

Feb 27, 2025 – 10:11 PM JST

Р	DB ID	:	8K9F
EM	DB ID	:	EMD-36985
	Title	:	Cryo-EM structure of the photosynthetic alternative complex III from Chlo-
			roflexus aurantiacus at 2.9 angstrom
А	uthors	:	Xu, X.
Deposi	ited on	:	2023-08-01
Res	olution	:	2.90 Å(reported)
	This is	a I	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$(\# { m Entries})$	$(\# { m Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	219	71%	28%	
2	В	1029	75%	17%	8%
3	С	486	71%	22%	8%
4	D	179	70%	26%	•••
5	Е	205	62%	17% 20%	
6	F	411	77%	20%	·
7	G	112	51% 21%	29%	
8	Ι	37	84%	16	%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard

residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
11	F3S	В	1104	-	-	Х	-

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 19906 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Cytochrome c7-like domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
1	А	218	Total 1763	C 1129	N 306	0 313	S 15	0	0

• Molecule 2 is a protein called Fe-S-cluster-containing hydrogenase components 1-like protein.

Mol	Chain	Residues		Α	AltConf	Trace			
2	В	951	Total 7950	C	N	0	S	0	0
			7350	4622	1303	1395	30		

• Molecule 3 is a protein called Polysulphide reductase NrfD.

Mol	Chain	Residues		At	AltConf	Trace			
3	С	449	Total 3655	C 2476	N 576	O 586	${ m S}$ 17	0	0

• Molecule 4 is a protein called Quinol:cytochrome c oxidoreductase membrane protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	D	175	Total 1350	C 884	N 215	0 245	S 6	0	0

• Molecule 5 is a protein called Cytochrome c domain-containing protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	Е	164	Total 1298	C 822	N 223	0 246	${f S}{7}$	0	0

• Molecule 6 is a protein called Quinol:cytochrome c oxidoreductase quinone-binding subunit 2.

Mol	Chain	Residues		At	AltConf	Trace			
6	F	397	Total 3128	C 2091	N 506	0 514	S 17	0	0

• Molecule 7 is a protein called hypothetical protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	G	80	Total 623	C 404	N 108	O 107	${f S}$ 4	0	0

• Molecule 8 is a protein called unknown.

Mol	Chain	Residues	Atoms				AltConf	Trace	
8	Ι	37	Total 305	C 212	N 42	0 48	${ m S}$	0	0

• Molecule 9 is HEME C (three-letter code: HEC) (formula: $\rm C_{34}H_{34}FeN_4O_4).$

Mol	Chain	Residues		Atoms				
0	Δ	1	Total	С	Fe	Ν	0	0
9	A	1	43	34	1	4	4	0
0	Δ	1	Total	С	Fe	Ν	Ο	0
3	Π	T	43	34	1	4	4	0
0	Δ	1	Total	С	Fe	Ν	0	0
3	Π	I	43	34	1	4	4	0
9	Δ	1	Total	\mathbf{C}	Fe	Ν	Ο	0
5	11	1	43	34	1	4	4	0
9	Δ	1	Total	\mathbf{C}	Fe	Ν	Ο	0
5	11	1	43	34	1	4	4	0
9	E	1	Total	\mathbf{C}	Fe	Ν	Ο	0
3		T	43	34	1	4	4	

• Molecule 10 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	AltConf
10	В	1	Total Fe S 8 4 4	0
10	В	1	TotalFeS844	0
10	В	1	TotalFeS844	0

• Molecule 11 is FE3-S4 CLUSTER (three-letter code: F3S) (formula: Fe $_3S_4$).

Mol	Chain	Residues	Atoms	AltConf
11	В	1	TotalFeS734	0

• Molecule 12 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
12	В	1	Total Mg 1 1	0

• Molecule 13 is $[(2 \{R\})-3-[2-azanylethoxy(oxidanyl)phosphoryl]oxy-2-tetradecanoyloxy-propyl] hexadecanoate (three-letter code: JLQ) (formula: C₃₅H₇₀NO₈P).$

Mol	Chain	Residues	Atoms				AltConf	
13	С	1	Total 45	C 35	N 1	0 8	Р 1	0

• Molecule 14 is [(2 {R})-3-[2-azanylethoxy(oxidanyl)phosphoryl]oxy-2-pentadecanoyloxy-pro pyl] pentadecanoate (three-letter code: JL3) (formula: $C_{35}H_{70}NO_8P$).

Mol	Chain	Residues	Atoms				AltConf	
14	Б	1	Total	С	Ν	0	Р	0
14	Г	L	45	35	1	8	1	0

• Molecule 15 is 1,3-bis (13-methyltetradecanoyloxy)propan-2-yl pentadecanoate (three-letter code: JM9) (formula: $\rm C_{48}H_{92}O_6).$

Mol	Chain	Residues	Atoms	AltConf
15	F	1	Total C O 54 48 6	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain A: 71% 28% • Molecule 2: Fe-S-cluster-containing hydrogenase components 1-like protein Chain B: 75% 17% MERT THR MERT THR MERT MALA ALLAN ALLA ALLAN ALLA ALLAN ALLA
- Molecule 1: Cytochrome c7-like domain-containing protein

 \bullet Molecule 3: Polysulphide reduct ase NrfD

Chain C:

8%

 \bullet Molecule 6: Quinol:
cytochrome c oxidored
uctase quinone-binding subunit 2

Chain G:

16%

 \bullet Molecule 8: unknown

Chain I:

84%

M1 A17 121 G22 M23 M23 L28 L28 L28 L28 L28 L28 L28 H37

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	103633	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	1800	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV $(4k \ge 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SF4, JLQ, F3S, JM9, HEC, MG, JL3

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.48	0/1812	0.71	0/2472	
2	В	0.39	0/7518	0.65	0/10249	
3	С	0.41	0/3787	0.67	0/5179	
4	D	0.41	0/1388	0.69	0/1895	
5	Ε	0.42	0/1333	0.69	0/1810	
6	F	0.40	0/3226	0.70	0/4408	
7	G	0.34	0/635	0.71	0/865	
8	Ι	0.38	0/318	0.69	0/436	
All	All	0.41	0/20017	0.68	0/27314	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1763	0	1714	69	0
2	В	7350	0	7178	139	0
3	С	3655	0	3688	94	0
4	D	1350	0	1341	46	0
5	Е	1298	0	1229	50	0

001000	nucu jion	<i>precious</i>	page	-		
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
6	F	3128	0	3175	65	0
7	G	623	0	660	21	0
8	Ι	305	0	302	6	0
9	А	215	0	152	30	0
9	Е	43	0	31	17	0
10	В	24	0	0	1	0
11	В	7	0	0	10	0
12	В	1	0	0	0	0
13	С	45	0	0	0	0
14	F	45	0	0	4	0
15	F	54	0	0	6	0
All	All	19906	0	19470	443	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (443) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:66:CYS:CB	9:A:304:HEC:HAB	1.07	1.51
1:A:66:CYS:HB3	9:A:304:HEC:CAB	1.03	1.47
5:E:106:CYS:SG	9:E:301:HEC:CAC	2.18	1.31
4:D:26:LYS:HE2	4:D:48:ILE:HG22	1.29	1.08
1:A:66:CYS:SG	9:A:304:HEC:HAB	1.95	1.05
3:C:103:LEU:HD12	3:C:107:ILE:HB	1.48	0.95
5:E:106:CYS:SG	9:E:301:HEC:C3C	2.55	0.94
2:B:651:ILE:CG2	2:B:662:GLU:OE2	2.22	0.88
6:F:145:SER:OG	6:F:148:TRP:HD1	1.57	0.86
6:F:233:MET:HE1	6:F:347:ARG:HB2	1.59	0.85
1:A:94:ILE:HD11	5:E:123:ILE:CD1	2.07	0.84
3:C:163:GLN:HE21	4:D:86:VAL:HG21	1.43	0.84
3:C:37:LEU:HD23	3:C:197:LEU:HD22	1.61	0.82
6:F:233:MET:CE	6:F:347:ARG:HB2	2.11	0.81
2:B:862:CYS:HB2	11:B:1104:F3S:S1	2.21	0.80
6:F:145:SER:HG	6:F:148:TRP:HD1	0.80	0.80
6:F:145:SER:OG	6:F:148:TRP:CD1	2.33	0.80
1:A:94:ILE:HD11	5:E:123:ILE:HG13	1.62	0.80
5:E:106:CYS:SG	9:E:301:HEC:HAC	2.20	0.80
5:E:149:VAL:HG11	9:E:301:HEC:CGD	2.12	0.79
3:C:111:LEU:HD22	14:F:501:JL3:C32	2.14	0.78
6:F:329:THR:HA	6:F:335:THR:HG23	1.64	0.78

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:15:LEU:HD21	7:G:35:LEU:HD13	1.67	0.77
3:C:242:VAL:HA	3:C:245:VAL:HG12	1.65	0.77
2:B:888:CYS:HB3	11:B:1104:F3S:S1	2.24	0.77
3:C:36:PRO:O	3:C:37:LEU:HG	1.86	0.76
4:D:26:LYS:CE	4:D:48:ILE:HG22	2.12	0.76
1:A:94:ILE:HD11	5:E:123:ILE:CG1	2.16	0.75
1:A:66:CYS:HB3	9:A:304:HEC:C3B	2.12	0.75
6:F:362:HIS:HD2	6:F:365:ASP:OD2	1.69	0.75
1:A:66:CYS:CB	9:A:304:HEC:CAB	1.92	0.75
2:B:609:MET:SD	2:B:676:ILE:CD1	2.75	0.74
2:B:421:ILE:CD1	2:B:507:MET:HE3	2.18	0.74
2:B:862:CYS:SG	11:B:1104:F3S:S3	2.84	0.74
5:E:105:VAL:HG22	5:E:117:VAL:HG21	1.69	0.74
5:E:145:ILE:HG22	5:E:174:ARG:HD2	1.68	0.74
2:B:651:ILE:HG21	2:B:662:GLU:OE2	1.85	0.73
2:B:405:LEU:HD21	2:B:435:LEU:HD12	1.69	0.73
2:B:421:ILE:HD13	2:B:507:MET:CE	2.19	0.72
1:A:11:LEU:O	1:A:15:LEU:HD13	1.88	0.72
2:B:888:CYS:HG	11:B:1104:F3S:FE3	0.46	0.72
3:C:263:VAL:HG12	3:C:265:VAL:HG12	1.71	0.72
4:D:169:LEU:HD12	4:D:169:LEU:O	1.89	0.71
4:D:12:PHE:CZ	4:D:169:LEU:HD11	2.25	0.71
5:E:106:CYS:SG	9:E:301:HEC:C2C	2.79	0.71
5:E:145:ILE:CG2	5:E:174:ARG:HD2	2.20	0.70
5:E:149:VAL:HG11	9:E:301:HEC:O2D	1.91	0.70
2:B:322:ALA:HB1	2:B:344:LEU:HD21	1.74	0.69
5:E:123:ILE:HG22	9:E:301:HEC:HMD3	1.75	0.69
3:C:103:LEU:HD12	3:C:107:ILE:CB	2.23	0.68
6:F:329:THR:HA	6:F:335:THR:CG2	2.23	0.68
1:A:94:ILE:HD11	5:E:123:ILE:HD11	1.75	0.68
2:B:797:CYS:N	10:B:1101:SF4:S2	2.66	0.68
6:F:92:ILE:HG21	6:F:384:LEU:CD1	2.24	0.68
4:D:12:PHE:CE1	4:D:169:LEU:CD1	2.77	0.68
2:B:405:LEU:HD21	2:B:435:LEU:CD1	2.25	0.67
6:F:362:HIS:CD2	6:F:365:ASP:OD2	2.47	0.67
1:A:94:ILE:CD1	5:E:123:ILE:HG13	2.25	0.67
1:A:133:HIS:HE1	9:A:302:HEC:NA	1.83	0.67
4:D:36:PHE:HB2	4:D:147:PHE:HB2	1.75	0.67
2:B:405:LEU:CD2	2:B:435:LEU:CD1	2.72	0.66
1:A:18:PHE:CD1	7:G:36:MET:HE1	2.31	0.66
3:C:245:VAL:HG13	3:C:246:HIS:CD2	2.31	0.66

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:E:149:VAL:CG1	9:E:301:HEC:O1D	2.44	0.66
6:F:327:ARG:HG2	15:F:502:JM9:C37	2.25	0.65
9:A:302:HEC:O2A	9:A:302:HEC:O1D	2.15	0.65
3:C:103:LEU:HD23	3:C:279:PHE:HE2	1.62	0.65
2:B:421:ILE:HD11	2:B:507:MET:HE3	1.77	0.64
3:C:233:LEU:HD21	4:D:59:VAL:HG11	1.80	0.64
6:F:133:PHE:O	6:F:133:PHE:CD2	2.50	0.64
2:B:322:ALA:CB	2:B:344:LEU:HD21	2.27	0.64
1:A:165:LEU:HD22	1:A:212:THR:HG22	1.79	0.64
4:D:12:PHE:HZ	4:D:169:LEU:HD11	1.61	0.64
2:B:421:ILE:CD1	2:B:507:MET:CE	2.76	0.63
2:B:176:LEU:HD11	2:B:507:MET:HG2	1.81	0.63
3:C:250:SER:OG	3:C:266:PHE:HB3	1.98	0.63
5:E:72:THR:HG23	5:E:74:LEU:H	1.63	0.63
2:B:192:ARG:HG3	2:B:417:VAL:HG22	1.81	0.62
2:B:862:CYS:CB	11:B:1104:F3S:S1	2.87	0.62
2:B:888:CYS:CB	11:B:1104:F3S:S1	2.86	0.62
2:B:199:THR:HB	2:B:478:ARG:HB2	1.82	0.62
2:B:421:ILE:HD13	2:B:507:MET:HE1	1.81	0.62
5:E:123:ILE:CG2	9:E:301:HEC:HMD3	2.29	0.62
1:A:18:PHE:CZ	7:G:36:MET:HE3	2.35	0.61
2:B:293:VAL:HG11	2:B:302:GLY:HA2	1.83	0.61
2:B:124:PRO:HG3	2:B:490:LEU:HB2	1.81	0.61
3:C:277:ALA:HB2	3:C:390:MET:HG3	1.82	0.61
5:E:87:VAL:HG11	7:G:108:LEU:HD23	1.82	0.61
2:B:180:LEU:HB3	2:B:184:ARG:HH21	1.66	0.61
1:A:153:VAL:HG11	9:A:304:HEC:HMA2	1.83	0.61
6:F:185:THR:HG22	6:F:188:ARG:HH21	1.65	0.61
7:G:94:ILE:HG23	7:G:98:ARG:HH11	1.65	0.61
3:C:86:MET:O	3:C:90:ASN:ND2	2.33	0.60
3:C:263:VAL:CG1	3:C:265:VAL:HG12	2.32	0.60
1:A:71:THR:HG21	5:E:168:ARG:HG2	1.83	0.60
4:D:18:LEU:HD22	4:D:146:PHE:HB3	1.84	0.60
6:F:233:MET:HE2	6:F:347:ARG:CB	2.32	0.60
1:A:144:HIS:CE1	9:A:303:HEC:ND	2.70	0.60
6:F:272:VAL:CG1	15:F:502:JM9:C31	2.79	0.60
3:C:163:GLN:HE21	4:D:86:VAL:CG2	2.13	0.60
7:G:94:ILE:HG23	7:G:98:ARG:NH1	2.17	0.60
3:C:110:LEU:HD11	3:C:236:GLY:HA2	1.84	0.59
2:B:773:LEU:HG	6:F:294:THR:HG23	1.82	0.59
6:F:272:VAL:HG11	15:F:502:JM9:C31	2.32	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
2:B:623:ASN:HD22	2:B:626:ARG:HG3	1.67	0.59
2:B:877:MET:HB2	2:B:930:LYS:HE3	1.85	0.59
2:B:609:MET:SD	2:B:676:ILE:HD12	2.43	0.59
3:C:282:VAL:HG13	3:C:286:MET:SD	2.42	0.59
3:C:163:GLN:NE2	4:D:86:VAL:HG21	2.13	0.59
5:E:149:VAL:HG11	9:E:301:HEC:O1D	2.01	0.59
5:E:129:HIS:HB3	5:E:134:ARG:HH21	1.68	0.59
6:F:92:ILE:HG21	6:F:384:LEU:HD11	1.85	0.59
2:B:306:ASP:O	2:B:1018:ARG:NH2	2.36	0.58
2:B:774:GLN:NE2	6:F:286:TRP:O	2.37	0.58
7:G:69:THR:HG23	7:G:71:ARG:H	1.67	0.58
2:B:888:CYS:SG	11:B:1104:F3S:S1	3.01	0.58
6:F:356:LEU:O	6:F:360:ARG:HB2	2.04	0.58
3:C:245:VAL:HG13	3:C:246:HIS:HD2	1.68	0.58
1:A:161:MET:HG3	9:A:301:HEC:C1D	2.34	0.57
2:B:421:ILE:HA	2:B:448:ILE:HB	1.86	0.57
2:B:662:GLU:OE2	2:B:718:THR:HG21	2.04	0.57
1:A:81:ILE:HG22	2:B:86:PRO:HB3	1.86	0.57
2:B:733:LEU:HD12	2:B:733:LEU:O	2.04	0.57
5:E:149:VAL:CG1	9:E:301:HEC:O2D	2.52	0.57
1:A:134:VAL:HB	1:A:180:GLU:HG3	1.86	0.57
2:B:142:LEU:HD13	2:B:591:LEU:HD22	1.85	0.57
2:B:888:CYS:SG	11:B:1104:F3S:S4	3.01	0.57
2:B:142:LEU:HD13	2:B:591:LEU:CD2	2.35	0.57
5:E:105:VAL:CG2	5:E:117:VAL:HG21	2.35	0.57
3:C:76:TRP:CD1	3:C:420:ASP:OD1	2.58	0.57
3:C:175:ILE:HD11	3:C:249:ILE:HD11	1.86	0.57
2:B:826:TRP:NE1	2:B:929:GLU:OE1	2.38	0.56
1:A:67:ARG:CZ	1:A:181:VAL:HG21	2.35	0.56
3:C:87:ASP:OD1	3:C:87:ASP:N	2.38	0.56
3:C:97:ILE:HG12	3:C:281:MET:HG3	1.86	0.56
5:E:105:VAL:O	5:E:106:CYS:SG	2.62	0.56
2:B:133:HIS:ND1	2:B:134:PRO:O	2.39	0.56
3:C:103:LEU:HA	3:C:107:ILE:HD12	1.88	0.56
6:F:233:MET:CE	6:F:347:ARG:CB	2.83	0.56
2:B:822:ARG:NH2	3:C:76:TRP:O	2.39	0.55
8:I:17:ALA:O	8:I:21:THR:OG1	2.23	0.55
5:E:27:HIS:HD2	5:E:29:ASP:OD2	1.89	0.55
5:E:149:VAL:CG1	9:E:301:HEC:CGD	2.82	0.55
3:C:103:LEU:HD23	3:C:279:PHE:CE2	2.40	0.55
2:B:260:ASP:HB2	2:B:263:ALA:HB3	1.88	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:251:LEU:HA	3:C:254:ALA:HB3	1.87	0.55
1:A:77:TYR:HH	5:E:38:THR:HG1	1.52	0.55
4:D:12:PHE:CZ	4:D:169:LEU:CD1	2.90	0.55
2:B:312:ARG:NH2	2:B:314:ASP:OD2	2.39	0.55
3:C:196:THR:HG22	4:D:142:SER:HB2	1.88	0.55
6:F:92:ILE:HG21	6:F:384:LEU:HD13	1.88	0.55
2:B:276:ALA:HA	2:B:279:ARG:HB2	1.88	0.55
2:B:608:LEU:HB2	2:B:677:THR:HB	1.88	0.54
4:D:12:PHE:HE1	4:D:169:LEU:CD1	2.17	0.54
6:F:136:ILE:O	6:F:140:LYS:NZ	2.41	0.54
1:A:6:PRO:HD2	1:A:9:ALA:HB2	1.88	0.54
1:A:29:LEU:HD23	8:I:32:LEU:HD22	1.88	0.54
3:C:242:VAL:HA	3:C:245:VAL:CG1	2.35	0.54
1:A:161:MET:HG3	9:A:301:HEC:ND	2.22	0.54
2:B:427:PRO:HD2	2:B:457:THR:HG21	1.90	0.54
4:D:26:LYS:HA	4:D:30:TYR:H	1.73	0.54
2:B:322:ALA:HB1	2:B:344:LEU:CD2	2.38	0.54
5:E:149:VAL:HG13	9:E:301:HEC:O1D	2.07	0.54
6:F:233:MET:HE2	6:F:347:ARG:HB2	1.90	0.54
3:C:37:LEU:O	3:C:37:LEU:HD12	2.08	0.53
2:B:303:THR:HG21	2:B:845:MET:HG2	1.91	0.53
2:B:609:MET:CE	2:B:676:ILE:HD12	2.38	0.53
2:B:779:TYR:HA	2:B:782:ARG:HD2	1.91	0.53
3:C:265:VAL:HA	6:F:221:ILE:HD13	1.91	0.53
3:C:339:TYR:HE2	3:C:404:ARG:HD3	1.74	0.53
2:B:730:HIS:NE2	2:B:734:GLU:OE1	2.40	0.53
5:E:79:GLU:HB3	5:E:137:PRO:HG2	1.90	0.53
6:F:401:ASN:ND2	6:F:404:GLN:OE1	2.42	0.52
2:B:88:ASP:OD1	2:B:88:ASP:N	2.30	0.52
2:B:826:TRP:HE1	2:B:929:GLU:HB3	1.73	0.52
3:C:111:LEU:HD23	14:F:501:JL3:C12	2.40	0.52
3:C:105:SER:O	3:C:116:ARG:NH2	2.43	0.52
4:D:125:LEU:O	4:D:127:SER:N	2.43	0.52
3:C:449:GLU:HA	3:C:452:LEU:HB3	1.92	0.52
2:B:682:TYR:HB3	2:B:695:GLY:HA3	1.91	0.52
1:A:32:GLY:HA3	8:I:32:LEU:HD21	1.92	0.52
2:B:405:LEU:CD2	2:B:435:LEU:HD11	2.40	0.52
6:F:71:THR:O	6:F:71:THR:OG1	2.28	0.52
6:F:229:ASN:ND2	6:F:351:MET:SD	2.83	0.52
4:D:45:ILE:HA	4:D:49:ALA:HB3	1.92	0.52
4:D:132:VAL:HA	4:D:177:VAL:HG21	1.91	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:190:LEU:HD21	3:C:442:LEU:HD13	1.92	0.51
6:F:80:ARG:HD2	6:F:396:PRO:HG2	1.92	0.51
6:F:179:ASP:OD2	6:F:398:ARG:NH1	2.33	0.51
2:B:352:GLU:HG3	2:B:355:ARG:HE	1.75	0.51
4:D:31:THR:O	4:D:154:ASP:OD1	2.27	0.51
5:E:178:ALA:HA	5:E:181:ILE:HD12	1.92	0.51
3:C:215:LEU:HB3	4:D:126:PRO:HA	1.93	0.51
2:B:475:GLY:HA2	2:B:519:VAL:HG11	1.93	0.51
3:C:186:TRP:O	3:C:190:LEU:HB2	2.10	0.51
2:B:173:THR:HG21	2:B:511:PRO:HB3	1.93	0.51
5:E:94:ARG:NE	5:E:173:ASP:OD2	2.40	0.51
2:B:851:MET:HA	2:B:1011:THR:HB	1.92	0.51
3:C:111:LEU:HG	14:F:501:JL3:C11	2.40	0.51
5:E:27:HIS:HD2	5:E:29:ASP:CG	2.15	0.51
6:F:32:LEU:HD21	6:F:373:ALA:HB2	1.93	0.50
1:A:116:TRP:CE3	9:A:304:HEC:HBD2	2.47	0.50
2:B:451:SER:OG	2:B:453:PHE:O	2.22	0.50
6:F:254:TYR:HB2	6:F:395:LEU:HD21	1.92	0.50
2:B:631:GLU:HA	2:B:634:ASP:HB2	1.94	0.50
5:E:150:TYR:O	5:E:151:ARG:HG3	2.11	0.50
3:C:222:ARG:NH1	4:D:33:MET:O	2.45	0.50
1:A:211:LEU:HD21	9:A:302:HEC:O1D	2.12	0.50
6:F:362:HIS:HB2	6:F:365:ASP:CG	2.32	0.50
1:A:58:HIS:O	1:A:63:GLY:N	2.39	0.50
2:B:142:LEU:HD12	2:B:143:PHE:N	2.26	0.49
2:B:739:TYR:HD2	2:B:846:MET:HE2	1.76	0.49
6:F:58:PRO:HB2	6:F:90:LEU:HD22	1.94	0.49
3:C:195:ALA:HB2	3:C:217:TRP:HB3	1.94	0.49
3:C:242:VAL:CA	3:C:245:VAL:HG12	2.40	0.49
2:B:322:ALA:CB	2:B:344:LEU:CD2	2.91	0.49
2:B:778:ASP:OD2	2:B:780:THR:OG1	2.31	0.49
5:E:182:ARG:HG2	7:G:108:LEU:HD11	1.93	0.49
1:A:60:ASN:O	7:G:69:THR:OG1	2.31	0.49
2:B:158:THR:HA	2:B:495:TYR:HB3	1.94	0.49
2:B:380:GLU:HG2	2:B:381:LEU:HD23	1.95	0.49
1:A:66:CYS:SG	9:A:304:HEC:CAB	2.84	0.49
3:C:268:PRO:HG2	6:F:221:ILE:HD11	1.94	0.49
5:E:109:GLU:OE1	7:G:78:ARG:NH1	2.46	0.49
2:B:858:CYS:HB3	2:B:892:CYS:HB2	1.95	0.49
2:B:937:ARG:NH1	2:B:970:GLN:OE1	2.41	0.49
1:A:161:MET:O	1:A:165:LEU:HB2	2.13	0.48

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:B:642:GLU:O	2:B:645:SER:OG	2.30	0.48
6:F:137:ILE:HG12	6:F:215:PRO:HB2	1.94	0.48
7:G:82:ASN:HA	7:G:95:PRO:HB3	1.95	0.48
2:B:578:PRO:HB2	2:B:597:PRO:HD2	1.95	0.48
3:C:36:PRO:C	3:C:37:LEU:HG	2.34	0.48
2:B:625:ASP:HA	2:B:628:ILE:HG12	1.96	0.48
2:B:938:ILE:HA	2:B:964:ILE:HD13	1.95	0.48
4:D:56:PRO:HA	4:D:59:VAL:HG12	1.95	0.48
4:D:79:LEU:HD22	4:D:91:LEU:HA	1.94	0.48
2:B:304:ALA:HB2	2:B:795:ILE:HG22	1.96	0.48
2:B:744:PHE:O	2:B:748:LYS:HB2	2.14	0.48
2:B:779:TYR:O	2:B:983:ASN:ND2	2.45	0.48
3:C:25:TYR:HB3	3:C:451:ARG:HD3	1.94	0.48
5:E:107:HIS:CE1	9:E:301:HEC:NA	2.82	0.48
5:E:162:MET:HE2	9:E:301:HEC:ND	2.28	0.48
5:E:182:ARG:HA	5:E:182:ARG:HD3	1.72	0.48
3:C:198:ARG:HD3	3:C:211:GLY:HA2	1.94	0.48
1:A:66:CYS:CB	9:A:304:HEC:C3B	2.80	0.48
3:C:37:LEU:HD12	3:C:37:LEU:C	2.34	0.48
6:F:272:VAL:HG13	15:F:502:JM9:C31	2.43	0.48
4:D:169:LEU:HD12	4:D:169:LEU:C	2.33	0.47
6:F:180:ALA:HA	6:F:400:PRO:HB3	1.95	0.47
2:B:587:ASN:ND2	2:B:690:VAL:O	2.46	0.47
6:F:300:ARG:NH2	6:F:354:ILE:O	2.43	0.47
4:D:135:VAL:HG12	4:D:137:ARG:H	1.80	0.47
6:F:247:ASP:O	6:F:247:ASP:OD1	2.33	0.47
2:B:429:TYR:OH	2:B:682:TYR:O	2.29	0.47
2:B:633:ASP:N	2:B:633:ASP:OD1	2.47	0.47
3:C:217:TRP:HE3	4:D:125:LEU:HD21	1.80	0.47
6:F:223:GLY:O	6:F:227:MET:N	2.42	0.47
2:B:327:LEU:HD13	2:B:381:LEU:HD21	1.96	0.47
3:C:365:GLN:HA	3:C:368:TRP:HD1	1.80	0.47
3:C:441:VAL:HG13	3:C:442:LEU:HG	1.96	0.47
6:F:65:LEU:HB2	6:F:83:LEU:HB3	1.97	0.47
2:B:369:ILE:HG21	2:B:563:ILE:HA	1.97	0.47
3:C:210:TYR:OH	3:C:441:VAL:O	2.32	0.47
1:A:44:ASN:HB3	7:G:60:PRO:HD3	1.97	0.46
5:E:138:LEU:HA	5:E:141:PHE:HD2	1.80	0.46
7:G:87:THR:OG1	7:G:88:MET:N	2.46	0.46
1:A:68:TYR:HD1	5:E:102:TYR:HA	1.79	0.46
1:A:176:ARG:O	1:A:178:ARG:N	2.46	0.46

Atom-1	Atom-2	Interatomic	Clash
	1100111 2	distance (Å)	overlap (Å)
1:A:69:CYS:HB3	1:A:82:PRO:HG3	1.97	0.46
7:G:89:GLU:OE2	7:G:89:GLU:N	2.47	0.46
2:B:283:LYS:HG3	2:B:751:PRO:HG3	1.97	0.46
1:A:62:VAL:HG13	5:E:117:VAL:HG22	1.98	0.46
4:D:94:THR:HG22	4:D:94:THR:O	2.16	0.46
1:A:91:HIS:NE2	9:A:305:HEC:O1A	2.49	0.46
4:D:53:THR:HA	8:I:1:MET:HE2	1.97	0.46
3:C:320:TYR:O	3:C:324:MET:HG2	2.16	0.46
3:C:448:PHE:CE1	3:C:449:GLU:HG2	2.50	0.46
6:F:320:PRO:HB3	6:F:343:ILE:HD11	1.97	0.46
6:F:327:ARG:HH21	6:F:331:ARG:HE	1.63	0.46
2:B:615:ILE:HD11	2:B:622:PHE:HB2	1.97	0.46
2:B:870:ASP:OD1	2:B:870:ASP:N	2.49	0.46
3:C:101:GLY:HA2	3:C:123:ALA:HB1	1.98	0.46
4:D:25:ALA:HA	4:D:165:PHE:HZ	1.81	0.46
6:F:224:ALA:HA	6:F:227:MET:HB2	1.98	0.46
4:D:26:LYS:HE2	4:D:48:ILE:CG2	2.21	0.46
6:F:240:LEU:O	6:F:243:SER:OG	2.29	0.46
3:C:168:LEU:HA	3:C:171:ASP:HB2	1.98	0.46
4:D:10:ALA:HA	4:D:174:VAL:HG12	1.98	0.46
1:A:138:ILE:HG21	9:A:302:HEC:HBC2	1.98	0.45
3:C:225:HIS:O	3:C:229:MET:HB3	2.16	0.45
3:C:107:ILE:HG12	3:C:239:THR:HG23	1.98	0.45
2:B:691:GLY:HA2	2:B:694:VAL:HB	1.98	0.45
1:A:218:HIS:CD2	9:A:301:HEC:NC	2.79	0.45
2:B:110:GLY:O	2:B:199:THR:OG1	2.34	0.45
2:B:191:VAL:HG13	2:B:217:ALA:HB2	1.98	0.45
3:C:103:LEU:CD1	3:C:107:ILE:CD1	2.95	0.45
3:C:311:MET:HE3	3:C:367:LEU:HD11	1.99	0.45
1:A:200:VAL:HA	1:A:205:ILE:HD12	1.99	0.45
3:C:95:ILE:HG21	3:C:249:ILE:HG13	1.99	0.45
3:C:163:GLN:NE2	4:D:86:VAL:CG2	2.77	0.45
3:C:248:ILE:HA	3:C:251:LEU:HB2	1.98	0.45
6:F:399:ASP:HB3	6:F:402:MET:HG2	1.98	0.45
4:D:64:LEU:HD21	6:F:322:PHE:HE1	1.81	0.45
5:E:181:ILE:HD11	9:E:301:HEC:HMB3	1.98	0.45
6:F:233:MET:HE2	6:F:347:ARG:HB3	1.99	0.45
2:B:921:THR:O	2:B:923:ARG:NH1	2.50	0.44
3:C:111:LEU:CD2	14:F:501:JL3:C12	2.95	0.44
7:G:91:LYS:HG3	7:G:92:VAL:HG12	2.00	0.44
3:C:110:LEU:HA	3:C:110:LEU:HD23	1.83	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:D:43:GLU:HA	4:D:46:GLU:HB3	2.00	0.44
2:B:142:LEU:HD11	2:B:143:PHE:CE1	2.52	0.44
2:B:199:THR:HG22	2:B:395:GLU:HA	1.99	0.44
7:G:66:THR:OG1	7:G:67:GLY:N	2.45	0.44
2:B:229:ASN:ND2	2:B:366:GLN:O	2.50	0.44
2:B:282:ARG:HB2	2:B:284:ASP:OD1	2.18	0.44
1:A:58:HIS:HE1	9:A:305:HEC:NA	1.99	0.44
4:D:12:PHE:CE1	4:D:169:LEU:HD13	2.50	0.44
1:A:98:SER:H	1:A:105:ARG:HH12	1.65	0.44
2:B:307:HIS:CE1	2:B:1021:SER:H	2.35	0.44
3:C:247:SER:HB3	3:C:267:PRO:HB3	2.00	0.44
1:A:72:SER:HB2	2:B:96:PRO:HD2	1.99	0.44
2:B:288:MET:HG2	2:B:1019:ASN:HB2	2.00	0.44
2:B:894:TYR:HE2	2:B:1001:LEU:HB3	1.83	0.44
6:F:221:ILE:HG21	6:F:281:GLN:HB2	1.99	0.44
1:A:211:LEU:HD11	9:A:302:HEC:HBD2	2.00	0.44
1:A:18:PHE:CE1	7:G:36:MET:CE	3.01	0.43
3:C:103:LEU:HD12	3:C:107:ILE:CD1	2.48	0.43
3:C:144:ARG:NH1	5:E:29:ASP:OD2	2.50	0.43
2:B:105:THR:HB	2:B:487:VAL:HG22	2.00	0.43
2:B:126:LYS:HE3	2:B:807:GLU:HB2	1.99	0.43
2:B:405:LEU:HD23	2:B:435:LEU:HD11	1.99	0.43
2:B:826:TRP:CE3	2:B:931:CYS:HA	2.52	0.43
3:C:199:ASP:OD2	4:D:142:SER:OG	2.36	0.43
3:C:284:LEU:HD11	3:C:384:LEU:HA	2.00	0.43
3:C:332:SER:HB2	6:F:218:PHE:CE2	2.53	0.43
2:B:589:GLY:HA2	2:B:690:VAL:HG11	2.01	0.43
3:C:197:LEU:HD11	3:C:443:PRO:HD3	2.00	0.43
6:F:62:LEU:HD13	6:F:164:ALA:HB2	2.00	0.43
15:F:502:JM9:O20	15:F:502:JM9:C15	2.65	0.43
1:A:148:ASN:ND2	1:A:183:ASN:OD1	2.52	0.43
3:C:254:ALA:HB1	6:F:284:ILE:HG12	2.01	0.43
4:D:8:VAL:HG22	4:D:176:GLU:HG3	2.00	0.43
2:B:365:GLN:H	2:B:365:GLN:HG2	1.48	0.43
3:C:102:THR:HG21	3:C:178:TYR:HE1	1.83	0.43
3:C:282:VAL:CG1	3:C:286:MET:SD	3.07	0.43
6:F:133:PHE:O	6:F:133:PHE:CG	2.69	0.43
2:B:433:GLY:HA3	2:B:700:PRO:HA	1.99	0.43
1:A:94:ILE:HG23	5:E:121:GLY:HA3	2.00	0.43
6:F:58:PRO:HG3	6:F:93:MET:HG3	2.00	0.43
6:F:240:LEU:HD11	6:F:341:GLY:HA2	2.01	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:F:272:VAL:HA	6:F:275:THR:HG22	2.00	0.43
1:A:3:GLN:HG3	1:A:4:ILE:HD13	2.01	0.43
1:A:195:ILE:HD12	1:A:195:ILE:HA	1.95	0.42
2:B:955:SER:O	2:B:955:SER:OG	2.34	0.42
3:C:24:THR:HG23	3:C:27:SER:H	1.84	0.42
3:C:58:LEU:HD12	3:C:430:LEU:HA	2.01	0.42
2:B:142:LEU:HD12	2:B:142:LEU:C	2.39	0.42
2:B:450:LEU:HD13	2:B:503:LEU:HD22	2.01	0.42
3:C:224:TRP:CE3	4:D:40:PRO:HG3	2.53	0.42
4:D:60:LEU:HB2	15:F:502:JM9:C44	2.49	0.42
9:A:304:HEC:HBC1	9:A:305:HEC:HMC2	2.01	0.42
2:B:651:ILE:HG22	2:B:662:GLU:OE2	2.15	0.42
3:C:103:LEU:HD13	3:C:107:ILE:HD13	2.02	0.42
9:A:303:HEC:HHA	9:A:303:HEC:HAA1	1.57	0.42
3:C:376:ILE:HD13	3:C:376:ILE:HA	1.82	0.42
6:F:28:GLY:HA3	6:F:376:GLY:HA3	2.02	0.42
8:I:23:MET:SD	8:I:23:MET:N	2.92	0.42
2:B:421:ILE:HG12	2:B:507:MET:SD	2.59	0.42
3:C:124:GLU:HB3	3:C:186:TRP:HD1	1.84	0.42
8:I:28:LEU:HD23	8:I:28:LEU:HA	1.87	0.42
2:B:450:LEU:HG	2:B:467:GLN:HB2	2.02	0.42
3:C:238:SER:HA	3:C:241:LEU:HB3	2.01	0.42
6:F:378:ILE:HD13	6:F:378:ILE:HA	1.81	0.42
1:A:132:ILE:HB	2:B:943:ILE:HG23	2.02	0.42
3:C:233:LEU:HD11	4:D:59:VAL:HG11	2.02	0.42
3:C:308:ALA:HB2	3:C:379:LEU:HD11	2.00	0.42
4:D:22:THR:HG21	4:D:44:VAL:HG12	2.01	0.42
6:F:59:LEU:HD13	6:F:202:VAL:HG23	2.01	0.42
7:G:33:SER:O	7:G:37:ILE:HG12	2.20	0.42
3:C:163:GLN:NE2	4:D:86:VAL:CB	2.83	0.41
1:A:77:TYR:HA	1:A:130:HIS:H	1.85	0.41
1:A:94:ILE:HG21	9:A:305:HEC:HMD3	2.03	0.41
3:C:243:VAL:O	3:C:247:SER:OG	2.25	0.41
4:D:36:PHE:HE2	4:D:149:CYS:HB3	1.85	0.41
5:E:162:MET:HE1	9:E:301:HEC:NA	2.34	0.41
6:F:219:SER:HB3	6:F:222:TYR:HB2	2.02	0.41
1:A:95:LYS:HG3	9:A:305:HEC:O2A	2.20	0.41
2:B:312:ARG:HE	2:B:312:ARG:HB3	1.61	0.41
3:C:163:GLN:NE2	4:D:86:VAL:HB	2.36	0.41
1:A:46:ALA:HB1	1:A:152:VAL:HB	2.02	0.41
2:B:106:LEU:HD12	2:B:115:VAL:HG11	2.02	0.41

	the second se	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:258:ASP:OD2	2:B:366:GLN:NE2	2.48	0.41
2:B:405:LEU:HG	2:B:435:LEU:HD13	2.02	0.41
2:B:867:THR:OG1	2:B:875:ASN:OD1	2.37	0.41
7:G:81:LEU:HD23	7:G:81:LEU:HA	1.90	0.41
2:B:260:ASP:OD1	2:B:260:ASP:N	2.53	0.41
2:B:877:MET:SD	2:B:897:ARG:NH2	2.94	0.41
6:F:62:LEU:O	6:F:66:MET:HG3	2.20	0.41
2:B:279:ARG:HD3	2:B:279:ARG:HA	1.85	0.41
2:B:316:ILE:HD13	2:B:316:ILE:HA	1.86	0.41
4:D:38:PRO:HD3	4:D:145:ALA:O	2.21	0.41
5:E:138:LEU:HD22	5:E:182:ARG:HH21	1.86	0.41
1:A:18:PHE:CE2	7:G:36:MET:HE3	2.56	0.41
1:A:168:HIS:CD2	9:A:302:HEC:NC	2.86	0.41
2:B:885:THR:HG23	11:B:1104:F3S:S2	2.60	0.41
6:F:59:LEU:HD23	6:F:59:LEU:HA	1.82	0.41
1:A:96:THR:OG1	1:A:97:TYR:N	2.54	0.41
2:B:146:ALA:O	2:B:588:ASN:ND2	2.49	0.41
5:E:98:LYS:HD3	5:E:98:LYS:HA	1.93	0.41
6:F:70:LEU:HD23	6:F:70:LEU:HA	1.95	0.41
1:A:126:VAL:HG13	9:A:301:HEC:HHD	2.02	0.41
1:A:211:LEU:HD21	9:A:302:HEC:HBD2	2.03	0.41
9:A:301:HEC:HAA2	3:C:158:HIS:NE2	2.36	0.41
2:B:369:ILE:HD12	2:B:372:ALA:HB3	2.03	0.41
2:B:777:ASP:OD2	2:B:782:ARG:NH1	2.54	0.41
5:E:186:LEU:HD22	7:G:103:ILE:HD13	2.02	0.41
1:A:64:ILE:HG12	9:A:305:HEC:HBC2	2.03	0.41
2:B:291:LEU:HB3	2:B:305:ALA:HA	2.02	0.41
2:B:468:ALA:HB3	2:B:499:THR:HG22	2.03	0.41
1:A:57:LEU:CD2	9:A:305:HEC:HHA	2.50	0.40
1:A:129:ASN:HB3	1:A:132:ILE:HG22	2.02	0.40
3:C:99:HIS:HB2	3:C:246:HIS:CE1	2.55	0.40
3:C:311:MET:HE2	3:C:367:LEU:HD13	2.03	0.40
1:A:131:SER:HB3	2:B:947:ARG:HH21	1.86	0.40
2:B:186:THR:OG1	2:B:187:GLN:N	2.54	0.40
2:B:452:GLN:HB2	2:B:467:GLN:HB3	2.03	0.40
2:B:595:PRO:HA	2:B:602:VAL:HG12	2.03	0.40
2:B:635:ARG:HD2	2:B:635:ARG:HA	1.92	0.40
3:C:301:LEU:HD23	3:C:301:LEU:HA	1.91	0.40
3:C:381:ILE:O	3:C:385:ILE:HD12	2.21	0.40
2:B:205:ALA:O	2:B:209:GLN:HG3	2.21	0.40
2:B:728:GLN:OE1	2:B:831:ARG:NH2	2.54	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:B:760:GLN:HE22	2:B:766:GLU:HG2	1.86	0.40
5:E:34:GLN:H	5:E:34:GLN:HG3	1.47	0.40
1:A:72:SER:OG	1:A:76:SER:OG	2.26	0.40
2:B:885:THR:OG1	11:B:1104:F3S:S1	2.79	0.40
3:C:84:TRP:CG	3:C:88:ILE:HG13	2.55	0.40
6:F:108:TYR:C	6:F:110:ALA:H	2.24	0.40
1:A:41:ARG:HE	1:A:41:ARG:HB3	1.71	0.40
2:B:372:ALA:HB1	2:B:558:ILE:HG12	2.04	0.40
2:B:600:LYS:HA	2:B:600:LYS:HD3	1.84	0.40
2:B:1001:LEU:HD23	2:B:1001:LEU:HA	1.86	0.40
3:C:80:ILE:HD12	3:C:80:ILE:HA	1.78	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	216/219~(99%)	202 (94%)	14 (6%)	0	100	100
2	В	949/1029~(92%)	888 (94%)	61 (6%)	0	100	100
3	С	447/486~(92%)	425 (95%)	22 (5%)	0	100	100
4	D	173/179~(97%)	158 (91%)	15 (9%)	0	100	100
5	Ε	162/205~(79%)	149 (92%)	13 (8%)	0	100	100
6	F	395/411~(96%)	370 (94%)	25~(6%)	0	100	100
7	G	78/112 (70%)	72 (92%)	6 (8%)	0	100	100
8	Ι	35/37~(95%)	33 (94%)	2(6%)	0	100	100
All	All	2455/2678~(92%)	2297 (94%)	158 (6%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	198/199~(100%)	195~(98%)	3(2%)	60	85
2	В	768/830~(92%)	756~(98%)	12 (2%)	58	84
3	С	382/405~(94%)	377~(99%)	5 (1%)	65	88
4	D	143/147~(97%)	137~(96%)	6 (4%)	25	59
5	Ε	136/171~(80%)	134~(98%)	2(2%)	60	85
6	F	318/330~(96%)	312~(98%)	6 (2%)	52	81
7	G	69/95~(73%)	68~(99%)	1 (1%)	62	86
8	Ι	32/32~(100%)	32 (100%)	0	100	100
All	All	2046/2209~(93%)	2011 (98%)	35 (2%)	56	83

All (35) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	97	TYR
1	А	140	CYS
1	А	178	ARG
2	В	88	ASP
2	В	278	ARG
2	В	365	GLN
2	В	480	PHE
2	В	551	PRO
2	В	571	GLU
2	В	753	TYR
2	В	869	HIS
2	В	887	TYR
2	В	923	ARG
2	В	931	CYS
2	В	957	TYR
3	С	185	PHE
3	С	208	ARG
3	С	234	LEU
3	С	394	ARG

Mol	Chain	Res	Type
3	С	444	MET
4	D	30	TYR
4	D	82	TYR
4	D	89	ARG
4	D	125	LEU
4	D	138	PHE
4	D	143	GLN
5	Е	85	PHE
5	Ε	150	TYR
6	F	64	PHE
6	F	105	PHE
6	F	122	ASN
6	F	152	ARG
6	F	261	HIS
6	F	330	LYS
7	G	43	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (11) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	130	HIS
2	В	221	GLN
2	В	365	GLN
2	В	623	ASN
3	С	90	ASN
3	С	163	GLN
5	Е	27	HIS
6	F	229	ASN
6	F	332	ASN
6	F	362	HIS
6	F	401	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 14 ligands modelled in this entry, 1 is monoatomic - leaving 13 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	Bond lengths			Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
10	SF4	В	1101	2	0,12,12	-	-	-			
10	SF4	В	1103	2	0,12,12	-	-	-			
11	F3S	В	1104	2	$0,\!9,\!9$	-	-	-			
9	HEC	А	303	1	$32,\!50,\!50$	2.73	9 (28%)	$24,\!82,\!82$	2.82	8 (33%)	
9	HEC	А	302	1	$32,\!50,\!50$	2.50	9 (28%)	24,82,82	2.18	4 (16%)	
9	HEC	Е	301	5	32,50,50	2.43	7 (21%)	24,82,82	2.88	8 (33%)	
9	HEC	А	304	1	32,50,50	2.54	8 (25%)	24,82,82	2.30	5 (20%)	
9	HEC	А	305	1	32,50,50	2.41	8 (25%)	24,82,82	2.34	9 (37%)	
15	JM9	F	502	-	$53,\!53,\!53$	1.23	8 (15%)	58, 58, 58	1.84	13 (22%)	
9	HEC	А	301	1	32,50,50	2.45	3 (9%)	24,82,82	2.81	9 (37%)	
10	SF4	В	1102	2	0,12,12	-	-	-			
14	JL3	F	501	-	44,44,44	0.99	5 (11%)	47,49,49	0.89	3 (6%)	
13	JLQ	С	501	-	44,44,44	0.97	4 (9%)	47,49,49	1.20	5 (10%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
10	SF4	В	1101	2	-	-	0/6/5/5
10	SF4	В	1103	2	-	-	0/6/5/5
11	F3S	В	1104	2	-	-	0/3/3/3
9	HEC	А	303	1	-	1/10/54/54	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	HEC	А	302	1	-	8/10/54/54	-
9	HEC	Е	301	5	-	5/10/54/54	-
9	HEC	А	304	1	-	2/10/54/54	-
9	HEC	А	305	1	-	5/10/54/54	-
15	JM9	F	502	-	-	28/56/56/56	-
9	HEC	А	301	1	-	6/10/54/54	-
10	SF4	В	1102	2	-	-	0/6/5/5
14	JL3	F	501	-	-	28/48/48/48	-
13	JLQ	С	501	-	-	29/48/48/48	-

All (61) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
9	А	303	HEC	C2B-C3B	-9.95	1.30	1.40
9	А	301	HEC	C2B-C3B	-8.61	1.31	1.40
9	А	304	HEC	C2B-C3B	-8.18	1.32	1.40
9	Е	301	HEC	C2B-C3B	-8.14	1.32	1.40
9	А	304	HEC	C3C-C2C	-7.94	1.32	1.40
9	А	302	HEC	C2B-C3B	-7.89	1.32	1.40
9	А	305	HEC	C2B-C3B	-7.87	1.32	1.40
9	А	303	HEC	C3C-C2C	-7.02	1.33	1.40
9	Е	301	HEC	C3C-C2C	-6.34	1.34	1.40
9	А	301	HEC	C3C-C2C	-6.31	1.34	1.40
9	А	302	HEC	C3C-C2C	-6.29	1.34	1.40
9	А	305	HEC	C3C-C2C	-6.17	1.34	1.40
9	А	301	HEC	C3D-C2D	5.54	1.54	1.37
9	А	302	HEC	C3D-C2D	5.30	1.53	1.37
9	Е	301	HEC	C3D-C2D	4.98	1.52	1.37
9	А	305	HEC	C3D-C2D	4.86	1.52	1.37
9	А	303	HEC	C3D-C2D	3.63	1.48	1.37
9	А	304	HEC	C3D-C2D	3.57	1.48	1.37
9	А	303	HEC	C4D-CHA	-3.46	1.31	1.41
15	F	502	JM9	O17-C18	-3.23	1.38	1.46
15	F	502	JM9	O16-C15	3.12	1.31	1.22
9	А	303	HEC	C1D-ND	3.10	1.42	1.36
9	А	302	HEC	CAD-C3D	3.09	1.56	1.52
9	А	303	HEC	O2D-CGD	-3.03	1.20	1.30
9	А	304	HEC	C3C-C4C	2.93	1.48	1.43
15	F	502	JM9	O20-C21	2.86	1.41	1.33
15	F	502	JM9	C14-C15	2.82	1.59	1.50

001000	nucu jion	i prece	ous page	•••	1		
Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(A)
15	F	502	JM9	O20-C19	-2.80	1.38	1.45
14	F	501	JL3	O29-C19	-2.78	1.39	1.46
9	А	305	HEC	C4D-CHA	-2.69	1.33	1.41
9	А	305	HEC	C1D-CHD	-2.50	1.34	1.41
9	А	303	HEC	C3C-C4C	2.48	1.47	1.43
9	А	303	HEC	C2A-C3A	-2.40	1.30	1.37
14	F	501	JL3	O17-C18	-2.40	1.39	1.45
13	С	501	JLQ	O30-C31	2.40	1.41	1.34
13	С	501	JLQ	O18-C19	-2.37	1.39	1.45
9	А	302	HEC	C4D-CHA	-2.37	1.34	1.41
9	А	304	HEC	C1C-CHC	-2.36	1.34	1.41
13	С	501	JLQ	O18-C16	2.36	1.40	1.33
9	Е	301	HEC	C1C-CHC	-2.35	1.34	1.41
14	F	501	JL3	O17-C15	2.31	1.40	1.33
9	А	304	HEC	C4D-CHA	-2.28	1.34	1.41
15	F	502	JM9	O38-C37	-2.28	1.40	1.45
9	А	302	HEC	C2A-C3A	2.27	1.44	1.37
9	А	303	HEC	C1B-NB	2.25	1.40	1.36
9	Е	301	HEC	C1D-ND	2.24	1.40	1.36
9	Е	301	HEC	C4D-ND	2.19	1.40	1.36
13	С	501	JLQ	O30-C20	-2.12	1.41	1.46
15	F	502	JM9	C19-C18	2.11	1.57	1.50
14	F	501	JL3	O29-C30	2.09	1.40	1.34
9	А	304	HEC	C1B-CHB	-2.08	1.35	1.41
9	А	305	HEC	C1B-CHB	-2.08	1.35	1.41
9	A	305	HEC	C1B-NB	2.06	1.40	1.36
9	Е	301	HEC	CMD-C2D	2.06	1.55	1.51
9	А	304	HEC	C1D-ND	2.06	1.40	1.36
9	А	305	HEC	O2A-CGA	-2.05	1.23	1.30
15	F	502	JM9	C23-C21	2.05	1.56	1.50
9	А	302	HEC	C1B-CHB	-2.02	1.35	1.41
9	А	302	HEC	C1C-CHC	-2.02	1.35	1.41
14	F	501	JL3	P22-O23	-2.02	1.45	1.55
9	А	302	HEC	C1D-ND	2.00	1.40	1.36

All (64) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
9	А	303	HEC	C1D-C2D-C3D	-8.71	100.94	107.00
9	А	302	HEC	CMC-C2C-C1C	-7.77	116.52	128.46
9	А	301	HEC	CMC-C2C-C3C	6.99	134.04	125.82
9	Е	301	HEC	CMC-C2C-C1C	-6.58	118.35	128.46

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	Е	301	HEC	CMC-C2C-C3C	6.10	132.99	125.82
9	А	301	HEC	CAD-CBD-CGD	-5.82	97.44	113.76
9	А	301	HEC	CBA-CAA-C2A	-5.82	102.79	112.60
9	Е	301	HEC	C1D-C2D-C3D	-5.78	102.98	107.00
9	А	305	HEC	CMC-C2C-C1C	-5.75	119.63	128.46
9	Е	301	HEC	CAD-CBD-CGD	5.63	129.53	113.76
9	А	303	HEC	CMC-C2C-C1C	-5.44	120.11	128.46
9	А	304	HEC	CMD-C2D-C1D	5.38	136.73	128.46
15	F	502	JM9	C12-C13-C14	5.36	132.46	113.19
9	А	303	HEC	CMD-C2D-C1D	5.33	136.66	128.46
13	С	501	JLQ	O30-C31-C33	5.26	122.84	111.50
9	А	301	HEC	CMC-C2C-C1C	-5.11	120.60	128.46
9	А	304	HEC	CBD-CAD-C3D	-5.10	103.92	112.62
15	F	502	JM9	C37-O38-C39	5.01	135.66	117.12
9	А	304	HEC	CMC-C2C-C1C	-4.99	120.80	128.46
15	F	502	JM9	C18-O17-C15	-4.90	105.72	117.79
15	F	502	JM9	C37-C18-C19	4.65	122.78	111.79
9	А	305	HEC	C1D-C2D-C3D	-4.18	104.09	107.00
9	А	304	HEC	CMD-C2D-C3D	-4.13	117.15	124.94
15	F	502	JM9	C13-C12-C11	-4.12	93.53	114.42
9	Е	301	HEC	O2D-CGD-CBD	4.08	127.15	114.03
9	А	305	HEC	O2A-CGA-O1A	-4.00	113.32	123.30
9	А	303	HEC	CMC-C2C-C3C	-3.46	121.75	125.82
9	А	302	HEC	CMC-C2C-C3C	3.31	129.72	125.82
14	F	501	JL3	O29-C30-C32	3.29	118.60	111.50
9	А	301	HEC	C1D-C2D-C3D	-3.28	104.71	107.00
15	F	502	JM9	O20-C21-C23	3.28	122.21	111.91
9	А	305	HEC	CAA-CBA-CGA	3.28	122.96	113.76
9	Е	301	HEC	O1D-CGD-CBD	-3.25	112.63	123.08
9	А	305	HEC	CAD-CBD-CGD	-3.20	104.80	113.76
9	А	305	HEC	CMC-C2C-C3C	3.08	129.44	125.82
9	А	304	HEC	CAA-CBA-CGA	-2.96	105.45	113.76
9	Е	301	HEC	CMB-C2B-C1B	-2.96	123.92	128.46
9	А	302	HEC	C1D-C2D-C3D	-2.92	104.96	107.00
15	F	502	JM9	O38-C39-O40	-2.91	116.24	123.59
9	А	303	HEC	CBA-CAA-C2A	2.89	117.48	112.60
9	A	305	HEC	CMD-C2D-C3D	2.82	130.26	124.94
15	F	502	JM9	O20-C19-C18	2.80	116.58	108.43
15	F	502	JM9	C12-C11-C10	2.63	127.78	114.42
9	А	301	HEC	CMD-C2D-C3D	2.61	129.86	124.94
13	С	501	JLQ	O18-C16-C15	2.57	119.97	111.91
15	F	502	JM9	O38-C39-C41	2.54	119.88	111.91

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
14	F	501	JL3	O17-C15-C14	2.49	119.71	111.91
15	F	502	JM9	O17-C15-O16	-2.48	117.71	123.70
9	А	303	HEC	CAD-CBD-CGD	-2.40	107.02	113.76
13	С	501	JLQ	C21-C20-C19	-2.40	106.11	111.79
9	А	305	HEC	O1D-CGD-CBD	-2.38	115.42	123.08
14	F	501	JL3	O23-P22-O24	-2.35	100.61	112.24
9	А	305	HEC	O2A-CGA-CBA	2.34	121.54	114.03
9	А	302	HEC	CMD-C2D-C3D	2.33	129.33	124.94
15	F	502	JM9	O20-C21-O22	-2.29	117.82	123.59
9	А	301	HEC	CAA-CBA-CGA	-2.27	107.40	113.76
13	С	501	JLQ	O30-C31-O32	-2.27	118.22	123.70
9	А	303	HEC	O2D-CGD-CBD	2.25	121.26	114.03
15	F	502	JM9	O17-C15-C14	2.17	116.18	111.50
13	С	501	JLQ	O24-P23-O25	-2.16	101.54	112.24
9	А	301	HEC	C4C-C3C-C2C	2.13	108.66	106.35
9	A	303	HEC	O1D-CGD-CBD	-2.09	116.36	123.08
9	E	301	HEC	O2A-CGA-CBA	2.01	120.50	114.03
9	А	301	HEC	CMD-C2D-C1D	-2.00	125.39	128.46

There are no chirality outliers.

All (112) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
9	А	301	HEC	C3D-CAD-CBD-CGD
9	А	302	HEC	C1A-C2A-CAA-CBA
9	А	302	HEC	C3A-C2A-CAA-CBA
9	А	302	HEC	C2A-CAA-CBA-CGA
9	А	302	HEC	C2D-C3D-CAD-CBD
9	А	302	HEC	C4D-C3D-CAD-CBD
9	А	303	HEC	C3D-CAD-CBD-CGD
9	А	305	HEC	C2A-CAA-CBA-CGA
9	Е	301	HEC	C3D-CAD-CBD-CGD
13	С	501	JLQ	C21-O22-P23-O25
13	С	501	JLQ	C27-O26-P23-O24
13	С	501	JLQ	C27-O26-P23-O25
13	С	501	JLQ	O30-C20-C21-O22
13	С	501	JLQ	O32-C31-O30-C20
14	F	501	JL3	O17-C18-C19-O29
15	F	502	JM9	O17-C18-C37-O38
13	С	501	JLQ	C33-C31-O30-C20
13	С	501	JLQ	C15-C16-O18-C19
14	F	501	JL3	C14-C15-O17-C18

Mol	Chain	Res	Type	Atoms
15	F	502	JM9	C48-C49-C50-C51
15	F	502	JM9	C12-C13-C14-C15
15	F	502	JM9	C44-C45-C46-C47
14	F	501	JL3	O16-C15-O17-C18
13	С	501	JLQ	O17-C16-O18-C19
13	С	501	JLQ	C27-O26-P23-O22
14	F	501	JL3	C32-C33-C34-C35
14	F	501	JL3	C40-C41-C42-C43
15	F	502	JM9	C30-C31-C32-C33
15	F	502	JM9	C50-C51-C52-C53
14	F	501	JL3	C35-C36-C37-C38
15	F	502	JM9	C21-C23-C24-C25
13	С	501	JLQ	C09-C10-C11-C12
14	F	501	JL3	C41-C42-C43-C44
14	F	501	JL3	C11-C12-C13-C14
14	F	501	JL3	C36-C37-C38-C39
15	F	502	JM9	C10-C11-C12-C13
15	F	502	JM9	C09-C10-C11-C12
13	С	501	JLQ	C39-C40-C41-C42
15	F	502	JM9	C43-C44-C45-C46
14	F	501	JL3	C33-C34-C35-C36
13	С	501	JLQ	C08-C09-C10-C11
13	С	501	JLQ	C04-C05-C06-C07
15	F	502	JM9	C46-C47-C48-C49
15	F	502	JM9	C14-C15-O17-C18
15	F	502	JM9	C24-C25-C26-C27
15	F	502	JM9	C23-C21-O20-C19
14	F	501	JL3	C09-C10-C11-C12
15	F	502	JM9	C29-C30-C31-C32
15	F	502	JM9	C50-C51-C52-C54
14	F	501	JL3	C10-C11-C12-C13
13	С	501	JLQ	C07-C08-C09-C10
15	F	502	JM9	O16-C15-O17-C18
13	С	501	JLQ	C21-O22-P23-O26
13	С	501	JLQ	O18-C19-C20-C21
13	С	501	JLQ	C13-C14-C15-C16
13	С	501	JLQ	C01-C02-C03-C04
14	F	501	JL3	C38-C39-C40-C41
13	С	501	JLQ	C19-C20-C21-O22
15	F	502	JM9	O22-C21-O20-C19
14	F	501	JL3	C12-C13-C14-C15
15	F	502	JM9	C01-C02-C03-C04

Continued from previous page...

EMD-36985,	8K9F
------------	------

Mol	Chain	Res	Type	Atoms
13	С	501	JLQ	O18-C19-C20-O30
13	С	501	JLQ	C06-C07-C08-C09
14	F	501	JL3	C04-C05-C06-C07
14	F	501	JL3	C18-C19-C20-O21
13	С	501	JLQ	C19-C20-O30-C31
15	F	502	JM9	C19-C18-C37-O38
14	F	501	JL3	O29-C19-C20-O21
15	F	502	JM9	C45-C46-C47-C48
15	F	502	JM9	C27-C28-C29-C30
13	С	501	JLQ	C21-O22-P23-O24
14	F	501	JL3	C26-O25-P22-O24
13	С	501	JLQ	C02-C03-C04-C05
14	F	501	JL3	C37-C38-C39-C40
15	F	502	JM9	C11-C12-C13-C14
9	А	301	HEC	C2A-CAA-CBA-CGA
9	А	302	HEC	C3D-CAD-CBD-CGD
14	F	501	JL3	C42-C43-C44-C45
9	А	301	HEC	C4D-C3D-CAD-CBD
14	F	501	JL3	O17-C18-C19-C20
13	С	501	JLQ	C38-C39-C40-C41
14	F	501	JL3	C07-C08-C09-C10
9	А	301	HEC	CAD-CBD-CGD-O1D
9	А	305	HEC	CAD-CBD-CGD-O2D
15	F	502	JM9	C39-C41-C42-C43
9	А	305	HEC	CAD-CBD-CGD-O1D
15	F	502	JM9	C32-C33-C34-C35
9	А	301	HEC	CAD-CBD-CGD-O2D
15	F	502	JM9	C32-C33-C34-C36
9	А	302	HEC	CAD-CBD-CGD-O1D
9	А	302	HEC	CAD-CBD-CGD-O2D
13	С	501	JLQ	C36-C37-C38-C39
9	А	304	HEC	CAD-CBD-CGD-O2D
9	Е	301	HEC	CAA-CBA-CGA-O2A
9	Е	301	HEC	CAD-CBD-CGD-O1D
14	F	501	JL3	C19-C20-O21-P22
9	Е	301	HEC	CAA-CBA-CGA-O1A
15	F	502	JM9	C23-C24-C25-C26
15	F	502	JM9	C08-C09-C10-C11
14	F	501	JL3	O29-C30-C32-C33
14	F	501	JL3	C13-C14-C15-O17
9	А	304	HEC	CAD-CBD-CGD-O1D
13	С	501	JLQ	C40-C41-C42-C43

Continued from previous page...

Mol	Chain	Res	Type	Atoms
13	С	501	JLQ	C14-C15-C16-O18
9	А	305	HEC	CAA-CBA-CGA-O1A
14	F	501	JL3	O31-C30-C32-C33
14	F	501	JL3	C13-C14-C15-O16
14	F	501	JL3	C05-C06-C07-C08
9	А	301	HEC	CAA-CBA-CGA-O2A
13	С	501	JLQ	O26-C27-C28-N29
9	Ε	301	HEC	CAD-CBD-CGD-O2D
9	А	305	HEC	CAA-CBA-CGA-O2A

There are no ring outliers.

10 monomers are involved in 68 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
10	В	1101	SF4	1	0
11	В	1104	F3S	10	0
9	А	303	HEC	2	0
9	А	302	HEC	7	0
9	Е	301	HEC	17	0
9	А	304	HEC	10	0
9	А	305	HEC	7	0
15	F	502	JM9	6	0
9	А	301	HEC	5	0
14	F	501	JL3	4	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

