29	120.27	122.79
2	2	512	PSU	O2-C2-N1	-2.29	120.27	122.79
2	2	1318	PSU	O2-C2-N1	-2.28	120.28	122.79
2	2	1078	OMG	C2-N1-C6	-2.28	120.90	125.10
2	2	510	PSU	O2-C2-N1	-2.27	120.29	122.79
28	S1	1192	PSU	O2-C2-N1	-2.27	120.29	122.79
1	1	681	A2M	C5-C6-N6	2.27	123.80	120.35
1	1	678	A2M	C5-C6-N6	2.27	123.80	120.35
2	2	1046	OMG	O6-C6-C5	-2.26	119.95	124.37
4	4	74	OMG	O6-C6-C5	-2.26	119.95	124.37
2	2	597	PSU	O2-C2-N1	-2.26	120.31	122.79
2	2	1264	PSU	O4'-C1'-C2'	2.25	108.32	105.14
28	S1	1995	7MG	N9-C8-N7	2.25	106.60	103.38
7	7	69	PSU	O2-C2-N1	-2.25	120.32	122.79
2	2	1231	OMG	O6-C6-C5	-2.25	119.98	124.37
28	S1	2202	PSU	O2-C2-N1	-2.24	120.32	122.79
1	1	1371	OMU	C1'-N1-C6	-2.23	115.97	120.84
2	2	512	PSU	C6-C5-C4	2.23	119.76	118.20
1	1	1190	OMG	O6-C6-C5	-2.23	120.02	124.37
1	1	847	OMU	O2-C2-N1	-2.23	119.83	122.79
7	7	75	OMG	O6-C6-C5	-2.23	120.02	124.37
7	7	69	PSU	O4'-C1'-C2'	2.22	108.28	105.14
28	S1	1879	OMG	O6-C6-C5	-2.22	120.04	124.37
2	2	1253	OMG	O6-C6-C5	-2.22	120.05	124.37
2	2	1303	PSU	O4'-C1'-C2'	2.21	108.26	105.14
2	2	655	OMG	O6-C6-C5	-2.20	120.08	124.37
28	S1	1995	7MG	N9-C4-N3	2.19	128.74	125.47
3	3	13	OMU	O2-C2-N1	-2.19	119.87	122.79
2	2	1359	OMU	02-C2-N1	-2.19	119.87	122.79
28	S1	1156	PSU	O2-C2-N1	-2.19	120.38	122.79
2	2	437	PSU	C6-N1-C2	-2.18	120.46	122.68
28	S1	1550	OMG	O6-C6-C5	-2.17	120.13	124.37
2	2	1060	PSU	O2-C2-N1	-2.16	120.41	122.79

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
28	S1	1566	PSU	O2-C2-N1	-2.16	120.42	122.79
1	1	959	OMG	O6-C6-C5	-2.14	120.19	124.37
2	2	1403	PSU	O4'-C1'-C2'	2.14	108.16	105.14
1	1	1039	PSU	O2-C2-N1	-2.13	120.44	122.79
28	S1	2151	OMG	O6-C6-C5	-2.12	120.23	124.37
28	S1	2046	PSU	C6-C5-C4	2.12	119.68	118.20
2	2	524	5MC	CM5-C5-C6	-2.10	120.04	122.85
2	2	662	PSU	O4'-C1'-C2'	2.10	108.11	105.14
28	S1	29	OMU	O2-C2-N1	-2.10	119.99	122.79
2	2	593	PSU	O2-C2-N1	-2.10	120.48	122.79
28	S1	2061	5MC	CM5-C5-C6	-2.09	120.05	122.85
1	1	1626	OMG	O6-C6-C5	-2.09	120.30	124.37
2	2	626	PSU	C6-C5-C4	2.08	119.65	118.20
1	1	1540	OMG	O6-C6-C5	-2.08	120.31	124.37
7	7	74	PSU	O2-C2-N1	-2.08	120.50	122.79
1	1	1664	PSU	C6-C5-C4	2.08	119.65	118.20
2	2	1361	PSU	O2-C2-N1	-2.08	120.51	122.79
1	1	1528	PSU	O2-C2-N1	-2.07	120.51	122.79
28	S1	1979	OMU	C1'-N1-C2	2.06	121.30	117.57
2	2	1413	PSU	O2-C2-N1	-2.06	120.53	122.79
28	S1	668	A2M	C3'-C2'-C1'	2.05	106.75	102.89
28	S1	455	PSU	O2-C2-N1	-2.04	120.54	122.79
2	2	78	PSU	O2-C2-N1	-2.04	120.55	122.79
1	1	1107	OMU	C2'-C1'-N1	-2.04	110.27	114.22
1	1	1533	PSU	O4'-C1'-C2'	2.04	108.02	105.14
2	2	1354	PSU	C6-C5-C4	2.03	119.62	118.20
1	1	1011	PSU	C6-C5-C4	2.03	119.62	118.20
2	2	56	OMU	O2-C2-N1	-2.03	120.09	122.79
1	1	1539	A2M	C5'-C4'-C3'	-2.03	107.59	115.18
1	1	845	OMU	C5-C6-N1	-2.02	118.42	121.81
1	1	845	OMU	C6-N1-C2	-2.02	118.41	120.99
28	S1	2061	5MC	C5-C4-N3	-2.02	119.50	121.67
1	1	856	OMG	O6-C6-C5	-2.01	120.45	124.37
28	S1	1543	B8N	O36-C34-C33	2.01	120.22	113.38
28	S1	1833	OMU	O2-C2-N1	-2.01	120.12	122.79

Continued from previous page...

There are no chirality outliers.

All (128) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
7	7	7	OMU	C1'-C2'-O2'-CM2
7	7	75	OMG	C1'-C2'-O2'-CM2

EMD-18437,	8QIE
------------	------

Mol	Chain	\mathbf{Res}	Type	Atoms
7	7	162	A2M	C1'-C2'-O2'-CM'
1	1	681	A2M	O4'-C4'-C5'-O5'
1	1	681	A2M	C3'-C4'-C5'-O5'
1	1	845	OMU	O4'-C1'-N1-C2
1	1	845	OMU	O4'-C1'-N1-C6
1	1	845	OMU	C1'-C2'-O2'-CM2
1	1	955	A2M	C1'-C2'-O2'-CM'
1	1	1011	PSU	C2'-C1'-C5-C4
1	1	1171	PSU	C3'-C4'-C5'-O5'
1	1	1171	PSU	O4'-C4'-C5'-O5'
1	1	1371	OMU	O4'-C1'-N1-C2
1	1	1371	OMU	O4'-C1'-N1-C6
1	1	1540	OMG	O4'-C4'-C5'-O5'
2	2	122	PSU	O4'-C4'-C5'-O5'
2	2	382	A2M	C1'-C2'-O2'-CM'
2	2	443	OMC	C2'-C1'-N1-C6
2	2	534	OMG	O4'-C4'-C5'-O5'
2	2	534	OMG	C3'-C4'-C5'-O5'
2	2	570	A2M	C1'-C2'-O2'-CM'
2	2	591	A2M	C1'-C2'-O2'-CM'
2	2	1046	OMG	C1'-C2'-O2'-CM2
2	2	1058	PSU	C3'-C4'-C5'-O5'
2	2	1229	OMG	O4'-C4'-C5'-O5'
2	2	1229	OMG	C3'-C4'-C5'-O5'
2	2	1248	OMC	C1'-C2'-O2'-CM2
2	2	1264	PSU	O4'-C1'-C5-C4
2	2	1264	PSU	O4'-C1'-C5-C6
2	2	1384	A2M	C1'-C2'-O2'-CM'
28	S1	29	OMU	C1'-C2'-O2'-CM2
28	S1	455	PSU	C2'-C1'-C5-C4
28	S1	455	PSU	O4'-C1'-C5-C4
28	S1	455	PSU	O4'-C1'-C5-C6
28	S1	607	PSU	O4'-C1'-C5-C4
28	S1	607	PSU	O4'-C1'-C5-C6
28	S1	668	A2M	C1'-C2'-O2'-CM'
$\overline{28}$	S1	$15\overline{43}$	B8N	O4'-C4'-C5'-O5'
28	S1	1543	B8N	C3'-C4'-C5'-O5'
28	S1	1543	B8N	N3-C31-C32-C33
28	S1	1543	B8N	C31-C32-C33-C34
28	S1	1543	B8N	C31-C32-C33-N34
$\overline{28}$	S1	1566	PSU	C3'-C4'-C5'-O5'
28	S1	1566	PSU	O4'-C4'-C5'-O5'

Continued from previous page...

$DMD^{-10401}, 001D$

	j = j	- r · · · · ·	r = r = g = r	
Mol	Chain	Res	Type	Atoms
28	S1	1623	OMG	C1'-C2'-O2'-CM2
28	S1	1841	PSU	C3'-C4'-C5'-O5'
28	S1	1879	OMG	O4'-C4'-C5'-O5'
28	S1	1879	OMG	C3'-C4'-C5'-O5'
28	S1	1879	OMG	C1'-C2'-O2'-CM2
28	S1	2021	A2M	C3'-C4'-C5'-O5'
28	S1	2021	A2M	C1'-C2'-O2'-CM'
28	S1	2151	OMG	C3'-C4'-C5'-O5'
2	2	443	OMC	C2'-C1'-N1-C2
1	1	305	A2M	O4'-C4'-C5'-O5'
1	1	678	A2M	O4'-C4'-C5'-O5'
1	1	1181	PSU	C3'-C4'-C5'-O5'
1	1	1540	OMG	C3'-C4'-C5'-O5'
2	2	122	PSU	C3'-C4'-C5'-O5'
2	2	527	A2M	O4'-C4'-C5'-O5'
2	2	1046	OMG	O4'-C4'-C5'-O5'
28	S1	668	A2M	O4'-C4'-C5'-O5'
28	S1	668	A2M	C3'-C4'-C5'-O5'
28	S1	1621	OMU	O4'-C4'-C5'-O5'
28	S1	1841	PSU	O4'-C4'-C5'-O5'
1	1	678	A2M	C3'-C4'-C5'-O5'
1	1	1181	PSU	O4'-C4'-C5'-O5'
2	2	527	A2M	C3'-C4'-C5'-O5'
2	2	1046	OMG	C3'-C4'-C5'-O5'
2	2	1058	PSU	O4'-C4'-C5'-O5'
28	S1	98	A2M	O4'-C4'-C5'-O5'
28	S1	2021	A2M	O4'-C4'-C5'-O5'
2	2	1308	5MC	C2'-C1'-N1-C6
28	S1	8	OMU	C2'-C1'-N1-C6
2	2	1078	OMG	C3'-C4'-C5'-O5'
2	2	1078	OMG	O4'-C4'-C5'-O5'
28	S1	1544	5MC	O4'-C4'-C5'-O5'
28	S1	2151	OMG	O4'-C4'-C5'-O5'
1	1	305	A2M	C3'-C4'-C5'-O5'
2	2	1185	A2M	C3'-C4'-C5'-O5'
28	S1	1979	OMU	C3'-C4'-C5'-O5'
28	S1	1543	B8N	N34-C33-C34-O35
1	1	1010	OMC	O4'-C4'-C5'-O5'
2	2	1248	OMC	C4'-C5'-O5'-P
2	2	1361	PSU	C4'-C5'-O5'-P
28	S1	1829	OMG	C4'-C5'-O5'-P
28	S1	8	OMU	O4'-C1'-N1-C6

Continued from previous page...

EMD-18437, 8	3QIE
--------------	------

Mol	Chain	Res	Type	Atoms
28	S1	8	OMU	O4'-C4'-C5'-O5'
28	S1	98	A2M	C3'-C4'-C5'-O5'
28	S1	1192	PSU	C3'-C4'-C5'-O5'
28	S1	1995	7MG	O4'-C4'-C5'-O5'
2	2	1308	5MC	C2'-C1'-N1-C2
2	2	443	OMC	O4'-C1'-N1-C6
2	2	1308	5MC	O4'-C1'-N1-C6
1	1	681	A2M	C4'-C5'-O5'-P
2	2	560	OMU	C4'-C5'-O5'-P
2	2	1185	A2M	C4'-C5'-O5'-P
28	S1	1192	PSU	O4'-C4'-C5'-O5'
28	S1	1979	OMU	O4'-C4'-C5'-O5'
2	2	443	OMC	O4'-C1'-N1-C2
28	S1	1833	OMU	C4'-C5'-O5'-P
28	S1	2185	MA6	C4'-C5'-O5'-P
2	2	1354	PSU	C4'-C5'-O5'-P
28	S1	1995	7MG	C3'-C4'-C5'-O5'
2	2	1308	5MC	O4'-C1'-N1-C2
28	S1	8	OMU	O4'-C1'-N1-C2
28	S1	1543	B8N	C32-C33-C34-O35
1	1	1171	PSU	O4'-C1'-C5-C4
28	S1	1657	PSU	O4'-C1'-C5-C4
2	2	655	OMG	C3'-C2'-O2'-CM2
28	S1	8	OMU	C3'-C2'-O2'-CM2
28	S1	8	OMU	C2'-C1'-N1-C2
28	S1	1543	B8N	N34-C33-C34-O36
28	S1	1544	5MC	C3'-C4'-C5'-O5'
2	2	560	OMU	C3'-C4'-C5'-O5'
28	S1	1979	OMU	C2'-C1'-N1-C2
1	1	1527	OMC	O4'-C4'-C5'-O5'
28	S1	1543	B8N	C32-C33-C34-O36
1	1	1171	PSU	O4'-C1'-C5-C6
28	S1	2202	PSU	O4'-C1'-C5-C6
1	1	1010	OMC	C3'-C4'-C5'-O5'
28	S1	512	A2M	O4'-C4'-C5'-O5'
28	S1	1478	OMG	C3'-C4'-C5'-O5'
28	S1	1833	OMU	O4'-C4'-C5'-O5'
1	1	1539	A2M	C3'-C2'-O2'-CM'
2	2	1360	OMG	C3'-C2'-O2'-CM2
1	1	1371	OMU	C4'-C5'-O5'-P
28	S1	607	PSU	C4'-C5'-O5'-P
28	S1	8	OMU	C3'-C4'-C5'-O5'

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 270 ligands modelled in this entry, 270 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
7	7	1
28	S1	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	7	169:A	O3'	170:A	Р	4.55
1	S1	1543:B8N	O3'	1544:5MC	Р	4.07

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-18437. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 240

Y Index: 240

Z Index: 240

The images above show central slices of the map in three orthogonal directions.

Largest variance slices (i) 6.3

6.3.1Primary map

X Index: 276

Y Index: 241

Z Index: 253

The images above show the largest variance slices of the map in three orthogonal directions.

Orthogonal standard-deviation projections (False-color) (i) 6.4

6.4.1**Primary** map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.008. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2508 nm^3 ; this corresponds to an approximate mass of 2266 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.412 $\rm \AA^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.412 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	ation	criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	2.43	-	-		
Author-provided FSC curve	2.41	2.75	2.46		
Unmasked-calculated*	-	-	-		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-18437 and PDB model 8QIE. Per-residue inclusion information can be found in section 3 on page 25.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.008 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.008).

9.4 Atom inclusion (i)

At the recommended contour level, 98% of all backbone atoms, 98% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.008) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.9750	0.6550
1	0.9840	0.6640
2	0.9790	0.6420
3	0.9870	0.6550
4	0.9860	0.6700
5	0.9770	0.6550
6	0.9680	0.6310
7	0.9890	0.6700
8	0.9970	0.6660
А	0.9980	0.7320
В	0.9960	0.7300
C	0.9930	0.6930
D	0.9650	0.5600
Ε	0.9830	0.6460
F	0.9780	0.6620
G	0.9930	0.6890
Н	0.9960	0.7200
Ι	0.9880	0.6780
J	0.9930	0.7180
К	0.9750	0.6560
L	0.9950	0.7090
М	0.9990	0.7250
Ν	0.9740	0.6390
О	0.9830	0.6470
Р	0.9980	0.7030
Q	0.9960	0.6880
R	0.9960	0.7110
S	0.9840	0.6840
S1	0.9720	0.6350
S4	0.7840	0.2720
SA	0.9780	0.6600
SB	0.9400	0.5660
\mathbf{SC}	0.9420	0.6230
SD	0.9840	0.6660
SE	0.9760	0.6720

Continued from previous page...

Chain	Atom inclusion	Q-score
SF	0.9640	0.6660
SG	0.9690	0.6430
SH	0.9830	0.6710
SI	0.9740	0.6510
SJ	0.9910	0.7100
SK	0.9800	0.6710
SL	0.9850	0.6770
SM	0.9270	0.6290
SN	0.9390	0.6280
SO	0.9930	0.6870
SP	0.9900	0.6980
SQ	0.5530	0.4310
SR	0.9460	0.6300
SS	0.9890	0.6740
ST	0.9960	0.6970
SU	0.9850	0.6900
SV	0.9840	0.6580
SW	0.9170	0.6200
SX	0.9640	0.6570
SY	0.9440	0.6040
SZ	0.9770	0.6560
Sa	0.9500	0.6400
Sb	0.9910	0.7050
Sc	0.9510	0.6630
Sd	0.9640	0.6320
Se	0.9950	0.6520
Sf	0.5610	0.4380
Sg	0.9430	0.6280
Sh	0.7140	0.4000
T	0.9960	0.7300
U	0.9350	0.5420
V	0.9980	0.7070
W	0.9950	0.6870
X	0.9980	0.7150
Y	0.9930	0.6540
Z	0.9820	0.6660
a	0.9870	0.6650
b	0.9850	0.6810
с	0.9930	0.7020
d	0.9930	0.6750
e	0.9790	0.6840
l f	0.9970	0.7070

$\alpha \cdot \cdot \cdot$	C		
Continued	trom	previous	page
	J	1	1 5

Chain	Atom inclusion	Q-score
g	0.9920	0.7010
h	0.9650	0.6540
i	0.9870	0.6600
j	0.9950	0.7250
k	0.9540	0.6040
1	0.9930	0.7130
m	0.9400	0.5970
n	0.9960	0.6810
0	0.9920	0.7150
р	0.9710	0.6610

