

Oct 15, 2024 – 08:02 AM JST

PDB ID	:	8HIF
EMDB ID	:	EMD-34815
Title	:	One asymmetric unit of Singapore grouper iridovirus capsid
Authors	:	Zhao, Z.N.; Liu, C.C.; Zhu, D.J.; Qi, J.X.; Zhang, X.Z.; Gao, G.F.
Deposited on	:	2022-11-20
Resolution	:	3.50 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures
U Percenti	le relative to all EM structures	
Percenti	le relative to all structures	
Worse		Better
Sidechain outliers		0.3%
Ramachandran outliers		0.1%
Metric	Percentile Ran	ks Value

Metric	(# Entries)	(# Entries)		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain
1	A1	463	99%
1	A2	463	99% .
1	A3	463	99%
1	B1	463	98% •
1	B2	463	99% .
1	B3	463	99%
1	C1	463	99%
1	C2	463	100%
1	C3	463	99% .

Mol	Chain	Length	Quality of chain
1	D1	463	99%
1	D2	463	9 9% •
1	D3	463	99% .
1	E1	463	100%
1	E2	463	100%
1	E3	463	99% ·
1	F1	463	99%
1	F2	463	98% •
1	F3	463	100%
1	G1	463	99%
1	G2	463	99%
1	G3	463	100%
1	H1	463	98% •
1	H2	463	99%
1	H3	463	99%
1	I1	463	99%
1	I2	463	99%
1	I3	463	99%
1	J1	463	98%
1	J2	463	100%
1	J3	463	100%
1	K1	463	• 100%
1	K2	463	100%
1	K3	463	100%
1	L1	463	98%

Continued from previous page...

Mol	Chain	Length	Quality of chain
1	L2	463	99%
1	L3	463	100%
1	M1	463	100%
1	M2	463	100%
1	M3	463	98% •
1	N1	463	99%
1	N2	463	99%
1	N3	463	100%
1	01	463	98% •
1	O2	463	100%
1	O3	463	100%
1	P1	463	99%
1	P2	463	100%
1	P3	463	99%
1	Q1	463	99%
1	Q2	463	100%
1	Q3	463	98% .
1	R1	463	100%
1	R2	463	98% •
1	R3	463	99%
1	S1	463	100%
1	S2	463	99%
1	S3	463	100%
1	T1	463	100%
1	T2	463	99%

Continued from previous page...MolChainLength

Mol

Continued from previous page... Chain Length

Quality of chain

T31 463100% U11 46399% i 1 U2463 100% U31 463100% ÷ 1 V1463100% V24631 99% V34631 99% i W14631 100% W2463 1 100% W31 463100% 1 X1463100% • X24631 100% i. 1 X3463100% ÷ Y1 1 46399% Y24631 98% ÷ 1 Y3463 99% $\mathbf{Z1}$ 4631 98% •• Z21 463100% ÷ Z31 463100% 1 463a1100% ÷ 1 a2463100% a31 463100% 4631 b1100% b24631 100% 1 b3463 99% Continued on next page...

Mol	Chain	Length	Quality of chain
1	c1	463	99%
1	c2	463	100%
1	c3	463	99%
1	d1	463	99%
1	d2	463	99%
1	d3	463	100%
1	e1	463	98%
1	e2	463	100%
1	e3	463	99%
1	f1	463	98% •
1	f2	463	100%
1	f3	463	100%
1	g1	463	99%
1	g2	463	100%
1	g3	463	100%
1	h1	463	98% .
1	h2	463	99%
1	h3	463	100%
1	j1	463	99%
1	j2	463	100%
1	j3	463	100%
1	k1	463	100%
1	k2	463	99%
1	k3	463	100%
1	m1	463	99% •

Continued from previous page... Mol Chain Length

Mol	Chain	Length	Quality	of chain
1	m2	463	99	%
1	m3	463	10	0%
1	n1	463	10	0%
1	n2	463	10	00%
1	n3	463	99	9%
1	p1	463	10	00%
1	p2	463	10	0%
1	p3	463	99	9%
1	q1	463	10	0%
1	q2	463	10	0%
1	q3	463	10	0%
1	r1	463	99	9%
1	r2	463	10	0%
1	r3	463	99	9%
2	s1	170	5 6%	44%
2	s2	170	45%	55%
2	s3	170	5 6%	• 42%
2	s4	170	58%	• 41%
2	s5	170	55%	• 45%
2	s6	170	55%	45%
2	t1	170	57%	• 42%
2	t2	170	55%	• 44%
2	t3	170	• 56%	• 43%
2	t4	170	53%	• 45%
2	t5	170	44%	56%

Continued from previous page...

 Mol
 Chain
 Length

Mol	Chain	Length	Quality of chain					
2	t6	170	-	56%		•	42%	
2	t7	170	6%	56%		•	42%	
2	y7	170	7%			69%	,)	
2	y8	170	12% 28%	•		71%		
3	y1	461	7%			83%		
3	y2	461	7%		80%		•	18%
4	y4	506	35%	61%		•	38%	
5	y5	146	-	52%	•		47%	
6	y6	103	12%		89%			11%
7	y3	141	•		97%			••

Continued from previous page...

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 450820 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					AltConf	Trace	
1	A 1	461	Total	С	Ν	0	\mathbf{S}	0	0	
1	111	101	3516	2225	597	671	23	0	0	
1	Δ 2	450	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
	$\Lambda 2$	400	3504	2220	595	667	22	0	0	
1	Δ 3	458	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0	
1	AJ	400	3497	2216	594	665	22	0	0	
1	R1	454	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0	
1	DI	404	3480	2206	593	659	22	0	0	
1	Bo	450	Total	С	Ν	0	\mathbf{S}	0	0	
1	D_{2}	409	3510	2223	598	667	22	0	0	
1	B3	469	Total	С	Ν	0	\mathbf{S}	0	0	
1	D0	402	3524	2231	598	672	23	0	0	
1	C1	461	Total	С	Ν	0	S	0	0	
1		401	3523	2230	600	670	23	0	0	
1	Co	Co	469	Total	С	Ν	0	S	0	0
	02	402	3521	2229	598	672	22	0	0	
1	C3	458	Total	С	Ν	Ο	\mathbf{S}	0	0	
1	05	400	3503	2219	597	665	22	0	0	
1	D1	158	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
1	DI	400	3497	2216	594	665	22	0	0	
1	1 D9	461	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
	D^2	401	3517	2227	597	670	23	0	0	
1	D3	469	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0	
1	D0	402	3530	2234	601	672	23	0	0	
1	E1	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
1	1/1	402	3530	2234	601	672	23	0	0	
1	E2	461	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
1	1.12	401	3523	2230	600	670	23	0	0	
1	E3	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	
1	Ц0	402	3530	2234	601	672	23	0	0	
1	F1	461	Total	C	N	0	S	0	0	
	I I	101	3504	2220	594	668	22	0	0	
1	F_{2}	455	Total	С	Ν	0	S	0	0	
1 F ²	-100	3480	2205	591	662	22				

• Molecule 1 is a protein called Major capsid protein.

α \cdot \cdot \cdot	C		
Continued	from	previous	page
	9	1	1 0

Mol	Chain	Residues		At	oms			AltConf	Trace
1	F 2	469	Total	С	Ν	0	S	0	0
	гэ	402	3530	2234	601	672	23	0	0
1	C1	461	Total	С	Ν	0	S	0	0
	GI	401	3517	2227	597	670	23	0	0
1	C2	461	Total	С	Ν	0	\mathbf{S}	0	0
1	62	401	3514	2226	596	669	23	0	0
1	C3	462	Total	С	Ν	0	\mathbf{S}	0	0
1	00	402	3527	2233	600	671	23	0	0
1	H1	457	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	111	101	3495	2213	596	664	22	0	0
1	H2	461	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
-	112	101	3523	2230	600	670	23	0	0
1	H3	461	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	110	101	3523	2230	600	670	23	0	0
1	I1	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		102	3530	2234	601	672	23		0
1	I2	459	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
-		100	3510	2223	598	667	22	Ŭ	
1	I3	461	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	10	101	3523	2230	600	670	23	Ŭ	
1	.J1	457	Total	С	Ν	Ο	\mathbf{S}	0	0
		101	3489	2210	593	664	22	Ŭ	
1	J3	462	Total	С	Ν	Ο	S	0	0
		10-	3530	2234	601	672	23	Ŭ	Ŭ
1	K1	462	Total	С	Ν	0	S	0	0
			3530	2234	601	672	23	-	
1	K2	462	Total	С	N	0	S	0	0
		-	3528	2233	601	671	23	_	
1	K3	462	Total	С	N	0	S	0	0
		_	3530	2234	601	672	23	_	
1	L1	458	Total	С	N	0	S	0	0
			3503	2219	<u>597</u>	665	22		
1	L2	462	Total	C	N	0	S	0	0
			3530	2234	601 N	672	23		
1	L3	461	Total	C	N	0	S	0	0
			3523	2230	600 NT	670	23		
1	M1	462	Total	U	IN CO1	0	5	0	0
			3530	2234	001 N	072	23		
1	M2	461	Total	U	IN COO	0	3	0	0
			3523	2230	000 NT	670	23		
1	M3	455		U		U CCD	3	0	0
			3484	2209	291	662	22		

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
0 0100010 0000	J. 00	proceed as	P ~ 9 ~

Mol	Chain	Residues		At	oms			AltConf	Trace
1	N1	159	Total	С	Ν	0	S	0	0
	IN I	400	3503	2219	597	665	22	0	0
1	NO	469	Total	С	Ν	0	S	0	0
	112	402	3530	2234	601	672	23	0	0
1	N3	462	Total	С	Ν	0	\mathbf{S}	0	0
L	110	402	3530	2234	601	672	23	0	0
1	01	456	Total	С	Ν	0	\mathbf{S}	0	0
1	01	400	3491	2211	595	663	22	0	0
1	02	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
1	02	402	3526	2232	601	670	23	0	0
1	03	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
1	00	402	3520	2229	598	670	23	0	0
1	P1	461	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	11	101	3523	2230	600	670	23	0	0
1	P2	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	12	102	3530	2234	601	672	23	0	0
1	P3	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	10	102	3524	2231	598	672	23	Ŭ	0
1	01	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	&1 	102	3530	2234	601	672	23	0	0
1	02	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	~~	102	3530	2234	601	672	23	Ŭ	0
1	03	457	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		101	3495	2215	596	662	22	Ŭ	
1	R1	461	Total	С	Ν	0	S	0	0
		101	3523	2230	600	670	23	Ŭ	
1	R2	454	Total	С	Ν	Ο	\mathbf{S}	0	0
			3482	2206	593	661	22	-	
1	R3	461	Total	С	Ν	0	S	0	0
			3523	2230	600	670	23	-	Ŭ
1	S1	462	Total	С	N	0	S	0	0
		_	3530	2234	601	672	23	_	
1	S2	457	Total	C	N	0	S	0	0
			3499	2217	596	664	22		
1	S3	462	Total	C	N	0	S	0	0
			3530	2234	601	672	23		
1	T1	462	Total	C	N	0	S	0	0
			3530	2234	<u>601</u>	672	23		
1	T2	462	Total	C	IN CO1	U CTO	S	0	0
			3530	2234	601	672	23		
1	Т3	462	Total	U OCC 1	N	0	S	0	0
			3530	2234	601	672	23	, , , , , , , , , , , , , , , , , , ,	

α \cdot \cdot \cdot	C		
Continued	from	previous	page
	9	1	1 0

Mol	Chain	Residues		At	oms			AltConf	Trace
1	TT1	460	Total	С	Ν	0	S	0	0
	01	400	3515	2224	599	669	23	0	0
1	ЦЭ	461	Total	С	Ν	0	S	0	0
	02	401	3517	2227	597	670	23	0	0
1	II3	462	Total	С	Ν	0	\mathbf{S}	0	0
L	05	402	3530	2234	601	672	23	0	0
1	V1	462	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
1	V I	402	3530	2234	601	672	23	0	0
1	V2	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
1	v 2	402	3530	2234	601	672	23	0	0
1	V3	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
1	10	402	3530	2234	601	672	23	0	0
1	W1	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	***	102	3530	2234	601	672	23	0	0
1	W2	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		102	3530	2234	601	672	23	0	0
1	W3	461	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		101	3523	2230	600	670	23	Ŭ	0
1	X1	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		102	3530	2234	601	672	23	0	0
1	X2	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	112	102	3530	2234	601	672	23	0	0
1	X3	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	10	102	3530	2234	601	672	23	0	0
1	V1	461	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		101	3520	2229	600	668	23	Ŭ	
1	Y2	455	Total	С	Ν	Ο	\mathbf{S}	0	0
		100	3490	2212	594	662	22	Ŭ	Ŭ
1	Y3	461	Total	С	Ν	0	S	0	0
			3519	2228	600	668	23	-	Ŭ
1	Z1	456	Total	С	N	0	S	0	0
			3494	2214	595	663	22	_	
1	Z2	462	Total	C	N	0	S	0	0
			3530	2234	601	672	23		
1	Z3	462	Total	C	N	0	S	0	0
			3530	2234	601	672	23		
1	a1	462	Total	C	N	0	S	0	0
			3530	2234	601	672	23		
1	a2	462	Total	C	N	U and	S	0	0
		-	3524	2231	598	672	23	-	-
1	a3	462	'I'otal	C	N	U 0	S	0	0
			3530	2234	601	672	23	Ĭ	Ŭ

			C	α \cdot \cdot \cdot
e	page	previous	from	Continued
ĺ	bug	pretious	JIOIN	Continucu

Mol	Chain	Residues		At	oms			AltConf	Trace
1	L1	469	Total	С	Ν	Ο	S	0	0
	DI	402	3530	2234	601	672	23	0	0
1	են	469	Total	С	Ν	0	S	0	0
	02	402	3530	2234	601	672	23	0	0
1	h3	461	Total	С	Ν	0	\mathbf{S}	0	0
1	00	401	3523	2230	600	670	23	0	0
1	d1	462	Total	С	Ν	0	\mathbf{S}	0	0
L	ui	402	3530	2234	601	672	23	0	0
1	d2	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
1	u2	402	3530	2234	601	672	23	0	0
1	d3	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	40	402	3530	2234	601	672	23	0	0
1	e1	456	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		100	3488	2211	592	663	22	0	0
1	e2	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		102	3530	2234	601	672	23		
1	e3	462	Total	С	Ν	0	S	0	0
		10-	3530	2234	601	672	23		
1	f1	456	Total	С	Ν	Ο	S	0	0
		100	3488	2211	592	663	22	Ŭ,	
1	f2	462	Total	С	Ν	0	S	0	0
			3530	2234	601	672	23		
1	f3	462	Total	С	N	0	S	0	0
			3520	2230	<u>595</u>	672	23		
1	g1	462	Total	C	N	0	S	0	0
	0		3524	2231	598	672	23		
1	g2	462	Total	C	N	0	S	0	0
	Ŭ		3530	2234	001	672	23		
1	g3	462	Total	C	N CO1	0	S	0	0
	Ŭ		3530	2234	001 N	672	23		
1	h1	456		U 0100	N For	0	5	0	0
			3404 Tutul	2199	080 N	058	22		
1	h2	460		0	IN FOO	CCO	3 00	0	0
				$\frac{2221}{C}$	099 	009	<u>ZZ</u>		
1	h3	462		0021	IN E O O	679	ວ າາ	0	0
			5024 Tetal	2231	098 N	012	<u>20</u>		
1	j1	462	10tal 2520	0024	IN 601	679	ວ າາ	0	0
			- 303U Tetal	2234	N N	012	20 C		
1	j2	461	10tal	U 2224	1N 504	670	ວ າາ	0	0
			Joint Total	2224 C	094 N	010	20 C		
1	j3	462	10tal	U 1024	IN 601	0 679	ວ າາ	0	0
			<u> </u>	2234	001	072	23		

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Residues		At	oms			AltConf	Trace
1	1-1	469	Total	С	Ν	0	S	0	0
	KI	402	3530	2234	601	672	23	0	0
1	1-9	462	Total	С	Ν	0	S	0	0
	KZ	402	3530	2234	601	672	23	0	0
1	Ŀ3	462	Total	С	Ν	0	\mathbf{S}	0	0
1	Ю	402	3530	2234	601	672	23	0	0
1	m1	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	1111	402	3524	2231	598	672	23	0	0
1	m2	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	1112	102	3524	2231	598	672	23	0	
1	m3	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	mo	102	3530	2234	601	672	23		
1	n1	462	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
		102	3530	2234	601	672	23		
1	n2	462	Total	С	Ν	0	S	0	0
			3530	2234	601	672	23		
1	n3	462	Total	С	Ν	0	S	0	0
		10-	3530	2234	601	672	23		
1	p1	462	Total	С	Ν	Ο	\mathbf{S}	0	0
	P-	102	3530	2234	601	672	23	Ŭ	
1	p2	462	Total	С	Ν	Ο	\mathbf{S}	0	0
	P-	102	3530	2234	601	672	23	Ŭ	
1	p3	462	Total	С	Ν	Ο	\mathbf{S}	0	0
	P.0	102	3530	2234	601	672	23	Ŭ	
1	r1	462	Total	С	Ν	0	S	0	0
		10-	3530	2234	601	672	23	Ŭ	
1	r2	462	Total	С	Ν	0	S	0	0
		10-	3530	2234	601	672	23	Ŭ	
1	r3	462	Total	С	Ν	0	S	0	0
			3530	2234	601	672	23	-	
1	J2	462	Total	С	Ν	0	S	0	0
	_	_	3530	2234	601	672	23	_	_
1	c1	462	Total	С	N	0	S	0	0
			3520	2229	598	670	23	_	_
1	c2	462	Total	С	N	0	S	0	0
			3530	2234	601	672	23	_	_
1	c3	462	Total	C	N	0	S	0	0
			3530	2234	601	672	23		
1	α1	462	'I'otal	С	Ν	O	S	0	0
	Ч -		3530	2234	601	672	23		
1	α2	462	Total	С	Ν	0	S	0	0
	Y#	102	3530	2234	601	672	23		

Continued from previous page...

Mol	Chain	Residues		At	AltConf	Trace			
1	q3	462	Total 3520	C 2229	N 598	O 670	S 23	0	0

• Molecule 2 is a protein called VP38.

Mol	Chain	Residues		At	AltConf	Trace			
0	~1	05	Total	С	Ν	0	S	0	0
	SI	90	692	421	127	137	7	0	0
0	~ ⁰	76	Total	С	Ν	0	S	0	0
	82	70	573	351	104	114	4	0	0
0	_?	0.9	Total	С	Ν	0	S	0	0
	50	90	739	453	136	143	7	0	0
2	c/	100	Total	С	Ν	0	S	0	0
	54	100	738	453	132	147	6	0	0
0	۹Ĕ	04	Total	С	Ν	0	S	0	0
	50	94	700	426	129	139	6	0	0
2	сĥ	04	Total	С	Ν	0	S	0	0
	50	94	692	422	126	138	6	0	0
2	+1	08	Total	С	Ν	0	\mathbf{S}	0	0
	01	90	725	442	133	143	7	0	0
2	+9	96	Total	С	Ν	0	\mathbf{S}	0	0
	62	90	715	436	132	140	7	0	0
2	+3	97	Total	С	Ν	0	\mathbf{S}	0	0
2	10	51	722	444	131	141	6	0	0
2	±4	03	Total	С	Ν	Ο	\mathbf{S}	0	0
	04	50	666	406	121	134	5	0	0
2	<u>+5</u>	74	Total	С	Ν	Ο	\mathbf{S}	0	0
	00	11	554	340	102	110	2	0	0
2	t6	98	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	00	50	727	444	134	142	7	0	0
2	t7	98	Total	С	Ν	Ο	\mathbf{S}	0	0
	01	50	739	453	136	143	7	0	0
2	v7	53	Total	С	Ν	Ο	\mathbf{S}	0	0
	у '	50	400	247	74	77	2		0
2	v8	49	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
	уO	75	355	218	64	71	2		U

• Molecule 3 is a protein called VP137.

Mol	Chain	Residues		At	AltConf	Trace			
3	y2	379	Total 2716	C 1690	N 500	0 511	S 15	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms		AltConf	Trace			
3	y1	80	Total 552	C 345	N 94	0 111	${f S}$ 2	0	0

• Molecule 4 is a protein called VP88.

Mol	Chain	Residues	Atoms			AltConf	Trace		
4	y4	312	Total 2399	C 1516	N 404	0 472	${f S}{7}$	0	0

• Molecule 5 is a protein called VP59.

Mol	Chain	Residues	Atoms			AltConf	Trace		
5	y5	78	Total 631	C 391	N 119	0 116	${ m S}{ m 5}$	0	0

• Molecule 6 is a protein called VP139.

Mol	Chain	Residues	Atoms		AltConf	Trace			
6	y6	92	Total 694	C 441	N 127	0 118	S 8	0	0

• Molecule 7 is a protein called Penton protein (VP14).

Mol	Chain	Residues	Atoms			AltConf	Trace		
7	y3	139	Total 1062	C 671	N 189	0 196	S 6	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Major capsid protein	
Chain B3:	99%
MET 15 154 1438 1438 1438 1438 1463	
• Molecule 1: Major capsid protein	
Chain C1:	99%
THR C A M290 M320 L463 L463	
• Molecule 1: Major capsid protein	
Chain C2:	100%
MET 12 47 8269 1463	
• Molecule 1: Major capsid protein	
Chain C3:	99% .
• Molecule 1: Major capsid protein	
Chain D1:	99% .
MET THR CYRS CYRS CHR M30 66 M30 M30 M30 M51 M30 M40 M30 M40 M30 M40 M30 M40 M30 M40 M30 M40 M30 M40 M30 M40 M30 M30 M30 M30 M30 M30 M30 M30 M30 M3	
• Molecule 1: Major capsid protein	
Chain D2:	99%
MET THR C3 R24 C3 R24 C3 R26 D170 C26 R265 R265 R265 R265 R265 R265 R265 R2	
• Molecule 1: Major capsid protein	
Chain D3:	99%

Chain G1:	99%
THR C3 R269 R369 L463	
• Molecule 1: Major capsid protein	
Chain G2:	99%
HET HE CONTRACTION OF CONTRACTICON O	
• Molecule 1: Major capsid protein	
Chain G3:	100%
MET T2 F5 KE5 S5 S5 C125 C125 C125 L463	
• Molecule 1: Major capsid protein	
Chain H1:	98% •
MET THR CYRS CHR THR THR CG CG CG CG CG CG CG CG CG CG CG CG CG	
• Molecule 1: Major capsid protein	
Chain H2:	99%
MET THR C3 N353 N353 N353 N353 N353 N353 N353 N	
• Molecule 1: Major capsid protein	
Chain H3:	99%
THR C3 C125 C125 C125 C125 C125 C125 C125 C125	
• Molecule 1: Major capsid protein	
Chain I1:	99%
MET 12 15 15 15 15 12 12 12 12 12 12 12 12 12 12 12 12 12	

• Molecule 1: Major capsid protein Chain I2: 99% THR • Molecule 1: Major capsid protein Chain I3: 99% • Molecule 1: Major capsid protein Chain J1: 98% THR THR CYS • Molecule 1: Major capsid protein Chain J3: 100% MET • Molecule 1: Major capsid protein Chain K1: 100% • Molecule 1: Major capsid protein Chain K2: 100% • Molecule 1: Major capsid protein Chain K3: 100%

Chain L1:	98%
MAET THR CVTS CVTS CVTS CVTS CVTS CVTS CVTS CVTS	
\bullet Molecule 1: Major capsid protein	
Chain L2:	99%
MET 12 12 16 16 16 16 16 16 16 16 16 16 16 16 16	
• Molecule 1: Major capsid protein	
Chain L3:	100%
MET THR C3 T14 T15 66 47 47 47 15 47 81 140 8190 4338 A338 A338 A338	
\bullet Molecule 1: Major capsid protein	
Chain M1:	100%
MET 12 1463 L463	
• Molecule 1: Major capsid protein	
Chain M2:	100%
MCT THR 63 165 165 1239 1239 12240 12241 12241 12243	
• Molecule 1: Major capsid protein	
Chain M3:	98% •
MET THR CVS THR THR GLY GLY GLY M308 M308 M308 M308 M315 L463	

Chain N1:	99% .
• Molecule 1: Major capsid protein	
Chain N2:	99%
MET 12 12 12 12 12 12 12 12 12 12	
• Molecule 1: Major capsid protein	
Chain N3:	100%
MET 77 1463	
• Molecule 1: Major capsid protein	
Chain O1:	98% •
MET THR CIV CLV CLV CLV CLV CLV CLV CLV CLV CLV CL	
• Molecule 1: Major capsid protein	
Chain O2:	100%
MET T2 G6 F121 N122 D170 M358 A358 N359 N359 H405 L463 L463	
• Molecule 1: Major capsid protein	
Chain O3:	100%
MET 12 D1 70 A3 38 A3 38 A3 38 A3 38 A3 38 A45 A45	
• Molecule 1: Major capsid protein	
Chain P1:	99%
MET THR 33 873 85 85 823 8233 8233 8233 8233 8233 823	

• Molecule 1: Major capsid protein	
Chain P2:	100%
MET T2 C3 T4 T5 G8 M122 C8 M122 C8	
• Molecule 1: Major capsid protein	
Chain P3:	99%
MET 12 8269 1463	
• Molecule 1: Major capsid protein	
Chain Q1:	99%
MET 12 C3 C3 M3 06 M3 00	
• Molecule 1: Major capsid protein	
Chain Q2:	100%
MET T2 G6 D20 D20 H116 A113 A113 A113 A113 A113 A113 A113 A	
• Molecule 1: Major capsid protein	
Chain Q3:	98%
MET THR CYS THR GLY GLY M320 E336 E336	
• Molecule 1: Major capsid protein	
Chain R1:	100%
MET THR C3 V56 V56 C240 C240 C241 A242 D243 D243 L243	
• Molecule 1: Major capsid protein	
Chain R2:	98% .

Chain R3:	99%
MET THR C3 N320 N320 L463	
• Molecule 1: Major capsid protein	
Chain S1:	100%
MBT 172 173 163 1133 11463 11463	
• Molecule 1: Major capsid protein	
Chain S2:	99% .
MET THR CYB CYB CYB CHR CUY A7 CB CB CB CB CB CB CB CB CB CB CB CB CB	
• Molecule 1: Major capsid protein	
Chain S3:	100%
MET 12 13 1462 1463	
• Molecule 1: Major capsid protein	
Chain T1:	100%
MET 12 12 13 1462	
• Molecule 1: Major capsid protein	
Chain T2:	99%
MET H308 K315 L463 +	

Chain T3:	100%
MBT 121 1462	
• Molecule 1: Major capsid protein	
Chain U1:	99%
MET THR R96 1462	
• Molecule 1: Major capsid protein	
Chain U2:	100%
MET THR 77 86 86 86 80 86 80 81 87 80 81 81 81 81 81 81 81 81 81 81 81 81 81	
• Molecule 1: Major capsid protein	
Chain U3:	100%
T2 D170	
• Molecule 1: Major capsid protein	
Chain V1:	100%
MET 12 12 12 12 12 12 12 12 12 12 12 12 12	
• Molecule 1: Major capsid protein	
Chain V2:	99% .
MET 12 12 11 11 12 12 12 12 12 12	
• Molecule 1: Major capsid protein	
Chain V3:	99%
MET 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	

- morecure 1. major capsid protein	
Chain W1:	100%
MET 122 1241 A242 B243 M308 L463	
• Molecule 1: Major capsid protein	
Chain W2:	100%
MET T2 G6 M122 M123 M123 M125 M1455 M1455 M1455 M1455	
• Molecule 1: Major capsid protein	
Chain W3:	100%
MET THR K30	
• Molecule 1: Major capsid protein	
Chain X1:	100%
MET T2 D31 L463	
• Molecule 1: Major capsid protein	
• Molecule 1: Major capsid protein Chain X2:	100%
• Molecule 1: Major capsid protein Chain X2:	100%
 Molecule 1: Major capsid protein Chain X2: 	100%
 Molecule 1: Major capsid protein Chain X2: Molecule 1: Major capsid protein Molecule 1: Major capsid protein Chain X3: 	100%
 Molecule 1: Major capsid protein Chain X2: Molecule 1: Major capsid protein Molecule 1: Major capsid protein Molecule 1: Major capsid protein Chain X3: 	100%
 Molecule 1: Major capsid protein Chain X2: Molecule 1: Major capsid protein Molecule 1: Major capsid protein Chain X3: Molecule 1: Major capsid protein 	100%

Chain Y2:	98% .
MET THR CYR CTHR GLY GLY CGG C N265 C C 463 C C 463	
• Molecule 1: Major capsid protein	
Chain Y3:	99%
MET THR C3 R96 P1 70 P1 70 P2 40 C2 40 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	
• Molecule 1: Major capsid protein	
Chain Z1:	98%
MET THR CYS CYS CYS CS CS ALA ALA M20 M308 M308 M308 M308	
• Molecule 1: Major capsid protein	
Chain Z2:	100%
MET 12 D31 031 179 N179 L463	
• Molecule 1: Major capsid protein	
Chain Z3:	100%
MET 12 66 66 815 91 70 92 13 63 63 14 63	
• Molecule 1: Major capsid protein	
Chain a1:	100%
MET T2 T4 T5 1289 L463	

Chain a2:	100%
MET 12 6239 6240 2243 243 1262 1462 L463	
• Molecule 1: Major capsid protein	
Chain a3:	100%
КЕТ 1909 1909	
• Molecule 1: Major capsid protein	
Chain b1:	100%
MET 12 1463	
• Molecule 1: Major capsid protein	
Chain b2:	100%
NET 12 12 12 12 12 12 12 12 12	
• Molecule 1: Major capsid protein	
Chain b3:	99%
• Molecule 1: Major capsid protein	
Chain d1:	99% .
HET 12 12 13 1408 1408 1408 1408 1408 1408 1408 1408	
• Molecule 1: Major capsid protein	
Chain d2:	99%
MET 12 13 13 14 14 14 14 14 14 14 14 14 14	

• Molecule 1: Major capsid protein Chain d3: 100% • Molecule 1: Major capsid protein Chain e1: 98% . . MET THR CYS CYS THR THR GLY • Molecule 1: Major capsid protein Chain e2: 100% • Molecule 1: Major capsid protein Chain e3: 99% • Molecule 1: Major capsid protein Chain f1: 98% MET THR CYS CYS THR THR GLY ALA • Molecule 1: Major capsid protein Chain f2: 100% • Molecule 1: Major capsid protein Chain f3: 100%

Chain g1:	99%
MET 12 06 121 121 123 123 123 123	
• Molecule 1: Major capsid protein	
Chain g2:	100%
• Molecule 1: Major capsid protein	
Chain g3:	100%
11 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14	
• Molecule 1: Major capsid protein	
Chain h1:	98% •
MET THR CYS CYS GI GI ALA CI C C C C C C C C C C C C C C C C C C	
• Molecule 1: Major capsid protein	
Chain h2:	99%
MET THR CYS 14 14 1463	
• Molecule 1: Major capsid protein	
Chain h3:	100%
MET 12 123 1403 1403	

Chain j1:	99%
MET 12 857 857 857 857 865 865 865 865 865	
• Molecule 1: Major capsid protein	
Chain j2:	100%
MET THR C239 C239 C240 L241 A2 42 L463	
• Molecule 1: Major capsid protein	
Chain j3:	100%
MET 12 1463	
• Molecule 1: Major capsid protein	
Chain k1:	100%
MET 12 0123 1320 1463	
• Molecule 1: Major capsid protein	
Chain k2:	99%
MET 12 12 13 13 1463	
• Molecule 1: Major capsid protein	
Chain k3:	100%
MET T2 D3 1 	
• Molecule 1: Major capsid protein	
Chain m1:	99%
MET 12 12 12 12 12 12 12 12 12 12	

• Molecule 1: Major capsid protein	
Chain m2:	99% .
MET T5 M308 H463	
• Molecule 1: Major capsid protein	
Chain m3:	100%
MET 12 1462 ♦ 1463 ♦	
• Molecule 1: Major capsid protein	
Chain n1:	100%
• Molecule 1: Major capsid protein	
Chain n2:	100%
MET 12 12 123 1269 123 4	
• Molecule 1: Major capsid protein	
Chain n3:	99% .
MET 12 13 13 13 1462 1463 1462 1463	
• Molecule 1: Major capsid protein	
Chain p1:	100%
T2 D123 € 1463	
• Molecule 1: Major capsid protein	
Chain p2:	100%

Chain p3:	99%
MET 72 73 74 74 76 74 76 1463 1463	
• Molecule 1: Major capsid protein	
Chain r1:	99% .
MET 12 12 1463 ► 1463	
• Molecule 1: Major capsid protein	
Chain r2:	100%
MET 12 L463 ◆	
• Molecule 1: Major capsid protein	
Chain r3:	99%
MET 12 0122 1463 1463	
• Molecule 1: Major capsid protein	
Chain J2:	100%
HET 12 1463	
• Molecule 1: Major capsid protein	
Chain c1:	99% .
MET 12 1170 1170 1287 1269 1269 1263	

Chain c2:	100%	
MET T2 L463		
• Molecule	e 1: Major capsid protein	
Chain c3:	99%	
MET T2 R269 N288 N288 L463		
• Molecule	e 1: Major capsid protein	
Chain q1:	100%	
MET T2 D1 23 R2 69		
• Molecule	e 1: Major capsid protein	
Chain q2:	100%	
MET T2 D123 1462 L463		
• Molecule	e 1: Major capsid protein	
Chain q3:	100%	
MET T2 D123		
• Molecule	e 2: VP38	
Chain s1:	56% 44%	
MET ILE HIS ASN TYR ALA ILE LEU	11.E THA THA ALA VAL THA VAL TTR TTR TTR TTR TTR TTR TTR TTR TTR TT	GLN ASP GLY
THR ARG SER ARG LYS PRO LYS SER		
• Molecule	e 2: VP38	
Chain s2:	45% 55%	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	37161	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1300	Depositor
Maximum defocus (nm)	1800	Depositor
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.105	Depositor
Minimum map value	-0.071	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.003	Depositor
Recommended contour level	0.01	Depositor
Map size (Å)	1106.0, 1079.4, 796.6	wwPDB
Map dimensions	790, 771, 569	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.4, 1.4, 1.4	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	al Chain Bond lengths Bond ang		l angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A1	0.25	0/3599	0.48	0/4917
1	A2	0.25	0/3587	0.48	0/4900
1	A3	0.26	0/3580	0.49	0/4890
1	B1	0.25	0/3563	0.49	0/4866
1	B2	0.25	0/3593	0.49	0/4907
1	B3	0.25	0/3607	0.48	0/4928
1	C1	0.25	0/3606	0.48	0/4925
1	C2	0.25	0/3604	0.49	0/4925
1	C3	0.25	0/3586	0.49	0/4897
1	D1	0.25	0/3580	0.49	0/4890
1	D2	0.25	0/3600	0.48	0/4918
1	D3	0.25	0/3613	0.48	0/4935
1	E1	0.25	0/3613	0.48	0/4935
1	E2	0.25	0/3606	0.48	0/4925
1	E3	0.25	0/3613	0.49	0/4935
1	F1	0.25	0/3587	0.50	0/4903
1	F2	0.25	0/3563	0.49	0/4867
1	F3	0.25	0/3613	0.49	0/4935
1	G1	0.25	0/3600	0.48	0/4918
1	G2	0.25	0/3597	0.48	0/4914
1	G3	0.25	0/3610	0.49	0/4931
1	H1	0.25	0/3578	0.49	0/4886
1	H2	0.25	0/3606	0.48	0/4925
1	H3	0.25	0/3606	0.48	0/4925
1	I1	0.25	0/3613	0.49	0/4935
1	I2	0.25	0/3593	0.48	0/4907
1	I3	0.25	0/3606	0.48	0/4925
1	J1	0.25	0/3572	0.48	0/4879
1	J2	0.25	0/3613	0.48	0/4935
1	J3	0.25	0/3613	0.48	0/4935
1	K1	0.25	0/3613	0.49	0/4935
1	K2	0.25	0/3611	0.49	0/4932
1	K3	0.25	0/3613	0.49	0/4935
1	L1	0.25	0/3586	0.48	0/4897

Mal	Chain	Bond	lengths	Bond	l angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	L2	0.25	0/3613	0.49	0/4935
1	L3	0.25	0/3606	0.48	0/4925
1	M1	0.25	0/3613	0.49	0/4935
1	M2	0.25	0/3606	0.48	0/4925
1	M3	0.25	0/3567	0.48	0/4873
1	N1	0.25	0/3586	0.48	0/4897
1	N2	0.26	0/3613	0.49	0/4935
1	N3	0.25	0/3613	0.49	0/4935
1	01	0.25	0/3574	0.49	0/4881
1	O2	0.25	0/3609	0.49	0/4930
1	O3	0.25	0/3603	0.49	0/4923
1	P1	0.25	0/3606	0.49	0/4925
1	P2	0.25	0/3613	0.49	0/4935
1	P3	0.25	0/3607	0.49	0/4928
1	Q1	0.25	0/3613	0.48	0/4935
1	Q2	0.25	0/3613	0.48	0/4935
1	Q3	0.25	0/3578	0.48	0/4887
1	R1	0.25	0/3606	0.49	0/4925
1	R2	0.25	0/3565	0.49	0/4869
1	R3	0.25	0/3606	0.48	0/4925
1	S1	0.25	0/3613	0.48	0/4935
1	S2	0.25	0/3582	0.48	0/4892
1	S3	0.25	0/3613	0.49	0/4935
1	T1	0.25	0/3613	0.48	0/4935
1	Τ2	0.25	0/3613	0.48	0/4935
1	T3	0.25	0/3613	0.49	0/4935
1	U1	0.25	0/3598	0.48	0/4914
1	U2	0.26	0/3600	0.48	0/4918
1	U3	0.25	0/3613	0.48	0/4935
1	V1	0.25	0/3613	0.49	0/4935
1	V2	0.25	0/3613	0.48	0/4935
1	V3	0.25	0/3613	0.48	0/4935
1	W1	0.25	0/3613	0.49	0/4935
1	W2	0.25	0/3613	0.49	0/4935
1	W3	0.25	0/3606	0.48	$0/4\overline{925}$
1	X1	0.25	0/3613	0.49	0/4935
1	X2	0.25	0/3613	0.48	0/4935
1	X3	0.25	0/3613	0.48	0/4935
1	Y1	0.25	0/3603	0.49	0/4921
1	Y2	0.25	0/3573	0.49	0/4880
1	¥3	0.25	0/3602	0.49	0/4920
1	Z1	0.25	0/3577	0.47	0/4885
1	Z2	0.25	0/3613	0.48	0/4935

Mal	Chain	Bond	lengths	Bond	l angles
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	Z3	0.25	0/3613	0.48	0/4935
1	a1	0.25	0/3613	0.49	0/4935
1	a2	0.25	0/3607	0.49	0/4928
1	a3	0.25	0/3613	0.48	0/4935
1	b1	0.25	0/3613	0.49	0/4935
1	b2	0.25	0/3613	0.48	0/4935
1	b3	0.25	0/3606	0.49	0/4925
1	c1	0.26	0/3603	0.48	0/4923
1	c2	0.25	0/3613	0.49	0/4935
1	c3	0.26	0/3613	0.49	0/4935
1	d1	0.25	0/3613	0.49	0/4935
1	d2	0.25	0/3613	0.48	0/4935
1	d3	0.25	0/3613	0.48	0/4935
1	e1	0.26	0/3571	0.48	0/4878
1	e2	0.25	0/3613	0.49	0/4935
1	e3	0.25	0/3613	0.49	0/4935
1	f1	0.25	0/3571	0.48	0/4878
1	f2	0.26	0/3613	0.49	0/4935
1	f3	0.25	0/3603	0.49	0/4923
1	g1	0.26	0/3607	0.48	0/4928
1	g2	0.25	0/3613	0.49	0/4935
1	g3	0.25	0/3613	0.48	0/4935
1	h1	0.25	0/3547	0.48	0/4848
1	h2	0.25	0/3600	0.48	0/4917
1	h3	0.25	0/3607	0.48	0/4928
1	j1	0.25	0/3613	0.49	0/4935
1	j2	0.26	0/3594	0.49	0/4911
1	j3	0.25	0/3613	0.48	0/4935
1	k1	0.25	0/3613	0.48	0/4935
1	k2	0.25	0/3613	0.49	0/4935
1	k3	0.25	0/3613	0.49	0/4935
1	m1	0.26	0/3607	0.49	0/4928
1	m2	0.25	0/3607	0.48	0/4928
1	m3	0.25	0/3613	0.49	0/4935
1	n1	0.25	0/3613	0.48	0/4935
1	n2	0.26	0/3613	0.50	0/4935
1	n3	0.25	0/3613	0.49	0/4935
1	p1	0.25	0/3613	0.49	0/4935
1	p2	0.25	0/3613	0.49	0/4935
1	p3	0.25	0/3613	0.50	0/4935
1	q1	0.25	0/3613	0.48	0/4935
1	q2	0.25	0/3613	0.49	0/4935
1	q3	0.25	0/3603	0.48	0/4923

Mal	Chain	Bond lengths		Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	r1	0.25	0/3613	0.48	0/4935
1	r2	0.25	0/3613	0.48	0/4935
1	r3	0.25	0/3613	0.48	0/4935
2	s1	0.25	0/706	0.50	0/955
2	s2	0.24	0/586	0.54	0/794
2	s3	0.24	0/758	0.52	0/1026
2	s4	0.24	0/757	0.53	0/1029
2	s5	0.25	0/715	0.55	0/967
2	$\mathbf{s6}$	0.25	0/706	0.51	0/955
2	t1	0.24	0/741	0.51	0/1002
2	t2	0.25	0/731	0.54	0/989
2	t3	0.25	0/741	0.51	0/1005
2	t4	0.25	0/680	0.51	0/923
2	t5	0.24	0/567	0.48	0/770
2	t6	0.25	0/744	0.50	0/1007
2	t7	0.26	0/758	0.54	0/1026
2	y7	0.24	0/412	0.53	0/562
2	y8	0.24	0/360	0.49	0/484
3	y1	0.25	0/565	0.52	0/775
3	y2	0.28	0/2785	0.55	0/3820
4	y4	0.25	0/2448	0.55	0/3346
5	y5	0.25	0/649	0.52	0/881
6	y6	0.24	0/710	0.53	0/963
7	y3	0.25	0/1096	0.49	0/1495
All	All	0.25	0/461453	0.49	0/630210

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	A1	459/463~(99%)	443 (96%)	16 (4%)	0	100	100
1	A2	457/463~(99%)	435~(95%)	22~(5%)	0	100	100
1	A3	456/463~(98%)	431 (94%)	25 (6%)	0	100	100
1	B1	452/463~(98%)	435 (96%)	17 (4%)	0	100	100
1	B2	457/463~(99%)	435 (95%)	22 (5%)	0	100	100
1	B3	460/463~(99%)	441 (96%)	19 (4%)	0	100	100
1	C1	459/463~(99%)	439 (96%)	20 (4%)	0	100	100
1	C2	460/463~(99%)	440 (96%)	20 (4%)	0	100	100
1	C3	456/463~(98%)	437 (96%)	19 (4%)	0	100	100
1	D1	456/463~(98%)	434 (95%)	22 (5%)	0	100	100
1	D2	459/463~(99%)	439 (96%)	20 (4%)	0	100	100
1	D3	460/463~(99%)	441 (96%)	19 (4%)	0	100	100
1	E1	460/463~(99%)	439 (95%)	21 (5%)	0	100	100
1	E2	459/463~(99%)	437 (95%)	22 (5%)	0	100	100
1	E3	460/463~(99%)	438 (95%)	21 (5%)	1 (0%)	44	75
1	F1	459/463~(99%)	440 (96%)	19 (4%)	0	100	100
1	F2	453/463~(98%)	437 (96%)	16 (4%)	0	100	100
1	F3	460/463~(99%)	437 (95%)	23 (5%)	0	100	100
1	G1	459/463~(99%)	441 (96%)	18 (4%)	0	100	100
1	G2	459/463~(99%)	442 (96%)	17 (4%)	0	100	100
1	G3	460/463~(99%)	438 (95%)	22 (5%)	0	100	100
1	H1	455/463~(98%)	441 (97%)	14 (3%)	0	100	100
1	H2	459/463~(99%)	440 (96%)	19 (4%)	0	100	100
1	H3	459/463~(99%)	433 (94%)	26 (6%)	0	100	100
1	I1	460/463~(99%)	438 (95%)	22 (5%)	0	100	100
					Continued a	on next	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	I2	457/463~(99%)	439 (96%)	18 (4%)	0	100	100
1	I3	459/463~(99%)	441 (96%)	18 (4%)	0	100	100
1	J1	455/463~(98%)	437 (96%)	18 (4%)	0	100	100
1	J2	460/463~(99%)	442 (96%)	18 (4%)	0	100	100
1	J3	460/463~(99%)	441 (96%)	19 (4%)	0	100	100
1	K1	460/463~(99%)	440 (96%)	20 (4%)	0	100	100
1	K2	460/463~(99%)	443 (96%)	17 (4%)	0	100	100
1	K3	460/463~(99%)	432 (94%)	28 (6%)	0	100	100
1	L1	456/463~(98%)	437 (96%)	18 (4%)	1 (0%)	44	75
1	L2	460/463~(99%)	439 (95%)	20 (4%)	1 (0%)	44	75
1	L3	459/463~(99%)	438 (95%)	21 (5%)	0	100	100
1	M1	460/463~(99%)	444 (96%)	16 (4%)	0	100	100
1	M2	459/463~(99%)	439 (96%)	20 (4%)	0	100	100
1	M3	453/463~(98%)	433 (96%)	20 (4%)	0	100	100
1	N1	456/463~(98%)	440 (96%)	16 (4%)	0	100	100
1	N2	460/463~(99%)	445 (97%)	14 (3%)	1 (0%)	44	75
1	N3	460/463~(99%)	438 (95%)	22 (5%)	0	100	100
1	01	454/463~(98%)	437 (96%)	17 (4%)	0	100	100
1	O2	460/463~(99%)	445 (97%)	15 (3%)	0	100	100
1	O3	460/463~(99%)	443 (96%)	17 (4%)	0	100	100
1	P1	459/463~(99%)	440 (96%)	18 (4%)	1 (0%)	44	75
1	P2	460/463~(99%)	443 (96%)	16 (4%)	1 (0%)	44	75
1	P3	460/463~(99%)	443 (96%)	17 (4%)	0	100	100
1	Q1	460/463~(99%)	436 (95%)	23 (5%)	1 (0%)	44	75
1	Q2	460/463~(99%)	444 (96%)	16 (4%)	0	100	100
1	Q3	455/463~(98%)	437 (96%)	18 (4%)	0	100	100
1	R1	459/463~(99%)	442 (96%)	17 (4%)	0	100	100
1	R2	452/463~(98%)	433 (96%)	19 (4%)	0	100	100
1	R3	459/463~(99%)	440 (96%)	19 (4%)	0	100	100
1	S1	460/463~(99%)	443 (96%)	17 (4%)	0	100	100
1	S2	455/463~(98%)	439 (96%)	16 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	S3	460/463~(99%)	436 (95%)	24 (5%)	0	100	100
1	T1	460/463~(99%)	444 (96%)	16 (4%)	0	100	100
1	Τ2	460/463~(99%)	440 (96%)	20 (4%)	0	100	100
1	Т3	460/463~(99%)	440 (96%)	20 (4%)	0	100	100
1	U1	458/463~(99%)	436 (95%)	22~(5%)	0	100	100
1	U2	459/463~(99%)	437 (95%)	22 (5%)	0	100	100
1	U3	460/463~(99%)	439 (95%)	21 (5%)	0	100	100
1	V1	460/463~(99%)	443 (96%)	17 (4%)	0	100	100
1	V2	460/463~(99%)	436 (95%)	23~(5%)	1 (0%)	44	75
1	V3	460/463~(99%)	441 (96%)	19 (4%)	0	100	100
1	W1	460/463~(99%)	440 (96%)	20 (4%)	0	100	100
1	W2	460/463~(99%)	436 (95%)	24 (5%)	0	100	100
1	W3	459/463~(99%)	440 (96%)	19 (4%)	0	100	100
1	X1	460/463~(99%)	446 (97%)	14 (3%)	0	100	100
1	X2	460/463~(99%)	439 (95%)	21 (5%)	0	100	100
1	X3	460/463~(99%)	438 (95%)	22 (5%)	0	100	100
1	Y1	459/463~(99%)	440 (96%)	19 (4%)	0	100	100
1	Y2	453/463~(98%)	432 (95%)	21 (5%)	0	100	100
1	Y3	459/463~(99%)	441 (96%)	18 (4%)	0	100	100
1	Z1	454/463~(98%)	440 (97%)	13 (3%)	1 (0%)	44	75
1	Z2	460/463~(99%)	441 (96%)	19 (4%)	0	100	100
1	Z3	460/463~(99%)	439 (95%)	21 (5%)	0	100	100
1	a1	460/463~(99%)	442 (96%)	18 (4%)	0	100	100
1	a2	460/463~(99%)	442 (96%)	18 (4%)	0	100	100
1	a3	460/463~(99%)	445 (97%)	15 (3%)	0	100	100
1	b1	460/463~(99%)	440 (96%)	20 (4%)	0	100	100
1	b2	460/463~(99%)	442 (96%)	17 (4%)	1 (0%)	44	75

459/463 (99%)

460/463 (99%)

460/463 (99%)

460/463 (99%)

 b3

c1

c2

c3

Continued from previous page...

Continued on next page...

1(0%)

18 (4%)

20 (4%)

20(4%)

19(4%)

440 (96%)

440 (96%)

440 (96%)

441 (96%)

Continued	from	nrevious	naae
Commueu	jiom	previous	puge

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	d1	460/463~(99%)	442 (96%)	18 (4%)	0	100	100
1	d2	460/463~(99%)	439 (95%)	21 (5%)	0	100	100
1	d3	460/463~(99%)	443 (96%)	17~(4%)	0	100	100
1	e1	454/463~(98%)	426 (94%)	28~(6%)	0	100	100
1	e2	460/463~(99%)	437 (95%)	23~(5%)	0	100	100
1	e3	460/463~(99%)	434 (94%)	25~(5%)	1 (0%)	44	75
1	f1	454/463~(98%)	426 (94%)	28 (6%)	0	100	100
1	f2	460/463~(99%)	433 (94%)	26 (6%)	1 (0%)	44	75
1	f3	460/463~(99%)	433 (94%)	27 (6%)	0	100	100
1	g1	460/463~(99%)	438 (95%)	22 (5%)	0	100	100
1	g2	460/463~(99%)	435 (95%)	25 (5%)	0	100	100
1	g3	460/463~(99%)	441 (96%)	19 (4%)	0	100	100
1	h1	454/463~(98%)	430 (95%)	24 (5%)	0	100	100
1	h2	458/463~(99%)	434 (95%)	24 (5%)	0	100	100
1	h3	460/463~(99%)	439 (95%)	21 (5%)	0	100	100
1	j1	460/463~(99%)	441 (96%)	19 (4%)	0	100	100
1	j2	459/463~(99%)	439 (96%)	20 (4%)	0	100	100
1	j3	460/463~(99%)	440 (96%)	20 (4%)	0	100	100
1	k1	460/463~(99%)	442 (96%)	18 (4%)	0	100	100
1	k2	460/463~(99%)	440 (96%)	20 (4%)	0	100	100
1	k3	460/463~(99%)	437 (95%)	23 (5%)	0	100	100
1	m1	460/463~(99%)	443 (96%)	17 (4%)	0	100	100
1	m2	460/463~(99%)	438 (95%)	21 (5%)	1 (0%)	44	75
1	m3	460/463~(99%)	441 (96%)	19 (4%)	0	100	100
1	n1	460/463~(99%)	442 (96%)	18 (4%)	0	100	100
1	n2	460/463~(99%)	436 (95%)	24 (5%)	0	100	100
1	n3	460/463~(99%)	436 (95%)	22 (5%)	2 (0%)	30	64
1	p1	460/463~(99%)	432 (94%)	28 (6%)	0	100	100
1	p2	460/463~(99%)	436 (95%)	24 (5%)	0	100	100
1	p3	460/463~(99%)	436 (95%)	23 (5%)	1 (0%)	44	75
1	q1	460/463~(99%)	437 (95%)	23 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	q2	460/463~(99%)	438~(95%)	22~(5%)	0	100	100
1	q3	460/463~(99%)	439~(95%)	21~(5%)	0	100	100
1	r1	460/463~(99%)	437~(95%)	23~(5%)	0	100	100
1	r2	460/463~(99%)	443 (96%)	17~(4%)	0	100	100
1	r3	460/463~(99%)	440 (96%)	20 (4%)	0	100	100
2	s1	93/170~(55%)	87~(94%)	6~(6%)	0	100	100
2	s2	74/170~(44%)	67~(90%)	7~(10%)	0	100	100
2	s3	96/170~(56%)	87 (91%)	9~(9%)	0	100	100
2	s4	98/170~(58%)	87~(89%)	10 (10%)	1 (1%)	13	46
2	s5	92/170~(54%)	81 (88%)	11 (12%)	0	100	100
2	$\mathbf{s6}$	92/170~(54%)	86 (94%)	6 (6%)	0	100	100
2	t1	96/170~(56%)	80 (83%)	15 (16%)	1 (1%)	13	46
2	t2	94/170~(55%)	83 (88%)	9 (10%)	2(2%)	5	32
2	t3	95/170~(56%)	86 (90%)	9 (10%)	0	100	100
2	t4	91/170~(54%)	80 (88%)	8 (9%)	3~(3%)	3	25
2	t5	72/170~(42%)	65~(90%)	7~(10%)	0	100	100
2	t6	96/170~(56%)	87~(91%)	8 (8%)	1 (1%)	13	46
2	t7	96/170~(56%)	82~(85%)	12 (12%)	2(2%)	5	32
2	y7	51/170~(30%)	47 (92%)	4 (8%)	0	100	100
2	y8	45/170~(26%)	40 (89%)	4 (9%)	1 (2%)	5	31
3	y1	78/461~(17%)	60 (77%)	17 (22%)	1 (1%)	10	41
3	y2	377/461~(82%)	302 (80%)	67~(18%)	8 (2%)	5	32
4	y4	300/506~(59%)	251 (84%)	46 (15%)	3 (1%)	13	46
5	y5	76/146~(52%)	59 (78%)	15 (20%)	2(3%)	4	28
6	y6	90/103~(87%)	80 (89%)	10 (11%)	0	100	100
7	y3	$\overline{137/141} \ (97\%)$	112 (82%)	24 (18%)	1 (1%)	19	53
All	All	$58\overline{778}/61317~(96\%)$	55972~(95%)	2763 (5%)	43 (0%)	50	79

All (43) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	L2	10	THR
1	b3	10	THR
	<i>a</i>	1	

Mol	Chain	Res	Type
1	e3	10	THR
1	m2	9	VAL
2	t7	134	ALA
3	y2	140	VAL
5	y5	130	THR
2	y8	139	SER
7	y3	136	ASP
1	E3	4	THR
2	t4	130	ILE
2	t7	138	GLY
3	y2	231	ARG
3	y2	266	LEU
3	y2	325	SER
4	y4	295	VAL
1	L1	122	ASN
1	P1	158	SER
1	P2	122	ASN
1	V2	10	THR
1	Z1	122	ASN
1	f2	122	ASN
1	p3	5	THR
3	y2	172	ASN
4	y4	310	ASP
1	N2	122	ASN
1	b2	122	ASN
1	n3	3	CYS
3	y2	12	LYS
3	y2	364	ALA
5	y5	139	ALA
1	Q1	4	THR
3	y1	393	GLN
1	n3	122	ASN
2	t2	160	ASN
2	t4	135	SER
2	t2	169	VAL
2	s4	138	GLY
2	t4	138	GLY
2	t6	169	VAL
3	y2	294	VAL
2	t1	169	VAL
4	y4	420	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	A1	383/389~(98%)	382~(100%)	1 (0%)	91	96
1	A2	381/389~(98%)	380~(100%)	1 (0%)	91	96
1	A3	380/389~(98%)	379~(100%)	1 (0%)	91	96
1	B1	379/389~(97%)	379~(100%)	0	100	100
1	B2	382/389~(98%)	381 (100%)	1 (0%)	91	96
1	B3	384/389~(99%)	382 (100%)	2 (0%)	86	93
1	C1	384/389~(99%)	383 (100%)	1 (0%)	91	96
1	C2	383/389~(98%)	382 (100%)	1 (0%)	91	96
1	C3	381/389~(98%)	380 (100%)	1 (0%)	91	96
1	D1	380/389~(98%)	380 (100%)	0	100	100
1	D2	383/389~(98%)	380 (99%)	3 (1%)	79	88
1	D3	385/389~(99%)	382 (99%)	3 (1%)	79	88
1	E1	385/389~(99%)	385 (100%)	0	100	100
1	E2	384/389~(99%)	384 (100%)	0	100	100
1	E3	385/389~(99%)	382 (99%)	3 (1%)	79	88
1	F1	380/389~(98%)	379 (100%)	1 (0%)	91	96
1	F2	379/389~(97%)	379 (100%)	0	100	100
1	F3	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	G1	383/389~(98%)	381 (100%)	2 (0%)	86	93
1	G2	382/389~(98%)	381 (100%)	1 (0%)	91	96
1	G3	384/389~(99%)	384 (100%)	0	100	100
1	H1	380/389~(98%)	379 (100%)	1 (0%)	91	96
1	H2	384/389~(99%)	383 (100%)	1 (0%)	91	96
1	H3	384/389~(99%)	383 (100%)	1 (0%)	91	96
1	I1	385/389~(99%)	383 (100%)	2 (0%)	86	93
1	I2	382/389~(98%)	380 (100%)	2 (0%)	86	93

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	I3	384/389~(99%)	382~(100%)	2 (0%)	86	93
1	J1	379/389~(97%)	378~(100%)	1 (0%)	91	96
1	J2	385/389~(99%)	385~(100%)	0	100	100
1	J3	385/389~(99%)	385~(100%)	0	100	100
1	K1	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	K2	384/389~(99%)	383 (100%)	1 (0%)	91	96
1	K3	385/389~(99%)	385 (100%)	0	100	100
1	L1	381/389~(98%)	379~(100%)	2 (0%)	86	93
1	L2	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	L3	384/389~(99%)	384 (100%)	0	100	100
1	M1	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	M2	384/389~(99%)	384 (100%)	0	100	100
1	M3	380/389~(98%)	378 (100%)	2 (0%)	86	93
1	N1	381/389~(98%)	380 (100%)	1 (0%)	91	96
1	N2	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	N3	385/389~(99%)	385 (100%)	0	100	100
1	O1	380/389~(98%)	378 (100%)	2 (0%)	86	93
1	O2	384/389~(99%)	383 (100%)	1 (0%)	91	96
1	O3	383/389~(98%)	382 (100%)	1 (0%)	91	96
1	P1	384/389~(99%)	383 (100%)	1 (0%)	91	96
1	P2	385/389~(99%)	385 (100%)	0	100	100
1	P3	384/389~(99%)	382 (100%)	2 (0%)	86	93
1	Q1	385/389~(99%)	383 (100%)	2 (0%)	86	93
1	Q2	385/389~(99%)	385 (100%)	0	100	100
1	Q3	380/389~(98%)	378 (100%)	2 (0%)	86	93
1	R1	384/389~(99%)	384 (100%)	0	100	100
1	R2	380/389~(98%)	379 (100%)	1 (0%)	91	96
1	R3	384/389~(99%)	382 (100%)	2 (0%)	86	93
1	S1	385/389~(99%)	385 (100%)	0	100	100
1	S2	381/389~(98%)	381 (100%)	0	100	100
1	S3	385/389~(99%)	384 (100%)	1 (0%)	91	96

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	Τ1	385/389~(99%)	384~(100%)	1 (0%)	91	96
1	T2	385/389~(99%)	383~(100%)	2~(0%)	86	93
1	T3	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	U1	383/389~(98%)	382 (100%)	1 (0%)	91	96
1	U2	383/389~(98%)	383 (100%)	0	100	100
1	U3	385/389~(99%)	385 (100%)	0	100	100
1	V1	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	V2	385/389~(99%)	382 (99%)	3 (1%)	79	88
1	V3	385/389~(99%)	383 (100%)	2(0%)	86	93
1	W1	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	W2	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	W3	384/389~(99%)	384 (100%)	0	100	100
1	X1	385/389~(99%)	385 (100%)	0	100	100
1	X2	385/389~(99%)	385 (100%)	0	100	100
1	X3	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	Y1	383/389~(98%)	381 (100%)	2(0%)	86	93
1	Y2	381/389~(98%)	379~(100%)	2 (0%)	86	93
1	Y3	383/389~(98%)	381 (100%)	2 (0%)	86	93
1	Z1	381/389~(98%)	379 (100%)	2 (0%)	86	93
1	Z2	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	Z3	385/389~(99%)	385 (100%)	0	100	100
1	a1	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	a2	384/389~(99%)	384 (100%)	0	100	100
1	a3	385/389~(99%)	385 (100%)	0	100	100
1	b1	385/389~(99%)	385 (100%)	0	100	100
1	b2	385/389~(99%)	385 (100%)	0	100	100
1	b3	384/389~(99%)	384 (100%)	0	100	100
1	c1	383/389~(98%)	380 (99%)	3 (1%)	79	88
1	c2	385/389~(99%)	385 (100%)	0	100	100
1	c3	385/389~(99%)	383 (100%)	2(0%)	86	93
1	d1	385/389~(99%)	382 (99%)	3 (1%)	79	88

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	d2	385/389~(99%)	382~(99%)	3~(1%)	79	88
1	d3	385/389~(99%)	384~(100%)	1 (0%)	91	96
1	e1	380/389~(98%)	377~(99%)	3 (1%)	79	88
1	e2	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	e3	385/389~(99%)	383 (100%)	2 (0%)	86	93
1	f1	380/389~(98%)	379~(100%)	1 (0%)	91	96
1	f2	385/389~(99%)	385 (100%)	0	100	100
1	f3	383/389~(98%)	382 (100%)	1 (0%)	91	96
1	g1	384/389~(99%)	382 (100%)	2 (0%)	86	93
1	g2	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	g3	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	h1	374/389~(96%)	373 (100%)	1 (0%)	91	96
1	h2	383/389~(98%)	383 (100%)	0	100	100
1	h3	384/389~(99%)	383 (100%)	1 (0%)	91	96
1	j1	385/389~(99%)	383 (100%)	2 (0%)	86	93
1	j2	382/389~(98%)	382 (100%)	0	100	100
1	j3	385/389~(99%)	385 (100%)	0	100	100
1	k1	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	k2	385/389~(99%)	383 (100%)	2 (0%)	86	93
1	k3	385/389~(99%)	385 (100%)	0	100	100
1	m1	384/389~(99%)	381 (99%)	3 (1%)	79	88
1	m2	384/389~(99%)	382 (100%)	2 (0%)	86	93
1	m3	385/389~(99%)	385 (100%)	0	100	100
1	n1	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	n2	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	n3	385/389~(99%)	382 (99%)	3 (1%)	79	88
1	p1	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	p2	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	p3	385/389~(99%)	383 (100%)	2 (0%)	86	93
1	q1	385/389~(99%)	384 (100%)	1 (0%)	91	96
1	q2	385/389~(99%)	385 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	q3	383/389~(98%)	383~(100%)	0	100	100
1	r1	385/389~(99%)	382~(99%)	3~(1%)	79	88
1	r2	385/389~(99%)	385~(100%)	0	100	100
1	r3	385/389~(99%)	383 (100%)	2 (0%)	86	93
2	s1	72/143~(50%)	72 (100%)	0	100	100
2	s2	60/143~(42%)	60 (100%)	0	100	100
2	s3	78/143~(54%)	76~(97%)	2(3%)	41	66
2	s4	76/143~(53%)	76 (100%)	0	100	100
2	s5	74/143~(52%)	73~(99%)	1 (1%)	62	79
2	$\mathbf{s6}$	72/143~(50%)	72 (100%)	0	100	100
2	t1	76/143~(53%)	76 (100%)	0	100	100
2	t2	75/143~(52%)	74 (99%)	1 (1%)	65	81
2	t3	75/143~(52%)	74 (99%)	1 (1%)	65	81
2	t4	68/143~(48%)	68 (100%)	0	100	100
2	t5	57/143~(40%)	57~(100%)	0	100	100
2	t6	76/143~(53%)	75~(99%)	1 (1%)	65	81
2	t7	78/143~(54%)	78 (100%)	0	100	100
2	y7	41/143~(29%)	41 (100%)	0	100	100
2	y8	36/143~(25%)	36 (100%)	0	100	100
3	y1	54/374~(14%)	53~(98%)	1 (2%)	52	73
3	y2	277/374 (74%)	273 (99%)	4 (1%)	62	79
4	y4	257/406~(63%)	255~(99%)	2(1%)	79	88
5	y5	67/122~(55%)	67 (100%)	0	100	100
6	y6	71/82~(87%)	71 (100%)	0	100	100
7	y3	$\overline{114/123}~(93\%)$	113 (99%)	1 (1%)	75	86
All	All	49042/51473~(95%)	48895 (100%)	147 (0%)	90	96

All (147) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A1	320	ASN
1	A2	308	MET
1	A3	320	ASN

Mol	Chain	Res	Type
1	B2	96	ARG
1	B3	354	THR
1	B3	438	ARG
1	C1	320	ASN
1	C2	269	ARG
1	C3	96	ARG
1	D2	96	ARG
1	D2	269	ARG
1	D2	308	MET
1	D3	269	ARG
1	D3	296	MET
1	D3	320	ASN
1	E3	269	ARG
1	E3	320	ASN
1	E3	438	ARG
1	F1	269	ARG
1	F3	315	LYS
1	G1	269	ARG
1	G1	315	LYS
1	G2	438	ARG
1	H1	269	ARG
1	H2	269	ARG
1	H3	438	ARG
1	I1	308	MET
1	I1	315	LYS
1	I2	308	MET
1	I2	315	LYS
1	I3	269	ARG
1	I3	308	MET
1	J1	269	ARG
1	K1	269	ARG
1	K2	434	ASN
1	L1	308	MET
1	L1	398	SER
1	L2	315	LYS
1	M1	438	ARG
1	M3	308	MET
1	M3	315	LYS
1	N1	269	ARG
1	N2	320	ASN
1	01	269	ARG
1	01	315	LYS

Mol	Chain	Res	Type
1	O2	121	PHE
1	O3	345	LYS
1	P1	320	ASN
1	P3	269	ARG
1	P3	408	ASN
1	Q1	72	ARG
1	Q1	308	MET
1	Q3	269	ARG
1	Q3	320	ASN
1	R2	308	MET
1	R3	269	ARG
1	R3	320	ASN
1	S3	398	SER
1	T1	320	ASN
1	T2	308	MET
1	T2	315	LYS
1	Т3	121	PHE
1	U1	96	ARG
1	V1	269	ARG
1	V2	179	ASN
1	V2	303	LYS
1	V2	308	MET
1	V3	308	MET
1	V3	320	ASN
1	W1	308	MET
1	W2	320	ASN
1	X3	320	ASN
1	Y1	281	THR
1	Y1	320	ASN
1	Y2	269	ARG
1	Y2	398	SER
1	Y3	107	LYS
1	Y3	269	ARG
1	Z1	72	ARG
1	Z1	308	MET
1	Z2	179	ASN
1	a1	289	THR
1	d1	96	ARG
1	d1	269	ARG
1	d1	408	ASN
1	d2	96	ARG
1	d2	269	ARG

Mol	Chain	Res	Type
1	d2	308	MET
1	d3	269	ARG
1	e1	122	ASN
1	e1	308	MET
1	e1	320	ASN
1	e2	391	ASN
1	e3	269	ARG
1	e3	308	MET
1	f1	320	ASN
1	f3	320	ASN
1	g1	121	PHE
1	g1	123	ASP
1	g2	320	ASN
1	g3	308	MET
1	h1	96	ARG
1	h3	308	MET
1	j1	57	SER
1	j1	320	ASN
1	k1	320	ASN
1	k2	121	PHE
1	k2	320	ASN
1	m1	59	ASN
1	m1	269	ARG
1	m1	320	ASN
1	m2	96	ARG
1	m2	308	MET
1	n1	320	ASN
1	n2	269	ARG
1	n3	96	ARG
1	n3	320	ASN
1	n3	398	SER
1	p1	269	ARG
1	p2	308	MET
1	p3	308	MET
1	p3	402	ASN
1	r1	72	ARG
1	r1	107	LYS
1	r1	269	ARG
1	r3	122	ASN
1	r3	408	ASN
2	s3	74	HIS
2	s3	115	ARG

Mol	Chain	Res	Type
2	s5	152	LYS
2	t2	156	ASN
2	t3	101	ASP
2	t6	155	ASN
3	y2	9	ARG
3	y2	231	ARG
3	y2	273	LYS
3	y2	352	ASN
4	y4	148	ARG
4	y4	178	LYS
3	y1	461	ARG
7	y3	117	MET
1	c1	269	ARG
1	c1	287	GLN
1	c1	296	MET
1	c3	269	ARG
1	c3	288	ASN
1	q1	269	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (151) such sidechains are listed below:

Mol	Chain	Res	Type
1	B1	277	GLN
1	C3	116	HIS
1	D1	369	GLN
1	D1	449	ASN
1	D2	434	ASN
1	E1	447	ASN
1	E3	402	ASN
1	F1	449	ASN
1	F2	111	HIS
1	F2	156	ASN
1	F3	156	ASN
1	F3	320	ASN
1	G1	332	ASN
1	G1	449	ASN
1	G3	448	HIS
1	H1	300	HIS
1	H1	449	ASN
1	H2	122	ASN
1	H2	320	ASN
1	H3	275	GLN

Mol	Chain	Res	Type
1	H3	300	HIS
1	H3	449	ASN
1	I1	447	ASN
1	I2	320	ASN
1	I3	447	ASN
1	J1	353	ASN
1	J3	204	ASN
1	K2	434	ASN
1	K2	447	ASN
1	L2	275	GLN
1	L2	320	ASN
1	L3	320	ASN
1	M3	275	GLN
1	N1	287	GLN
1	N3	320	ASN
1	N3	449	ASN
1	O2	127	GLN
1	O3	293	HIS
1	O3	320	ASN
1	P1	128	GLN
1	P1	320	ASN
1	P2	277	GLN
1	P3	162	ASN
1	P3	275	GLN
1	Q1	122	ASN
1	Q2	275	GLN
1	Q2	320	ASN
1	Q2	449	ASN
1	R2	128	GLN
1	R2	275	GLN
1	R2	449	ASN
1	R3	111	HIS
1	R3	320	ASN
1	R3	447	ASN
1	S1	449	ASN
1	S2	64	GLN
1	S2	122	ASN
1	S3	277	GLN
1	S3	282	HIS
1	T1	116	HIS
1	T1	204	ASN
1	Т3	447	ASN

Mol	Chain	Res	Type
1	U1	156	ASN
1	U2	449	ASN
1	V1	320	ASN
1	V2	64	GLN
1	V2	127	GLN
1	V2	179	ASN
1	V3	434	ASN
1	W1	128	GLN
1	W3	320	ASN
1	W3	447	ASN
1	X1	320	ASN
1	X2	275	GLN
1	X2	277	GLN
1	X2	447	ASN
1	Y2	275	GLN
1	Y2	277	GLN
1	Y2	293	HIS
1	Y2	449	ASN
1	Y3	275	GLN
1	Y3	277	GLN
1	Z1	156	ASN
1	Z3	275	GLN
1	a2	320	ASN
1	b1	122	ASN
1	b2	122	ASN
1	b2	277	GLN
1	b3	447	ASN
1	d2	287	GLN
1	d2	402	ASN
1	e2	391	ASN
1	e3	320	ASN
1	f2	320	ASN
1	f3	275	GLN
1	f3	320	ASN
1	f3	449	ASN
1	g1	162	ASN
1	g2	320	ASN
1	g3	277	GLN
1	g3	287	GLN
1	g3	447	ASN
1	h1	64	GLN
1	h2	447	ASN

Mol	Chain	Res	Type
1	h3	320	ASN
1	j1	320	ASN
1	j2	275	GLN
1	j2	282	HIS
1	k1	447	ASN
1	k2	64	GLN
1	k2	320	ASN
1	k3	128	GLN
1	k3	277	GLN
1	m2	64	GLN
1	m2	447	ASN
1	m3	122	ASN
1	m3	204	ASN
1	m3	275	GLN
1	m3	277	GLN
1	m3	434	ASN
1	m3	449	ASN
1	n1	275	GLN
1	n2	275	GLN
1	n3	282	HIS
1	n3	447	ASN
1	p2	64	GLN
1	p2	434	ASN
1	p3	320	ASN
1	p3	402	ASN
1	p3	434	ASN
1	r1	447	ASN
1	r2	122	ASN
1	r2	156	ASN
1	r2	320	ASN
1	r2	434	ASN
1	r3	64	GLN
1	r3	156	ASN
1	r3	275	GLN
2	s1	143	GLN
2	t1	79	GLN
2	t6	79	GLN
2	t7	79	GLN
3	y2	71	GLN
1	c1	277	GLN
1	c2	275	GLN
1	c3	275	GLN

Continued from previous page...

	*	-	
Mol	Chain	Res	Type
1	c3	449	ASN
1	q2	275	GLN
1	q2	320	ASN
1	q3	275	GLN
1	q3	287	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-34815. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 395

Y Index: 385

Z Index: 284

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.01. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 10363 nm^3 ; this corresponds to an approximate mass of 9361 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum is only generated for cubic maps.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-34815 and PDB model 8HIF. Per-residue inclusion information can be found in section 3 on page 17.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.01 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.01).

9.4 Atom inclusion (i)

At the recommended contour level, 98% of all backbone atoms, 92% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.01) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9200	0.4910
A1	0.9510	0.4990
A2	0.9330	0.5050
A3	0.9030	0.5040
B1	0.9420	0.4980
B2	0.9380	0.5030
B3	0.9400	0.4980
C1	0.9310	0.5010
C2	0.9270	0.4930
C3	0.9320	0.4940
D1	0.8910	0.4810
D2	0.8670	0.4710
D3	0.8900	0.4750
E1	0.8960	0.4880
E2	0.9310	0.4960
E3	0.9000	0.4840
F1	0.8830	0.4800
F2	0.9310	0.4920
F3	0.9110	0.4870
G1	0.9320	0.4910
G2	0.9330	0.4870
G3	0.9150	0.4870
<u>H1</u>	0.9310	0.5050
H2	0.9340	0.4960
H3	0.9010	0.4990
I1	0.9270	0.4990
I2	0.9290	0.4950
I3	0.9350	0.4970
J1	0.9580	0.4950
J2	0.9500	0.4830
J3	0.9520	0.4880
K1	0.8760	0.4790
K2	0.9500	0.4790
K3	0.9300	0.4830
L1	0.9250	0.4770

0.0 <0.0

1.0

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
L2	0.8980	0.4830
L3	0.9050	0.4910
M1	0.9420	0.5040
M2	0.9330	0.5080
M3	0.9460	0.5120
N1	0.9430	0.5050
N2	0.9430	0.5080
N3	0.9410	0.4980
01	0.9210	0.4790
O2	0.8770	0.4690
O3	0.8880	0.4540
P1	0.8690	0.4800
P2	0.9280	0.4870
P3	0.9250	0.4780
Q1	0.9270	0.5090
Q2	0.8490	0.4900
Q3	0.9020	0.4950
R1	0.9050	0.4900
R2	0.9470	0.4880
R3	0.9460	0.4920
S1	0.9160	0.4770
S2	0.9050	0.4660
S3	0.9200	0.4800
T1	0.9300	0.4850
T2	0.9450	0.4860
T3	0.9400	0.4820
U1	0.9420	0.5110
U2	0.9320	0.5050
U3	0.9280	0.4920
V1	0.9100	0.4790
V2	0.9150	0.4800
V3	0.9460	0.4970
W1	0.8860	0.4860
W2	0.9070	0.4920
W3	0.9260	0.4960
X1	0.9420	0.4890
X2	0.8850	0.4830
X3	0.9150	0.4850
Y1	0.8950	0.4810
Y2	0.9270	0.4830
Y3	0.8950	0.4730
Z1	0.9060	0.4930

Continued on next page...

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
• • • • • • • • • • • • •	J	<i>P</i> · · · · · · · · · · · · · · · · · · ·	r - g - · · ·

Chain	Atom inclusion	Q-score
Z2	0.9290	0.4940
Z3	0.8860	0.4930
al	0.9380	0.5030
a2	0.8850	0.4930
a3	0.9460	0.5020
b1	0.9430	0.4900
b2	0.9420	0.4940
b3	0.9440	0.4980
c1	0.9480	0.4990
c2	0.9520	0.5010
c3	0.9490	0.5030
d1	0.9460	0.5110
d2	0.9480	0.5110
d3	0.9450	0.5090
e1	0.9480	0.5050
e2	0.9440	0.5080
e3	0.9440	0.5090
f1	0.9440	0.5140
f2	0.9460	0.5130
f3	0.9470	0.5110
g1	0.9500	0.5120
g2	0.9510	0.5150
g3	0.9500	0.5140
h1	0.9500	0.5140
h2	0.9510	0.5110
h3	0.9500	0.5080
j1	0.9090	0.4750
j2	0.9130	0.4800
j3	0.9610	0.4890
k1	0.9400	0.4980
k2	0.9440	0.4970
k3	0.9370	0.4980
m1	0.9530	0.4880
m2	0.9580	0.4910
m3	0.9500	0.4950
n1	0.9400	0.4990
n2	0.9380	0.4980
n3	0.9370	0.4950
p1	0.9280	0.4950
p2	0.9350	0.4970
p3	0.9390	0.4940
q1	0.9340	0.4910

Continued on next page...

Chain	Atom inclusion	Q-score
q2	0.9460	0.4880
q3	0.9460	0.4800
r1	0.9380	0.4940
r2	0.9380	0.4960
r3	0.9340	0.4890
s1	0.8940	0.4920
s2	0.7290	0.4320
s3	0.8660	0.4740
s4	0.8320	0.4630
s5	0.7850	0.4510
s6	0.7830	0.4420
t1	0.8060	0.4590
t2	0.8350	0.4890
t3	0.8930	0.4900
t4	0.8240	0.4540
t5	0.7400	0.4380
t6	0.8500	0.4820
t7	0.8110	0.4550
y1	0.5060	0.3730
y2	0.7730	0.4460
y3	0.9580	0.4640
y4	0.3770	0.3480
y5	0.8430	0.4920
y6	0.7190	0.4310
y7	0.6520	0.4470
y8	0.5400	0.4210

Continued from previous page...

