

Jun 10, 2024 – 08:34 AM EDT

PDB ID	:	8G4W
EMDB ID	:	EMD-29732
Title	:	Cryo-EM consensus structure of Escherichia coli que-PEC (paused elongation
		complex) RNA Polymerase plus preQ1 ligand
Authors	:	Porta, J.C.; Chauvier, A.; Deb, I.; Ellinger, E.; Frank, A.T.; Meze, K.; Ohi,
		M.D.; Walter, N.G.
Deposited on	:	2023-02-10
Resolution	:	3.80 Å(reported)
Based on initial model	:	6ASX

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis Mogul	:	0.0.1.dev92 1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	(Quality of chain		
1	А	39	21% 13% 36%		51%	
2	В	31	35% 52%		48%	
3	G	235	23%		33%	6%
3	Н	235	42% 40%	38%	15%	7%
4	K	79	52% 61%		34%	5%
5	R	47	• 34%	83%		13%
6	Ι	1340	41%		32%	••

Mol	Chain	Length	Quality of chain		
			45%		
7	J	1358	63%	34%	••

2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 26842 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a DNA chain called DNA (39-mer).

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
1	А	19	Total 388	C 186	N 78	0 107	Р 17	0	0

• Molecule 2 is a DNA chain called DNA (31-MER).

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
2	В	31	Total 631	C 301	N 107	0 192	Р 31	0	0

• Molecule 3 is a protein called DNA-directed RNA polymerase subunit alpha.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	G	221	Total 1708	C 1069	N 303	O 330	S 6	0	0
3	Н	219	Total 1693	C 1058	N 298	O 331	${ m S}{ m 6}$	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	235	GLU	-	expression tag	UNP A0A5B9AW69
Н	235	GLU	-	expression tag	UNP A0A5B9AW69

• Molecule 4 is a protein called DNA-directed RNA polymerase subunit omega.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	K	79	Total 627	C 382	N 118	0 126	S 1	0	0

• Molecule 5 is a RNA chain called RNA (47-MER).

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
5	R	47	Total 997	C 449	N 185	O 317	Р 46	0	0

• Molecule 6 is a protein called DNA-directed RNA polymerase subunit beta.

Mol	Chain	Residues		A	AltConf	Trace			
6	Ι	1316	Total 10381	C 6514	N 1810	O 2014	S 43	0	0

• Molecule 7 is a protein called DNA-directed RNA polymerase subunit beta'.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	J	1337	Total	С	Ν	0	\mathbf{S}	0	0
		1001	10403	6536	1856	1961	50	Ŭ	Ŭ

• Molecule 8 is 7-DEAZA-7-AMINOMETHYL-GUANINE (three-letter code: PRF) (formula: $C_7H_9N_5O$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf
8	R	1	Total 13	С 7	N 5	0 1	0

• Molecule 9 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
9	J	1	Total Mg 1 1	0

MET GLN GLY SER

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA (39-mer)

• Molecule 7: DNA-directed RNA polymerase subunit beta'

F763 F764 F765 F776 F776 F773 F777 F773 F773 F773 F773	B818 M821 M821 M821 M821 M822 M824 M822 P824 V825 B827 P824 V825 B830 V831 V833 P834 P834
R836 B837 833 833 833 8345 8445 8445 8445 8445 8445 8445 8545 8855 8870 8870 8873 8874 8873 8874 8873 8874 8873 8874 8873 8874 8873 8874 88755 88755 88755 88755 8875555 88755555	F882 C895 C896 C398 C398 C390 C8901 H907 H907 H907 C911 C911 C913 C912 C913 C913
1923 1923 1924 1925 1929 1932 1933 1931 1933 1933 1931 1932 1933 1933 1933 1933 1931 1932 1933 111<	 v966 v1966 v1967 s3969 s3969 s3970 s3970 s971 s977 s977 s977 s977 s977 s977 s977 s977 s977 s979 s979 s971 s971 s971 s973 s973 s973 s974 s974 s975 s969 s975 s987 s975 s975
1985 1985 1986 1988 1989 1990 1991 1992 1993 1994 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10010 10012 10013 10014 10015 10105 10106 10107 10118 10108 10108 10108 10108 101021	P1022 H1023 T1024 M1025 P1026 P1027 P1038 P1039 P1036 P1038 P1038 P1038 P1038 P1044 P1043 P1043 P1043 P1044 P1043 P1044 P1044
11046 11046 11047 11047 11048 11049 11049 11049 11050 11051 11052 11053 11055 11055 11055 11055 11055 11055 11055 11055 11055 11055 11055 11055 11055 11055 11057 11058 11053 11054 11055 11056 11057 11058 11059 11050 11050	V1081 V1081 A1083 A1085 G1085 G1085 V1088 V1088 V1088 C1090 F1090 F1091 A1095 A1095 A1095 A1095 A1095 C1103 F1100 F1101 F1
A1105 11106 V1107 V1107 Q1108 Q1108 Q1108 Q1111 Q1112 Q1112 Q1112 Q1126 Q1126 Q1126 Q1126 Q1126 Q1126 Q1126 Q1126 Q1126 Q1137 Q1137 Q1138 P1139 P1139 P1139 P1138 P1	A1147 R1148 R1148 P1150 P1150 F1155 F1155 F1155 F1155 F1155 F1155 F1155 F1165 F1165 F1165 F1165 F1165 F1165 F1165 F1165 F1165
H1168 A1175 A1175 A1175 A1175 A1175 A1175 A1175 A1175 A1175 A1175 A1176 A1176 A1186	A1206 a1207 a1207 (1210 (1210 a1215 a1215 a1215 a1215 a1215 a1215 a1215 a1215 a1228 a12888 a12888 a12888 a12888 a128888 a1288888 a12888888888888888888888888888888888888
[23] [23] [23] [23] [24] [24] [24] [24] [24] [24] [24] [24] [24] [24] [24] [24] [24] [25] [25] [26] [25] [25] [26] [26] [26] [26] [26] [26] [27] [27] [27] [27] [27] [27] [27] [27] [27] [27] [27] [27] [27] [27] [27] [27] [27] [28]	1281 1285 1285 1285 1285 1295 1295 1295 1301

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	51824	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	62.00	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	3500	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	1.135	Depositor
Minimum map value	-0.541	Depositor
Average map value	0.002	Depositor
Map value standard deviation	0.047	Depositor
Recommended contour level	0.4	Depositor
Map size (Å)	300.0, 300.0, 300.0	wwPDB
Map dimensions	300, 300, 300	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.0, 1.0, 1.0	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, PRF

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	Bond angles		
WIOI	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.57	0/436	0.85	0/670	
2	В	0.49	0/704	0.95	0/1084	
3	G	0.27	0/1728	0.50	0/2341	
3	Н	0.62	0/1712	0.73	0/2320	
4	K	0.59	0/629	0.68	0/847	
5	R	2.95	109/1116~(9.8%)	3.01	179/1736~(10.3%)	
6	Ι	0.34	0/10547	0.53	0/14232	
7	J	0.35	0/10560	0.54	0/14257	
All	All	0.70	109/27432~(0.4%)	0.86	179/37487~(0.5%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
5	R	0	13

All (109) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
5	R	13	G	C6-N1	12.38	1.48	1.39
5	R	18	A	N7-C5	-11.81	1.32	1.39
5	R	4	G	N7-C5	-11.62	1.32	1.39
5	R	28	А	C6-N6	11.09	1.42	1.33
5	R	4	G	N1-C2	10.81	1.46	1.37
5	R	27	А	P-O5'	-10.69	1.49	1.59
5	R	1	G	C6-N1	10.63	1.47	1.39
5	R	32	A	C6-N1	10.21	1.42	1.35
5	R	33	С	N1-C6	10.17	1.43	1.37
5	R	25	A	C5-C4	10.12	1.45	1.38

OOnu	nucu fron	i preco	sus puye	• • •			
Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
5	R	8	U	N3-C4	10.05	1.47	1.38
5	R	24	U	C4-C5	9.87	1.52	1.43
5	R	9	U	N1-C6	9.21	1.46	1.38
5	R	33	С	P-O5'	-9.08	1.50	1.59
5	R	24	U	O3'-P	-9.08	1.50	1.61
5	R	25	А	C6-N6	8.96	1.41	1.33
5	R	25	А	C6-N1	8.95	1.41	1.35
5	R	20	С	C3'-C2'	8.94	1.62	1.52
5	R	32	А	N3-C4	-8.89	1.29	1.34
5	R	21	С	N3-C4	8.81	1.40	1.33
5	R	3	А	C5'-C4'	8.59	1.61	1.51
5	R	13	G	C2'-C1'	-8.57	1.44	1.53
5	R	33	С	N3-C4	8.53	1.40	1.33
5	R	12	А	N7-C5	-8.46	1.34	1.39
5	R	7	G	N7-C5	-8.44	1.34	1.39
5	R	14	С	C5'-C4'	8.41	1.61	1.51
5	R	4	G	C2-N2	8.39	1.43	1.34
5	R	6	G	C2-N3	8.13	1.39	1.32
5	R	12	А	N9-C8	8.11	1.44	1.37
5	R	29	A	C2'-C1'	-8.07	1.44	1.53
5	R	7	G	N9-C4	8.01	1.44	1.38
5	R	18	A	C5'-C4'	7.96	1.60	1.51
5	R	30	A	C6-N6	7.86	1.40	1.33
5	R	22	U	C2-N3	7.84	1.43	1.37
5	R	17	С	C2'-C1'	7.68	1.61	1.53
5	R	6	G	N9-C4	-7.44	1.31	1.38
5	R	15	U	C5'-C4'	7.43	1.60	1.51
5	R	1	G	N1-C2	7.42	1.43	1.37
5	R	4	G	C5'-C4'	7.42	1.60	1.51
5	R	20	С	N1-C6	-7.39	1.32	1.37
5	R	13	G	C8-N7	7.35	1.35	1.30
5	R	3	A	C4'-O4'	-7.32	1.36	1.45
5	R	29	A	C5-C4	7.22	1.43	1.38
5	R	24	U	C3'-C2'	7.21	1.60	1.52
5	R	6	G	C5'-C4'	7.17	1.59	1.51
5	R	8	U	N1-C2	7.15	1.45	1.38
5	R	18	A	C6-N6	6.90	1.39	1.33
5	R	5	A	N9-C4	6.84	1.42	1.37
5	R	31	A	N7-C5	-6.84	1.35	1.39
5	R	27	A	C8-N7	-6.83	1.26	1.31
5	R	20		03'-P	-6.80	1.52	1.61
5	K	2	Γ C	N1-C6	6.80	1.41	1.37

OOnu	$nucu \mu 0 n$	i prevu	<i>Jus puye</i>				
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	R	21	С	C5'-C4'	6.79	1.59	1.51
5	R	7	G	N1-C2	6.75	1.43	1.37
5	R	8	U	C4'-O4'	6.73	1.54	1.45
5	R	9	U	N3-C4	6.47	1.44	1.38
5	R	1	G	C2-N3	6.40	1.37	1.32
5	R	14	С	P-O5'	-6.37	1.53	1.59
5	R	9	U	C2'-C1'	-6.36	1.46	1.53
5	R	30	А	N1-C2	-6.34	1.28	1.34
5	R	10	С	N3-C4	6.31	1.38	1.33
5	R	10	С	C1'-N1	6.26	1.58	1.48
5	R	10	С	C2-N3	6.18	1.40	1.35
5	R	32	А	N9-C8	6.14	1.42	1.37
5	R	18	А	C2'-C1'	-6.11	1.46	1.53
5	R	5	А	C4'-C3'	-6.08	1.46	1.53
5	R	11	U	N3-C4	6.06	1.44	1.38
5	R	19	С	P-O5'	-6.05	1.53	1.59
5	R	10	С	N1-C6	6.02	1.40	1.37
5	R	21	C	C4'-C3'	6.02	1.59	1.53
5	R	31	A	C2-N3	6.00	1.39	1.33
5	R	16	A	N1-C2	-5.98	1.28	1.34
5	R	2	С	C2'-C1'	-5.94	1.46	1.53
5	R	7	G	N9-C8	-5.94	1.33	1.37
5	R	10	C	O3'-P	-5.81	1.54	1.61
5	R	21	C	C5-C6	5.79	1.39	1.34
5	R	13	G	C2-N2	5.78	1.40	1.34
5	R	24	U	C2-N3	5.76	1.41	1.37
5	R	14	C	C4-N4	5.71	1.39	1.33
5	R	11	U	C5-C6	-5.67	1.29	1.34
5	R	25	A	N9-C8	5.63	1.42	1.37
5	R	6	G	C6-O6	-5.61	1.19	1.24
5	R	14	C	C2'-C1'	5.61	1.59	1.53
5	R	25	A	N7-C5	-5.59	1.35	1.39
5	R	30	A	C6-N1	5.51	1.39	1.35
5	R	19	C	C4-N4	5.49	1.38	1.33
5	R	20	C	C2-N3	5.47	1.40	1.35
5	R	15	U	C4'-C3'	5.46	1.59	1.53
5	R	12	A	C2'-O2'	-5.46	1.34	1.41
5	R	26		C5-C6	5.45	1.39	1.34
5	R	20		N3-C4	5.41	1.37	1.33
5	R	15		NI-C2	5.38	1.43	1.38
5	R	4	G	C2-N3	5.38	1.37	1.32
5	I R	24	I U	C2′-C1′	-5.37	1.47	1.53

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	R	18	А	N3-C4	5.31	1.38	1.34
5	R	30	А	N3-C4	-5.29	1.31	1.34
5	R	29	A	C3'-O3'	5.24	1.49	1.42
5	R	22	U	C5-C6	-5.22	1.29	1.34
5	R	27	A	C4'-O4'	-5.22	1.38	1.45
5	R	27	A	C5-C6	5.21	1.45	1.41
5	R	25	А	C5'-C4'	5.20	1.57	1.51
5	R	2	С	C2-N3	-5.18	1.31	1.35
5	R	5	A	C6-N6	5.17	1.38	1.33
5	R	8	U	C4-C5	5.12	1.48	1.43
5	R	10	C	P-O5'	-5.10	1.54	1.59
5	R	13	G	N9-C4	5.08	1.42	1.38
5	R	9	U	O3'-P	-5.07	1.55	1.61
5	R	23	C	C2-O2	5.01	1.28	1.24
5	R	19	Ċ	O5'-C5'	5.00	1.52	1.44

All	(179)) bond	angle	outliers	are	listed	below:
-----	-------	--------	-------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
5	R	18	A	N1-C6-N6	16.24	128.34	118.60
5	R	27	A	N1-C6-N6	16.08	128.25	118.60
5	R	3	А	N1-C6-N6	14.99	127.59	118.60
5	R	29	A	N1-C6-N6	14.57	127.34	118.60
5	R	14	С	N3-C4-N4	13.81	127.67	118.00
5	R	12	А	N1-C6-N6	13.79	126.87	118.60
5	R	32	A	N1-C6-N6	13.26	126.56	118.60
5	R	16	A	C5-C6-N1	-13.21	111.09	117.70
5	R	16	А	N1-C6-N6	13.02	126.41	118.60
5	R	27	А	C5-C6-N1	-12.91	111.25	117.70
5	R	14	С	N3-C4-C5	-12.30	116.98	121.90
5	R	5	A	N1-C6-N6	12.22	125.94	118.60
5	R	33	С	N3-C4-N4	11.87	126.31	118.00
5	R	29	А	C5-C6-N6	-11.79	114.27	123.70
5	R	21	С	O4'-C1'-N1	11.56	117.44	108.20
5	R	27	А	C4-C5-C6	11.28	122.64	117.00
5	R	3	А	C5-C6-N6	-11.11	114.81	123.70
5	R	6	G	N1-C6-O6	10.97	126.48	119.90
5	R	13	G	C2-N3-C4	10.90	117.35	111.90
5	R	30	А	N1-C6-N6	10.74	125.05	118.60
5	R	6	G	N9-C4-C5	10.67	109.67	105.40
5	R	18	A	C5-C6-N6	-10.35	115.42	123.70
5	R	28	A	N1-C6-N6	10.27	124.76	118.60

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
5	R	6	G	C4-C5-N7	-9.67	106.93	110.80
5	R	15	U	C6-N1-C2	-9.59	115.25	121.00
5	R	32	А	C2-N3-C4	9.45	115.32	110.60
5	R	15	U	C2-N1-C1'	9.38	128.96	117.70
5	R	13	G	N3-C4-C5	-9.38	123.91	128.60
5	R	13	G	C5-C6-O6	-9.36	122.99	128.60
5	R	22	U	C2-N3-C4	-9.24	121.46	127.00
5	R	33	С	C5-C4-N4	-9.19	113.77	120.20
5	R	8	U	C2-N3-C4	-9.18	121.49	127.00
5	R	17	С	N3-C4-C5	-9.15	118.24	121.90
5	R	31	А	C5-C6-N1	-9.14	113.13	117.70
5	R	7	G	C8-N9-C4	-9.12	102.75	106.40
5	R	20	С	N3-C4-C5	-9.07	118.27	121.90
5	R	11	U	C5-C6-N1	9.03	127.21	122.70
5	R	11	U	O4'-C1'-N1	9.03	115.42	108.20
5	R	10	С	C2-N3-C4	-8.73	115.53	119.90
5	R	13	G	N3-C4-N9	8.61	131.16	126.00
5	R	28	А	O4'-C1'-N9	8.54	115.03	108.20
5	R	32	А	C5-N7-C8	8.49	108.15	103.90
5	R	3	А	P-O5'-C5'	8.48	134.47	120.90
5	R	20	С	O4'-C1'-N1	8.42	114.94	108.20
5	R	13	G	N1-C6-O6	8.35	124.91	119.90
5	R	19	С	C5'-C4'-O4'	8.29	119.05	109.10
5	R	26	U	N1-C2-O2	-8.25	117.02	122.80
5	R	31	А	C4-C5-N7	-8.12	106.64	110.70
5	R	22	U	O4'-C1'-N1	8.04	114.63	108.20
5	R	26	U	N1-C2-N3	7.99	119.69	114.90
5	R	18	А	C4-C5-C6	7.99	120.99	117.00
5	R	2	С	N3-C4-C5	-7.80	118.78	121.90
5	R	28	A	C5-C6-N6	-7.75	117.50	123.70
5	R	28	A	N1-C2-N3	7.67	133.13	129.30
5	R	17	С	N3-C4-N4	7.66	123.36	118.00
5	R	2	С	C2-N3-C4	7.65	123.73	119.90
5	R	16	A	C4-C5-C6	7.63	120.82	117.00
5	R	29	A	N9-C4-C5	7.63	108.85	105.80
5	R	7	G	N3-C2-N2	7.62	125.24	119.90
5	R	11	U	C1'-O4'-C4'	-7.58	103.83	109.90
5	R	14	C	C2-N3-C4	7.43	123.62	119.90
5	R	32	A	C5-C6-N6	-7.39	117.78	123.70
5	R	18	A	C5-N7-C8	7.37	107.58	103.90
5	R	12	A	C5-N7-C8	7.36	107.58	103.90
5	R.	29	A	C2-N3-C4	7.34	114.27	110.60

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	R	31	A	C5-N7-C8	7.29	107.54	103.90
5	R	2	С	O4'-C1'-N1	7.26	114.01	108.20
5	R	5	А	C5-C6-N6	-7.26	117.89	123.70
5	R	7	G	C5-C6-N1	-7.26	107.87	111.50
5	R	30	А	C5-C6-N6	-7.21	117.94	123.70
5	R	14	С	C5-C4-N4	-7.12	115.22	120.20
5	R	12	А	O4'-C1'-N9	7.10	113.88	108.20
5	R	32	А	P-O3'-C3'	7.09	128.21	119.70
5	R	6	G	C5-C6-O6	-7.07	124.36	128.60
5	R	17	С	C4-C5-C6	7.04	120.92	117.40
5	R	31	А	C2-N3-C4	-7.00	107.10	110.60
5	R	7	G	C6-C5-N7	-7.00	126.20	130.40
5	R	5	А	O4'-C1'-N9	6.99	113.80	108.20
5	R	14	C	C2-N1-C1'	6.99	126.49	118.80
5	R	1	G	C4-C5-C6	6.92	122.95	118.80
5	R	22	U	N3-C4-O4	-6.76	114.67	119.40
5	R	2	C	C6-N1-C2	-6.74	117.60	120.30
5	R	12	A	C5-C6-N6	-6.71	118.33	123.70
5	R	28	A	N7-C8-N9	-6.68	110.46	113.80
5	R	21	С	P-O3'-C3'	6.67	127.70	119.70
5	R	4	G	N1-C6-O6	6.63	123.88	119.90
5	R	10	С	N3-C4-C5	6.61	124.54	121.90
5	R	1	G	C5-C6-N1	-6.60	108.20	111.50
5	R	28	A	C2-N3-C4	-6.60	107.30	110.60
5	R	17	C	P-O5'-C5'	6.59	131.45	120.90
5	R	6	G	C4-C5-C6	6.57	122.74	118.80
5	R	7	G	N1-C6-O6	6.55	123.83	119.90
5	R	13	G	C6-C5-N7	-6.54	126.48	130.40
5	R	5	A	C2-N3-C4	-6.47	107.37	110.60
5	R	33	С	O4'-C1'-N1	6.46	113.37	108.20
5	R	18	A	N7-C8-N9	-6.45	110.58	113.80
5	R	1	G	O4'-C1'-N9	6.41	113.33	108.20
5	R	14	С	O4'-C1'-N1	6.40	113.32	108.20
5	R	31	A	C4-C5-C6	6.38	120.19	117.00
5	R	12	A	C4-C5-C6	6.35	120.18	117.00
5	R	29	A	C6-C5-N7	6.35	136.75	132.30
5	R	19	C	N1-C2-O2	6.32	122.69	118.90
5	R	28	A	C4-C5-C6	6.29	120.14	117.00
5	R	1	G	N1-C2-N3	-6.27	120.14	123.90
5	R	32	A	C5'-C4'-O4'	6.23	116.58	109.10
5	R	23	C	O4'-C1'-N1	6.11	113.09	108.20
5	R.	31	I A	N9-C4-C5	6.10	108.24	105.80

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
5	R	27	А	C8-N9-C4	-6.08	103.37	105.80
5	R	7	G	C4-C5-C6	6.06	122.44	118.80
5	R	21	С	C2-N3-C4	5.98	122.89	119.90
5	R	22	U	N3-C4-C5	5.96	118.17	114.60
5	R	31	А	P-O3'-C3'	5.95	126.83	119.70
5	R	19	С	C5-C6-N1	5.94	123.97	121.00
5	R	13	G	O4'-C1'-N9	5.93	112.95	108.20
5	R	27	А	N3-C4-C5	-5.93	122.65	126.80
5	R	32	А	P-O5'-C5'	5.86	130.28	120.90
5	R	33	С	N3-C4-C5	-5.84	119.56	121.90
5	R	1	G	C4-C5-N7	-5.82	108.47	110.80
5	R	12	А	C5-C6-N1	-5.82	114.79	117.70
5	R	20	С	C4'-C3'-C2'	-5.79	96.81	102.60
5	R	6	G	P-O3'-C3'	-5.77	112.78	119.70
5	R	12	А	N7-C8-N9	-5.72	110.94	113.80
5	R	31	А	C6-N1-C2	5.69	122.02	118.60
5	R	24	U	C2-N3-C4	-5.69	123.59	127.00
5	R	11	U	C6-N1-C2	-5.68	117.59	121.00
5	R	24	U	C5-C4-O4	-5.66	122.50	125.90
5	R	28	А	C5-N7-C8	5.65	106.72	103.90
5	R	5	А	N1-C2-N3	5.63	132.12	129.30
5	R	20	С	C3'-C2'-C1'	5.63	106.00	101.50
5	R	19	С	N3-C4-N4	5.62	121.93	118.00
5	R	19	С	C2-N3-C4	5.60	122.70	119.90
5	R	6	G	O4'-C1'-N9	5.59	112.67	108.20
5	R	9	U	N1-C2-O2	-5.58	118.89	122.80
5	R	26	U	C2-N3-C4	-5.58	123.65	127.00
5	R	19	С	O5'-P-OP2	5.58	117.39	110.70
5	R	13	G	C3'-C2'-C1'	5.57	105.96	101.50
5	R	19	С	C5-C4-N4	-5.56	116.31	120.20
5	R	23	С	C5-C4-N4	-5.54	116.32	120.20
5	R	23	С	N3-C4-N4	5.53	121.87	118.00
5	R	4	G	N1-C2-N3	-5.52	120.59	123.90
5	R	4	G	O4'-C1'-N9	5.52	112.62	108.20
5	R	25	А	C5-C6-N1	5.47	120.44	117.70
5	R	31	A	N1-C6-N6	5.46	121.88	118.60
5	R	29	A	C4-C5-N7	-5.45	107.97	110.70
5	R	25	A	C5-N7-C8	5.45	106.62	103.90
5	R	$\overline{28}$	A	P-O3'-C3'	5.44	126.22	119.70
5	R	11	U	$C2-N1-\overline{C1'}$	5.41	124.20	117.70
5	R	32	A	O4'-C1'-N9	5.40	112.52	108.20
5	R.	12	A	N1-C2-N3	-5.40	126.60	129.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	R	12	A	C6-N1-C2	5.38	121.83	118.60
5	R	23	С	C4'-C3'-C2'	-5.38	97.22	102.60
5	R	4	G	C8-N9-C4	-5.38	104.25	106.40
5	R	27	А	O4'-C1'-N9	5.37	112.49	108.20
5	R	9	U	N3-C4-C5	-5.32	111.41	114.60
5	R	6	G	N3-C4-C5	-5.31	125.94	128.60
5	R	22	U	P-O5'-C5'	5.30	129.38	120.90
5	R	4	G	OP1-P-OP2	-5.30	111.66	119.60
5	R	2	С	C2-N1-C1'	5.29	124.62	118.80
5	R	15	U	C5-C6-N1	5.29	125.34	122.70
5	R	20	С	C4-C5-C6	5.28	120.04	117.40
5	R	4	G	N3-C2-N2	5.28	123.59	119.90
5	R	29	А	C8-N9-C4	-5.27	103.69	105.80
5	R	14	С	C5-C6-N1	5.25	123.63	121.00
5	R	13	G	C1'-O4'-C4'	-5.24	105.71	109.90
5	R	19	С	O4'-C1'-N1	5.21	112.37	108.20
5	R	30	А	O4'-C1'-N9	5.18	112.34	108.20
5	R	12	А	N3-C4-C5	-5.17	123.18	126.80
5	R	16	А	C6-C5-N7	-5.16	128.69	132.30
5	R	3	А	C4-C5-C6	5.14	119.57	117.00
5	R	17	С	O4'-C1'-N1	5.13	112.31	108.20
5	R	7	G	N9-C1'-C2'	-5.12	106.37	112.00
5	R	8	U	N3-C4-C5	5.12	117.67	114.60
5	R	22	U	C6-N1-C2	5.12	124.07	121.00
5	R	4	G	C5-C6-O6	-5.11	125.54	128.60
5	R	3	А	C2-N3-C4	5.08	113.14	110.60
5	R	6	G	O4'-C4'-C3'	-5.06	98.94	104.00
5	R	14	С	C6-N1-C1'	-5.05	114.73	120.80
5	R	31	A	N3-C4-N9	-5.05	123.36	127.40
5	R	25	A	C8-N9-C4	-5.05	103.78	105.80

There are no chirality outliers.

All (13) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
5	R	1	G	Sidechain
5	R	10	С	Sidechain
5	R	12	А	Sidechain
5	R	13	G	Sidechain
5	R	19	С	Sidechain
5	R	21	С	Sidechain
5	R	23	С	Sidechain

	•	-	- 0	
Mol	Chain	\mathbf{Res}	Type	Group
5	R	24	U	Sidechain
5	R	30	А	Sidechain
5	R	31	А	Sidechain
5	R	4	G	Sidechain
5	R	7	G	Sidechain
5	R	9	U	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	388	0	216	11	0
2	В	631	0	352	13	0
3	G	1708	0	1752	53	0
3	Н	1693	0	1727	66	0
4	K	627	0	634	10	0
5	R	997	0	511	10	0
6	Ι	10381	0	10391	321	0
7	J	10403	0	10636	374	0
8	R	13	0	9	0	0
9	J	1	0	0	0	0
All	All	26842	0	26228	792	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 15.

All (792) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (\AA)	Clash overlap (Å)
2.II.16.II E.CC9	2.II.96.VAL.IIC12		$\frac{1.95}{1.95}$
5:H:10:ILE:UG2	5:H:20:VAL:HG15	1.05	1.20
7:J:1048:ARG:HG2	7:J:1059:LEU:CD2	1.68	1.21
7:J:1048:ARG:CG	7:J:1059:LEU:CD2	2.19	1.19
7:J:118:LYS:CE	7:J:136:GLU:OE2	1.90	1.19
6:I:1294:LYS:HG2	7:J:348:ASP:OD1	1.44	1.15
7:J:118:LYS:HE2	7:J:136:GLU:OE2	0.99	1.15
7:J:1048:ARG:CG	7:J:1059:LEU:HD23	1.79	1.09

	A tage 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
7:J:1048:ARG:HG2	7:J:1059:LEU:HD23	1.28	1.09
7:J:375:GLU:HA	7:J:378:LYS:HE3	1.12	1.08
3:H:16:ILE:HG23	3:H:26:VAL:CG1	1.82	1.08
7:J:1048:ARG:CG	7:J:1059:LEU:HD21	1.84	1.06
3:H:41:ASN:ND2	3:H:45:ARG:NH1	2.09	1.00
7:J:114:ILE:HD11	7:J:118:LYS:HD2	1.43	0.99
7:J:348:ASP:OD2	7:J:349:TYR:CE2	2.17	0.97
7:J:1048:ARG:HG3	7:J:1059:LEU:CD2	1.90	0.97
6:I:1257:GLN:CG	6:I:1258:PRO:HD3	1.95	0.96
7:J:375:GLU:CA	7:J:378:LYS:HE3	1.94	0.96
3:H:16:ILE:HG23	3:H:26:VAL:HG13	0.98	0.96
3:H:41:ASN:HD21	3:H:45:ARG:NH1	1.63	0.95
7:J:375:GLU:HA	7:J:378:LYS:CE	1.94	0.95
7:J:251:PRO:HB2	7:J:253:VAL:HG22	1.48	0.94
3:H:22:THR:CG2	3:H:207:THR:O	2.18	0.92
3:H:22:THR:HG23	3:H:207:THR:O	1.70	0.90
6:I:850:ILE:HG21	6:I:1048:LYS:NZ	1.86	0.90
6:I:1294:LYS:CG	7:J:348:ASP:OD1	2.22	0.87
3:H:26:VAL:HG21	3:H:217:ILE:HD13	1.57	0.87
7:J:1048:ARG:HG3	7:J:1059:LEU:HD21	1.50	0.87
6:I:1257:GLN:HG3	6:I:1258:PRO:HD3	1.57	0.85
7:J:263:SER:O	7:J:264:ASP:OD1	1.95	0.84
3:H:41:ASN:ND2	3:H:45:ARG:CZ	2.40	0.84
7:J:506:VAL:HG23	7:J:628:GLY:HA3	1.61	0.82
6:I:1257:GLN:HG2	6:I:1258:PRO:HD3	1.63	0.80
4:K:25:ARG:NH1	4:K:61:ASN:HD21	1.81	0.79
3:G:232:VAL:HA	3:H:218:ARG:HD2	1.63	0.79
5:R:45:C:H2'	5:R:46:G:H8	1.48	0.78
6:I:253:PHE:HA	6:I:265:LYS:HD2	1.65	0.78
3:G:91:ARG:NH2	3:G:209:GLY:O	2.17	0.77
7:J:44:ILE:HG22	7:J:51:PRO:HA	1.66	0.77
6:I:1257:GLN:NE2	7:J:348:ASP:HB3	2.00	0.77
7:J:814:CYS:SG	7:J:890:THR:OG1	2.44	0.74
6:I:598:VAL:HG23	6:I:627:GLY:HA3	1.69	0.74
7:J:1368:ASP:O	7:J:1372:ARG:HG3	1.87	0.73
7:J:349:TYR:HE1	7:J:379:PRO:HG2	1.54	0.73
6:I:1072:ASN:ND2	6:I:1111:GLN:OE1	2.21	0.73
7:J:591:ILE:HD12	7:J:604:MET:HG3	1.71	0.73
6:I:560:PRO:HB2	7:J:776:THR:HG21	1.70	0.73
5:R:45:C:H2'	5:R:46:G:C8	2.24	0.73
7:J:348:ASP:CG	7:J:349:TYR:CD2	2.63	0.72

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:I:195:PHE:HD2	6:I:203:LYS:HE2	1.55	0.72
7:J:582:ILE:HD12	7:J:623:GLN:HB3	1.72	0.72
6:I:1212:LEU:HD22	6:I:1225:VAL:HG11	1.72	0.71
2:B:23:DG:OP1	6:I:143:ARG:NH2	2.23	0.70
3:H:16:ILE:HG22	3:H:26:VAL:HG13	1.69	0.70
6:I:1030:GLU:CG	6:I:1034:ARG:HE	2.05	0.70
7:J:1067:ARG:HE	7:J:1072:LYS:HA	1.56	0.70
6:I:317:LEU:HD11	6:I:335:THR:HG21	1.74	0.70
6:I:1253:LEU:HD22	7:J:251:PRO:HG3	1.74	0.70
7:J:1158:GLU:HA	7:J:1223:LEU:HD11	1.74	0.69
7:J:99:ARG:HB3	7:J:248:ASP:HB2	1.75	0.69
7:J:348:ASP:CG	7:J:349:TYR:CE2	2.65	0.69
3:G:61:ILE:HB	3:G:64:VAL:HG12	1.74	0.69
6:I:557:ARG:NH1	6:I:611:GLU:OE1	2.23	0.69
7:J:1035:VAL:HG12	7:J:1078:LEU:HD21	1.74	0.69
3:G:60:GLU:OE1	3:G:143:ARG:NH2	2.25	0.69
3:H:41:ASN:ND2	3:H:45:ARG:HH12	1.89	0.69
6:I:551:HIS:HD2	6:I:552:PRO:HD2	1.56	0.69
3:H:86:LYS:HG2	3:H:176:CYS:HB2	1.74	0.69
6:I:102:LEU:HD23	6:I:118:LYS:HD3	1.76	0.68
7:J:848:VAL:HB	7:J:858:VAL:HB	1.76	0.68
3:H:212:ASP:HB2	3:H:215:GLU:HG2	1.75	0.67
7:J:889:ASP:O	7:J:1286:LYS:NZ	2.27	0.67
7:J:1178:THR:HB	7:J:1185:PRO:HB3	1.77	0.67
2:B:26:DA:H8	2:B:27:DG:H2'	1.58	0.67
7:J:1032:SER:OG	7:J:1114:GLN:NE2	2.27	0.67
7:J:1281:GLU:HB2	7:J:1284:ARG:HG3	1.76	0.67
7:J:348:ASP:OD2	7:J:349:TYR:HE2	1.74	0.67
6:I:302:ILE:HA	6:I:309:LEU:HA	1.77	0.67
7:J:247:PRO:HG3	7:J:250:ARG:HH21	1.58	0.67
7:J:514:THR:HG21	7:J:596:LEU:HD12	1.77	0.67
6:I:727:VAL:HG11	6:I:772:SER:HA	1.77	0.67
6:I:1257:GLN:HG3	6:I:1258:PRO:CD	2.23	0.67
6:I:1313:HIS:HB2	7:J:474:LEU:HD12	1.77	0.67
7:J:1109:LEU:HD22	7:J:1115:ILE:HG12	1.77	0.66
3:H:26:VAL:HG21	3:H:217:ILE:CD1	2.25	0.66
7:J:1135:THR:HG21	7:J:1139:PRO:HB2	1.78	0.66
6:I:836:LEU:HB3	6:I:918:LEU:HD21	1.78	0.66
6:I:808:ASN:H	7:J:633:ALA:HB2	1.60	0.66
3:H:41:ASN:HD22	3:H:45:ARG:NH2	1.92	0.65
6:I:180:ARG:NH2	6:I:396:ASP:OD2	2.29	0.65

Atom-1	Atom-2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
3:G:185:TYR:HB2	3:G:201:LEU:HD11	1.79	0.65
6:I:55:SER:OG	6:I:465:ARG:NH1	2.29	0.65
6:I:454:ARG:HG2	6:I:458:GLU:HB3	1.78	0.65
3:G:45:ARG:NH2	6:I:1084:ASP:OD1	2.30	0.65
6:I:681:MET:SD	6:I:1073:LYS:NZ	2.68	0.65
3:G:102:LEU:HD12	3:G:115:ILE:HG12	1.78	0.65
6:I:552:PRO:HA	7:J:773:PHE:HE2	1.62	0.65
6:I:933:VAL:HG13	6:I:1050:VAL:HG22	1.79	0.65
7:J:955:LYS:HG2	7:J:1012:ALA:HA	1.79	0.65
6:I:798:GLN:OE1	6:I:827:ARG:NH1	2.30	0.64
7:J:799:ARG:HG2	7:J:1325:PHE:HE1	1.63	0.64
7:J:1238:GLN:HB3	7:J:1242:ARG:HE	1.63	0.64
7:J:144:TYR:HB3	7:J:178:ALA:HB1	1.79	0.64
6:I:448:LEU:H	6:I:553:THR:HG21	1.62	0.64
6:I:989:LEU:HD22	6:I:997:TRP:HD1	1.63	0.64
7:J:127:LEU:O	7:J:220:ARG:NH2	2.30	0.64
6:I:801:ARG:HB3	6:I:1095:ASP:H	1.62	0.64
7:J:515:ARG:HH22	7:J:717:VAL:HG22	1.61	0.64
7:J:948:SER:N	7:J:1020:TRP:O	2.31	0.64
7:J:824:PRO:HD3	7:J:835:LEU:HB2	1.80	0.63
3:G:145:LYS:NZ	3:G:147:GLN:OE1	2.30	0.63
3:G:12:ARG:H	3:G:30:PRO:HD2	1.64	0.63
7:J:749:LYS:HZ2	7:J:753:SER:HB3	1.62	0.63
7:J:1089:LEU:HA	7:J:1096:PRO:HA	1.80	0.63
6:I:41:GLN:NE2	6:I:50:GLU:OE1	2.31	0.62
7:J:225:GLU:O	7:J:229:GLN:NE2	2.32	0.62
7:J:1081:VAL:HG12	7:J:1087:ASP:HA	1.80	0.62
6:I:551:HIS:CD2	6:I:552:PRO:HD2	2.34	0.62
7:J:1356:LEU:O	7:J:1366:HIS:NE2	2.28	0.62
7:J:247:PRO:HA	7:J:250:ARG:HE	1.65	0.62
7:J:975:ILE:HG21	7:J:980:THR:HG21	1.81	0.61
3:G:104:LYS:HG2	3:G:110:VAL:HG12	1.82	0.61
3:H:16:ILE:CG2	3:H:26:VAL:CG1	2.56	0.61
6:I:9:LYS:HG2	6:I:1171:ARG:HD3	1.82	0.61
6:I:850:ILE:HG21	6:I:1048:LYS:HZ1	1.64	0.61
3:H:41:ASN:HD22	3:H:45:ARG:CZ	2.11	0.61
3:G:91:ARG:NH1	3:G:210:THR:O	2.34	0.61
6:I:283:LYS:HG3	6:I:284:LEU:HD12	1.82	0.61
6:I:106:GLU:HB2	6:I:109:ALA:HB3	1.81	0.61
6:I:402:ARG:HD3	6:I:416:GLY:H	1.66	0.61
7:J:374:LEU:O	7:J:378:LYS:HG3	2.01	0.61

	A t and D	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:I:646:SER:HB3	6:I:649:GLN:HG3	1.82	0.60
7:J:151:MET:HB2	7:J:175:GLU:HG2	1.83	0.60
3:G:58:GLU:OE1	3:G:170:ARG:NH2	2.29	0.60
3:G:167:PRO:HD2	3:G:170:ARG:HD3	1.82	0.60
5:R:42:A:O3'	6:I:510:GLN:NE2	2.34	0.60
6:I:559:CYS:HB2	6:I:662:SER:HB3	1.83	0.60
7:J:370:LYS:HA	7:J:441:LEU:HD22	1.83	0.60
7:J:1075:ARG:HH21	7:J:1200:GLU:HB3	1.66	0.60
6:I:1257:GLN:NE2	7:J:348:ASP:CB	2.65	0.60
7:J:114:ILE:HD11	7:J:118:LYS:CD	2.27	0.60
7:J:120:LEU:HD12	7:J:1330:ARG:HD3	1.82	0.60
7:J:21:LYS:NZ	7:J:22:ILE:O	2.35	0.60
7:J:892:PHE:HB3	7:J:1345:ARG:HH12	1.65	0.60
6:I:1223:ARG:HH22	7:J:721:SER:N	1.99	0.59
7:J:339:ARG:HA	7:J:343:LEU:HD12	1.83	0.59
7:J:983:LYS:HA	7:J:994:SER:HA	1.84	0.59
6:I:228:VAL:HG13	6:I:337:PHE:HB2	1.82	0.59
6:I:240:GLU:HA	6:I:284:LEU:HA	1.83	0.59
6:I:1294:LYS:CB	7:J:348:ASP:OD1	2.49	0.59
7:J:586:GLY:HA3	7:J:612:LEU:HD21	1.84	0.59
7:J:664:ILE:HD12	7:J:681:LYS:HE2	1.84	0.59
6:I:850:ILE:HG21	6:I:1048:LYS:HZ3	1.67	0.59
6:I:50:GLU:OE2	6:I:54:ARG:NH2	2.34	0.59
6:I:1251:TYR:HB3	6:I:1257:GLN:HA	1.84	0.59
7:J:789:LYS:HE2	7:J:931:THR:HA	1.85	0.59
7:J:901:ARG:HD3	7:J:906:GLY:HA2	1.83	0.59
6:I:19:PRO:HA	6:I:1156:ARG:HD3	1.85	0.59
6:I:93:SER:HB2	6:I:126:GLU:HG2	1.85	0.59
6:I:521:LEU:HD22	6:I:667:LEU:HD12	1.84	0.59
6:I:660:VAL:HG13	6:I:661:VAL:HG13	1.84	0.59
7:J:911:LYS:HE2	7:J:1363:TYR:HE2	1.67	0.59
6:I:681:MET:O	6:I:685:MET:HG2	2.03	0.58
3:G:29:GLU:HB3	3:G:30:PRO:HD3	1.85	0.58
3:G:97:GLU:HB2	3:G:145:LYS:HE2	1.85	0.58
4:K:37:PRO:HB3	4:K:49:ILE:HG21	1.86	0.58
7:J:1024:THR:HG23	7:J:1026:PRO:HD3	1.86	0.58
3:G:102:LEU:HB3	3:G:142:MET:HG2	1.85	0.58
7:J:384:LYS:O	7:J:388:ARG:HG2	2.02	0.58
7:J:544:LEU:HD11	7:J:631:TYR:HD1	1.68	0.58
7:J:1100:PHE:HB2	7:J:1200:GLU:HB2	1.85	0.58
7:J:1199:PHE:HB3	7:J:1202:GLU:HB2	1.86	0.58

	the o	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:I:694:ARG:O	6:I:798:GLN:NE2	2.36	0.58
3:H:18:GLN:OE1	3:H:20:SER:N	2.07	0.58
7:J:329:ASP:HA	7:J:332:LYS:HE2	1.85	0.58
6:I:348:SER:O	6:I:352:ARG:HG2	2.04	0.57
6:I:1005:GLU:H	6:I:1008:GLN:HB2	1.68	0.57
6:I:1340:GLU:HG2	7:J:1341:ARG:HH22	1.69	0.57
7:J:814:CYS:SG	7:J:895:CYS:HB2	2.44	0.57
6:I:12:ARG:HG3	6:I:1181:PRO:HB2	1.85	0.57
3:H:41:ASN:HD22	3:H:45:ARG:NH1	2.01	0.57
5:R:41:C:H2'	5:R:42:A:C8	2.40	0.57
6:I:692:THR:HA	6:I:830:THR:HG22	1.87	0.57
7:J:537:TYR:CZ	7:J:544:LEU:HG	2.40	0.57
5:R:41:C:H2'	5:R:42:A:H8	1.69	0.57
6:I:105:TYR:HA	6:I:114:VAL:HA	1.87	0.57
6:I:870:ILE:HG21	6:I:931:VAL:HG11	1.86	0.57
6:I:975:ILE:HG23	6:I:979:LEU:HD22	1.86	0.57
7:J:660:GLU:O	7:J:664:ILE:HG12	2.04	0.57
6:I:233:ARG:H	6:I:237:LEU:HA	1.70	0.57
7:J:572:THR:HG21	7:J:589:TYR:HE2	1.69	0.57
7:J:576:ARG:NH1	7:J:593:ASN:O	2.38	0.57
6:I:1257:GLN:HE22	7:J:348:ASP:CG	2.07	0.57
7:J:108:ALA:HB2	7:J:280:LYS:HG3	1.86	0.57
7:J:527:LEU:HD22	7:J:548:VAL:HG21	1.86	0.57
7:J:646:ILE:HD11	7:J:764:ARG:HD3	1.87	0.57
7:J:1263:LYS:HD2	7:J:1279:GLN:HG2	1.85	0.57
6:I:594:VAL:HG22	6:I:599:VAL:HA	1.86	0.57
7:J:1062:LEU:O	7:J:1067:ARG:NH1	2.35	0.57
6:I:850:ILE:HG21	6:I:1048:LYS:CE	2.34	0.57
6:I:979:LEU:HG	6:I:989:LEU:HD13	1.85	0.57
7:J:825:VAL:HG12	7:J:833:GLU:HB2	1.86	0.57
3:H:23:HIS:HE1	3:H:204:GLU:HB3	1.70	0.56
6:I:1246:ARG:HH21	6:I:1249:GLY:N	2.03	0.56
6:I:1313:HIS:HB3	7:J:473:THR:HA	1.86	0.56
7:J:146:VAL:HG12	7:J:178:ALA:HB2	1.85	0.56
6:I:339:ASN:O	6:I:343:HIS:N	2.37	0.56
6:I:444:ASP:HB3	6:I:447:HIS:HB2	1.86	0.56
6:I:268:ARG:NH1	6:I:269:ILE:O	2.37	0.56
7:J:134:ASP:OD1	7:J:137:ARG:NH2	2.39	0.56
7:J:375:GLU:HG2	7:J:378:LYS:HE3	1.87	0.56
7:J:502:PRO:HB3	7:J:506:VAL:CG1	2.34	0.56
5:R:44:A:OP2	6:I:540:ARG:NH2	2.39	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
7:J:973:LEU:HB2	7:J:1003:LEU:HB3	1.87	0.56
6:I:94:ALA:HB2	6:I:129:LEU:HD11	1.87	0.56
7:J:1198:VAL:HG23	7:J:1210:ILE:HA	1.86	0.56
7:J:826:ILE:HG21	7:J:993:GLU:HA	1.88	0.56
7:J:826:ILE:HG22	7:J:828:GLY:H	1.70	0.56
3:G:231:PHE:HE2	3:H:39:LEU:HD23	1.71	0.56
7:J:201:LEU:HD11	7:J:220:ARG:HH11	1.71	0.56
7:J:506:VAL:HG21	7:J:625:MET:HA	1.88	0.56
6:I:207:THR:HA	6:I:210:LEU:HD12	1.88	0.56
6:I:265:LYS:O	6:I:267:ARG:NH1	2.39	0.56
3:H:144:ILE:HG22	3:H:146:VAL:HG22	1.88	0.55
7:J:161:THR:O	7:J:165:TYR:N	2.32	0.55
6:I:176:ILE:HD11	6:I:428:VAL:HG11	1.89	0.55
6:I:319:LEU:HD23	6:I:322:LEU:HD12	1.89	0.55
3:G:54:CYS:SG	3:G:92:VAL:HG22	2.46	0.55
6:I:453:ILE:HD12	6:I:587:LEU:HD21	1.89	0.55
6:I:613:ASN:OD1	6:I:614:TYR:N	2.39	0.55
2:B:29:DA:H2"	2:B:30:DC:H5'	1.88	0.55
6:I:1287:LEU:HD23	7:J:1357:ILE:HD13	1.89	0.55
7:J:965:SER:HB2	7:J:975:ILE:HG12	1.89	0.55
3:G:23:HIS:HB3	3:G:206:GLU:HA	1.87	0.55
6:I:303:ASP:HB3	6:I:310:ILE:HD11	1.88	0.55
6:I:1289:GLU:HG2	6:I:1294:LYS:HD2	1.89	0.55
7:J:895:CYS:HB3	7:J:898:CYS:HB2	1.88	0.55
3:G:71:LYS:NZ	3:G:139:SER:O	2.37	0.55
6:I:226:GLU:HG2	6:I:337:PHE:HB3	1.88	0.55
6:I:231:GLU:OE2	6:I:332:ARG:NH1	2.39	0.55
6:I:1253:LEU:HD22	7:J:251:PRO:CG	2.37	0.55
3:G:180:VAL:HG12	3:G:207:THR:HG22	1.88	0.54
6:I:255:ILE:N	6:I:263:VAL:O	2.37	0.54
6:I:1291:LEU:HD11	7:J:1351:VAL:HG13	1.89	0.54
7:J:751:ASP:OD1	7:J:752:GLY:N	2.39	0.54
7:J:1046:ILE:HG22	7:J:1062:LEU:H	1.72	0.54
7:J:1062:LEU:HB2	7:J:1067:ARG:HB3	1.89	0.54
7:J:1153:PRO:O	7:J:1194:ARG:NH1	2.40	0.54
6:I:230:PHE:HB2	6:I:333:ILE:HB	1.89	0.54
6:I:1030:GLU:HG2	6:I:1034:ARG:HE	1.73	0.54
7:J:374:LEU:O	7:J:378:LYS:CG	2.55	0.54
6:I:520:PRO:HG3	6:I:714:VAL:HG11	1.88	0.54
7:J:572:THR:HG21	7:J:589:TYR:CE2	2.42	0.54
7:J:1042:ASP:O	7:J:1047:THR:HG22	2.07	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:H:105:SER:HB2	3:H:139:SER:HA	1.89	0.54
3:H:189:ALA:HB1	3:H:197:ASP:HB2	1.88	0.54
7:J:338:PHE:HA	7:J:342:LEU:HD12	1.89	0.54
7:J:381:ILE:HD11	7:J:412:LEU:HD13	1.89	0.54
7:J:112:ALA:HA	7:J:238:ILE:HA	1.90	0.54
7:J:826:ILE:HG13	7:J:831:VAL:HA	1.88	0.54
3:G:192:VAL:HG21	3:G:198:LEU:HD12	1.90	0.54
7:J:480:ALA:HA	7:J:484:MET:HB2	1.90	0.54
6:I:138:ILE:HD12	6:I:143:ARG:HD2	1.89	0.54
7:J:348:ASP:OD1	7:J:349:TYR:CD2	2.61	0.54
4:K:27:ALA:HB1	7:J:474:LEU:HD23	1.90	0.54
6:I:256:GLU:HB3	6:I:261:VAL:HG22	1.90	0.54
6:I:617:ALA:HB2	6:I:650:VAL:HG21	1.90	0.54
6:I:727:VAL:HG23	6:I:732:ILE:HG12	1.90	0.54
6:I:975:ILE:HA	6:I:1011:LEU:HD22	1.89	0.54
7:J:511:TYR:OH	7:J:515:ARG:NH1	2.41	0.54
3:G:11:PRO:HG2	3:H:231:PHE:HZ	1.74	0.53
6:I:6:THR:HA	6:I:9:LYS:HE2	1.90	0.53
3:H:98:VAL:HA	3:H:146:VAL:HG23	1.89	0.53
7:J:226:ALA:HB1	7:J:1338:ALA:HA	1.89	0.53
7:J:646:ILE:HD12	7:J:762:ASN:ND2	2.24	0.53
6:I:243:PRO:HB3	6:I:277:LEU:HB3	1.90	0.53
6:I:518:ASN:HB2	6:I:761:GLN:HG3	1.91	0.53
6:I:1030:GLU:OE2	6:I:1034:ARG:HD2	2.08	0.53
7:J:1099:TYR:HB3	7:J:1199:PHE:HZ	1.74	0.53
7:J:956:GLY:HA3	7:J:984:LEU:HD21	1.90	0.53
3:G:184:ALA:HB2	6:I:1091:GLY:HA3	1.90	0.53
7:J:338:PHE:CZ	7:J:1352:ILE:HG12	2.44	0.53
3:G:13:LEU:HB3	3:G:16:ILE:HD11	1.91	0.53
6:I:12:ARG:NH2	6:I:793:GLU:OE1	2.31	0.53
6:I:807:TRP:CZ2	6:I:1216:ARG:HD2	2.44	0.53
7:J:870:ASP:O	7:J:874:GLU:HG2	2.09	0.53
7:J:1253:ILE:O	7:J:1257:VAL:HG23	2.08	0.53
6:I:89:GLY:HA2	6:I:140:GLY:HA3	1.91	0.53
6:I:519:ASN:ND2	6:I:796:LEU:HD22	2.24	0.53
6:I:821:ARG:HB2	6:I:1082:ILE:HD12	1.90	0.53
7:J:851:PRO:HD3	7:J:877:VAL:HG22	1.91	0.53
7:J:962:ASN:OD1	7:J:964:LYS:NZ	2.42	0.53
6:I:934:PHE:O	6:I:1048:LYS:HG3	2.10	0.52
6:I:83:GLN:NE2	6:I:84:GLU:HG3	2.25	0.52
6:I:101:ARG:HG3	6:I:119:GLU:HB2	1.92	0.52

Atom-1	Atom-2	Interatomic	Clash
	1100111 2	distance (Å)	overlap (Å)
6:I:102:LEU:O	6:I:118:LYS:N	2.41	0.52
6:I:1030:GLU:O	6:I:1034:ARG:HG3	2.09	0.52
6:I:1339:LEU:HD23	7:J:17:PHE:CD1	2.44	0.52
7:J:114:ILE:HA	7:J:117:LEU:HB3	1.91	0.52
6:I:81:ASP:OD2	6:I:82:VAL:N	2.38	0.52
6:I:301:TYR:O	6:I:310:ILE:N	2.41	0.52
7:J:114:ILE:HD13	7:J:304:ASP:OD2	2.09	0.52
3:G:107:ILE:HD11	6:I:773:LEU:HD22	1.91	0.52
7:J:1025:MET:HB2	7:J:1124:ILE:HB	1.91	0.52
7:J:17:PHE:O	7:J:1369:ARG:NH2	2.43	0.52
3:G:109:PRO:HA	3:G:132:HIS:HA	1.92	0.52
6:I:838:CYS:SG	6:I:884:VAL:HG11	2.50	0.52
6:I:997:TRP:HE1	6:I:1002:LEU:HB2	1.75	0.52
2:B:19:DT:H2'	2:B:20:DG:C8	2.45	0.52
7:J:375:GLU:HG2	7:J:378:LYS:CE	2.40	0.52
7:J:513:MET:SD	7:J:579:LEU:HB2	2.50	0.52
3:G:222:THR:HG21	3:H:233:ASP:HB2	1.91	0.52
6:I:192:ASP:HB3	6:I:346:TYR:HD1	1.75	0.52
6:I:1242:LYS:HD2	7:J:465:GLN:HE22	1.74	0.51
7:J:337:ARG:HG2	7:J:341:ASN:HD21	1.76	0.51
7:J:1050:THR:HA	7:J:1057:SER:HA	1.92	0.51
3:G:31:LEU:HD13	3:G:36:GLY:HA2	1.91	0.51
5:R:37:G:H22	6:I:1259:LEU:HD11	1.75	0.51
6:I:561:ILE:HD13	6:I:661:VAL:HG12	1.92	0.51
7:J:375:GLU:HA	7:J:378:LYS:HG3	1.93	0.51
7:J:930:LEU:HG	7:J:1244:GLN:HG3	1.92	0.51
1:A:28:DG:H5"	7:J:1148:ARG:NH1	2.25	0.51
3:H:111:THR:HA	3:H:129:VAL:HA	1.92	0.51
7:J:123:ARG:HG2	7:J:1337:VAL:HG21	1.92	0.51
6:I:700:VAL:HG13	6:I:1069:ARG:HH22	1.75	0.51
7:J:964:LYS:HG2	7:J:977:SER:HB2	1.93	0.51
6:I:232:ILE:HA	6:I:237:LEU:HG	1.93	0.51
6:I:714:VAL:HB	6:I:787:PRO:HD2	1.93	0.51
6:I:359:ARG:HG2	6:I:363:LEU:HD13	1.93	0.51
7:J:651:HIS:CE1	7:J:652:GLU:HG3	2.46	0.51
3:H:21:SER:O	3:H:213:PRO:CD	2.59	0.51
6:I:822:VAL:HG13	6:I:827:ARG:HB2	1.93	0.51
7:J:799:ARG:HG2	7:J:1325:PHE:CE1	2.43	0.51
7:J:1263:LYS:NZ	7:J:1315:ALA:O	2.38	0.51
3:H:41:ASN:ND2	3:H:45:ARG:NH2	2.57	0.50
6:I:705:GLU:HB3	6:I:794:LEU:H	1.76	0.50

Atom-1	Atom-2	Interatomic distance $(Å)$	Clash overlap (Å)
7.J.865.HIS.ND1	7.1.867.GLN.OE1	2.43	0.50
7:J:865:HIS:HA	7.J.901.ABG.HH21	1.76	0.50
6·I·1246·ABG·HH21	6·I·1249·GLY·H	1.60	0.50
6.I.1140.LYS.O	6·I·1143·GLU·HG3	2.10	0.50
6:I:1315:MET:HB2	7:J:473:THR:HG21	1.93	0.50
3:H:56:VAL:HB	3:H:147:GLN:HB3	1.93	0.50
6:I:13:LYS:HD3	6:I:1149:TYR:HA	1.92	0.50
7:J:132:LEU:O	7:J:135:ILE:N	2.45	0.50
7:J:816:THR:O	7:J:883:ARG:NH1	2.44	0.50
6:I:262:TYR:HB3	6:I:276:GLN:HE22	1.76	0.50
6:I:448:LEU:HD21	6:I:587:LEU:HD12	1.94	0.50
7:J:375:GLU:CB	7:J:378:LYS:HE3	2.41	0.50
7:J:1045:THR:HG21	7:J:1067:ARG:HB2	1.93	0.50
3:H:11:PRO:HB3	3:H:31:LEU:HG	1.94	0.50
6:I:149:LEU:HD11	6:I:451:ARG:HB3	1.94	0.50
6:I:838:CYS:SG	6:I:1050:VAL:HB	2.52	0.50
7:J:1036:ARG:HH12	7:J:1112:GLY:HA2	1.75	0.50
7:J:1048:ARG:HE	7:J:1059:LEU:HD21	1.77	0.50
6:I:68:LEU:HD11	6:I:100:LEU:HB3	1.94	0.50
6:I:144:VAL:HG11	6:I:527:LYS:HA	1.94	0.50
4:K:25:ARG:HH12	4:K:61:ASN:HD21	1.60	0.49
7:J:1206:ARG:NH1	7:J:1223:LEU:O	2.45	0.49
7:J:1267:VAL:N	7:J:1301:THR:O	2.45	0.49
7:J:1271:SER:OG	7:J:1298:VAL:O	2.22	0.49
3:G:59:VAL:HG22	3:G:144:ILE:HG22	1.94	0.49
3:G:100:LEU:HD21	3:G:121:VAL:HG11	1.93	0.49
6:I:1257:GLN:HB3	6:I:1301:ARG:CZ	2.42	0.49
7:J:135:ILE:O	7:J:139:LEU:HD23	2.12	0.49
7:J:189:LEU:HB3	7:J:234:PRO:HB2	1.93	0.49
1:A:31:DA:C8	1:A:32:DT:H72	2.47	0.49
6:I:866:ASP:OD1	6:I:869:GLY:N	2.45	0.49
7:J:35:PHE:HB3	7:J:101:ARG:HH21	1.77	0.49
7:J:334:LYS:HE3	7:J:339:ARG:HH12	1.77	0.49
7:J:118:LYS:HE2	7:J:136:GLU:CD	2.10	0.49
7:J:1021:ASP:HB3	7:J:1024:THR:HG22	1.93	0.49
6:I:678:ARG:HD3	6:I:1106:ARG:HB3	1.95	0.49
6:I:1297:ASP:H	6:I:1301:ARG:HD3	1.78	0.49
7:J:948:SER:N	7:J:1022:PRO:HD3	2.27	0.49
7:J:1166:GLY:N	7:J:1174:ARG:O	2.45	0.49
3:G:81:ILE:HG12	3:G:131:CYS:HB3	1.93	0.49
6:I:178:PRO:HB3	6:I:395:TYR:CZ	2.47	0.49

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
7:J:353:SER:HB3	7:J:447:ILE:HG13	1.95	0.49
7:J:587:LEU:HD21	7:J:608:CYS:HA	1.94	0.49
7:J:1031:VAL:HG23	7:J:1080:ILE:HG21	1.94	0.49
6:I:13:LYS:HB3	6:I:1182:ILE:HD13	1.93	0.49
6:I:618:GLN:HE22	7:J:770:LEU:HB2	1.78	0.49
6:I:600:THR:HG22	6:I:602:GLU:HG2	1.95	0.49
3:G:61:ILE:HD13	3:G:142:MET:HB3	1.95	0.49
6:I:519:ASN:HD21	6:I:796:LEU:HD22	1.78	0.49
6:I:1294:LYS:HB3	7:J:348:ASP:OD1	2.11	0.49
6:I:1332:SER:HA	7:J:243:PRO:HB2	1.94	0.49
7:J:227:PHE:CE1	7:J:1337:VAL:HG13	2.47	0.49
7:J:620:PHE:CZ	7:J:624:ILE:HD11	2.48	0.49
6:I:661:VAL:HB	6:I:665:ALA:HB3	1.94	0.48
6:I:1119:MET:HG3	6:I:1204:LEU:HD13	1.95	0.48
7:J:94:GLN:HB3	7:J:96:LYS:HG2	1.95	0.48
7:J:907:HIS:NE2	7:J:910:ASN:OD1	2.46	0.48
7:J:1042:ASP:OD1	7:J:1043:GLY:N	2.46	0.48
6:I:1283:ALA:HB2	7:J:484:MET:HE1	1.94	0.48
6:I:746:ALA:H	6:I:974:ARG:HH22	1.62	0.48
6:I:411:ARG:NH2	6:I:424:ASP:OD1	2.45	0.48
3:G:18:GLN:NE2	3:G:20:SER:O	2.32	0.48
6:I:232:ILE:O	6:I:331:LYS:NZ	2.47	0.48
6:I:1211:ARG:NH1	6:I:1213:TYR:OH	2.46	0.48
7:J:247:PRO:HG3	7:J:250:ARG:NH2	2.28	0.48
7:J:321:LYS:HA	7:J:321:LYS:HD2	1.47	0.48
7:J:555:TYR:HB3	7:J:563:LEU:HD22	1.95	0.48
6:I:297:VAL:HA	6:I:335:THR:HG22	1.95	0.48
7:J:161:THR:HB	7:J:164:GLN:HB2	1.95	0.48
7:J:355:ILE:HD11	7:J:466:MET:HG3	1.96	0.48
6:I:732:ILE:HD11	6:I:769:PRO:HB3	1.94	0.48
6:I:56:VAL:HG11	6:I:468:LEU:HB3	1.96	0.48
7:J:375:GLU:CG	7:J:378:LYS:HE3	2.43	0.48
6:I:954:LYS:O	6:I:958:LYS:HG3	2.13	0.48
6:I:1027:LYS:HA	6:I:1027:LYS:HD3	1.61	0.48
3:H:47:LEU:HD13	3:H:180:VAL:HG11	1.96	0.47
7:J:388:ARG:HG3	7:J:411:ILE:HD11	1.95	0.47
5:R:40:C:H2'	5:R:41:C:C6	2.50	0.47
6:I:3:TYR:HB3	6:I:7:GLU:HB3	1.96	0.47
7:J:1155:ILE:HB	7:J:1210:ILE:HB	1.96	0.47
7:J:1344:LEU:O	7:J:1345:ARG:HG2	2.14	0.47
3:G:11:PRO:HG2	3:H:231:PHE:CZ	2.49	0.47

	t i c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:J:352:ARG:HH21	7:J:465:GLN:HB2	1.79	0.47
7:J:878:ASP:OD1	7:J:879:ALA:N	2.47	0.47
6:I:1077:SER:HA	7:J:356:THR:HG23	1.96	0.47
6:I:1166:ASP:OD1	6:I:1167:GLU:N	2.46	0.47
7:J:338:PHE:CE2	7:J:1352:ILE:HG12	2.48	0.47
7:J:348:ASP:OD1	7:J:349:TYR:HD2	1.97	0.47
7:J:1203:ARG:NH2	7:J:1205:GLU:OE2	2.48	0.47
7:J:398:LYS:HE2	7:J:398:LYS:HB2	1.77	0.47
3:H:130:ILE:HG21	3:H:142:MET:HA	1.97	0.47
7:J:132:LEU:HD12	7:J:135:ILE:HB	1.97	0.47
7:J:198:CYS:SG	7:J:202:ARG:NH1	2.88	0.47
7:J:432:LEU:HD13	7:J:499:ILE:HG12	1.97	0.47
2:B:18:DG:OP2	7:J:346:ARG:NH2	2.48	0.47
3:H:41:ASN:HD22	3:H:45:ARG:HH22	1.60	0.47
3:H:59:VAL:HB	3:H:143:ARG:HD2	1.96	0.47
6:I:52:ALA:HA	6:I:465:ARG:HH12	1.80	0.47
6:I:213:LEU:HB3	6:I:422:LYS:HD3	1.97	0.47
6:I:753:LEU:HB3	6:I:767:GLN:HB3	1.97	0.47
6:I:802:VAL:HG21	6:I:1230:MET:HB3	1.96	0.47
7:J:111:THR:HG21	7:J:303:VAL:HB	1.95	0.47
4:K:6:VAL:HG11	7:J:482:ALA:HA	1.96	0.47
6:I:28:LEU:HD22	6:I:527:LYS:HD2	1.96	0.47
7:J:510:LEU:HD11	7:J:624:ILE:HG23	1.96	0.47
7:J:865:HIS:CE1	7:J:867:GLN:HB2	2.50	0.47
3:G:11:PRO:HB3	3:G:31:LEU:HG	1.97	0.47
7:J:152:THR:HG23	7:J:175:GLU:HG3	1.96	0.47
7:J:502:PRO:HB3	7:J:506:VAL:HG13	1.96	0.47
7:J:1048:ARG:HG2	7:J:1059:LEU:CG	2.42	0.47
7:J:1327:GLU:OE1	7:J:1330:ARG:NH2	2.48	0.47
1:A:33:DT:H2"	1:A:34:DC:H2'	1.96	0.47
6:I:1047:LEU:H	6:I:1047:LEU:HG	1.55	0.47
6:I:1268:GLN:HG3	7:J:352:ARG:HG3	1.96	0.47
7:J:847:ASP:OD1	7:J:847:ASP:O	2.33	0.47
7:J:1175:LEU:HD22	7:J:1190:ILE:HD11	1.97	0.47
3:G:219:ARG:O	3:G:222:THR:OG1	2.27	0.46
7:J:218:THR:HA	7:J:221:ILE:HG22	1.97	0.46
7:J:137:ARG:HH21	7:J:159:ILE:HG12	1.79	0.46
7:J:741:ALA:O	7:J:762:ASN:ND2	2.30	0.46
7:J:1063:ASP:O	7:J:1067:ARG:HG2	2.16	0.46
7:J:1173:ARG:HH21	7:J:1190:ILE:HG21	1.80	0.46
6:I:690:VAL:HG13	6:I:830:THR:HG21	1.97	0.46

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
7:J:537:TYR:CE1	7:J:544:LEU:HG	2.51	0.46
7:J:806:ASP:OD1	7:J:1259:GLN:NE2	2.48	0.46
7:J:1259:GLN:HA	7:J:1262:ARG:HG3	1.97	0.46
3:H:54:CYS:HB2	3:H:92:VAL:HA	1.96	0.46
6:I:1280:ALA:HB1	7:J:918:ILE:HG12	1.97	0.46
7:J:104:HIS:HA	7:J:243:PRO:HA	1.97	0.46
6:I:473:ARG:O	6:I:477:GLU:HG2	2.16	0.46
6:I:545:PHE:CZ	7:J:788:LEU:HD22	2.51	0.46
7:J:356:THR:HB	7:J:448:GLN:HG2	1.97	0.46
1:A:33:DT:H2"	1:A:34:DC:H5'	1.98	0.46
3:H:115:ILE:HG21	3:H:144:ILE:HG12	1.97	0.46
6:I:270:THR:OG1	6:I:273:HIS:ND1	2.35	0.46
6:I:423:ASP:OD1	6:I:424:ASP:N	2.49	0.46
7:J:66:LYS:HA	7:J:66:LYS:HD3	1.55	0.46
7:J:601:ILE:HD11	7:J:624:ILE:HG21	1.98	0.46
3:H:102:LEU:HD23	3:H:102:LEU:HA	1.80	0.46
6:I:459:MET:SD	6:I:511:LEU:HD13	2.56	0.46
7:J:850:LYS:HB3	7:J:855:ASP:HB2	1.98	0.46
7:J:891:ASP:HB3	7:J:1283:SER:HB2	1.97	0.46
6:I:1070:HIS:ND1	6:I:1114:GLU:OE1	2.47	0.46
6:I:1303:LYS:HD2	6:I:1303:LYS:HA	1.51	0.46
3:G:89:ALA:HB1	3:G:124:VAL:HB	1.99	0.46
3:H:185:TYR:HB2	3:H:201:LEU:HD11	1.98	0.46
6:I:13:LYS:HZ1	6:I:1155:VAL:HG11	1.80	0.46
6:I:356:THR:HG21	6:I:365:GLU:HG3	1.98	0.46
6:I:596:ASP:OD1	6:I:597:GLY:N	2.44	0.46
6:I:1258:PRO:HG2	7:J:346:ARG:C	2.37	0.46
7:J:1198:VAL:HG12	7:J:1199:PHE:O	2.16	0.46
3:G:64:VAL:HG21	3:G:78:ILE:HG13	1.97	0.45
6:I:6:THR:HG23	6:I:781:ASP:OD2	2.17	0.45
6:I:472:GLU:HA	6:I:475:VAL:HG12	1.97	0.45
6:I:636:CYS:HB2	6:I:645:PHE:HD2	1.80	0.45
6:I:935:THR:HG21	6:I:941:LYS:HD2	1.98	0.45
7:J:265:LEU:HD11	7:J:327:LEU:HG	1.97	0.45
7:J:437:PHE:CZ	7:J:453:VAL:HG11	2.52	0.45
3:G:106:GLY:HA2	3:G:136:GLU:HA	1.97	0.45
6:I:425:ILE:O	6:I:429:MET:HG3	2.16	0.45
6:I:615:VAL:HG13	6:I:650:VAL:HA	1.98	0.45
6:I:1225:VAL:HG13	6:I:1227:VAL:HG23	1.98	0.45
2:B:6:DA:H2"	2:B:7:DA:C8	2.51	0.45
6:I:989:LEU:HD22	6:I:997:TRP:CD1	2.46	0.45

	ous page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:I:688:GLN:HB2	6:I:1235:LEU:HD22	1.98	0.45
6:I:772:SER:OG	6:I:773:LEU:N	2.49	0.45
6:I:1002:LEU:HB3	6:I:1008:GLN:HE21	1.81	0.45
6:I:1137:GLU:HG3	6:I:1139:ALA:H	1.80	0.45
7:J:330:MET:O	7:J:336:GLY:HA2	2.16	0.45
7:J:1155:ILE:HG22	7:J:1210:ILE:HD12	1.99	0.45
6:I:590:PRO:HG2	6:I:655:VAL:HG11	1.97	0.45
7:J:549:LYS:HE3	7:J:549:LYS:HB3	1.70	0.45
7:J:52:GLU:HB3	7:J:55:GLY:HA3	1.97	0.45
3:G:56:VAL:HG12	3:G:146:VAL:HG22	1.97	0.45
7:J:141:PHE:HB2	7:J:297:ARG:NE	2.32	0.45
7:J:253:VAL:HG12	7:J:260:PHE:CZ	2.52	0.45
1:A:12:DC:H2"	1:A:13:DC:C6	2.51	0.45
3:H:170:ARG:HB2	3:H:171:LEU:H	1.51	0.45
6:I:15:PHE:CD2	6:I:1190:ALA:HB2	2.52	0.45
6:I:519:ASN:ND2	6:I:689:ALA:HB3	2.32	0.45
6:I:554:HIS:HD2	6:I:558:VAL:HB	1.82	0.45
6:I:1132:LEU:HD23	6:I:1132:LEU:HA	1.83	0.45
6:I:1276:TRP:CD2	7:J:801:VAL:HG11	2.52	0.45
3:G:182:ARG:HB3	3:G:206:GLU:HB3	1.99	0.45
5:R:40:C:H2'	5:R:41:C:H6	1.82	0.45
6:I:1257:GLN:HG2	6:I:1295:SER:HA	1.98	0.45
7:J:137:ARG:HG2	7:J:142:GLU:OE1	2.17	0.45
7:J:1106:ILE:O	7:J:1123:ARG:NH2	2.50	0.45
3:H:105:SER:HA	3:H:110:VAL:HG11	1.98	0.44
6:I:820:GLU:HG2	6:I:1079:ILE:HG22	2.00	0.44
7:J:341:ASN:O	7:J:345:LYS:HG3	2.17	0.44
2:B:17:DC:C2	2:B:18:DG:C8	3.05	0.44
3:G:54:CYS:HB2	3:G:90:VAL:O	2.16	0.44
5:R:46:G:H2'	5:R:47:A:C8	2.52	0.44
6:I:1030:GLU:HG2	6:I:1034:ARG:NE	2.31	0.44
6:I:1122:LYS:HG2	6:I:1229:TYR:CE2	2.52	0.44
7:J:532:GLU:O	7:J:536:LEU:HD23	2.18	0.44
7:J:999:TYR:HE2	7:J:1027:VAL:HG22	1.82	0.44
7:J:1146:GLU:OE2	7:J:1148:ARG:NH2	2.50	0.44
7:J:1160:SER:O	7:J:1179:PRO:HB3	2.17	0.44
7:J:1167:LYS:HE3	7:J:1170:LYS:HB3	1.98	0.44
1:A:36:DG:H1'	1:A:37:DA:C8	2.52	0.44
2:B:17:DC:H5'	6:I:1269:ARG:HD3	1.98	0.44
6:I:348:SER:HA	6:I:351:LEU:HD12	1.99	0.44
6:I:697:LYS:HD2	6:I:1181:PRO:HG3	2.00	0.44

Atom-1	Atom-2	Interatomic	Clash
	C I 1000 TVD HE1	distance (A)	overlap (A)
0:1:801:AKG:HD2	0:1:1229:1 Y K:HE1 7: 1:641:11 E:11012	1.82	0.44
0:1:1113:LEU:HD13	7.1.270 LVG CD	1.99	0.44
7:J:375:GLU:HA	7:J:378:LYS:CD	2.45	0.44
7:J:992:LYS:HA	7:J:992:LYS:HD3	1.82	0.44
7:J:1046:ILE:HB	7:J:1061:VAL:HA	1.99	0.44
1:A:31:DA:H4'	7:J:120:LEU:O	2.17	0.44
6:1:560:PRO:HG2	6:1:561:1LE:HD12	2.00	0.44
6:1:801:ARG:HA	6:1:1229:TYR:CD1	2.52	0.44
6:I:979:LEU:HD12	6:I:979:LEU:HA	1.72	0.44
7:J:984:LEU:N	7:J:993:GLU:O	2.44	0.44
6:I:297:VAL:HB	6:I:317:LEU:HD21	1.98	0.44
7:J:437:PHE:HZ	7:J:453:VAL:HG11	1.83	0.44
7:J:596:LEU:HD23	7:J:596:LEU:HA	1.83	0.44
7:J:835:LEU:O	7:J:839:VAL:HG12	2.16	0.44
7:J:1227:HIS:O	7:J:1231:ARG:HG3	2.16	0.44
6:I:14:ASP:HB3	6:I:1157:GLN:HG3	2.00	0.44
6:I:80:PHE:HB2	6:I:85:CYS:SG	2.58	0.44
6:I:175:ARG:NH1	6:I:185:ASP:OD2	2.50	0.44
6:I:431:LYS:O	6:I:435:ILE:HG12	2.17	0.44
6:I:618:GLN:HG3	6:I:620:ASN:H	1.82	0.44
6:I:988:LYS:HA	6:I:988:LYS:HD3	1.45	0.44
7:J:1094:ASP:OD1	7:J:1095:MET:N	2.50	0.44
6:I:297:VAL:HG12	6:I:315:MET:O	2.17	0.44
7:J:311:ARG:HA	7:J:311:ARG:HD2	1.45	0.44
3:H:136:GLU:H	3:H:136:GLU:HG3	1.43	0.44
4:K:38:LEU:H	4:K:38:LEU:HG	1.58	0.44
7:J:78:LEU:HD12	7:J:79:LYS:H	1.82	0.44
4:K:3:ARG:HH22	7:J:615:LYS:HD2	1.82	0.44
6:I:120:GLN:HE21	6:I:489:PRO:HD2	1.83	0.44
6:I:1117:LEU:HD12	6:I:1195:ILE:HG12	2.00	0.44
7:J:746:LEU:HD23	7:J:758:PRO:HB3	2.00	0.44
7:J:1158:GLU:OE1	7:J:1223:LEU:HD21	2.18	0.44
1:A:27:DA:H4'	1:A:28:DG:OP1	2.18	0.43
1:A:35:DA:H2"	1:A:36:DG:N7	2.32	0.43
2:B:19:DT:H5"	6:I:1262:LYS:HB2	2.00	0.43
3:H:85:LEU:HB3	3:H:145:LYS:HE2	2.00	0.43
6:I:196:VAL:N	6:I:204:LEU:O	2.44	0.43
6:I:951:MET:O	6:I:955:GLN:HG3	2.17	0.43
6:I:996:ARG:HD2	6:I:996:ARG:HA	1.32	0.43
6:I:1286·THR·O	6:I:1290·MET·HG3	2.18	0.43
7:J:357:VAL:HG22	7:J:461:PHE:CE2	2.52	0.43

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:J:845:ALA:HA	7:J:883:ARG:HG3	1.99	0.43
7:J:957:SER:N	7:J:985:ILE:O	2.50	0.43
7:J:1221:LEU:HD13	7:J:1229:VAL:HG11	1.99	0.43
3:G:112:ALA:HB3	3:G:126:PRO:HA	2.00	0.43
6:I:587:LEU:HD23	6:I:587:LEU:HA	1.83	0.43
6:I:1257:GLN:NE2	7:J:348:ASP:CG	2.71	0.43
7:J:24:LEU:HD12	7:J:25:ALA:H	1.83	0.43
7:J:1169:THR:HG22	7:J:1173:ARG:HB2	2.01	0.43
6:I:103:VAL:HG12	6:I:117:ILE:HG22	2.00	0.43
7:J:530:PRO:HB3	7:J:577:ALA:O	2.18	0.43
7:J:749:LYS:HB3	7:J:755:ILE:HD11	2.00	0.43
6:I:303:ASP:OD2	6:I:305:SER:OG	2.35	0.43
6:I:617:ALA:N	6:I:652:TYR:O	2.36	0.43
7:J:1347:LEU:HD12	7:J:1357:ILE:HB	2.01	0.43
3:G:45:ARG:HH12	3:H:37:HIS:HB3	1.84	0.43
3:G:118:ASP:HB2	3:G:121:VAL:HG12	2.00	0.43
3:H:234:LEU:HD13	3:H:234:LEU:HA	1.84	0.43
6:I:39:ILE:HB	6:I:75:LEU:HD11	2.00	0.43
6:I:239:MET:SD	6:I:241:LEU:HB2	2.59	0.43
6:I:264:GLU:HB2	6:I:267:ARG:HG3	2.00	0.43
6:I:500:ALA:O	6:I:504:GLU:HG3	2.19	0.43
6:I:807:TRP:CH2	6:I:1216:ARG:HD2	2.53	0.43
7:J:110:PRO:O	7:J:182:ALA:HB3	2.18	0.43
7:J:1075:ARG:NH1	7:J:1165:PHE:H	2.16	0.43
1:A:29:DA:H2"	1:A:30:DG:C8	2.53	0.43
3:H:47:LEU:H	3:H:47:LEU:HG	1.74	0.43
7:J:375:GLU:HA	7:J:378:LYS:CG	2.49	0.43
7:J:471:PRO:HB3	7:J:476:ALA:HB1	2.01	0.43
7:J:523:GLU:OE1	7:J:547:ARG:N	2.52	0.43
7:J:1227:HIS:HB3	7:J:1231:ARG:NH1	2.33	0.43
7:J:1238:GLN:O	7:J:1242:ARG:N	2.40	0.43
7:J:1348:LYS:O	7:J:1352:ILE:HD12	2.18	0.43
2:B:23:DG:H2'	2:B:24:DT:C6	2.53	0.43
3:G:68:TYR:OH	6:I:1057:LYS:HE3	2.18	0.43
6:I:350:THR:O	6:I:354:ASP:N	2.49	0.43
6:I:1270:PHE:CE1	6:I:1274:GLU:HB3	2.53	0.43
7:J:127:LEU:HD22	7:J:227:PHE:HE2	1.84	0.43
7:J:959:LYS:HD2	7:J:959:LYS:HA	1.84	0.43
3:H:96:ASP:O	3:H:147:GLN:HA	2.19	0.43
6:I:165:HIS:CG	6:I:167:SER:HG	2.36	0.43
6:I:312:ALA:H	6:I:315:MET:HE1	1.83	0.43

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
7:J:740:LEU:O	7:J:762:ASN:HB2	2.19	0.43
6:1:101:ARG:HA	6:1:119:GLU:HA	2.01	0.43
6:I:273:HIS:O	6:I:276:GLN:HG3	2.18	0.43
6:I:1042:LEU:HD23	6:I:1042:LEU:HA	1.85	0.43
7:J:1353:VAL:HG11	7:J:1355:ARG:HE	1.84	0.43
3:H:58:GLU:HG3	3:H:173:VAL:H	1.84	0.43
6:I:777:VAL:HG13	6:I:781:ASP:HB3	2.00	0.43
6:I:1252:SER:OG	6:I:1253:LEU:N	2.52	0.43
7:J:66:LYS:HB3	7:J:69:GLU:HG3	2.01	0.43
7:J:155:GLU:OE2	7:J:158:GLN:HB2	2.17	0.43
7:J:414:GLU:HG2	7:J:417:ARG:HH21	1.84	0.43
7:J:441:LEU:HD23	7:J:441:LEU:HA	1.81	0.43
7:J:832:LYS:HG2	7:J:1242:ARG:HD2	2.00	0.43
4:K:22:VAL:HG23	4:K:64:LEU:HD12	2.01	0.42
6:I:850:ILE:HD12	6:I:850:ILE:HA	1.86	0.42
6:I:1225:VAL:HG23	7:J:638:SER:HB2	2.01	0.42
7:J:375:GLU:HG2	7:J:378:LYS:NZ	2.34	0.42
7:J:547:ARG:HA	7:J:573:THR:HA	2.01	0.42
6:I:150:HIS:CG	6:I:454:ARG:HH21	2.37	0.42
7:J:450:HIS:O	7:J:453:VAL:HG12	2.19	0.42
6:I:765:ILE:HD13	6:I:787:PRO:HG3	2.01	0.42
7:J:1218:HIS:ND1	7:J:1306:LEU:HB3	2.34	0.42
6:I:74:ARG:NH2	6:I:97:ARG:HG3	2.34	0.42
6:I:233:ARG:HH21	6:I:331:LYS:HD3	1.85	0.42
6:I:957:LYS:HG3	6:I:1029:LEU:HD11	2.01	0.42
7:J:785:ASP:OD2	7:J:789:LYS:HE3	2.19	0.42
2:B:27:DG:H2"	2:B:28:DG:OP1	2.19	0.42
3:G:95:LYS:NZ	3:G:120:ASP:OD2	2.30	0.42
3:H:82:LEU:HD13	3:H:173:VAL:HG22	2.02	0.42
3:H:95:LYS:H	3:H:95:LYS:HG3	1.62	0.42
3:H:104:LYS:HB2	3:H:104:LYS:HE2	1.95	0.42
6:I:102:LEU:HB3	6:I:118:LYS:HB2	2.01	0.42
6:I:513:GLN:OE1	6:I:529:ARG:NH2	2.53	0.42
6:I:643:SER:OG	7:J:756:GLU:OE2	2.38	0.42
7:J:30:ILE:HG12	7:J:243:PRO:HG3	2.02	0.42
7:J:67:ASP:HB2	7:J:95:THR:H	1.84	0.42
6:I:295:LYS:HB2	6:I:317:LEU:HD12	2.00	0.42
6:I:591:TYR:CD2	6:I:606:LEU:HD12	2.54	0.42
6:I:618:GLN:HG2	7:J:768:ASN:HD21	1.84	0.42
6:I:978:VAL:HB	6:I:1011:LEU:HD11	2.01	0.42
7:J:582:ILE:HG23	7:J:623:GLN:HB3	2.01	0.42

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
7:J:706:VAL:HG22	7:J:715:LYS:HD3	2.01	0.42
6:1:225:PHE:HZ	6:1:345:PRO:HA	1.84	0.42
6:1:1101:LEU:O	6:1:1104:PRO:HD2	2.19	0.42
7:J:1064:SER:OG	7:J:1067:ARG:NH2	2.52	0.42
7:J:1109:LEU:HD23	7:J:1113:VAL:HG12	2.01	0.42
3:H:81:ILE:HG12	3:H:131:CYS:HB2	2.02	0.42
6:I:229:ILE:HD13	6:I:334:GLU:OE2	2.20	0.42
7:J:165:TYR:CZ	7:J:169:LEU:HD11	2.54	0.42
7:J:449:LEU:HB2	7:J:466:MET:HE1	2.02	0.42
7:J:502:PRO:HB3	7:J:506:VAL:HG11	2.00	0.42
7:J:888:CYS:HB3	7:J:898:CYS:SG	2.60	0.42
7:J:976:THR:HG23	7:J:999:TYR:HE1	1.85	0.42
6:I:225:PHE:CZ	6:I:345:PRO:HA	2.54	0.42
7:J:544:LEU:O	7:J:575:GLY:N	2.49	0.42
6:I:6:THR:HG21	6:I:782:VAL:HG22	2.02	0.42
6:I:465:ARG:O	6:I:469:VAL:HG13	2.20	0.42
6:I:1028:LYS:HB3	6:I:1028:LYS:HE2	1.39	0.42
6:I:1127:LYS:HD2	6:I:1202:GLY:HA2	2.02	0.42
6:I:1192:GLU:OE1	7:J:764:ARG:NH1	2.52	0.42
7:J:425:ARG:HD3	7:J:427:PRO:HD2	2.01	0.42
7:J:530:PRO:HG2	7:J:580:TRP:HD1	1.85	0.42
7:J:931:THR:H	7:J:1244:GLN:NE2	2.18	0.42
7:J:1364:ALA:O	7:J:1367:GLN:HG3	2.19	0.42
4:K:3:ARG:HD2	4:K:3:ARG:HA	1.28	0.41
6:I:138:ILE:HD13	6:I:506:PHE:HB3	2.01	0.41
6:I:668:ILE:HB	6:I:671:LEU:HD12	2.01	0.41
6:I:686:GLN:HE21	6:I:1069:ARG:HG2	1.85	0.41
6:I:870:ILE:HD12	6:I:1050:VAL:HG11	2.01	0.41
7:J:495:ASN:OD1	7:J:497:GLU:HB2	2.20	0.41
6:I:545:PHE:CE2	7:J:788:LEU:HD22	2.56	0.41
6:I:1196:LYS:HD3	6:I:1206:THR:O	2.20	0.41
7:J:72:CYS:H	7:J:88:CYS:HB3	1.85	0.41
7:J:375:GLU:CA	7:J:378:LYS:HG3	2.50	0.41
7:J:923:ILE:HD12	7:J:1256:ILE:HG13	2.02	0.41
7:J:974:VAL:HA	7:J:1001:ALA:O	2.21	0.41
3:G:53:GLY:HA3	3:G:177:TYR:O	2.20	0.41
3:G:133:LEU:HA	3:G:133:LEU:HD23	1.79	0.41
3:H:55:ALA:HA	3:H:145:LYS:HB3	2.02	0.41
3:H:91:ARG:HE	3:H:91:ARG:HB2	1.54	0.41
6:I:447:HIS:HA	6:I:551:HIS:ND1	2.34	0.41
6:I:1022:LYS:HD2	6:I:1022:LYS:HA	1.58	0.41

Atom-1	Atom-2	Interatomic	Clash
7. J.1/2.SED.HB2	7. I.150.II F.HD11		0.41
7.J.145.5ER.11D2	7.J.858.VAL.HC23	2.03	0.41
7.J.1226.CLU.O	7.J.1940.VAL.HC23	2.01	0.41
2.C.110.VAL.HC22	2.C.120.II F.HR	2.20	0.41
3.G.110.VAL.IIG23	3.G.130.ILE.IID 3.H.917.II F.HD19	2.03	0.41
5.11.214.GLU.ПА 6.1.07. A D.C. Ц А	6.I.07. A DC.UD2	2.03	0.41
0:1:97:АКС:ПА 6.1.165.ШС.СЕ1	0:1:97:АКG:ПD5 6.1.167.СЕР.ЦС	1.70	0.41
0:1:100:115:0E1	0:1:107:5ER:HG	2.50	0.41
<u>(:J:11)4:ALA:ПБ1</u> <u>2.Ц.47.LEU.CD1</u>	7:J:1209:VAL:HG23	2.03	0.41
3:H:47:LEU:CDI	3:H:183:ILE:HG21	2.51	0.41
0:1:38:PHE:HD1	6:1:461:GLU:HG3	1.85	0.41
6:1:881:ASP:0	6:1:920:VAL:HG23	2.20	0.41
6:1:1244:HIS:NE2	6:1:1266:GLY:O	2.53	0.41
7:J:786:THR:HA	7:J:789:LYS:HD2	2.02	0.41
7:J:804:ALA:HA	7:J:1259:GLN:HG3	2.02	0.41
7:J:824:PRO:HD3	7:J:835:LEU:HD13	2.03	0.41
7:J:966:VAL:HB	7:J:1028:ILE:HD12	2.02	0.41
2:B:19:DT:OP1	6:I:1262:LYS:N	2.54	0.41
3:G:48:LEU:HG	3:G:183:ILE:HD12	2.02	0.41
3:H:21:SER:O	3:H:213:PRO:HD3	2.21	0.41
3:H:23:HIS:CE1	3:H:204:GLU:HB3	2.54	0.41
1:A:26:DA:H4'	1:A:27:DA:OP1	2.20	0.41
3:H:43:LEU:O	3:H:47:LEU:HG	2.21	0.41
3:H:61:ILE:HG12	3:H:64:VAL:HG23	2.03	0.41
6:I:521:LEU:HD23	6:I:686:GLN:HB3	2.03	0.41
6:I:759:SER:OG	6:I:765:ILE:HG12	2.20	0.41
6:I:960:LEU:HD13	6:I:1029:LEU:HA	2.02	0.41
6:I:1185:PRO:HD2	6:I:1189:GLY:HA2	2.03	0.41
6:I:1267:GLY:O	7:J:346:ARG:NH1	2.54	0.41
6:I:1283:ALA:HB1	6:I:1286:THR:OG1	2.20	0.41
7:J:492:SER:HB3	7:J:499:ILE:HD13	2.02	0.41
7:J:516:ASP:OD1	7:J:516:ASP:N	2.54	0.41
7:J:644:MET:HE2	7:J:764:ARG:HB2	2.02	0.41
7:J:1037:PHE:CZ	7:J:1059:LEU:HD13	2.55	0.41
7:J:1048:ARG:CA	7:J:1059:LEU:HD23	2.51	0.41
7:J:1266:ILE:HA	7:J:1302:TYR:HA	2.02	0.41
7:J:1282:TYR:HA	7:J:1285:VAL:HG12	2.03	0.41
6:I:272·ARG·HH21	6:I:276·GLN·N	2.18	0.41
6·I·704·MET·O	6.I.708.VAL.HG23	2.20	0.41
6.I.718.ALA.N	6·I·781·ASP·O	2.53	0.41
6.I.870.II.E.HR	6.1.944.ARC.HC2	2.00	0.11
7. J. 38. VAL. HC11	7. I.56. I.F.II.H A	2.00	0.41
1.0.00. (AD.11011	$1.0.00.110.11\Lambda$	2.02	0.41

	the officer of the second s	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:J:480:ALA:HA	7:J:484:MET:HG2	2.02	0.41
7:J:499:ILE:HD12	7:J:499:ILE:HA	1.96	0.41
7:J:580:TRP:CE3	7:J:589:TYR:HD1	2.38	0.41
7:J:849:LEU:HD23	7:J:849:LEU:H	1.86	0.41
7:J:952:VAL:HG13	7:J:1014:GLY:H	1.86	0.41
3:G:88:LEU:HG	3:G:90:VAL:HG23	2.01	0.41
3:H:46:ILE:HG13	3:H:224:LEU:HD13	2.02	0.41
3:H:83:LEU:HB3	7:J:551:ARG:HH21	1.86	0.41
6:I:18:ARG:NE	6:I:620:ASN:HA	2.36	0.41
6:I:68:LEU:HD13	6:I:102:LEU:HB2	2.03	0.41
6:I:550:VAL:HG13	7:J:777:HIS:ND1	2.35	0.41
7:J:127:LEU:HD23	7:J:189:LEU:HD22	2.03	0.41
7:J:211:GLU:HA	7:J:214:ARG:HB2	2.03	0.41
7:J:544:LEU:HD11	7:J:631:TYR:CD1	2.52	0.41
7:J:1099:TYR:HB3	7:J:1199:PHE:CZ	2.55	0.41
6:I:324:LYS:O	6:I:327:GLN:NE2	2.54	0.41
6:I:538:LEU:HD22	6:I:547:VAL:HG11	2.01	0.41
6:I:699:LEU:HD12	6:I:699:LEU:HA	1.81	0.41
6:I:1329:GLU:OE2	7:J:330:MET:HB2	2.21	0.41
7:J:1306:LEU:HD12	7:J:1306:LEU:HA	1.89	0.41
6:I:191:LYS:HE2	6:I:191:LYS:HB2	1.96	0.40
6:I:241:LEU:HB3	6:I:285:ILE:HD12	2.03	0.40
6:I:667:LEU:HD23	6:I:667:LEU:HA	1.85	0.40
6:I:1339:LEU:HD23	7:J:17:PHE:CG	2.57	0.40
7:J:120:LEU:HB2	7:J:121:PRO:HD3	2.03	0.40
7:J:450:HIS:CE1	7:J:452:LEU:HB2	2.56	0.40
7:J:1311:LYS:HA	7:J:1311:LYS:HD3	1.91	0.40
3:H:83:LEU:HD12	3:H:83:LEU:HA	1.75	0.40
6:I:178:PRO:HA	6:I:397:LEU:HD23	2.02	0.40
6:I:551:HIS:H	6:I:554:HIS:CE1	2.40	0.40
6:I:560:PRO:HB2	7:J:776:THR:CG2	2.46	0.40
6:I:702:THR:HA	6:I:1184:THR:O	2.22	0.40
6:I:976:ARG:HH12	6:I:989:LEU:HB2	1.86	0.40
2:B:4:DT:H2"	2:B:5:DG:O4'	2.21	0.40
4:K:59:ILE:HD13	4:K:59:ILE:HA	1.74	0.40
6:I:473:ARG:O	6:I:476:LYS:HG2	2.22	0.40
6:I:1086:PRO:HB2	6:I:1212:LEU:HD21	2.04	0.40
7:J:103:GLY:C	7:J:244:VAL:HG12	2.41	0.40
7:J:153:ASN:OD1	7:J:154:LEU:N	2.55	0.40
7:J:355:ILE:HG22	7:J:461:PHE:HE1	1.87	0.40
7:J:563:LEU:HA	7:J:563:LEU:HD23	1.84	0.40

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:J:641:ILE:HD13	7:J:641:ILE:HA	1.89	0.40
7:J:1172:LYS:HZ1	7:J:1191:PRO:HG3	1.86	0.40
7:J:1195:GLN:NE2	7:J:1196:LEU:O	2.55	0.40
6:I:227:LYS:HD2	6:I:334:GLU:HB3	2.04	0.40
7:J:384:LYS:HG3	7:J:415:VAL:HG12	2.03	0.40
7:J:770:LEU:HA	7:J:770:LEU:HD23	1.88	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	G	217/235~(92%)	212 (98%)	5 (2%)	0	100	100
3	Н	215/235~(92%)	204 (95%)	9 (4%)	2(1%)	17	54
4	K	77/79~(98%)	75~(97%)	2(3%)	0	100	100
6	Ι	1312/1340 (98%)	1271 (97%)	40 (3%)	1 (0%)	51	83
7	J	1331/1358~(98%)	1293 (97%)	37 (3%)	1 (0%)	51	83
All	All	3152/3247~(97%)	3055 (97%)	93 (3%)	4 (0%)	54	83

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	Н	30	PRO
3	Н	90	VAL
6	Ι	58	PRO
7	J	427	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
3	G	189/202~(94%)	188 (100%)	1 (0%)	88 94
3	Н	188/202~(93%)	102 (54%)	86 (46%)	0 0
4	Κ	67/67~(100%)	43~(64%)	24 (36%)	0 1
6	Ι	1135/1155~(98%)	1084 (96%)	51 (4%)	27 57
7	J	1122/1134~(99%)	1062~(95%)	60~(5%)	22 54
All	All	2701/2760~(98%)	2479 (92%)	222 (8%)	15 40

All (222) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
3	G	150	ARG
3	Н	6	THR
3	Н	9	LEU
3	Н	10	LYS
3	Н	13	LEU
3	Н	14	VAL
3	Н	16	ILE
3	Н	18	GLN
3	Н	19	VAL
3	Н	20	SER
3	Н	26	VAL
3	Н	27	THR
3	Н	28	LEU
3	Н	31	LEU
3	Н	33	ARG
3	Н	37	HIS
3	Н	43	LEU
3	Н	45	ARG
3	Н	47	LEU
3	Н	48	LEU
3	Н	50	SER
3	Н	51	MET
3	Н	54	CYS

Mol	Chain	Res	Type
3	Н	59	VAL
3	Н	60	GLU
3	Н	62	ASP
3	Н	64	VAL
3	Н	65	LEU
3	Н	67	GLU
3	Н	71	LYS
3	Н	72	GLU
3	Н	74	VAL
3	Н	75	GLN
3	Н	79	LEU
3	Н	80	GLU
3	Н	83	LEU
3	Н	91	ARG
3	Н	95	LYS
3	Н	96	ASP
3	Н	98	VAL
3	Н	99	ILE
3	Н	100	LEU
3	Н	101	THR
3	Н	103	ASN
3	Н	104	LYS
3	Н	110	VAL
3	Н	114	ASP
3	Н	116	THR
3	Н	117	HIS
3	Н	120	ASP
3	Н	122	GLU
3	Н	127	GLN
3	Н	129	VAL
3	Н	131	CYS
3	Н	133	LEU
3	Н	134	THR
3	Н	136	GLU
3	Н	137	ASN
3	Н	142	MET
3	Н	144	ILE
3	Н	145	LYS
3	Н	146	VAL
3	Н	158	ARG
3	Н	170	ARG
3	Н	171	LEU

Mol	Chain	Res	Type
3	Н	172	LEU
3	Н	174	ASP
3	Н	180	VAL
3	Н	183	ILE
3	Н	187	VAL
3	Н	188	GLU
3	Н	191	ARG
3	Н	192	VAL
3	Н	194	GLN
3	Н	195	ARG
3	Н	196	THR
3	Н	197	ASP
3	Н	202	VAL
3	Η	203	ILE
3	Н	205	MET
3	Н	207	THR
3	Н	211	ILE
3	Н	219	ARG
3	Н	229	GLU
3	Н	231	PHE
3	Н	233	ASP
3	Н	234	LEU
4	Κ	3	ARG
4	Κ	5	THR
4	K	10	VAL
4	Κ	19	LEU
4	Κ	28	ARG
4	Κ	30	MET
4	K	35	LYS
4	K	38	LEU
4	K	42	GLU
4	K	45	LYS
4	K	47	THR
4	K	48	VAL
4	K	52	ARG
4	K	56	GLU
4	K	59	ILE
4	K	60	ASN
4	K	61	ASN
4	K	67	ARG
4	K	68	GLU
4	K	69	ARG

Mol	Chain	Res	Type
4	K	70	GLN
4	K	71	GLU
4	K	72	GLN
4	К	80	LEU
6	Ι	59	ILE
6	Ι	563	THR
6	Ι	568	ASN
6	Ι	572	ILE
6	Ι	734	ILE
6	Ι	739	ASP
6	Ι	740	GLU
6	Ι	748	ILE
6	Ι	843	THR
6	Ι	845	LEU
6	Ι	935	THR
6	Ι	941	LYS
6	Ι	950	GLU
6	Ι	953	LEU
6	Ι	960	LEU
6	Ι	964	LEU
6	Ι	967	LEU
6	Ι	974	ARG
6	Ι	975	ILE
6	Ι	978	VAL
6	Ι	979	LEU
6	Ι	980	VAL
6	Ι	987	GLU
6	Ι	988	LYS
6	Ι	992	LEU
6	Ι	994	ARG
6	Ι	995	ASP
6	Ι	996	ARG
6	Ι	997	TRP
6	Ι	998	LEU
6	Ι	1000	LEU
6	Ι	1005	GLU
6	Ι	1006	GLU
6	Ι	1007	LYS
6	I	1009	ASN
6	Ι	1013	GLN
6	Ι	1019	ASP
6	Ι	1021	LEU

Mol	Chain	Res	Type
6	Ι	1022	LYS
6	Ι	1026	GLU
6	Ι	1027	LYS
6	Ι	1028	LYS
6	Ι	1029	LEU
6	Ι	1030	GLU
6	Ι	1032	LYS
6	Ι	1035	LYS
6	Ι	1046	VAL
6	Ι	1047	LEU
6	Ι	1299	ASN
6	Ι	1302	THR
6	Ι	1303	LYS
7	J	32	SER
7	J	39	LYS
7	J	40	LYS
7	J	42	GLU
7	J	45	ASN
7	J	47	ARG
7	J	48	THR
7	J	50	LYS
7	J	53	ARG
7	J	54	ASP
7	J	56	LEU
7	J	66	LYS
7	J	67	ASP
7	J	78	LEU
7	J	79	LYS
7	J	87	LYS
7	J	90	VAL
7	J	92	VAL
7	J	93	THR
7	J	94	GLN
7	J	96	LYS
7	J	97	VAL
7	J	250	ARG
7	J	309	ASN
7	J	311	ARG
7	J	314	ARG
7	J	320	ASN
7	J	321	LYS
7	J	322	ARG

Mol	Chain	Res	Type
7	J	324	LEU
7	J	325	LYS
7	J	326	SER
7	J	327	LEU
7	J	329	ASP
7	J	330	MET
7	J	332	LYS
7	J	338	PHE
7	J	372	MET
7	J	374	LEU
7	J	394	ILE
7	J	398	LYS
7	J	399	LYS
7	J	401	VAL
7	J	403	ARG
7	J	405	GLU
7	J	407	VAL
7	J	414	GLU
7	J	416	ILE
7	J	425	ARG
7	J	428	THR
7	J	430	HIS
7	J	431	ARG
7	J	435	GLN
7	J	702	GLN
7	J	706	VAL
7	J	709	ARG
7	J	714	GLU
7	J	716	GLN
7	J	1045	THR
7	J	1046	ILE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (12) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
3	Н	23	HIS
3	Н	41	ASN
3	Н	84	ASN
4	Κ	61	ASN
6	Ι	120	GLN
6	Ι	618	GLN
6	Ι	620	ASN

Continued from previous page...

Mol	Chain	Res	Type
6	Ι	1268	GLN
7	J	229	GLN
7	J	424	ASN
7	J	465	GLN
7	J	1114	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
5	R	47/47~(100%)	27~(57%)	2(4%)

All (27) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
5	R	2	С
5	R	3	А
5	R	8	U
5	R	9	U
5	R	10	С
5	R	13	G
5	R	14	С
5	R	15	U
5	R	16	А
5	R	17	С
5	R	18	А
5	R	25	А
5	R	26	U
5	R	27	А
5	R	28	А
5	R	30	А
5	R	31	А
5	R	32	А
5	R	33	С
5	R	34	U
5	R	35	А
5	R	36	А
5	R	37	G
5	R	38	G
5	R	39	А
5	R	42	А
5	R	47	А

All (2) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
5	R	1	G
5	R	15	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 2 ligands modelled in this entry, 1 is monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dec	Tink	Bo	ond leng	ths	E	Bond ang	gles
	туре	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
8	PRF	R	101	-	13,14,14	0.87	1 (7%)	9,20,20	1.43	2 (22%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	\mathbf{PRF}	R	101	-	-	0/0/2/2	0/2/2/2

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
8	R	101	PRF	C5-C6	-2.18	1.42	1.47

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	R	101	PRF	C5-C6-N1	-2.66	113.10	115.36
8	R	101	PRF	C10-C7-C8	2.62	132.25	126.96

All (2) bond angle outliers are listed below:

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-29732. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 150

Z Index: 150

6.2.2 Raw map

X Index: 150

Y Index: 150

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

Z Index: 165

6.3.2 Raw map

X Index: 146

Y Index: 147

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.4. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 84 nm^3 ; this corresponds to an approximate mass of 76 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.263 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.263 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estim	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	3.80	-	-		
Author-provided FSC curve	3.72	4.19	3.77		
Unmasked-calculated*	5.91	7.87	6.41		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 5.91 differs from the reported value 3.8 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-29732 and PDB model 8G4W. Per-residue inclusion information can be found in section 3 on page 7.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.4 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.4).

9.4 Atom inclusion (i)

At the recommended contour level, 62% of all backbone atoms, 40% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.4) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.4020	0.3380
А	0.4200	0.2700
В	0.4470	0.2870
G	0.5080	0.4040
Н	0.3990	0.3080
Ι	0.4160	0.3580
J	0.3970	0.3410
K	0.3630	0.3290
R	0.1210	0.1030

