

Oct 7, 2024 – 08:05 AM EDT

PDB ID	:	8FAE
EMDB ID	:	EMD-28954
Title	:	Asymmetric structure of cleaved HIV-1 AE2 envelope glycoprotein trimer in
		styrene-maleic acid lipid nanoparticles (AE2.1)
Authors	:	Wang, K.; Zhang, S.; Sodroski, J.; Mao, Y.
Deposited on	:	2022-11-26
Resolution	:	3.80 Å(reported)
This is	s a l	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} Whole \ { m archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain						
1	В	146	8%	10% •					
1	D	146	93%	• •					
1	F	146	90%	8% ••					
2	А	472	93%	6% •					
2	С	472	93%	6% •					
2	Е	472	94%	• •					
3	0	3	33% 33% 67%						
3	1	3	67%						
3	2	3	67% 33% 67%						

Conti	nued fron	$i \ previous$	page	
Mol	Chain	Length	Quality of chain	
			67%	
3	4	3	67%	33%
			67%	
3	6	3	67%	33%
_	_		100%	
3	8	3	100%	
			67%	
3	CA	3	67%	33%
	a		67%	
3	G	3	100%	
2	тл	2	6/%	
3	IA	3	100%	
3	т	3	07 /8	
	J		67%	
3	ΤA	3	1000/	
0	571		67%	
3	K	3	100%	
			67%	
3	L	3	67%	33%
			33%	0070
3	М	3	67%	33%
		_	33%	
3	Р	3	100%	
			67%	
3	Q	3	67%	33%
			100%	
3	R	3	67%	33%
			67%	
3	V	3	67%	33%
	,		67%	
3	b	3	100%	
	1		67%	
3	d	3	67%	33%
2	1.	2	6/%	
3	Π	3	67%/	
3	;	3	07/0	000/
	1		67%	33%
3	i	3	330/ 670/	
	J	0	67%	
3	n	3	100%	
			67%	
3	р	3	100%	
<u> </u>	г		33%	
3	r	3	67%	33%
-		-	67%	
3	s	3	100%	
			67%	
3	t	3	100%	
L	1		0 1	: 1 ;

Mol	Chain	Length	Quality of chain						
3	v	3	67%	200/					
0	л	0	07%	100%					
4	Η	3		100%					
	т	0		100%					
4	1	3		100%					
4	LA	3		100%					
				100%					
4	NA	3	67%	33%					
4	\cap	2		100%					
4	0	3		100%					
4	f	3	33%	67%					
				100%					
4	g	3	33%	67%					
4	m	3	33%	67%					
			0070	100%					
5	5	2	50%	50%					
F	7	0	50%						
0	1	Δ		100%					
5	FA	2		100%					
				100%					
5	MA	2	50%	50%					
5	Ν	2	50%	50%					
			50%	50 / 1					
5	U	2		100%					
L.	7	0	50%						
G	L	2	50%	100%					
5	с	2		100%					
				100%					
5	1	2	50%	50%					
6	S	6	67%	73%					
0	0	0	60%	00 /0					
7	Т	5	40%	60%					
0	тта	F	80%						
8	НА	G	<u> </u>	20%					
8	W	5	40%	60%					
			60%						
8	k	5	80%	20%					
a	ΕΔ	7	43%	960/					
3		1	43%	00 %					
9	Х	7	14%	86%					

Mol	Chain	Length	Quality of chain							
			57%							
9	V	7	14%	86%						
10	3.7	2	100%							
10	Y	2	100%							
11	_	4	/5%							
	a	4	50%	50%						
11	11	1	3078							
11	u	-1	75%							
11	v	4	75%	25%						
	J		75%							
12	KA	4	75%	25%						
			75%							
12	е	4	75%	25%						
10			100%							
12	Z	4	50%	50%						
12	0	4	/5%							
10	0	4	62%	/5%						
14	OA	8	38%	62%						
	011	Ű	50%	0278						
15	3	4	50%	50%						
			75%							
15	AA	4	25%	75%						
			25%							
15	DA	4	50%	50%						
15	C A	4	50%							
15	GA	4	50%	50%						
15	337	4	50 %							
10	vv	±	43%							
16	9	7	43%	57%						
			67%							
17	BA	3	67%	33%						

2 Entry composition (i)

There are 19 unique types of molecules in this entry. The entry contains 17693 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	В	145	Total 1157	C 737	N 196	0 218	S 6	0	0
1	D	142	Total 1132	C 722	N 193	0 211	S 6	0	0
1	F	143	Total 1143	C 731	N 194	0 212	S 6	0	0

• Molecule 1 is a protein called Envelope glycoprotein gp41.

Chain	Residue	Modelled	Actual	Comment	Reference
В	557	LYS	ARG	conflict	UNP O40222
В	567	LYS	GLN	engineered mutation	UNP O40222
В	582	THR	ALA	engineered mutation	UNP O40222
В	633	LYS	ARG	conflict	UNP O40222
В	658	LYS	GLN	conflict	UNP O40222
D	557	LYS	ARG	conflict	UNP O40222
D	567	LYS	GLN	engineered mutation	UNP O40222
D	582	THR	ALA	engineered mutation	UNP O40222
D	633	LYS	ARG	conflict	UNP O40222
D	658	LYS	GLN	conflict	UNP O40222
F	557	LYS	ARG	conflict	UNP O40222
F	567	LYS	GLN	engineered mutation	UNP O40222
F	582	THR	ALA	engineered mutation	UNP O40222
F	633	LYS	ARG	conflict	UNP O40222
F	658	LYS	GLN	conflict	UNP O40222

There are 15 discrepancies between the modelled and reference sequences:

• Molecule 2 is a protein called Envelope glycoprotein gp120.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	С	467	Total 3675	C 2306	N 641	0 702	S 26	0	0
2	Е	467	Total 3675	C 2306	N 641	O 702	S 26	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
2	А	468	Total 3684	C 2311	N 642	O 705	S 26	0	0

There are 21 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	33	LYS	ASN	conflict	UNP O40222
С	114	GLU	GLN	engineered mutation	UNP O40222
С	166	LYS	ARG	conflict	UNP O40222
С	178	LYS	ARG	conflict	UNP O40222
С	252	LYS	ARG	conflict	UNP O40222
С	315	LYS	ARG	conflict	UNP O40222
С	419	LYS	ARG	conflict	UNP O40222
Е	33	LYS	ASN	conflict	UNP O40222
Е	114	GLU	GLN	engineered mutation	UNP O40222
Е	166	LYS	ARG	conflict	UNP O40222
Е	178	LYS	ARG	conflict	UNP O40222
Е	252	LYS	ARG	conflict	UNP O40222
Е	315	LYS	ARG	conflict	UNP O40222
Е	419	LYS	ARG	conflict	UNP O40222
А	33	LYS	ASN	conflict	UNP O40222
А	114	GLU	GLN	engineered mutation	UNP O40222
А	166	LYS	ARG	conflict	UNP O40222
А	178	LYS	ARG	conflict	UNP O40222
А	252	LYS	ARG	conflict	UNP O40222
А	315	LYS	ARG	conflict	UNP O40222
А	419	LYS	ARG	conflict	UNP O40222

• Molecule 3 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
3	G	3	Total C N O 39 22 2 15	0	0
3	J	3	Total C N O 39 22 2 15	0	0
3	K	3	Total C N O 39 22 2 15	0	0

Continued from previous page...

Mol	Chain	Residues	I	Aton	ns		AltConf	Trace
2	т	9	Total	С	Ν	0	0	0
3	L	3	39	22	2	15	0	0
	м	2	Total	С	Ν	0	0	0
3	IVI	3	39	22	2	15	0	0
2	п	2	Total	С	Ν	0	0	0
3	Р	3	39	22	2	15	0	0
2	0	ე	Total	С	Ν	0	0	0
3	Q	3	39	22	2	15	0	0
2	р	ე	Total	С	Ν	0	0	0
3	ĸ	3	39	22	2	15	0	0
2	V	ე	Total	С	Ν	0	0	0
3	V	9	39	22	2	15	0	0
2	h	ე	Total	С	Ν	0	0	0
3	D	9	39	22	2	15	0	0
2	d	9	Total	С	Ν	0	0	0
0	u	ა	39	22	2	15	0	0
2	h	2	Total	С	Ν	0	0	0
5	11	5	39	22	2	15	0	0
2	;	2	Total	С	Ν	0	0	0
5	1	5	39	22	2	15	0	0
3	i	3	Total	С	Ν	0	0	0
5	J	5	39	22	2	15	0	0
3	n	3	Total	С	Ν	Ο	0	0
0	11	5	39	22	2	15	0	0
3	n	3	Total	С	Ν	Ο	0	0
5	Р	5	39	22	2	15	0	0
3	r	3	Total	С	Ν	Ο	0	0
0	1	0	39	22	2	15	0	0
3	S	3	Total	\mathbf{C}	Ν	Ο	0	0
	6	0	39	22	2	15	0	0
3	t	3	Total	\mathbf{C}	Ν	Ο	0	0
		0	39	22	2	15	0	0
3	v	3	Total	С	Ν	Ο	0	0
	A	0	39	22	2	15	0	0
3	0	3	Total	С	Ν	Ο	0	0
		,	39	22	2	15		
3	1	3	Total	С	Ν	Ο	0	0
	÷	``	39	22	2	15		, , , , , , , , , , , , , , , , , , ,
3	2	3	Total	С	Ν	Ο	0	0
		5	39	22	2	15		
3	4	3	Total	С	Ν	Ο	0	0
	L 1		39	22	2	15		

Mol	Chain	Residues	Atoms	AltConf	Trace
3	6	3	Total C N O	0	0
5	0	5	39 22 2 15	0	0
3	8	3	Total C N O	0	0
5	0	5	39 22 2 15	0	0
3	$C\Lambda$	3	Total C N O	0	0
5	UA	5	39 22 2 15	0	0
3	TΔ	3	Total C N O	0	0
5	111	5	39 22 2 15	0	0
3	TΔ	3	Total C N O	0	0
5	JA	5	39 22 2 15	0	

• Molecule 4 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[al pha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	A	Aton	ns		AltConf	Trace
4	ц	2	Total	С	Ν	0	0	0
4	11	5	38	22	2	14	0	0
4	т	I 3	Total	С	Ν	0	0	0
4	1		38	22	2	14	0	0
4	0	9	Total	С	Ν	0	0	0
4	0	0	38	22	2	14	0	0
4	t	9	Total	С	Ν	0	0	0
4	4 I	5	38	22	2	14	0	0
4	C.	3	Total	С	Ν	0	0	0
4	g		38	22	2	14		
4		9	Total	С	Ν	0	0	0
4	111	0	38	22	2	14	0	0
4	ТА	9	Total	С	Ν	0	0	0
4	LA	3	38	22	2	14	U	0
4		2	Total	С	Ν	0	0	0
4	INA	Э	38	22	2	14	U	U

• Molecule 5 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	A	Aton	ns		AltConf	Trace
5	Ν	9	Total	С	Ν	0	0	0
0	11	2	28	16	2	10	0	0
5	II	9	Total	С	Ν	Ο	0	0
0	U	Z	28	16	2	10	0	0
5	Z	2	Total	С	Ν	Ο	0	0
0			28	16	2	10	0	0
5	C	2	Total	С	Ν	Ο	0	0
0	C		28	16	2	10	0	0
5	1	2	Total	\mathbf{C}	Ν	Ο	0	0
	1		28	16	2	10	0	0
5	5	2	Total	\mathbf{C}	Ν	Ο	0	0
0	0		28	16	2	10	0	0
5	7	2	Total	С	Ν	Ο	0	0
	'		28	16	2	10	0	0
5	FA	2	Total	С	Ν	Ο	0	0
	111		28	16	2	10	0	0
5	MA	2	Total	\mathbf{C}	Ν	Ο	0	0
	11111		28	16	2	10		

• Molecule 6 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
6	S	6	Total 72	C 40	N 2	O 30	0	0

• Molecule 7 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
7	Т	5	Total 61	С 34	N 2	O 25	0	0

• Molecule 8 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
8	W	5	Total C N O 61 34 2 25	0	0
8	k	5	Total C N O 61 34 2 25	0	0
8	НА	5	Total C N O 61 34 2 25	0	0

• Molecule 9 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-[alpha-D-mannopyranose-(1-6)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyran ose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms				AltConf	Trace
9	Х	7	Total 83	C 46	N 2	O 35	0	0
9	V	7	Total 83	C 46	N 2	O 35	0	0
9	EA	7	Total 83	C 46	N 2	O 35	0	0

• Molecule 10 is an oligosaccharide called alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-be ta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
10	Y	2	Total 24	C 14	N 1	O 9	0	0

• Molecule 11 is an oligosaccharide called alpha-D-mannopyranose-(1-6)-beta-D-mannopyran ose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glu copyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
11	a	4	Total C N O 50 28 2 20	0	0
11	u	4	Total C N O 50 28 2 20	0	0
11	У	4	Total C N O 50 28 2 20	0	0

• Molecule 12 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxybeta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucop yranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
12	е	4	Total C N O 49 28 2 19	0	0
12	Z	4	Total C N O 49 28 2 19	0	0
12	KA	4	Total C N O 49 28 2 19	0	0

• Molecule 13 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-be ta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
13	0	4	Total 53	C 30	N 3	O 20	0	0

• Molecule 14 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyra nose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopy ranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
14	OA	8	Total 94	C 52	N 2	O 40	0	0

• Molecule 15 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-beta-D-mannopyran ose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glu copyranose.

Mol	Chain	Residues	Atoms				AltConf	Trace
15	117	4	Total	С	Ν	0	0	0
10	W	4	50	28	2	20	0	0
15	2	4	Total	С	Ν	0	0	0
10	5	4	50	28	2	20	0	0
15	ΛΛ	1	Total	С	Ν	0	0	0
1.5	AA	4	50	28	2	20	0	0
15	DA	1	Total	С	Ν	0	0	0
1.5	DA	4	50	28	2	20	0	0
15	CA	4	Total	С	Ν	0	0	0
10	GA	4	50	28	2	20	0	0

• Molecule 16 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyra nose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyra nose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
16	9	7	Total 83	C 46	N 2	O 35	0	0

• Molecule 17 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
17	ВА	3	Total 42	С 24	N 3	O 15	0	0

• Molecule 18 is 1-[(2R)-4-(benzenecarbonyl)-2-methylpiperazin-1-yl]-2-(4-methoxy-1H-py rrolo[2,3-b]pyridin-3-yl)ethane-1,2-dione (three-letter code: 83G) (formula: $C_{22}H_{22}N_4O_4$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	Aton	ns		AltConf
18	С	1	Total	С	Ν	Ο	0
10	U	1	30	22	4	4	0
18	F	1	Total	С	Ν	Ο	0
10	Ľ	1	30	22	4	4	0
18	Λ	1	Total	С	Ν	Ο	0
10	А		30	22	4	4	0

• Molecule 19 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG)

(formula: $C_8H_{15}NO_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
19	С	1	Total C N C 14 8 1 5	0
19	Е	1	Total C N C 14 8 1 5	0
19	А	1	Total C N C 14 8 1 5	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Envelope glycoprotein gp41

• Molecule 2: Envelope glycoprotein gp120

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain G:	67% 100%	
NAG1 NAG2 BMA3		

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	67%		
Chain J:	33%	67%	
NAG1 NAG2 BMA3			

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

1	67%	
Chain K:	100%	
*		
NAG1 NAG2 BMA3		

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

67% Chain L: 67% 33%

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	670/		
Chain b:	07 %	100%	
NAG BMA BMA			
• Molecule 3: beta- etamido-2-deoxy-be	-D-mannopyranose-(1 eta-D-glucopyranose	-4)-2-acetamic	lo-2-deoxy-beta-D-g
	67%		
Chain d:	67%		33%
••			
VAG1 VAG2 BMA3			
• Molecule 3: beta-	-D-mannopyranose-(1	-4)-2-acetamic	lo-2-deoxy-beta-D-g
etamido-2-deoxy-be	eta-D-glucopyranose		
	67%		
Chain h:		100%	
••			
161 143			
• Molecule 3: beta-	-D-mannopyranose-(1	-4)-2-acetamic	lo-2-deoxy-beta-D-g
etamido-2-deoxy-be	eta-D-glucopyranose	-)	
v	67%		
Chain i:	67%		33%
NAG BMA			
	D (1		
• Molecule 3: beta-	-D-mannopyranose-(1	4)-2-acetamic	lo-2-deoxy-beta-D-g
etamuo-2-deoxy-be	eta-D-glucopyranose		
Chain it	67%		
Chain J:	33%	67%	
••			
AG1 AG2 MA3			

• Molecule 3: beta-D
-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	67%	
Chain n:	100%	
* *		
IAG1 IAG2 IMA3		

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain s:	67%	
NAG1 NAG2 BMA3		

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

NAC NAC BM/

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	67%	
Chain 1:	100%	
••		
NAG 1 NAG2 BYA3		

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain 8:	100% 100%

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	67%		
Chain CA:	67%	33%	
NAG1 NAG2 BNA3			
• Molecule 3: b	eta-D-mannopyranose-(1-4)-2-acetan	nido-2-deoxy-beta-D-gluo	opyranose-(1-4)-2-ac

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	67%	
Chain IA:	100%	

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-de
oxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-de
oxy-beta-D-glucopyranose

Chain JA:	67% 100%	
NAG1 NAG2 BMA3		

 • Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

	100%	
Chain H:	100%	

NAG1 FUC3		

 • Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

	100%
Chain I:	100%

AG 1 UC3 UC3	

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-ace tamido-2-deoxy-beta-D-glucopyranose

Chain O:	100% 100%
NAG3 FUC3 FUC3	

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]
2-acetamido-2-deoxy-beta-D-glucopyranose

Chain f:	33%	100% 67%	
NAG1			

• Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-ace tamido-2-deoxy-beta-D-glucopyranose

	100%		
Chain g:	33%	67%	

AG1 AG2 UC3			
N N H			

 • Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

	67%		
Chain m:	33%	67'	%
*			
IAG1 IAG2 UC3			
NNH			

 • Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

 • Molecule 4: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose

	100%	
Chain NA:	67%	33%
NAG1 NAG2 FUC3		

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	50%	
Chain N:	50%	50%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain U:	50% 100%	
NAG 1 NAG 2		

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

5	50%	
Chain Z:	100%	
•		
VAG2 VAG2		

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	50%	
Chain c:	10	0%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100%			
Chain l:	50%		50%	
NAG1				

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	50%	
Chain 7:	100%	
NAG1 NAG2		
• Molecul	e 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2	2-deoxy-beta-D-glu
opyranose	2	

Chain FA:	100%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain MA:	100 50%	% 50%
HAG1		

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]} beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2$

~ ~ ~	17%			
Chain S:	67%	33%		
<u> </u>				
NAG NAG BMA MAN MAN MAN				

• Molecule 7: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	60%	
Chain T:	40%	60%
NAG: NAG BMAG MANA MANA		

 • Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	60%			
Chain W:	40%		60%	
NAC1 NAC2 BMA3 MAN4 MAN5				
		WORLD	WIDE	

 • Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

 • Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]} beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy$

• Molecule 9: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]} beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy$

• Molecule 10: alpha-L-fucopyranose-(1-6)-2-acetamido-2-deoxy-beta-D-glucopyranose

NAG1 FUC2

100/0	
Chain Y: 100%	
100%	

 $\bullet \ Molecule \ 11: \ alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-$

	75%	
Chain a:	50%	50%

IAG 1 IAG 2 8MA 3 1AN 4		

 $\bullet \ {\rm Molecule \ 11: \ alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose} (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose (1-4)-2-acetamido-2-dooxy-beta-D-glucopyran$

	50%	
Chain u:	100%	
••		
IAG1 IAG2 SMA3 SMA3 IAN4		
AA W Z		

 $\bullet \ {\it Molecule \ 11: \ alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose} (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose (1-4)-2-acetamido-2-deoxy-beta-D-glucopyran$

	75%		
Chain y:	75%	25%	

AGC AGC AAG AAA AAAAAAAAAAAAAAAAAAAAAAA			

 $\bullet \ Molecule \ 12: \ beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)] 2-acetamido-2-deoxy-beta-D-glucopyranose \ (1-6)] 2-acetamido-2-deoxy-$

	75%	
Chain e:	75%	25%

AG1 AG2 MA3 UC4		

 $\bullet \ {\rm Molecule \ 12: \ beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose}$

• Molecule 12: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[al pha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 13: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-beta-D-mannopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 14: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyra nose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranos е

• Molecule 15: alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxybeta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 15: alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxybeta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

		75%		
Chain AA:	25%		75%	

 $\bullet \ {\rm Molecule \ 15: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose}$

 $\bullet \ {\rm Molecule \ 15: \ alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose}$

 $\label{eq:mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-b$

• Molecule 17: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	140035	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	57	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \times 4k)$	Depositor
Maximum map value	0.145	Depositor
Minimum map value	-0.070	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.006	Depositor
Recommended contour level	0.035	Depositor
Map size (Å)	264.0, 264.0, 264.0	wwPDB
Map dimensions	160, 160, 160	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.65, 1.65, 1.65	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 83G, BMA, MAN, NAG, FUC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	В	0.59	0/1176	0.65	0/1595
1	D	0.59	0/1151	0.66	0/1561
1	F	0.60	0/1163	0.65	0/1577
2	А	0.57	0/3762	0.66	0/5110
2	С	0.57	0/3753	0.66	0/5098
2	Е	0.57	0/3753	0.64	0/5098
All	All	0.58	0/14758	0.65	0/20039

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	В	143/146~(98%)	130 (91%)	11 (8%)	2(1%)	9	37
1	D	140/146~(96%)	128 (91%)	10 (7%)	2(1%)	9	37
1	F	141/146~(97%)	130 (92%)	10 (7%)	1 (1%)	19	52
2	А	464/472~(98%)	414 (89%)	48 (10%)	2~(0%)	30	63
2	С	463/472~(98%)	423 (91%)	34 (7%)	6 (1%)	10	39
2	Е	463/472~(98%)	418 (90%)	41 (9%)	4 (1%)	14	45
All	All	1814/1854 (98%)	1643 (91%)	154 (8%)	17 (1%)	17	45

All (17) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	А	188	ASN
2	С	64	GLU
2	С	156	ASN
1	D	523	LEU
2	Е	400	TRP
2	А	133	ASP
2	С	190	SER
2	Е	69	TRP
1	В	615	SER
2	С	187	ASP
2	С	464(A)	ASP
2	Е	70	ALA
2	Е	152	GLY
1	F	615	SER
2	С	217	TYR
1	В	601	LYS
1	D	639	THR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	В	125/126~(99%)	113~(90%)	12 (10%)	7 26	

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	D	122/126~(97%)	118 (97%)	4 (3%)	33	56
1	F	123/126~(98%)	111 (90%)	12 (10%)	6	25
2	А	420/424~(99%)	391~(93%)	29~(7%)	13	37
2	С	419/424~(99%)	399~(95%)	20~(5%)	21	46
2	Ε	419/424~(99%)	402 (96%)	17 (4%)	26	50
All	All	1628/1650~(99%)	1534 (94%)	94 (6%)	19	42

All (94) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type		
1	В	523	LEU		
1	B 530 ME		MET		
1	В	543	LEU		
1	В	545	LEU		
1	В	565	LEU		
1	В	570	VAL		
1	В	573	ILE		
1	В	575	GLN		
1	В	614	TRP		
1	В	619	LEU		
1	В	621	MET		
1	В	624	ASN		
2	С	36	VAL		
2	С	95	MET		
2	С	113	ASP		
2	С	189	THR		
2	С	196	CYS		
2	С	200	THR		
2	С	233	PHE		
2	С	236	THR		
2	С	279	ASP		
2	С	280	ASN		
2	С	298	ARG		
2	С	342	LEU		
2	С	358	THR		
2	С	370	GLU		
2	С	403	THR		
2	С	426	MET		
2	С	443	ILE		
2	С	447	SER		

Mol	Chain	Res	Type	
2	С	494	LEU	
2	С	496	VAL	
1	D	529	THR	
1	D	616	ASN	
1	D	619	LEU	
1	D	620	ASP	
2	Е	75	VAL	
2	Е	137	VAL	
2	Е	139	ASN	
2	Е	145	GLU	
2	Е	150	MET	
2	Е	200	THR	
2	Е	201	ILE	
2	Е	228	CYS	
2	Е	246	GLN	
2	Е	282	LYS	
2	Е	317	PHE	
2	Е	E 362 AS		
2	Е	E 393 SE		
2	Е	396	PHE	
2	Е	403	THR	
2	Е	424	ILE	
2	Е	456	ARG	
2	А	A 68 VA		
2	А	69	TRP	
2	А	72	HIS	
2	А	83	GLU	
2	А	133	ASP	
2	А	178	LYS	
2	A	180	ASP	
2	А	181	VAL	
2	А	188	ASN	
2	A	200	THR	
2	А	229	LYS	
2	A	231	LYS	
2	A	240	LYS	
2	A	242	VAL	
2	A	269	GLU	
2	A	279 ASI		
2	A	A 327 A		
2	A	337	LYS	
2	А	341	THR	

Mol	Chain	Res	Type
2	А	347	THR
2	А	348	LYS
2	А	350	LYS
2	A 351		GLU
2	А	389	GLN
2	А	395	TRP
2	А	403	THR
2	А	446	SER
2	А	447	SER
2	А	457	ASP
1	F	522	PHE
1	F	537	LEU
1	F	538	THR
1	F	545	LEU
1	F	557	LYS
1	F	562	GLN
1	F	567	LYS
1	F	599	SER
1	F	613	SER
1	F	615	SER
1	F	638	TYR
1	F	653	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:

Mol	Chain	Res	Type
2	С	98	ASN
2	С	105	HIS
2	А	105	HIS
2	А	428	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

244 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Tura		Chain	Dec	Tink	Bond lengths		Bond angles			
Moi Type	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
3	NAG	0	1	2,3	14,14,15	0.31	0	17,19,21	0.80	1 (5%)
3	NAG	0	2	3	14,14,15	0.25	0	17,19,21	0.86	1 (5%)
3	BMA	0	3	3	11,11,12	0.22	0	15,15,17	0.58	0
3	NAG	1	1	2,3	14,14,15	0.47	0	17,19,21	0.50	0
3	NAG	1	2	3	14,14,15	0.31	0	17,19,21	0.43	0
3	BMA	1	3	3	11,11,12	0.48	0	15,15,17	0.81	0
3	NAG	2	1	2,3	14,14,15	0.27	0	17,19,21	0.95	1 (5%)
3	NAG	2	2	3	14,14,15	0.21	0	17,19,21	0.88	1 (5%)
3	BMA	2	3	3	11,11,12	0.27	0	15,15,17	0.64	0
15	NAG	3	1	2,15	14,14,15	0.43	0	17,19,21	0.54	0
15	NAG	3	2	15	14,14,15	0.37	0	17,19,21	0.81	0
15	BMA	3	3	15	11,11,12	1.08	0	15,15,17	1.13	2 (13%)
15	MAN	3	4	15	11,11,12	0.62	0	15,15,17	1.03	2 (13%)
3	NAG	4	1	2,3	14,14,15	0.33	0	17,19,21	0.62	0
3	NAG	4	2	3	14,14,15	0.34	0	17,19,21	1.10	2 (11%)
3	BMA	4	3	3	11,11,12	0.23	0	15,15,17	0.49	0
5	NAG	5	1	5,2	14,14,15	0.27	0	17,19,21	0.88	1 (5%)
5	NAG	5	2	5	14,14,15	0.28	0	17,19,21	0.57	0
3	NAG	6	1	2,3	14,14,15	0.27	0	17,19,21	0.57	0
3	NAG	6	2	3	14,14,15	0.33	0	17,19,21	1.59	4 (23%)
3	BMA	6	3	3	11,11,12	0.22	0	15,15,17	0.54	0
5	NAG	7	1	5,2	14,14,15	0.36	0	17,19,21	0.51	0
5	NAG	7	2	5	14,14,15	0.31	0	17,19,21	0.57	0
3	NAG	8	1	2,3	14,14,15	0.37	0	17,19,21	0.41	0
3	NAG	8	2	3	14,14,15	0.19	0	17,19,21	0.50	0
3	BMA	8	3	3	11,11,12	0.59	0	15,15,17	0.69	0
16	NAG	9	1	2,16	14,14,15	1.15	1 (7%)	17,19,21	2.93	4 (23%)
16	NAG	9	2	16	14,14,15	0.27	0	17,19,21	0.88	0
16	BMA	9	3	16	11,11,12	0.24	0	15,15,17	0.60	0
16	MAN	9	4	16	11,11,12	1.01	0	15,15,17	1.41	2 (13%)

3.7.1	т		Ъ	T • 1	Bond lengths		Bond angles			
IVIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
16	MAN	9	5	16	11,11,12	0.69	0	$15,\!15,\!17$	1.00	2 (13%)
16	MAN	9	6	16	11,11,12	0.69	0	$15,\!15,\!17$	0.99	2 (13%)
16	MAN	9	7	16	11,11,12	0.19	0	$15,\!15,\!17$	0.62	0
15	NAG	AA	1	2,15	14,14,15	0.60	1 (7%)	17,19,21	0.71	0
15	NAG	AA	2	15	14,14,15	0.20	0	17,19,21	0.85	0
15	BMA	AA	3	15	11,11,12	1.26	1 (9%)	$15,\!15,\!17$	1.77	3 (20%)
15	MAN	AA	4	15	11,11,12	0.67	0	$15,\!15,\!17$	0.92	1 (6%)
17	NAG	BA	1	17,2	14,14,15	0.29	0	17,19,21	0.68	1 (5%)
17	NAG	BA	2	17	14,14,15	0.28	0	17,19,21	0.57	0
17	NAG	BA	3	17	14,14,15	0.27	0	17,19,21	0.57	0
3	NAG	CA	1	2,3	14,14,15	0.29	0	$17,\!19,\!21$	0.51	0
3	NAG	CA	2	3	14,14,15	0.26	0	$17,\!19,\!21$	0.89	1 (5%)
3	BMA	CA	3	3	11,11,12	0.21	0	$15,\!15,\!17$	0.56	0
15	NAG	DA	1	2,15	14,14,15	0.30	0	17,19,21	0.50	0
15	NAG	DA	2	15	14,14,15	0.20	0	$17,\!19,\!21$	0.75	0
15	BMA	DA	3	15	11,11,12	0.90	1 (9%)	$15,\!15,\!17$	0.86	0
15	MAN	DA	4	15	11,11,12	0.71	1 (9%)	$15,\!15,\!17$	1.35	2 (13%)
9	NAG	EA	1	9,2	14,14,15	0.69	1 (7%)	17,19,21	0.79	0
9	NAG	EA	2	9	14,14,15	0.21	0	17,19,21	0.41	0
9	BMA	EA	3	9	11,11,12	0.91	1 (9%)	$15,\!15,\!17$	1.09	2 (13%)
9	MAN	EA	4	9	11,11,12	1.32	2 (18%)	$15,\!15,\!17$	1.85	2 (13%)
9	MAN	EA	5	9	11,11,12	0.83	0	$15,\!15,\!17$	1.05	2 (13%)
9	MAN	EA	6	9	11,11,12	0.58	0	$15,\!15,\!17$	1.23	2 (13%)
9	MAN	EA	7	9	11,11,12	0.70	0	$15,\!15,\!17$	1.08	2 (13%)
5	NAG	FA	1	5,2	14,14,15	0.38	0	17,19,21	0.84	2 (11%)
5	NAG	FA	2	5	14,14,15	0.51	0	17,19,21	0.81	1 (5%)
3	NAG	G	1	1,3	14,14,15	0.32	0	17,19,21	0.55	0
3	NAG	G	2	3	14,14,15	0.30	0	17,19,21	0.61	0
3	BMA	G	3	3	11,11,12	0.24	0	$15,\!15,\!17$	0.56	0
15	NAG	GA	1	2,15	14,14,15	0.25	0	$17,\!19,\!21$	1.06	2 (11%)
15	NAG	GA	2	15	14,14,15	0.33	0	17,19,21	1.58	4 (23%)
15	BMA	GA	3	15	11,11,12	0.20	0	$15,\!15,\!17$	0.59	0
15	MAN	GA	4	15	11,11,12	0.20	0	$15,\!15,\!17$	0.53	0
4	NAG	Н	1	4,1	14,14,15	0.33	0	$17,\!19,\!21$	1.09	1 (5%)
4	NAG	H	2	4	14,14,15	0.41	0	17,19,21	0.95	2 (11%)
4	FUC	Н	3	4	10,10,11	0.26	0	14,14,16	0.80	1 (7%)
8	NAG	HA	1	2,8	14,14,15	0.31	0	17,19,21	0.66	1 (5%)
8	NAG	НА	2	8	14,14,15	0.31	0	17,19,21	0.79	0

Ъ / . 1	—		D	т •1.	Bond lengths		Bond angles			
NIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
8	BMA	HA	3	8	11,11,12	0.19	0	$15,\!15,\!17$	0.62	0
8	MAN	HA	4	8	11,11,12	0.19	0	$15,\!15,\!17$	0.53	0
8	MAN	HA	5	8	11,11,12	0.20	0	$15,\!15,\!17$	0.54	0
4	NAG	Ι	1	4,1	14,14,15	0.33	0	$17,\!19,\!21$	1.09	1 (5%)
4	NAG	Ι	2	4	14,14,15	0.40	0	17,19,21	0.95	2 (11%)
4	FUC	Ι	3	4	10,10,11	0.25	0	14,14,16	0.81	1 (7%)
3	NAG	IA	1	2,3	14,14,15	0.30	0	17,19,21	0.58	0
3	NAG	IA	2	3	14,14,15	0.32	0	17,19,21	0.77	0
3	BMA	IA	3	3	11,11,12	0.21	0	$15,\!15,\!17$	0.55	0
3	NAG	J	1	1,3	14,14,15	0.30	0	17,19,21	1.30	2 (11%)
3	NAG	J	2	3	14,14,15	0.30	0	17,19,21	0.63	0
3	BMA	J	3	3	11,11,12	0.58	0	$15,\!15,\!17$	2.37	2 (13%)
3	NAG	JA	1	2,3	14,14,15	0.31	0	17,19,21	0.79	0
3	NAG	JA	2	3	14,14,15	0.30	0	17,19,21	0.53	0
3	BMA	JA	3	3	11,11,12	0.21	0	$15,\!15,\!17$	0.54	0
3	NAG	K	1	2,3	14,14,15	0.30	0	$17,\!19,\!21$	0.54	0
3	NAG	K	2	3	14,14,15	0.31	0	$17,\!19,\!21$	0.63	0
3	BMA	K	3	3	11,11,12	0.23	0	$15,\!15,\!17$	0.64	0
12	NAG	KA	1	1,12	14,14,15	1.12	1 (7%)	$17,\!19,\!21$	2.23	5 (29%)
12	NAG	KA	2	12	14,14,15	0.30	0	$17,\!19,\!21$	0.57	0
12	BMA	KA	3	12	11,11,12	0.20	0	$15,\!15,\!17$	0.63	0
12	FUC	KA	4	12	10,10,11	0.25	0	14,14,16	0.52	0
3	NAG	L	1	2,3	14,14,15	0.31	0	$17,\!19,\!21$	0.85	1 (5%)
3	NAG	L	2	3	14,14,15	0.29	0	$17,\!19,\!21$	0.62	0
3	BMA	L	3	3	11,11,12	0.65	0	$15,\!15,\!17$	0.77	0
4	NAG	LA	1	4,1	14,14,15	0.33	0	17,19,21	0.52	0
4	NAG	LA	2	4	14,14,15	0.28	0	17,19,21	0.69	0
4	FUC	LA	3	4	10,10,11	0.25	0	14, 14, 16	0.52	0
3	NAG	M	1	2,3	14,14,15	0.42	0	17,19,21	0.55	0
3	NAG	M	2	3	14,14,15	0.38	0	17,19,21	0.81	0
3	BMA	M	3	3	11,11,12	1.08	0	15,15,17	1.14	2 (13%)
5	NAG	MA	1	5,1	14,14,15	0.28	0	17,19,21	0.60	0
5	NAG	MA	2	5	14,14,15	0.40	0	17,19,21	2.01	4 (23%)
5	NAG	N	1	5,2	14,14,15	0.35	0	17,19,21	0.92	0
5	NAG	N	2	5	14,14,15	0.34	0	17,19,21	1.19	1 (5%)
4	NAG	NA	1	4,1	14,14,15	0.31	0	17,19,21	1.19	1 (5%)
4	NAG	NA	2	4	14,14,15	0.29	0	17,19,21	0.57	0
4	FUC	NA	3	4	10,10,11	0.22	0	14,14,16	0.52	0
4	NAG	0	1	2,4	14,14,15	0.30	0	17,19,21	0.71	0
4	NAG	0	2	4	14,14,15	0.30	0	17,19,21	0.53	0

7.7.1	m		Ъ	τ・ 1	Bond lengths		Bond angles			
IVIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
4	FUC	0	3	4	10,10,11	0.23	0	14,14,16	0.51	0
14	NAG	OA	1	2,14	14,14,15	0.22	0	17,19,21	0.61	0
14	NAG	OA	2	14	14,14,15	0.34	0	17,19,21	0.54	0
14	BMA	OA	3	14	11,11,12	0.63	0	15,15,17	0.66	0
14	MAN	OA	4	14	11,11,12	0.64	0	$15,\!15,\!17$	1.18	1 (6%)
14	MAN	OA	5	14	11,11,12	0.79	1 (9%)	15,15,17	1.39	1 (6%)
14	MAN	OA	6	14	11,11,12	1.02	0	15,15,17	1.40	2 (13%)
14	MAN	OA	7	14	11,11,12	0.72	0	15,15,17	1.00	2 (13%)
14	MAN	OA	8	14	11,11,12	0.67	0	15,15,17	0.98	2 (13%)
3	NAG	Р	1	2,3	14,14,15	0.46	0	17,19,21	1.47	4 (23%)
3	NAG	Р	2	3	14,14,15	0.38	0	17,19,21	1.00	1 (5%)
3	BMA	Р	3	3	11,11,12	0.32	0	15,15,17	1.75	3 (20%)
3	NAG	Q	1	2,3	14,14,15	0.55	0	17,19,21	0.71	0
3	NAG	Q	2	3	14,14,15	0.21	0	17,19,21	0.84	0
3	BMA	Q	3	3	11,11,12	1.25	1 (9%)	15,15,17	1.77	3 (20%)
3	NAG	R	1	2,3	14,14,15	0.32	0	17,19,21	0.94	1 (5%)
3	NAG	R	2	3	14,14,15	0.28	0	17,19,21	0.56	0
3	BMA	R	3	3	11,11,12	0.21	0	15,15,17	0.57	0
6	NAG	S	1	2,6	14,14,15	1.28	1 (7%)	17,19,21	<mark>3.34</mark>	6 (35%)
6	NAG	S	2	6	14,14,15	0.28	0	17,19,21	1.17	2 (11%)
6	BMA	S	3	6	11,11,12	0.23	0	$15,\!15,\!17$	0.71	0
6	MAN	S	4	6	11,11,12	0.17	0	$15,\!15,\!17$	0.63	0
6	MAN	S	5	6	11,11,12	0.22	0	15,15,17	0.55	0
6	MAN	S	6	6	11,11,12	0.21	0	15,15,17	0.57	0
7	NAG	Т	1	2,7	14,14,15	0.57	0	17,19,21	0.70	0
7	NAG	Т	2	7	14,14,15	0.22	0	17,19,21	0.85	0
7	BMA	Т	3	7	11,11,12	1.26	1 (9%)	15,15,17	1.77	3 (20%)
7	MAN	Т	4	7	11,11,12	0.69	0	$15,\!15,\!17$	0.93	1 (6%)
7	MAN	Т	5	7	11,11,12	0.85	0	$15,\!15,\!17$	1.09	1 (6%)
5	NAG	U	1	5,2	14,14,15	0.31	0	17,19,21	0.55	0
5	NAG	U	2	5	14,14,15	0.26	0	17,19,21	0.55	0
3	NAG	V	1	2,3	14,14,15	0.32	0	17,19,21	0.69	0
3	NAG	V	2	3	14,14,15	0.26	0	17,19,21	0.89	1 (5%)
3	BMA	V	3	3	11,11,12	0.22	0	15,15,17	0.55	0
8	NAG	W	1	2,8	14,14,15	0.32	0	17,19,21	0.50	0
8	NAG	W	2	8	14,14,15	0.22	0	17,19,21	0.74	0
8	BMA	W	3	8	11,11,12	0.90	1 (9%)	15,15,17	0.87	0
8	MAN	W	4	8	11,11,12	0.71	1 (9%)	15,15,17	1.36	2 (13%)

N <i>T</i> - 1	T		D	T 1.	Bond lengths		Bond angles			
NIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
8	MAN	W	5	8	11,11,12	0.66	0	$15,\!15,\!17$	1.05	2 (13%)
9	NAG	Х	1	9,2	14,14,15	0.71	1 (7%)	17,19,21	0.79	0
9	NAG	Х	2	9	14,14,15	0.19	0	17,19,21	0.39	0
9	BMA	Х	3	9	11,11,12	0.92	1 (9%)	$15,\!15,\!17$	1.09	2 (13%)
9	MAN	Х	4	9	11,11,12	1.34	2 (18%)	$15,\!15,\!17$	1.83	2 (13%)
9	MAN	Х	5	9	11,11,12	0.85	1 (9%)	15,15,17	1.05	2 (13%)
9	MAN	Х	6	9	11,11,12	0.60	0	15,15,17	1.23	2 (13%)
9	MAN	Х	7	9	11,11,12	0.70	0	15,15,17	1.11	2 (13%)
10	NAG	Y	1	10,2	14,14,15	0.23	0	17,19,21	0.95	2 (11%)
10	FUC	Y	2	10	10,10,11	0.37	0	14,14,16	1.16	1 (7%)
5	NAG	Z	1	5,2	14,14,15	0.38	0	17,19,21	0.85	2 (11%)
5	NAG	Z	2	5	14,14,15	0.51	0	17,19,21	0.80	1 (5%)
11	NAG	a	1	2,11	14,14,15	0.34	0	17,19,21	1.11	1 (5%)
11	NAG	a	2	11	14,14,15	0.26	0	17,19,21	0.91	1 (5%)
11	BMA	a	3	11	11,11,12	0.22	0	15,15,17	0.58	0
11	MAN	a	4	11	11,11,12	0.20	0	15,15,17	0.55	0
3	NAG	b	1	2,3	14,14,15	0.35	0	17,19,21	0.66	0
3	NAG	b	2	3	14,14,15	0.25	0	17,19,21	0.84	0
3	BMA	b	3	3	11,11,12	0.21	0	15,15,17	0.54	0
5	NAG	с	1	5,2	14,14,15	0.35	0	17,19,21	1.13	1 (5%)
5	NAG	с	2	5	14,14,15	0.39	0	17,19,21	1.01	1 (5%)
3	NAG	d	1	2,3	14,14,15	0.28	0	17,19,21	0.46	0
3	NAG	d	2	3	14,14,15	0.26	0	17,19,21	0.48	0
3	BMA	d	3	3	11,11,12	0.94	0	15,15,17	1.09	2 (13%)
12	NAG	e	1	1,12	14,14,15	1.13	1 (7%)	17,19,21	2.23	5 (29%)
12	NAG	е	2	12	14,14,15	0.33	0	17,19,21	0.57	0
12	BMA	е	3	12	11,11,12	0.21	0	15,15,17	0.63	0
12	FUC	e	4	12	10,10,11	0.25	0	14,14,16	0.52	0
4	NAG	f	1	4,1	14,14,15	0.33	0	17,19,21	0.93	1 (5%)
4	NAG	f	2	4	14,14,15	0.41	0	17,19,21	2.01	4 (23%)
4	FUC	f	3	4	10,10,11	0.22	0	14,14,16	0.52	0
4	NAG	g	1	4,1	14,14,15	0.34	0	17,19,21	0.94	1 (5%)
4	NAG	g	2	4	14,14,15	0.42	0	17,19,21	2.00	4 (23%)
4	FUC	g	3	4	10,10,11	0.22	0	14,14,16	0.52	0
3	NAG	h	1	1,3	14,14,15	0.29	0	17,19,21	0.46	0
3	NAG	h	2	3	14,14,15	0.28	0	17,19,21	0.58	0
3	BMA	h	3	3	11,11,12	0.22	0	$15,\!15,\!17$	0.59	0
3	NAG	i	1	2,3	14,14,15	0.27	0	17,19,21	0.52	0

N <i>T</i> - 1	T		D	T	Bo	ond leng	ths	Bond angle		les
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	NAG	i	2	3	14,14,15	0.25	0	17,19,21	0.86	1 (5%)
3	BMA	i	3	3	11,11,12	0.21	0	$15,\!15,\!17$	0.56	0
3	NAG	j	1	2,3	14,14,15	0.25	0	17,19,21	0.94	1 (5%)
3	NAG	j	2	3	14,14,15	0.25	0	17,19,21	0.90	1 (5%)
3	BMA	j	3	3	11,11,12	0.21	0	15,15,17	0.57	0
8	NAG	k	1	2,8	14,14,15	0.28	0	17,19,21	0.85	1 (5%)
8	NAG	k	2	8	14,14,15	0.29	0	17,19,21	0.63	0
8	BMA	k	3	8	11,11,12	0.23	0	$15,\!15,\!17$	0.64	0
8	MAN	k	4	8	11,11,12	0.20	0	$15,\!15,\!17$	0.56	0
8	MAN	k	5	8	11,11,12	0.22	0	$15,\!15,\!17$	0.55	0
5	NAG	1	1	5,2	14,14,15	0.36	0	17,19,21	1.03	1 (5%)
5	NAG	1	2	5	14,14,15	0.25	0	17,19,21	0.66	0
4	NAG	m	1	2,4	14,14,15	0.35	0	$17,\!19,\!21$	1.60	2 (11%)
4	NAG	m	2	4	14,14,15	0.31	0	17,19,21	0.64	0
4	FUC	m	3	4	10,10,11	0.42	0	14,14,16	1.51	3 (21%)
3	NAG	n	1	2,3	14,14,15	0.85	1 (7%)	17,19,21	0.72	0
3	NAG	n	2	3	14,14,15	0.39	0	17,19,21	0.96	2 (11%)
3	BMA	n	3	3	11,11,12	0.48	0	$15,\!15,\!17$	0.94	1 (6%)
13	NAG	О	1	13,2	14,14,15	0.49	0	17,19,21	1.69	5 (29%)
13	NAG	0	2	13	14,14,15	0.28	0	17,19,21	0.87	2 (11%)
13	BMA	0	3	13	11,11,12	0.30	0	15,15,17	0.99	0
13	NAG	0	4	13	14,14,15	0.39	0	17,19,21	0.88	1 (5%)
3	NAG	р	1	2,3	14,14,15	0.28	0	17,19,21	0.85	0
3	NAG	р	2	3	14,14,15	0.30	0	17,19,21	0.65	0
3	BMA	р	3	3	11,11,12	0.20	0	$15,\!15,\!17$	0.59	0
3	NAG	r	1	2,3	14,14,15	0.58	0	$17,\!19,\!21$	0.71	0
3	NAG	r	2	3	14,14,15	0.23	0	17,19,21	0.84	0
3	BMA	r	3	3	11,11,12	1.26	1 (9%)	$15,\!15,\!17$	1.76	3 (20%)
3	NAG	s	1	2,3	14,14,15	0.30	0	17,19,21	0.60	0
3	NAG	s	2	3	14,14,15	0.23	0	17,19,21	0.75	0
3	BMA	s	3	3	11,11,12	0.20	0	$15,\!15,\!17$	0.57	0
3	NAG	t	1	2,3	14,14,15	0.28	0	17,19,21	0.61	0
3	NAG	t	2	3	14,14,15	0.29	0	17,19,21	0.55	0
3	BMA	t	3	3	11,11,12	0.22	0	$15,\!15,\!17$	0.55	0
11	NAG	u	1	2,11	14,14,15	0.29	0	17,19,21	0.42	0
11	NAG	u	2	11	14,14,15	0.30	0	17,19,21	0.67	0
11	BMA	u	3	11	11,11,12	0.25	0	$15,\!15,\!17$	0.62	0
11	MAN	u	4	11	11,11,12	0.20	0	15,15,17	0.66	0
9	NAG	v	1	9,2	14,14,15	0.70	1 (7%)	17,19,21	0.78	0

Mal	Trune	Chain	Dec	Tinle	Bo	ond leng	ths	B	ond ang	les
	Type	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
9	NAG	v	2	9	14,14,15	0.18	0	17,19,21	0.40	0
9	BMA	v	3	9	11,11,12	0.92	1 (9%)	$15,\!15,\!17$	1.08	1 (6%)
9	MAN	v	4	9	11,11,12	1.33	2 (18%)	15,15,17	1.84	2 (13%)
9	MAN	v	5	9	11,11,12	0.84	1 (9%)	15,15,17	1.04	2 (13%)
9	MAN	v	6	9	11,11,12	0.61	0	15,15,17	1.23	2 (13%)
9	MAN	v	7	9	11,11,12	0.70	0	15,15,17	1.08	2 (13%)
15	NAG	W	1	2,15	14,14,15	0.35	0	17,19,21	0.85	2 (11%)
15	NAG	W	2	15	14,14,15	0.50	0	17,19,21	0.80	1 (5%)
15	BMA	W	3	15	11,11,12	1.02	1 (9%)	15,15,17	0.94	1 (6%)
15	MAN	W	4	15	11,11,12	0.74	0	15,15,17	1.27	2 (13%)
3	NAG	х	1	2,3	14,14,15	0.26	0	17,19,21	0.97	1 (5%)
3	NAG	х	2	3	14,14,15	0.30	0	17,19,21	0.61	0
3	BMA	х	3	3	11,11,12	0.21	0	15,15,17	0.57	0
11	NAG	У	1	2,11	14,14,15	0.28	0	17,19,21	0.60	0
11	NAG	У	2	11	14,14,15	0.26	0	17,19,21	1.00	1 (5%)
11	BMA	У	3	11	11,11,12	0.24	0	15,15,17	0.57	0
11	MAN	у	4	11	11,11,12	0.21	0	15,15,17	0.55	0
12	NAG	Z	1	2,12	14,14,15	0.37	0	17,19,21	1.29	3 (17%)
12	NAG	Z	2	12	14,14,15	0.42	0	17,19,21	1.08	1 (5%)
12	BMA	Z	3	12	11,11,12	0.20	0	15,15,17	0.56	0
12	FUC	Z	4	12	10,10,11	0.23	0	14,14,16	0.60	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	0	1	2,3	-	3/6/23/26	0/1/1/1
3	NAG	0	2	3	-	4/6/23/26	0/1/1/1
3	BMA	0	3	3	-	0/2/19/22	0/1/1/1
3	NAG	1	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	1	2	3	-	0/6/23/26	0/1/1/1
3	BMA	1	3	3	-	2/2/19/22	0/1/1/1
3	NAG	2	1	2,3	-	3/6/23/26	0/1/1/1
3	NAG	2	2	3	-	3/6/23/26	0/1/1/1
3	BMA	2	3	3	-	0/2/19/22	0/1/1/1
15	NAG	3	1	2,15	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
15	NAG	3	2	15	-	2/6/23/26	0/1/1/1
15	BMA	3	3	15	_	1/2/19/22	0/1/1/1
15	MAN	3	4	15	-	0/2/19/22	0/1/1/1
3	NAG	4	1	2,3	-	0/6/23/26	0/1/1/1
3	NAG	4	2	3	-	3/6/23/26	0/1/1/1
3	BMA	4	3	3	-	1/2/19/22	0/1/1/1
5	NAG	5	1	5,2	-	3/6/23/26	0/1/1/1
5	NAG	5	2	5	-	0/6/23/26	0/1/1/1
3	NAG	6	1	2,3	-	3/6/23/26	0/1/1/1
3	NAG	6	2	3	_	3/6/23/26	0/1/1/1
3	BMA	6	3	3	_	0/2/19/22	0/1/1/1
5	NAG	7	1	5,2	-	1/6/23/26	0/1/1/1
5	NAG	7	2	5	-	2/6/23/26	0/1/1/1
3	NAG	8	1	2,3	-	0/6/23/26	0/1/1/1
3	NAG	8	2	3	-	1/6/23/26	0/1/1/1
3	BMA	8	3	3	-	0/2/19/22	0/1/1/1
16	NAG	9	1	2,16	-	2/6/23/26	0/1/1/1
16	NAG	9	2	16	-	5/6/23/26	0/1/1/1
16	BMA	9	3	16	-	2/2/19/22	0/1/1/1
16	MAN	9	4	16	-	1/2/19/22	0/1/1/1
16	MAN	9	5	16	-	0/2/19/22	0/1/1/1
16	MAN	9	6	16	-	0/2/19/22	0/1/1/1
16	MAN	9	7	16	-	0/2/19/22	0/1/1/1
15	NAG	AA	1	2,15	-	2/6/23/26	0/1/1/1
15	NAG	AA	2	15	-	4/6/23/26	0/1/1/1
15	BMA	AA	3	15	-	1/2/19/22	0/1/1/1
15	MAN	AA	4	15	-	0/2/19/22	0/1/1/1
17	NAG	BA	1	17,2	-	0/6/23/26	0/1/1/1
17	NAG	BA	2	17	-	1/6/23/26	0/1/1/1
17	NAG	BA	3	17	-	1/6/23/26	0/1/1/1
3	NAG	CA	1	2,3	-	3/6/23/26	0/1/1/1
3	NAG	CA	2	3	-	5/6/23/26	0/1/1/1
3	BMA	CA	3	3	-	0/2/19/22	0/1/1/1
15	NAG	DA	1	2,15	-	2/6/23/26	0/1/1/1
15	NAG	DA	2	15	-	4/6/23/26	0/1/1/1
15	BMA	DA	3	15	-	0/2/19/22	0/1/1/1
15	MAN	DA	4	15		2/2/19/22	0/1/1/1
9	NAG	EA	1	9.2	_	0/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	NAG	EA	2	9	-	0/6/23/26	0/1/1/1
9	BMA	EA	3	9	-	2/2/19/22	0/1/1/1
9	MAN	EA	4	9	-	0/2/19/22	0/1/1/1
9	MAN	EA	5	9	-	0/2/19/22	0/1/1/1
9	MAN	EA	6	9	-	0/2/19/22	0/1/1/1
9	MAN	EA	7	9	-	0/2/19/22	0/1/1/1
5	NAG	FA	1	5,2	-	0/6/23/26	0/1/1/1
5	NAG	FA	2	5	-	2/6/23/26	0/1/1/1
3	NAG	G	1	1,3	-	1/6/23/26	0/1/1/1
3	NAG	G	2	3	-	0/6/23/26	0/1/1/1
3	BMA	G	3	3	-	0/2/19/22	0/1/1/1
15	NAG	GA	1	2,15	-	3/6/23/26	0/1/1/1
15	NAG	GA	2	15	-	3/6/23/26	0/1/1/1
15	BMA	GA	3	15	_	0/2/19/22	0/1/1/1
15	MAN	GA	4	15	-	1/2/19/22	0/1/1/1
4	NAG	Н	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	Н	2	4	_	1/6/23/26	0/1/1/1
4	FUC	Н	3	4	-	-	0/1/1/1
8	NAG	HA	1	2,8	-	2/6/23/26	0/1/1/1
8	NAG	HA	2	8	_	0/6/23/26	0/1/1/1
8	BMA	HA	3	8	-	0/2/19/22	0/1/1/1
8	MAN	HA	4	8	-	0/2/19/22	0/1/1/1
8	MAN	HA	5	8	-	0/2/19/22	0/1/1/1
4	NAG	Ι	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	Ι	2	4	-	1/6/23/26	0/1/1/1
4	FUC	Ι	3	4	-	-	0/1/1/1
3	NAG	IA	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	IA	2	3	-	3/6/23/26	0/1/1/1
3	BMA	IA	3	3	-	0/2/19/22	0/1/1/1
3	NAG	J	1	1.3	-	3/6/23/26	0/1/1/1
3	NAG	J	2	3	-	0/6/23/26	0/1/1/1
3	BMA	J	3	3	-	0/2/19/22	0/1/1/1
3	NAG	JA	1	2.3	-	$\frac{2}{6}/\frac{23}{26}$	0/1/1/1
3	NAG	JA	2	3	_	0/6/23/26	0/1/1/1
3	BMA	JA	3	3	_	0/2/19/22	0/1/1/1
3	NAG	K	1	2,3	-	$\frac{2}{6}/\frac{23}{26}$	0/1/1/1
3	NAG	K	2	3	_	$\frac{3}{6}/\frac{23}{26}$	0/1/1/1
3	BMA	K	3	3	_	0/2/19/22	0/1/1/1
12	NAG	KA	1	1.12	_	$\frac{0/6/23/26}{0/6/23/26}$	0/1/1/1

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
12	NAG	KA	2	12	-	0/6/23/26	0/1/1/1
12	BMA	KA	3	12	-	0/2/19/22	0/1/1/1
12	FUC	KA	4	12	-	-	0/1/1/1
3	NAG	L	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	L	2	3	-	1/6/23/26	0/1/1/1
3	BMA	L	3	3	-	2/2/19/22	0/1/1/1
4	NAG	LA	1	4,1	-	0/6/23/26	0/1/1/1
4	NAG	LA	2	4	-	0/6/23/26	0/1/1/1
4	FUC	LA	3	4	-	-	0/1/1/1
3	NAG	М	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	М	2	3	-	2/6/23/26	0/1/1/1
3	BMA	М	3	3	-	1/2/19/22	0/1/1/1
5	NAG	MA	1	5,1	-	2/6/23/26	0/1/1/1
5	NAG	MA	2	5	-	1/6/23/26	0/1/1/1
5	NAG	N	1	5,2	-	2/6/23/26	0/1/1/1
5	NAG	N	2	5	-	3/6/23/26	0/1/1/1
4	NAG	NA	1	4,1	-	3/6/23/26	0/1/1/1
4	NAG	NA	2	4	-	2/6/23/26	0/1/1/1
4	FUC	NA	3	4	-	-	0/1/1/1
4	NAG	0	1	2,4	-	2/6/23/26	0/1/1/1
4	NAG	0	2	4	-	0/6/23/26	0/1/1/1
4	FUC	0	3	4	-	-	0/1/1/1
14	NAG	OA	1	2,14	-	0/6/23/26	0/1/1/1
14	NAG	OA	2	14	-	2/6/23/26	0/1/1/1
14	BMA	OA	3	14	-	0/2/19/22	0/1/1/1
14	MAN	OA	4	14	-	0/2/19/22	0/1/1/1
14	MAN	OA	5	14	-	0/2/19/22	0/1/1/1
14	MAN	OA	6	14	-	1/2/19/22	0/1/1/1
14	MAN	OA	7	14	-	0/2/19/22	0/1/1/1
14	MAN	OA	8	14	-	0/2/19/22	0/1/1/1
3	NAG	Р	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	Р	2	3	-	2/6/23/26	0/1/1/1
3	BMA	Р	3	3	-	1/2/19/22	0/1/1/1
3	NAG	Q	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	Q	2	3	-	4/6/23/26	0/1/1/1
3	BMA	Q	3	3	-	1/2/19/22	0/1/1/1
3	NAG	R	1	2,3	-	4/6/23/26	0/1/1/1
3	NAG	R	2	3	-	2/6/23/26	0/1/1/1

	Turca	Chain	D ag	Tinle	Chinala	Torriona	Ding
	Type DMA	D	Res		Unirals		\mathbf{Rings}
3	BMA NAC	R C	う 1	3 26	-	0/2/19/22 0/6/22/26	0/1/1/1
	NAG	<u>с</u>	1	2,0	-	$\frac{0}{0} \frac{23}{20}$	0/1/1/1
0	NAG	S	2	0	-	3/0/23/20	0/1/1/1
6 6	BMA	S	3	6	-	0/2/19/22	0/1/1/1
<u>6</u>	MAN	S	4	6 6	-	$\frac{0/2}{19/22}$	0/1/1/1
0	MAN	5 C	C C	0	-	$\frac{1/2}{19/22}$	0/1/1/1
0	MAN	с Т	1	0	-	0/2/19/22	0/1/1/1
(NAG	1	1	2,7	-	2/0/23/20	0/1/1/1
7	NAG	Т	2	7	-	4/6/23/26	0/1/1/1
7	BMA	Т	3	7	-	1/2/19/22	0/1/1/1
7	MAN	Т	4	7	-	0/2/19/22	0/1/1/1
7	MAN	T	5	7	-	0/2/19/22	0/1/1/1
5	NAG	U	1	5,2	-	0/6/23/26	0/1/1/1
5	NAG	U	2	5	-	2/6/23/26	0/1/1/1
3	NAG	V	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	V	2	3	-	4/6/23/26	0/1/1/1
3	BMA	V	3	3	-	0/2/19/22	0/1/1/1
8	NAG	W	1	2,8	-	2/6/23/26	0/1/1/1
8	NAG	W	2	8	-	4/6/23/26	0/1/1/1
8	BMA	W	3	8	-	0/2/19/22	0/1/1/1
8	MAN	W	4	8	-	2/2/19/22	0/1/1/1
8	MAN	W	5	8	-	0/2/19/22	0/1/1/1
9	NAG	Х	1	9,2	-	0/6/23/26	0/1/1/1
9	NAG	Х	2	9	-	0/6/23/26	0/1/1/1
9	BMA	Х	3	9	-	2/2/19/22	0/1/1/1
9	MAN	Х	4	9	-	0/2/19/22	0/1/1/1
9	MAN	Х	5	9	-	0/2/19/22	0/1/1/1
9	MAN	Х	6	9	-	0/2/19/22	0/1/1/1
9	MAN	Х	7	9	-	0/2/19/22	0/1/1/1
10	NAG	Y	1	10,2	-	5/6/23/26	0/1/1/1
10	FUC	Y	2	10	-	-	0/1/1/1
5	NAG	Z	1	5,2	-	0/6/23/26	0/1/1/1
5	NAG	Z	2	5	-	2/6/23/26	0/1/1/1
11	NAG	a	1	2,11	-	2/6/23/26	0/1/1/1
11	NAG	a	2	11	-	3/6/23/26	0/1/1/1
11	BMA	a	3	11	-	0/2/19/22	0/1/1/1
11	MAN	a	4	11	-	0/2/19/22	0/1/1/1
3	NAG	b	1	2,3	-	0/6/23/26	0/1/1/1
3	NAG	b	2	3	-	3/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	BMA	b	3	3	-	0/2/19/22	0/1/1/1
5	NAG	с	1	5,2	-	2/6/23/26	0/1/1/1
5	NAG	с	2	5	-	1/6/23/26	0/1/1/1
3	NAG	d	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	d	2	3	-	2/6/23/26	0/1/1/1
3	BMA	d	3	3	-	2/2/19/22	0/1/1/1
12	NAG	е	1	1,12	-	0/6/23/26	0/1/1/1
12	NAG	е	2	12	-	0/6/23/26	0/1/1/1
12	BMA	е	3	12	-	0/2/19/22	0/1/1/1
12	FUC	е	4	12	-	-	0/1/1/1
4	NAG	f	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	f	2	4	-	1/6/23/26	0/1/1/1
4	FUC	f	3	4	-	-	0/1/1/1
4	NAG	g	1	4,1	-	2/6/23/26	0/1/1/1
4	NAG	g	2	4	-	1/6/23/26	0/1/1/1
4	FUC	g	3	4	-	-	0/1/1/1
3	NAG	h	1	$1,\!3$	-	2/6/23/26	0/1/1/1
3	NAG	h	2	3	-	1/6/23/26	0/1/1/1
3	BMA	h	3	3	-	1/2/19/22	0/1/1/1
3	NAG	i	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	i	2	3	-	3/6/23/26	0/1/1/1
3	BMA	i	3	3	-	0/2/19/22	0/1/1/1
3	NAG	j	1	2,3	-	3/6/23/26	0/1/1/1
3	NAG	j	2	3	-	4/6/23/26	0/1/1/1
3	BMA	j	3	3	-	0/2/19/22	0/1/1/1
8	NAG	k	1	2,8	-	2/6/23/26	0/1/1/1
8	NAG	k	2	8	-	2/6/23/26	0/1/1/1
8	BMA	k	3	8	-	0/2/19/22	0/1/1/1
8	MAN	k	4	8	-	1/2/19/22	0/1/1/1
8	MAN	k	5	8	-	0/2/19/22	0/1/1/1
5	NAG	1	1	5,2	-	4/6/23/26	0/1/1/1
5	NAG	1	2	5	-	0/6/23/26	0/1/1/1
4	NAG	m	1	2,4	-	3/6/23/26	0/1/1/1
4	NAG	m	2	4	-	2/6/23/26	0/1/1/1
4	FUC	m	3	4	-	-	0/1/1/1
3	NAG	n	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	n	2	3	-	1/6/23/26	0/1/1/1
3	BMA	n	3	3	-	0/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
13	NAG	0	1	13,2	-	2/6/23/26	0/1/1/1
13	NAG	0	2	13	-	3/6/23/26	0/1/1/1
13	BMA	0	3	13	-	0/2/19/22	0/1/1/1
13	NAG	0	4	13	-	0/6/23/26	0/1/1/1
3	NAG	р	1	2,3	-	5/6/23/26	0/1/1/1
3	NAG	р	2	3	-	2/6/23/26	0/1/1/1
3	BMA	р	3	3	-	0/2/19/22	0/1/1/1
3	NAG	r	1	2,3	-	2/6/23/26	0/1/1/1
3	NAG	r	2	3	-	4/6/23/26	0/1/1/1
3	BMA	r	3	3	-	1/2/19/22	0/1/1/1
3	NAG	s	1	2,3	-	0/6/23/26	0/1/1/1
3	NAG	s	2	3	-	3/6/23/26	0/1/1/1
3	BMA	s	3	3	-	0/2/19/22	0/1/1/1
3	NAG	t	1	2,3	-	3/6/23/26	0/1/1/1
3	NAG	t	2	3	-	0/6/23/26	0/1/1/1
3	BMA	t	3	3	-	0/2/19/22	0/1/1/1
11	NAG	u	1	2,11	-	1/6/23/26	0/1/1/1
11	NAG	u	2	11	-	2/6/23/26	0/1/1/1
11	BMA	u	3	11	-	2/2/19/22	0/1/1/1
11	MAN	u	4	11	-	0/2/19/22	0/1/1/1
9	NAG	V	1	9,2	-	0/6/23/26	0/1/1/1
9	NAG	V	2	9	-	0/6/23/26	0/1/1/1
9	BMA	V	3	9	-	2/2/19/22	0/1/1/1
9	MAN	V	4	9	-	0/2/19/22	0/1/1/1
9	MAN	V	5	9	-	0/2/19/22	0/1/1/1
9	MAN	V	6	9	-	0/2/19/22	0/1/1/1
9	MAN	V	7	9	-	0/2/19/22	0/1/1/1
15	NAG	W	1	2,15	-	0/6/23/26	0/1/1/1
15	NAG	W	2	15	-	2/6/23/26	0/1/1/1
15	BMA	W	3	15	-	0/2/19/22	0/1/1/1
15	MAN	W	4	15	-	0/2/19/22	0/1/1/1
3	NAG	х	1	2,3	-	3/6/23/26	0/1/1/1
3	NAG	X	2	3	-	0/6/23/26	0/1/1/1
3	BMA	X	3	3	-	0/2/19/22	0/1/1/1
11	NAG	у	1	2,11	-	$\frac{2}{6}/\frac{23}{26}$	0/1/1/1
11	NAG	у	2	11	-	3/6/23/26	0/1/1/1
11	BMA	у	3	11	_	2/2/19/22	0/1/1/1
11	MAN	V	4	11	-	1/2/19/22	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
12	NAG	Z	1	2,12	-	3/6/23/26	0/1/1/1
12	NAG	Z	2	12	-	1/6/23/26	0/1/1/1
12	BMA	Z	3	12	-	0/2/19/22	0/1/1/1
12	FUC	Z	4	12	-	-	0/1/1/1

All (30) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
6	S	1	NAG	C1-C2	4.22	1.58	1.52
12	е	1	NAG	C1-C2	4.01	1.57	1.52
12	KA	1	NAG	C1-C2	4.00	1.57	1.52
16	9	1	NAG	C1-C2	3.85	1.57	1.52
7	Т	3	BMA	O5-C5	3.38	1.50	1.43
3	Q	3	BMA	O5-C5	3.38	1.50	1.43
3	r	3	BMA	O5-C5	3.37	1.50	1.43
15	AA	3	BMA	O5-C5	3.34	1.49	1.43
9	EA	4	MAN	C1-C2	3.20	1.59	1.52
9	V	4	MAN	C1-C2	3.19	1.59	1.52
9	Х	4	MAN	C1-C2	3.17	1.59	1.52
3	n	1	NAG	O5-C1	-3.05	1.38	1.43
15	W	3	BMA	C1-C2	2.80	1.58	1.52
9	Х	4	MAN	O5-C1	2.52	1.47	1.43
9	Х	1	NAG	O5-C1	-2.50	1.39	1.43
9	V	1	NAG	O5-C1	-2.49	1.39	1.43
9	EA	1	NAG	O5-C1	-2.43	1.39	1.43
9	V	4	MAN	O5-C1	2.43	1.47	1.43
9	EA	4	MAN	O5-C1	2.39	1.47	1.43
15	DA	3	BMA	O5-C1	-2.30	1.39	1.43
8	W	3	BMA	O5-C1	-2.28	1.39	1.43
14	OA	5	MAN	C1-C2	2.27	1.57	1.52
9	Х	5	MAN	C1-C2	2.16	1.57	1.52
9	V	3	BMA	C4-C3	2.11	1.57	1.52
9	EA	3	BMA	C4-C3	2.09	1.57	1.52
15	DA	4	MAN	C1-C2	2.07	1.57	1.52
8	W	4	MAN	C1-C2	2.06	1.57	1.52
9	Х	3	BMA	C4-C3	2.05	1.57	1.52
9	V	5	MAN	C1-C2	2.04	1.57	1.52
15	AA	1	NAG	O5-C1	-2.01	1.40	1.43

All (199) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	S	1	NAG	C1-O5-C5	10.01	125.59	112.19
16	9	1	NAG	O5-C1-C2	-8.95	97.44	111.29
3	J	3	BMA	O2-C2-C3	8.25	127.23	110.15
12	е	1	NAG	O5-C1-C2	-7.46	99.75	111.29
12	KA	1	NAG	O5-C1-C2	-7.46	99.75	111.29
6	S	1	NAG	O5-C1-C2	-6.68	100.95	111.29
4	f	2	NAG	O5-C5-C6	6.55	120.41	107.66
5	MA	2	NAG	O5-C5-C6	6.55	120.41	107.66
4	g	2	NAG	O5-C5-C6	6.54	120.39	107.66
9	EA	4	MAN	C1-O5-C5	6.05	120.29	112.19
9	V	4	MAN	C1-O5-C5	6.01	120.24	112.19
9	Х	4	MAN	C1-O5-C5	5.95	120.16	112.19
3	Р	3	BMA	C1-O5-C5	5.12	119.05	112.19
16	9	1	NAG	C2-N2-C7	-4.93	116.30	122.90
3	Q	3	BMA	C1-O5-C5	4.64	118.41	112.19
7	Т	3	BMA	C1-O5-C5	4.64	118.40	112.19
16	9	1	NAG	C1-O5-C5	4.61	118.36	112.19
15	AA	3	BMA	C1-O5-C5	4.60	118.35	112.19
3	r	3	BMA	C1-O5-C5	4.58	118.33	112.19
4	m	1	NAG	C2-N2-C7	4.58	129.03	122.90
14	OA	5	MAN	C1-O5-C5	4.54	118.27	112.19
15	GA	2	NAG	C1-O5-C5	4.47	118.18	112.19
3	6	2	NAG	C1-O5-C5	4.44	118.14	112.19
16	9	4	MAN	C1-O5-C5	4.11	117.69	112.19
14	OA	6	MAN	C1-O5-C5	4.09	117.66	112.19
15	W	4	MAN	C1-O5-C5	4.07	117.65	112.19
8	W	4	MAN	C1-O5-C5	4.06	117.62	112.19
15	DA	4	MAN	C1-O5-C5	4.00	117.55	112.19
9	Х	6	MAN	C1-O5-C5	3.81	117.29	112.19
5	Ν	2	NAG	C1-O5-C5	3.79	117.27	112.19
9	V	6	MAN	C1-O5-C5	3.78	117.25	112.19
3	J	1	NAG	C2-N2-C7	3.77	127.95	122.90
9	EA	6	MAN	C1-O5-C5	3.75	117.22	112.19
14	OA	4	MAN	C1-O5-C5	3.69	117.14	112.19
13	0	1	NAG	C4-C3-C2	-3.68	105.63	111.02
5	с	2	NAG	C1-O5-C5	3.66	117.09	112.19
12	Z	2	NAG	C1-O5-C5	3.57	116.97	112.19
6	S	1	NAG	C2-N2-C7	-3.47	118.25	122.90
7	Т	5	MAN	O2-C2-C3	-3.47	102.96	110.15
3	r	3	BMA	O3-C3-C2	3.43	117.05	110.05
15	AA	3	BMA	O3-C3-C2	3.42	117.03	110.05
7	Т	3	BMA	O3-C3-C2	3.41	117.01	110.05
3	Q	3	BMA	O3-C3-C2	3.39	116.98	110.05

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
16	9	1	NAG	C3-C4-C5	-3.39	104.09	110.23
4	m	3	FUC	C3-C4-C5	3.37	114.94	109.81
4	m	1	NAG	C1-C2-N2	3.28	115.61	110.43
11	a	1	NAG	C2-N2-C7	3.25	127.25	122.90
3	Р	1	NAG	O5-C1-C2	3.20	116.24	111.29
13	0	1	NAG	O4-C4-C5	3.19	117.17	109.32
12	е	1	NAG	C3-C4-C5	-3.18	104.46	110.23
12	KA	1	NAG	C3-C4-C5	-3.17	104.49	110.23
3	Р	2	NAG	C1-O5-C5	3.15	116.40	112.19
3	Р	1	NAG	O4-C4-C5	3.12	117.00	109.32
9	Х	7	MAN	C1-O5-C5	3.08	116.31	112.19
6	S	2	NAG	C2-N2-C7	3.06	127.00	122.90
9	V	7	MAN	C1-O5-C5	2.98	116.18	112.19
9	EA	7	MAN	C1-O5-C5	2.98	116.18	112.19
13	0	4	NAG	C1-O5-C5	2.98	116.18	112.19
4	NA	1	NAG	C2-N2-C7	2.97	126.87	122.90
3	Р	3	BMA	C1-C2-C3	2.92	113.89	109.64
5	1	1	NAG	C1-C2-N2	-2.90	105.86	110.43
15	3	4	MAN	C1-O5-C5	2.88	116.04	112.19
16	9	4	MAN	O3-C3-C2	2.87	115.92	110.05
3	Р	1	NAG	C4-C3-C2	-2.87	106.82	111.02
16	9	5	MAN	C1-O5-C5	2.86	116.01	112.19
14	OA	6	MAN	O3-C3-C2	2.85	115.86	110.05
9	Х	5	MAN	C1-O5-C5	2.83	115.98	112.19
8	W	5	MAN	C1-O5-C5	2.83	115.97	112.19
6	S	2	NAG	C1-C2-N2	-2.82	105.99	110.43
14	OA	7	MAN	C1-O5-C5	2.81	115.95	112.19
10	Y	2	FUC	C3-C4-C5	2.80	114.07	109.81
9	V	5	MAN	C1-O5-C5	2.78	115.91	112.19
9	EA	5	MAN	C1-O5-C5	2.77	115.90	112.19
15	3	3	BMA	O3-C3-C4	2.77	116.90	110.38
3	М	3	BMA	O3-C3-C4	2.77	116.90	110.38
3	R	1	NAG	C2-N2-C7	2.75	126.58	122.90
4	f	2	NAG	C4-C3-C2	2.74	115.04	111.02
13	0	1	NAG	O5-C1-C2	2.73	115.51	111.29
4	g	2	NAG	C4-C3-C2	2.72	115.00	111.02
5	MA	2	NAG	C4-C3-C2	2.70	114.97	111.02
3	6	2	NAG	O5-C1-C2	2.70	115.46	111.29
6	S	1	NAG	O4-C4-C3	-2.67	104.07	110.38
6	S	1	NAG	O5-C5-C6	-2.67	102.47	107.66
4	g	1	NAG	C1-O5-C5	2.64	115.72	112.19
3	J	1	NAG	C1-C2-N2	2.64	114.59	110.43

Mol	Chain	Res	Type	ype Atoms		Observed(°)	Ideal(°)
8	k	1	NAG	C1-O5-C5	2.62	115.70	112.19
4	f	1	NAG	C1-O5-C5	2.60	115.67	112.19
12	Z	1	NAG	C1-O5-C5	2.57	115.64	112.19
13	0	1	NAG	O5-C5-C4	-2.57	104.58	110.83
9	EA	4	MAN	C1-C2-C3	2.54	113.35	109.64
12	е	1	NAG	C1-O5-C5	2.54	115.59	112.19
3	n	3	BMA	C1-O5-C5	2.53	115.58	112.19
9	V	4	MAN	C1-C2-C3	2.52	113.32	109.64
15	AA	3	BMA	C3-C4-C5	-2.52	105.66	110.23
15	GA	1	NAG	C1-O5-C5	2.52	115.56	112.19
3	r	3	BMA	C3-C4-C5	-2.52	105.67	110.23
5	С	1	NAG	O4-C4-C5	2.52	115.52	109.32
12	KA	1	NAG	C1-O5-C5	2.51	115.55	112.19
15	GA	2	NAG	C3-C4-C5	2.49	114.75	110.23
3	Q	3	BMA	C3-C4-C5	-2.48	105.74	110.23
7	Т	3	BMA	C3-C4-C5	-2.48	105.74	110.23
5	5	1	NAG	C2-N2-C7	2.48	126.22	122.90
3	4	2	NAG	O5-C1-C2	-2.47	107.47	111.29
5	MA	2	NAG	O3-C3-C4	2.47	116.20	110.38
15	GA	2	NAG	O5-C1-C2	2.47	115.11	111.29
3	n	2	NAG	C3-C4-C5	2.46	114.69	110.23
4	m	3	FUC	C1-C2-C3	2.46	113.22	109.64
9	Х	4	MAN	C1-C2-C3	2.45	113.22	109.64
3	Р	1	NAG	O5-C5-C4	-2.45	104.88	110.83
4	f	2	NAG	O3-C3-C4	2.43	116.11	110.38
4	g	2	NAG	O3-C3-C4	2.43	116.10	110.38
6	S	1	NAG	C4-C3-C2	2.41	114.56	111.02
3	i	2	NAG	C2-N2-C7	2.40	126.12	122.90
3	2	1	NAG	C2-N2-C7	2.40	126.11	122.90
15	W	3	BMA	O2-C2-C3	-2.38	105.23	110.15
3	6	2	NAG	C3-C4-C5	2.37	114.53	110.23
15	AA	4	MAN	O2-C2-C3	-2.36	105.26	110.15
7	Т	4	MAN	O2-C2-C3	-2.36	105.26	110.15
15	GA	1	NAG	C2-N2-C7	2.36	126.06	122.90
12	Z	1	NAG	C2-N2-C7	2.34	126.04	122.90
3	J	3	BMA	C2-C3-C4	2.34	114.98	110.86
3	Р	3	BMA	C3-C4-C5	2.34	114.47	110.23
3	d	3	BMA	O2-C2-C3	-2.33	105.32	110.15
3	j	2	NAG	C1-O5-C5	2.32	115.30	112.19
3	V	2	NAG	C1-O5-C5	2.31	115.29	112.19
3	М	3	BMA	C1-O5-C5	2.31	115.28	112.19
4	m	3	FUC	C1-O5-C5	2.31	118 41	112.97

Mol	Chain	Res	Type	Atoms Z		Observed(°)	$Ideal(^{o})$
3	0	2	NAG	C1-O5-C5	2.30	115.26	112.19
8	HA	1	NAG	C1-O5-C5	2.29	115.25	112.19
9	EA	6	MAN	O2-C2-C3	-2.28	105.44	110.15
3	L	1	NAG	O5-C1-C2	-2.27	107.78	111.29
15	3	3	BMA	C1-O5-C5	2.25	115.21	112.19
9	V	6	MAN	O2-C2-C3	-2.25	105.48	110.15
3	Х	1	NAG	C2-N2-C7	2.25	125.92	122.90
4	Н	2	NAG	C1-C2-N2	2.25	113.98	110.43
15	DA	4	MAN	O2-C2-C3	-2.25	105.50	110.15
16	9	6	MAN	C1-O5-C5	2.24	115.19	112.19
8	W	4	MAN	O2-C2-C3	-2.24	105.50	110.15
4	Ι	2	NAG	C1-C2-N2	2.24	113.96	110.43
17	BA	1	NAG	C1-O5-C5	2.24	115.18	112.19
14	OA	8	MAN	C1-O5-C5	2.23	115.17	112.19
11	a	2	NAG	C2-N2-C7	2.21	125.86	122.90
4	Н	2	NAG	C1-O5-C5	2.21	115.15	112.19
11	у	2	NAG	C2-N2-C7	2.21	125.86	122.90
4	Ι	2	NAG	C1-O5-C5	2.21	115.15	112.19
16	9	6	MAN	O2-C2-C3	-2.21	105.58	110.15
4	Ι	1	NAG	O4-C4-C5	2.21	114.76	109.32
13	0	1	NAG	C3-C4-C5	2.21	114.23	110.23
9	Х	7	MAN	O2-C2-C3	-2.20	105.59	110.15
9	Х	6	MAN	O2-C2-C3	-2.20	105.60	110.15
3	4	2	NAG	C4-C3-C2	-2.20	107.80	111.02
4	Н	1	NAG	O4-C4-C5	2.19	114.73	109.32
3	CA	2	NAG	C2-N2-C7	2.19	125.84	122.90
3	j	1	NAG	C2-N2-C7	2.19	125.83	122.90
5	Ζ	1	NAG	O4-C4-C5	-2.18	103.95	109.32
15	3	4	MAN	O2-C2-C3	-2.18	105.64	110.15
5	FA	1	NAG	O4-C4-C5	-2.18	103.96	109.32
15	W	1	NAG	O4-C4-C5	-2.18	103.96	109.32
9	ΕA	7	MAN	O2-C2-C3	-2.18	105.64	110.15
14	OA	8	MAN	O2-C2-C3	-2.17	105.67	110.15
9	v	7	MAN	O2-C2-C3	-2.16	105.67	110.15
13	0	2	NAG	C2-N2-C7	2.16	125.80	122.90
9	Х	3	BMA	C1-C2-C3	-2.15	106.51	109.64
13	0	2	NAG	C1-O5-C5	2.15	115.07	112.19
3	0	1	NAG	C1-O5-C5	2.13	115.04	112.19
9	Х	5	MAN	O2-C2-C3	-2.13	105.75	110.15
12	е	1	NAG	C1-C2-N2	2.12	113.77	110.43
15	GA	2	NAG	O5-C5-C6	2.12	111.78	107.66
10	Y	1	NAG	C2-N2-C7	2.11	125.73	122.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	EA	5	MAN	O2-C2-C3	-2.11	105.78	110.15
5	FA	2	NAG	C1-O5-C5	2.11	115.01	112.19
5	Z	2	NAG	C1-O5-C5	2.11	115.01	112.19
12	KA	1	NAG	C1-C2-N2	2.10	113.74	110.43
9	v	3	BMA	C1-C2-C3	-2.10	106.59	109.64
9	V	5	MAN	O2-C2-C3	-2.10	105.81	110.15
4	Ι	3	FUC	O5-C5-C6	2.09	111.93	107.40
4	Н	3	FUC	O5-C5-C6	2.08	111.92	107.40
8	W	5	MAN	O2-C2-C3	-2.08	105.83	110.15
12	KA	1	NAG	C4-C3-C2	-2.08	107.97	111.02
15	W	1	NAG	O4-C4-C3	2.07	115.26	110.38
15	W	4	MAN	O2-C2-C3	-2.07	105.86	110.15
3	d	3	BMA	C1-C2-C3	-2.07	106.63	109.64
9	EA	3	BMA	C1-C2-C3	-2.07	106.63	109.64
3	n	2	NAG	O4-C4-C5	-2.06	104.24	109.32
9	EA	3	BMA	C1-O5-C5	2.06	114.95	112.19
3	6	2	NAG	O5-C5-C6	2.05	111.66	107.66
15	W	2	NAG	C1-O5-C5	2.05	114.93	112.19
4	g	2	NAG	O4-C4-C5	2.04	114.36	109.32
4	f	2	NAG	O4-C4-C5	2.04	114.35	109.32
12	е	1	NAG	C4-C3-C2	-2.04	108.03	111.02
5	MA	2	NAG	O4-C4-C5	2.04	114.34	109.32
10	Y	1	NAG	C4-C3-C2	-2.03	108.04	111.02
5	Z	1	NAG	O4-C4-C3	2.03	115.16	110.38
14	OA	7	MAN	O2-C2-C3	-2.03	105.95	110.15
12	Z	1	NAG	O4-C4-C5	2.03	114.31	109.32
5	FA	1	NAG	O4-C4-C3	2.03	115.15	110.38
16	9	5	MAN	O2-C2-C3	-2.02	105.97	110.15
3	2	2	NAG	C1-O5-C5	2.01	114.88	112.19
9	Х	3	BMA	C1-O5-C5	2.01	114.88	112.19

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	from	previous	page

There are no chirality outliers.

All (296) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	J	1	NAG	C1-C2-N2-C7
3	J	1	NAG	C8-C7-N2-C2
3	J	1	NAG	O7-C7-N2-C2
3	Κ	1	NAG	O7-C7-N2-C2
3	Κ	2	NAG	C8-C7-N2-C2
3	Κ	2	NAG	O7-C7-N2-C2
3	L	1	NAG	C8-C7-N2-C2

Mol	Chain	Res	Type	Atoms
3	L	1	NAG	O7-C7-N2-C2
3	L	2	NAG	C1-C2-N2-C7
3	Р	1	NAG	C8-C7-N2-C2
3	Р	1	NAG	O7-C7-N2-C2
3	R	1	NAG	C8-C7-N2-C2
3	R	1	NAG	O7-C7-N2-C2
3	V	2	NAG	C3-C2-N2-C7
3	V	2	NAG	O7-C7-N2-C2
3	b	2	NAG	O7-C7-N2-C2
3	h	1	NAG	C8-C7-N2-C2
3	h	1	NAG	O7-C7-N2-C2
3	i	2	NAG	C1-C2-N2-C7
3	i	2	NAG	C8-C7-N2-C2
3	i	2	NAG	O7-C7-N2-C2
3	j	1	NAG	C1-C2-N2-C7
3	j	1	NAG	O7-C7-N2-C2
3	j	2	NAG	C3-C2-N2-C7
3	j	2	NAG	O7-C7-N2-C2
3	р	1	NAG	C1-C2-N2-C7
3	р	1	NAG	C8-C7-N2-C2
3	р	1	NAG	O7-C7-N2-C2
3	s	2	NAG	C1-C2-N2-C7
3	s	2	NAG	C8-C7-N2-C2
3	\mathbf{S}	2	NAG	O7-C7-N2-C2
3	0	1	NAG	C8-C7-N2-C2
3	0	1	NAG	O7-C7-N2-C2
3	0	2	NAG	C3-C2-N2-C7
3	0	2	NAG	O7-C7-N2-C2
3	2	1	NAG	C1-C2-N2-C7
3	2	2	NAG	C1-C2-N2-C7
3	2	2	NAG	C8-C7-N2-C2
3	2	2	NAG	O7-C7-N2-C2
3	4	2	NAG	C8-C7-N2-C2
3	4	2	NAG	O7-C7-N2-C2
3	6	2	NAG	C8-C7-N2-C2
3	6	2	NAG	07-C7-N2-C2
3	CA	2	NAG	C8-C7-N2-C2
3	CA	2	NAG	07-C7-N2-C2
3	IA	1	NAG	C8-C7-N2-C2
3	IA	1	NAG	O7-C7-N2-C2
3	IA	2	NAG	C8-C7-N2-C2
3	IA	2	NAG	07-C7-N2-C2

Mol	Chain	Res	Type	Atoms
4	m	1	NAG	C1-C2-N2-C7
4	NA	1	NAG	C1-C2-N2-C7
4	NA	1	NAG	O7-C7-N2-C2
5	N	2	NAG	C8-C7-N2-C2
5	N	2	NAG	O7-C7-N2-C2
5	1	1	NAG	C8-C7-N2-C2
5	1	1	NAG	O7-C7-N2-C2
5	5	1	NAG	C1-C2-N2-C7
5	5	1	NAG	C8-C7-N2-C2
5	5	1	NAG	O7-C7-N2-C2
5	7	2	NAG	C8-C7-N2-C2
5	7	2	NAG	O7-C7-N2-C2
6	S	2	NAG	C3-C2-N2-C7
6	S	2	NAG	C8-C7-N2-C2
6	S	2	NAG	O7-C7-N2-C2
8	k	2	NAG	C8-C7-N2-C2
8	k	2	NAG	O7-C7-N2-C2
8	HA	1	NAG	C8-C7-N2-C2
8	HA	1	NAG	O7-C7-N2-C2
11	a	2	NAG	O7-C7-N2-C2
11	у	2	NAG	C1-C2-N2-C7
11	у	2	NAG	O7-C7-N2-C2
12	Z	1	NAG	C1-C2-N2-C7
12	Z	1	NAG	C8-C7-N2-C2
12	Z	1	NAG	O7-C7-N2-C2
13	0	2	NAG	C1-C2-N2-C7
13	0	2	NAG	C8-C7-N2-C2
13	0	2	NAG	O7-C7-N2-C2
15	GA	1	NAG	C1-C2-N2-C7
16	9	2	NAG	C3-C2-N2-C7
3	K	1	NAG	C8-C7-N2-C2
3	V	2	NAG	C8-C7-N2-C2
3	b	2	NAG	C8-C7-N2-C2
3	j	1	NAG	C8-C7-N2-C2
3	j	2	NAG	C8-C7-N2-C2
3	х	1	NAG	C8-C7-N2-C2
3	х	1	NAG	O7-C7-N2-C2
3	0	2	NAG	C8-C7-N2-C2
3	2	1	NAG	$C8-C7-N\overline{2-C2}$
3	2	1	NAG	07-C7-N2-C2
4	NA	1	NAG	C8-C7-N2-C2
11	a	2	NAG	C8-C7-N2-C2

Mol	Chain	Res	Type	Atoms
11	у	2	NAG	C8-C7-N2-C2
15	GA	2	NAG	C8-C7-N2-C2
15	GA	2	NAG	O7-C7-N2-C2
16	9	2	NAG	C8-C7-N2-C2
16	9	2	NAG	O7-C7-N2-C2
14	OA	2	NAG	O5-C5-C6-O6
3	1	3	BMA	O5-C5-C6-O6
5	1	1	NAG	O5-C5-C6-O6
8	W	4	MAN	O5-C5-C6-O6
11	u	3	BMA	O5-C5-C6-O6
15	DA	4	MAN	O5-C5-C6-O6
3	М	1	NAG	C4-C5-C6-O6
15	3	1	NAG	C4-C5-C6-O6
4	m	1	NAG	C8-C7-N2-C2
4	m	1	NAG	O7-C7-N2-C2
5	Ν	1	NAG	C8-C7-N2-C2
5	Ν	1	NAG	O7-C7-N2-C2
15	GA	1	NAG	O7-C7-N2-C2
14	OA	2	NAG	C4-C5-C6-O6
9	Х	3	BMA	O5-C5-C6-O6
9	V	3	BMA	O5-C5-C6-O6
9	EA	3	BMA	O5-C5-C6-O6
10	Y	1	NAG	O5-C5-C6-O6
3	1	3	BMA	C4-C5-C6-O6
3	М	2	NAG	O5-C5-C6-O6
15	3	2	NAG	O5-C5-C6-O6
3	d	3	BMA	C4-C5-C6-O6
5	1	1	NAG	C4-C5-C6-O6
3	Q	2	NAG	O5-C5-C6-O6
3	r	2	NAG	O5-C5-C6-O6
7	Т	2	NAG	O5-C5-C6-O6
15	AA	2	NAG	O5-C5-C6-O6
4	NA	2	NAG	C8-C7-N2-C2
10	Y	1	NAG	C8-C7-N2-C2
10	Y	1	NAG	O7-C7-N2-C2
11	u	2	NAG	C8-C7-N2-C2
15	GA	1	NAG	C8-C7-N2-C2
3	d	2	NAG	O5-C5-C6-O6
3	d	3	BMA	O5-C5-C6-O6
11	У	3	BMA	O5-C5-C6-O6
16	9	2	NAG	O5-C5-C6-O6
8	W	4	MAN	C4-C5-C6-O6

Continued from previous page...

Mol	Chain	Res	Type	Atoms
11	у	3	BMA	C4-C5-C6-O6
3	L	3	BMA	O5-C5-C6-O6
3	М	1	NAG	O5-C5-C6-O6
15	3	1	NAG	O5-C5-C6-O6
3	Q	2	NAG	C4-C5-C6-O6
3	r	2	NAG	C4-C5-C6-O6
7	Т	2	NAG	C4-C5-C6-O6
9	Х	3	BMA	C4-C5-C6-O6
9	V	3	BMA	C4-C5-C6-O6
9	EA	3	BMA	C4-C5-C6-O6
15	AA	2	NAG	C4-C5-C6-O6
15	DA	4	MAN	C4-C5-C6-O6
11	u	3	BMA	C4-C5-C6-O6
3	V	1	NAG	C8-C7-N2-C2
3	6	1	NAG	C8-C7-N2-C2
4	f	1	NAG	C8-C7-N2-C2
4	g	1	NAG	C8-C7-N2-C2
4	NA	2	NAG	O7-C7-N2-C2
8	k	1	NAG	C8-C7-N2-C2
3	d	1	NAG	O5-C5-C6-O6
3	d	2	NAG	C4-C5-C6-O6
5	Ζ	2	NAG	C4-C5-C6-O6
5	FA	2	NAG	C4-C5-C6-O6
15	W	2	NAG	C4-C5-C6-O6
3	М	2	NAG	C4-C5-C6-O6
15	3	2	NAG	C4-C5-C6-O6
3	R	2	NAG	C8-C7-N2-C2
3	V	1	NAG	O7-C7-N2-C2
3	i	1	NAG	C8-C7-N2-C2
3	р	2	NAG	C8-C7-N2-C2
3	6	1	NAG	O7-C7-N2-C2
4	f	1	NAG	O7-C7-N2-C2
4	g	1	NAG	O7-C7-N2-C2
4	m	2	NAG	C8-C7-N2-C2
8	k	1	NAG	O7-C7-N2-C2
11	u	2	NAG	$O7-C7-N\overline{2-C2}$
11	У	1	NAG	C8-C7-N2-C2
11	У	1	NAG	O7-C7-N2-C2
13	0	1	NAG	C8-C7-N2-C2
16	9	1	NAG	C8-C7-N2-C2
5	Ζ	2	NAG	O5-C5-C6-O6
5	FA	2	NAG	O5-C5-C6-O6

Continued from previous page...

Mol	Chain	Res	Type	Atoms
15	W	2	NAG	O5-C5-C6-O6
8	W	2	NAG	O5-C5-C6-O6
15	DA	2	NAG	O5-C5-C6-O6
3	р	1	NAG	O5-C5-C6-O6
5	С	1	NAG	O5-C5-C6-O6
4	m	2	NAG	O7-C7-N2-C2
13	0	1	NAG	O7-C7-N2-C2
3	n	1	NAG	C4-C5-C6-O6
10	Y	1	NAG	C4-C5-C6-O6
3	n	1	NAG	O5-C5-C6-O6
3	R	2	NAG	O7-C7-N2-C2
3	i	1	NAG	O7-C7-N2-C2
3	р	2	NAG	O7-C7-N2-C2
4	Н	1	NAG	C8-C7-N2-C2
4	Ι	1	NAG	C8-C7-N2-C2
16	9	1	NAG	O7-C7-N2-C2
3	Р	2	NAG	C8-C7-N2-C2
3	JA	1	NAG	C8-C7-N2-C2
11	у	4	MAN	O5-C5-C6-O6
3	h	2	NAG	O5-C5-C6-O6
3	G	1	NAG	O5-C5-C6-O6
3	V	2	NAG	O5-C5-C6-O6
3	CA	2	NAG	O5-C5-C6-O6
3	d	1	NAG	C4-C5-C6-O6
3	L	3	BMA	C4-C5-C6-O6
4	Н	1	NAG	O7-C7-N2-C2
4	Ι	1	NAG	O7-C7-N2-C2
3	j	2	NAG	O5-C5-C6-O6
3	0	2	NAG	O5-C5-C6-O6
4	0	1	NAG	C4-C5-C6-O6
3	М	3	BMA	O5-C5-C6-O6
15	3	3	BMA	O5-C5-C6-O6
3	K	2	NAG	O5-C5-C6-O6
3	4	3	BMA	O5-C5-C6-O6
5	с	2	NAG	O5-C5-C6-O6
3	Р	3	BMA	O5-C5-C6-O6
3	h	3	BMA	O5-C5-C6-O6
3	4	2	NAG	O5-C5-C6-O6
8	k	4	MAN	O5-C5-C6-O6
4	Н	2	NAG	O5-C5-C6-O6
4	Ι	2	NAG	O5-C5-C6-O6
3	n	2	NAG	O5-C5-C6-O6

Continued from previous page...

Mol	Chain	Res	Type	Atoms
3	6	2	NAG	O5-C5-C6-O6
17	BA	3	NAG	O5-C5-C6-O6
3	Р	2	NAG	O7-C7-N2-C2
3	CA	1	NAG	C8-C7-N2-C2
15	GA	2	NAG	O5-C5-C6-O6
3	b	2	NAG	C3-C2-N2-C7
3	Х	1	NAG	C3-C2-N2-C7
10	Y	1	NAG	C3-C2-N2-C7
11	a	2	NAG	C3-C2-N2-C7
15	GA	4	MAN	O5-C5-C6-O6
3	Q	3	BMA	O5-C5-C6-O6
3	r	3	BMA	O5-C5-C6-O6
5	U	2	NAG	O5-C5-C6-O6
7	Т	3	BMA	O5-C5-C6-O6
15	AA	3	BMA	O5-C5-C6-O6
6	S	5	MAN	O5-C5-C6-O6
5	MA	1	NAG	C8-C7-N2-C2
16	9	2	NAG	C4-C5-C6-O6
3	JA	1	NAG	O7-C7-N2-C2
8	W	2	NAG	C4-C5-C6-O6
15	DA	2	NAG	C4-C5-C6-O6
3	R	1	NAG	C1-C2-N2-C7
4	0	1	NAG	O5-C5-C6-O6
16	9	3	BMA	C4-C5-C6-O6
3	CA	1	NAG	O7-C7-N2-C2
5	с	1	NAG	C4-C5-C6-O6
5	MA	1	NAG	O7-C7-N2-C2
3	Q	1	NAG	C3-C2-N2-C7
3	Q	2	NAG	C3-C2-N2-C7
3	R	1	NAG	C3-C2-N2-C7
3	r	1	NAG	C3-C2-N2-C7
3	r	2	NAG	C3-C2-N2-C7
3	CA	2	NAG	C3-C2-N2-C7
7	Т	1	NAG	C3-C2-N2-C7
7	Т	2	NAG	C3-C2-N2-C7
8	W	2	NAG	C3-C2-N2-C7
11	a	1	NAG	C3-C2-N2-C7
15	AA	1	NAG	C3-C2-N2-C7
15	AA	2	NAG	C3-C2-N2-C7
15	DA	2	NAG	C3-C2-N2-C7
15	DA	1	NAG	C4-C5-C6-O6
8	W	1	NAG	C4-C5-C6-O6

e ontentaca from precioas page					
Mol	Chain	Res	Type	Atoms	
16	9	4	MAN	O5-C5-C6-O6	
14	OA	6	MAN	O5-C5-C6-O6	
16	9	3	BMA	O5-C5-C6-O6	
3	р	1	NAG	C4-C5-C6-O6	
3	t	1	NAG	C8-C7-N2-C2	
8	W	1	NAG	O5-C5-C6-O6	
15	DA	1	NAG	O5-C5-C6-O6	
3	Q	1	NAG	C1-C2-N2-C7	
3	Q	2	NAG	C1-C2-N2-C7	
3	r	1	NAG	C1-C2-N2-C7	
3	r	2	NAG	C1-C2-N2-C7	
3	t	1	NAG	C1-C2-N2-C7	
3	0	1	NAG	C1-C2-N2-C7	
3	6	1	NAG	C1-C2-N2-C7	
3	CA	1	NAG	C1-C2-N2-C7	
3	CA	2	NAG	C1-C2-N2-C7	
3	IA	2	NAG	C1-C2-N2-C7	
4	f	2	NAG	C1-C2-N2-C7	
4	g	2	NAG	C1-C2-N2-C7	
5	U	2	NAG	C1-C2-N2-C7	
5	7	1	NAG	C1-C2-N2-C7	
5	MA	2	NAG	C1-C2-N2-C7	
7	Т	1	NAG	C1-C2-N2-C7	
7	Т	2	NAG	C1-C2-N2-C7	
8	W	2	NAG	C1-C2-N2-C7	
11	a	1	NAG	C1-C2-N2-C7	
11	u	1	NAG	C1-C2-N2-C7	
15	AA	1	NAG	C1-C2-N2-C7	
15	AA	2	NAG	C1-C2-N2-C7	
15	DA	2	NAG	C1-C2-N2-C7	
17	BA	2	NAG	C1-C2-N2-C7	
12	Z	2	NAG	C4-C5-C6-O6	
5	N	2	NAG	C3-C2-N2-C7	
3	1	1	NAG	C4-C5-C6-O6	
3	t	1	NAG	O7-C7-N2-C2	
3	1	1	NAG	O5-C5-C6-O6	
3	8	2	NAG	O5-C5-C6-O6	

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

6 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Link Bond lengths			Bond angles			
INIOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
19	NAG	E	602	2	14,14,15	0.42	0	17,19,21	0.75	0
18	83G	А	601	-	32,33,33	0.94	4 (12%)	39,47,47	0.89	2 (5%)
18	83G	E	601	-	32,33,33	0.98	4 (12%)	39,47,47	1.08	3 (7%)
18	83G	С	601	-	32,33,33	0.94	4 (12%)	39,47,47	0.94	2 (5%)
19	NAG	А	602	2	14,14,15	0.35	0	17,19,21	0.51	0

Mal	Mol Type Chain Reg Li		Tink	Bond lengths			Bond angles			
	туре	Unam	nes	LIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
19	NAG	С	602	2	14,14,15	0.30	0	17,19,21	0.64	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
19	NAG	Е	602	2	-	1/6/23/26	0/1/1/1
18	83G	А	601	-	-	10/18/35/35	0/4/4/4
18	83G	Е	601	-	-	4/18/35/35	0/4/4/4
18	83G	С	601	-	-	6/18/35/35	0/4/4/4
19	NAG	А	602	2	-	1/6/23/26	0/1/1/1
19	NAG	С	602	2	_	2/6/23/26	0/1/1/1

All	(12)	bond	length	outliers	are	listed	below:	

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
18	С	601	83G	C11-C12	-3.14	1.43	1.49
18	А	601	83G	C11-C12	-3.11	1.43	1.49
18	Е	601	83G	C11-C12	-3.06	1.43	1.49
18	Е	601	83G	C14-C12	-2.56	1.50	1.53
18	Е	601	83G	C11-C08	2.20	1.45	1.42
18	С	601	83G	C11-C08	2.17	1.45	1.42
18	С	601	83G	C14-C12	-2.08	1.50	1.53
18	А	601	83G	C11-C08	2.06	1.44	1.42
18	Е	601	83G	C07-N06	-2.05	1.34	1.37
18	С	601	83G	C07-N06	-2.02	1.34	1.37
18	А	601	83G	C14-C12	-2.02	1.51	1.53
18	А	601	83G	C07-N06	-2.01	1.34	1.37

All (7) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
18	С	601	83G	O02-C03-C08	2.49	119.46	115.91
18	С	601	83G	C11-C08-C07	-2.40	105.62	107.54
18	Е	601	83G	O02-C03-C08	2.39	119.32	115.91
18	Е	601	83G	C11-C08-C07	-2.30	105.70	107.54
18	А	601	83G	C12-C14-N16	2.17	121.03	118.81
18	Е	601	83G	C21-N16-C14	2.05	125.42	120.32
18	А	601	83G	C11-C08-C07	-2.01	105.93	107.54

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
18	С	601	83G	O15-C14-N16-C17
18	А	601	83G	O15-C14-N16-C17
19	С	602	NAG	C8-C7-N2-C2
19	С	602	NAG	O7-C7-N2-C2
18	А	601	83G	C08-C03-O02-C01
18	А	601	83G	C04-C03-O02-C01
18	А	601	83G	C25-C23-N19-C20
18	Е	601	83G	C08-C03-O02-C01
18	А	601	83G	O24-C23-N19-C20
18	С	601	83G	C12-C14-N16-C17
18	Е	601	83G	O15-C14-N16-C17
18	Е	601	83G	C04-C03-O02-C01
18	А	601	83G	C12-C14-N16-C17
18	С	601	83G	O13-C12-C14-O15
18	А	601	83G	O13-C12-C14-O15
18	А	601	83G	C11-C12-C14-O15
18	С	601	83G	C12-C14-N16-C21
18	Е	601	83G	C12-C14-N16-C21
18	А	601	83G	C12-C14-N16-C21
18	С	601	83G	O24-C23-N19-C20
19	Е	602	NAG	C1-C2-N2-C7
19	A	602	NAG	C1-C2-N2-C7
18	A	601	83G	O13-C12-C14-N16
18	С	601	83G	C11-C12-C14-O15

All (24) torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-28954. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

Y Index: 80

Z Index: 80

6.2.2 Raw map

X Index: 80

Y Index: 80

Z Index: 80

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 86

Y Index: 78

Z Index: 83

6.3.2 Raw map

X Index: 86

Y Index: 78

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.035. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 128 nm^3 ; this corresponds to an approximate mass of 115 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.263 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.263 ${\rm \AA}^{-1}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution ostimato}(\mathbf{\hat{A}})$	Estim	Estimation criterion (FSC cut-off)				
Resolution estimate (A)	0.143	0.5	Half-bit			
Reported by author	3.80	-	-			
Author-provided FSC curve	-	-	-			
Unmasked-calculated*	4.17	5.98	4.27			

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-28954 and PDB model 8FAE. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.035 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.035).

9.4 Atom inclusion (i)

At the recommended contour level, 94% of all backbone atoms, 66% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.035) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6600	0.3330
0	0.3850	0.3230
1	0.2560	0.2240
2	0.4360	0.2580
3	0.4000	0.1390
4	0.2560	0.2200
5	0.1790	0.2130
6	0.2820	0.2460
7	0.4640	0.3100
8	0.1280	0.1240
9	0.4820	0.2690
A	0.7570	0.3740
AA	0.3200	0.2340
В	0.6790	0.2900
BA	0.3090	0.2960
\mathbf{C}	0.7530	0.3770
CA	0.3330	0.3390
D	0.6790	0.2970
DA	0.4600	0.2360
Ε	0.7550	0.3760
EA	0.4580	0.1680
F	0.6210	0.2970
FA	0.6070	0.2260
G	0.3590	0.3060
GA	0.3800	0.2690
Н	0.0790	0.1720
HA	0.1800	0.1600
I	0.1320	0.0780
IA	0.2050	0.1160
J	0.2310	0.2540
JA	0.3330	0.2370
K	0.3330	0.2660
KA	0.3670	0.2700
L	0.3080	0.2150
LA	0.0790	0.1210

0.0

1.0

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
М	0.5130	0.3370
MA	0.1070	0.3350
N	0.2140	0.1740
NA	0.1320	0.1800
0	0.0260	-0.0160
OA	0.3620	0.2160
Р	0.4360	0.2290
Q	0.2820	0.1650
R	0.1030	0.1470
S	0.5560	0.2920
Т	0.2620	0.1250
U	0.4640	0.2930
V	0.2560	0.3200
W	0.3280	0.2550
Х	0.4220	0.1960
Y	0.0000	0.0930
Z	0.5710	0.2190
a	0.3200	0.3080
b	0.3080	0.2070
с	0.3930	0.2910
d	0.3850	0.2590
e	0.3270	0.2380
f	0.1320	0.1820
g	0.1840	0.1610
h	0.1790	0.2350
i	0.3590	0.3430
j	0.3850	0.2950
k	0.3280	0.2250
1	0.1430	0.1170
m	0.1840	0.1390
n	0.3850	0.2200
0	0.2070	0.2930
р	0.2820	0.1610
r	0.4360	0.2150
S	0.3080	0.3260
t	0.3850	0.2960
u	0.4400	0.2960
V	0.4580	0.1600
W	0.3600	0.2060
X	0.4360	0.2830
У	0.2400	0.1530
	0.1430	0.2010

