

Mar 6, 2025 - 06:32 pm GMT

PDB ID	:	8AKN
EMDB ID	:	EMD-15488
Title	:	Cryo-EM structure of the proline-rich antimicrobial peptide drosocin bound
		to the terminating ribosome
Authors	:	Koller, T.O.; Morici, M.; Wilson, D.N.
Deposited on	:	2022-07-30
Resolution	:	2.30 Å(reported)
This is	a I	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	0	55	91%	• 7%
2	1	46	96%	•
3	2	65	95%	• •
4	3	38	97%	•
5	4	70	83%	• 14%
6	А	19	95%	5%
7	В	1534	82%	16% ·
8	С	241	90%	• 7%
9	D	233	86%	• 12%

Mol	Chain	Length	Quality of chain	
10	Е	206	95%	•
11	F	167	93%	7%
12	G	135	69% 7%	24%
13	Η	179	83%	• 15%
14	Ι	130	98%	••
15	J	130	92%	6% •
16	Κ	103	87%	8% 5%
17	L	129	88%	• 9%
18	М	124	96%	••
19	Ν	118	97%	•••
20	О	101	98%	•••
21	Р	89	98%	
22	Q	82	98%	
23	R	84	89%	5% 6%
24	\mathbf{S}	75	85%	• 12%
25	Т	92	89%	• 9%
26	U	87	98%	
27	V	71	97%	••
28	W	360	94%	5% •
29	Х	76	72%	28%
30	Y	9	100%	
31	Z	76	46% 54%	
32	a	2903	76%	18% • 5%
33	b	120	88%	12% •
34	с	273	98%	••

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·
37 f 179 97% 38 g 177 97% 39 h 149 27% 72% 40 i 142 100% 41 j 123 97%	·
38 g 177 97% 39 h 149 27% 72% 40 i 142 100% 41 j 123 97%	
39 h 149 27% 72% 40 i 142 100% 41 j 123 97%	
40 i 142 100% 41 j 123 97%	
41 j 123 97%	
	•
42 K 144 98%	•
43 1 136 98%	•
44 m 127 92% .	7%
45 n 117 97%	•••
46 o 115 99%	
47 p 118 97%	•••
48 q 103 100%	
49 r 110 97%	•
50 s 100 91% ···	7%
51 t 104 91% 75	~ •
52 u 94 97%	
53 v 85 92%	%
54 w 78 96%	
55 x 63 94%	5% •
56 v 59 97%	
57 z 57 98%	

2 Entry composition (i)

There are 62 unique types of molecules in this entry. The entry contains 146513 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	0	51	Total 417	C 269	N 76	O 72	0	0

• Molecule 2 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	1	46	Total 377	C 228	N 90	O 57	${ m S} { m 2}$	0	0

• Molecule 3 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	64	Total 504	C 323	N 105	0 74	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 4 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	3	38	Total 302	C 185	N 65	O 48	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 5 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues	Atoms				AltConf	Trace	
5	4	60	Total 480	C 299	N 90	O 85	S 6	0	0

• Molecule 6 is a protein called Drosocin1.

Mol	Chain	Residues	Atoms				AltConf	Trace
6	А	19	Total 155	C 98	N 34	O 23	0	0

• Molecule 7 is a RNA chain called 16S ribosomal RNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
7	В	1519	Total 32608	C 14548	N 5986	O 10555	Р 1519	0	0

• Molecule 8 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		Ate	AltConf	Trace			
8	С	224	Total 1753	C 1109	N 315	0 321	S 8	0	0

• Molecule 9 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
9	D	206	Total 1624	C 1028	N 305	0 288	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		Ate	AltConf	Trace			
10	Е	205	Total 1643	C 1026	N 315	0 298	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 11 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	F	156	Total 1152	C 717	N 217	0 212	S 6	0	0

• Molecule 12 is a protein called 30S ribosomal protein S6, fully modified isoform.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	G	103	Total 839	C 530	N 151	0 151	${ m S} 7$	0	0

• Molecule 13 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Н	153	Total 1203	C 750	N 231	0 218	$\frac{S}{4}$	0	0

• Molecule 14 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	Ι	129	Total 979	C 616	N 173	O 184	S 6	0	0

• Molecule 15 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	J	127	Total 1022	C 634	N 206	0 179	${ m S} { m 3}$	0	0

• Molecule 16 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	K	98	Total 786	C 493	N 150	0 142	S 1	0	0

• Molecule 17 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	L	117	Total 877	C 540	N 174	0 160	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	М	123	Total 955	C 590	N 196	0 165	$\frac{S}{4}$	0	0

• Molecule 19 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	Ν	115	Total 891	C 552	N 179	0 157	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Ο	100	Total 805	C 499	N 164	0 139	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	Р	88	Total 714	C 439	N 144	O 130	S 1	0	0

• Molecule 22 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	Q	81	Total 643	C 403	N 127	0 112	S 1	0	0

• Molecule 23 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	R	79	Total 641	C 406	N 120	0 112	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
24	S	66	Total 544	C 345	N 102	O 96	S 1	0	0

• Molecule 25 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	Т	84	Total 668	C 427	N 127	0 112	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	U	86	Total 670	C 414	N 138	0 115	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
27	V	70	Total 589	C 366	N 125	O 97	S 1	0	0

• Molecule 28 is a protein called Peptide chain release factor RF1.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	W	354	Total 2792	C 1708	N 518	O 553	S 13	0	0

• Molecule 29 is a RNA chain called Phenylalanine-tRNA.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
29	Х	76	Total 1623	C 723	N 290	0 534	Р 76	0	0

• Molecule 30 is a RNA chain called mRNA.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	Y	9	Total 188	C 85	N 31	O 63	Р 9	0	0

• Molecule 31 is a RNA chain called Isoleucine-tRNA.

Mol	Chain	Residues		A	AltConf	Trace			
31	Z	76	Total 1616	C 722	N 287	0 532	Р 75	0	0

• Molecule 32 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
32	a	2753	Total 59128	C 26382	N 10897	O 19096	Р 2753	0	0

• Molecule 33 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
33	b	119	Total 2549	C 1135	N 466	O 829	Р 119	0	0

• Molecule 34 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	AltConf	Trace			
34	с	271	Total 2082	C 1288	N 423	0 364	${ m S} 7$	0	0

• Molecule 35 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	d	209	Total 1566	C 980	N 288	0 294	${f S}$ 4	0	0

• Molecule 36 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	е	201	Total 1552	C 974	N 283	O 290	${ m S}{ m 5}$	0	0

• Molecule 37 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	f	177	Total 1410	C 899	N 249	0 256	S 6	0	0

• Molecule 38 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	g	176	Total 1323	C 832	N 243	0 246	${S \over 2}$	0	0

• Molecule 39 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
39	h	41	Total 303	C 194	N 54	0 54	S 1	0	0

• Molecule 40 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	i	142	Total 1129	С 714	N 212	O 199	$\frac{S}{4}$	0	0

• Molecule 41 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	j	123	Total 946	C 593	N 181	0 166	S 6	0	0

• Molecule 42 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	k	144	Total 1053	C 654	N 207	O 190	${ m S} { m 2}$	0	0

• Molecule 43 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	1	136	Total 1074	C 686	N 205	0 177	S 6	0	0

• Molecule 44 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	m	118	Total 945	C 585	N 194	0 161	${f S}{5}$	0	0

• Molecule 45 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
45	n	116	Total 892	$\begin{array}{c} \mathrm{C} \\ 552 \end{array}$	N 178	O 162	0	0

• Molecule 46 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	О	114	Total 917	C 574	N 179	0 163	S 1	0	0

• Molecule 47 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
47	n	117	Total	С	Ν	Ο	0	0
41	Р	111	947	604	192	151	0	0

• Molecule 48 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	q	103	Total 816	C 516	N 153	0 145	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 49 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	r	110	Total 857	C 532	N 166	0 156	${ m S} { m 3}$	0	0

• Molecule 50 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	S	93	Total 738	C 466	N 139	0 131	${S \over 2}$	0	0

• Molecule 51 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
51	t	102	Total 779	C 492	N 146	0 141	0	0

• Molecule 52 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
52	u	94	Total 753	C 479	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 53 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
53	V	78	Total 586	C 362	N 116	0 107	S 1	0	0

• Molecule 54 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms		AltConf	Trace	
54	W	77	Total 625	C 388	N 129	O 106	${ m S} { m 2}$	0	0

• Molecule 55 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
55	v	62	Total	С	Ν	0	S	0	0
00	л	02	501	308	98	94	1	0	0

• Molecule 56 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues	Atoms			AltConf	Trace		
56		59	Total	С	Ν	Ο	\mathbf{S}	0	0
50	У	- 50	449	281	87	79	2	0	0

• Molecule 57 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
57	Z	56	Total 444	C 269	N 94	O 80	S 1	0	0

• Molecule 58 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
58	3	1	Total Zn 1 1	0
58	4	1	Total Zn 1 1	0

• Molecule 59 is 2-acetamido-2-deoxy-alpha-D-galactopyranose (three-letter code: A2G) (formula: C₈H₁₅NO₆) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	ton	ns		AltConf
50	Λ	1	Total	С	Ν	Ο	0
- 59	A	1	14	8	1	5	0

• Molecule 60 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
60	В	89	Total Mg 89 89	0
60	a	208	Total Mg 208 208	0
60	b	5	Total Mg 5 5	0
60	с	1	Total Mg 1 1	0
60	d	1	Total Mg 1 1	0
60	Z	1	Total Mg 1 1	0

 $\bullet\,$ Molecule 61 is SPERMINE (three-letter code: SPM) (formula: $C_{10}H_{26}N_4).$

Mol	Chain	Residues	Atoms	AltConf
61	a	1	Total C N 14 10 4	0

• Molecule 62 is water.

Mol	Chain	Residues	Atoms	AltConf
62	0	1	Total O 1 1	0
62	1	2	Total O 2 2	0
62	2	12	Total O 12 12	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
62	3	3	Total O 3 3	0
62	А	16	Total O 16 16	0
62	В	189	Total O 189 189	0
62	D	2	Total O 2 2	0
62	Е	1	Total O 1 1	0
62	F	2	Total O 2 2	0
62	М	2	Total O 2 2	0
62	Ν	1	Total O 1 1	0
62	R	1	Total O 1 1	0
62	W	18	Total O 18 18	0
62	Х	1	Total O 1 1	0
62	Y	6	Total O 6 6	0
62	a	1331	Total O 1331 1331	0
62	b	10	Total O 10 10	0
62	С	41	Total O 41 41	0
62	d	20	TotalO2020	0
62	е	15	TotalO1515	0
62	h	1	Total O 1 1	0
62	i	2	Total O 2 2	0
62	j	5	Total O 5 5	0
62	k	16	Total O 16 16	0

α \cdot \cdot \cdot	C	•	
Continued	trom	nremons	naae
Contentaca	JION	precedus	page

Mol	Chain	Residues	Atoms	AltConf
62	1	8	Total O 8 8	0
62	m	8	Total O 8 8	0
62	n	1	Total O 1 1	0
62	О	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0
62	р	8	Total O 8 8	0
62	q	3	Total O 3 3	0
62	r	7	Total O 7 7	0
62	S	1	Total O 1 1	0
62	t	1	Total O 1 1	0
62	u	1	Total O 1 1	0
62	v	3	Total O 3 3	0
62	W	3	Total O 3 3	0
62	Z	7	Total O 7 7	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L33

Chain 0:	91%	• 7%
MET ALA LYS G4 R28 R28 I54 LYS		
• Molecule 2:	50S ribosomal protein L34	
Chain 1:	96%	•
M1 K25 K46		
• Molecule 3:	50S ribosomal protein L35	
Chain 2:	95%	• •
MET P2 N28 H31 A65		
• Molecule 4:	50S ribosomal protein L36	
Chain 3:	97%	
M1 K2 G38		
• Molecule 5:	50S ribosomal protein L31	
Chain 4:	83%	• 14%
M1 L34 Q48 ARG ARC ALL ALL THR	CLY CLY PRO PRO CLY SER LYS	
• Molecule 6:	Drosocin1	
Chain A:	95%	5%

G1 V19

 \bullet Molecule 7: 16S ribosomal RNA

• Molecule 10: 30S ribosomal protein S4

Chain E:

95%

• Molecule 11: 30S ribosomal protein S5

• Molecule 12: 30S ribosomal protein S6, fully modified isoform

Chain G:	69%	7%	24%
M1 417 E33 R38 R38 R38 R38 R62 R62	L74 L74 R91 A1 A102 A10 A102 A10 A10 A10 A10 A11 A11 A11 A11 A11 A11	THR ALA ASP ASP ALA ALA GLU SER SER SER GLU GLU	0115 0115
• Molecule 13: 30	S ribosomal protein S7		
Chain H:	83%		• 15%
MET 22 85 867 892 0113 M130	Y154 ARG TRP TRP TEU TEU SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA SER SER SER SER SER SER SER SER SER SER	GLY TYR LEU ASN	
• Molecule 14: 30	S ribosomal protein S8		
Chain I:	98%		
MBT 22 24 24 24 24 24 24 24 24 24 24 24 24			
• Molecule 15: 30	S ribosomal protein S9		
Chain J:	92%		6% ·
MET ALA GLU K13 K13 K27 K27 K27 K27 K27 K27 K27 K27 K27 K27	K100 D107 A108 R129 R123 R130		
• Molecule 16: 30	S ribosomal protein S10		
Chain K:	87%		8% 5%
MET GLN ASN CGLN GLN GLN E27 E27 E27 E31	R45 V57 U50 D91 D91 C102 GLY		
• Molecule 17: 30	S ribosomal protein S11		
Chain L:	88%		• 9%

• Molecule 18: 30S ribosomal protein S12

Chain M: 96% MEJ • Molecule 19: 30S ribosomal protein S13 Chain N: 97% . . • Molecule 20: 30S ribosomal protein S14 Chain O: 98% •• • Molecule 21: 30S ribosomal protein S15 ••• Chain P: 98% MET • Molecule 22: 30S ribosomal protein S16 Chain Q: 98% •• • Molecule 23: 30S ribosomal protein S17 Chain R: 89% 5% 6% MET THR ASP • Molecule 24: 30S ribosomal protein S18 Chain S: 85% 12%

• Molecule 25: 30S ribosomal protein S19

Chain T:	89%	• 9%
MET P2 L15 R55 A86 A86 A86	LYS LYS LYS LYS LYS	
• Molecule	26: 30S ribosomal protein S20	
Chain U:	98%	••
MET A2 K85 L86 A87		
• Molecule	27: 30S ribosomal protein S21	
Chain V:	97%	
MET P2 A65 Y71		
• Molecule	28: Peptide chain release factor RF1	
Chain W:	94%	5%•
MET LYS PRO SER L3 L3 L3 F4	D109 D109 E73 E73 E73 E73 M142 M143 M149 M149 M149 M149 M149 M149 M149 M149	
• Molecule	29: Phenylalanine-tRNA	
Chain X:	72% 28%	
G1 A14 C15 C17 C17 G18 G19	A 22 622 622 645 645 665 665 665 665 665 665 665 665	
• Molecule	30: mRNA	
Chain Y:	100%	
There are n	o outlier residues recorded for this chain.	
• Molecule	31: Isoleucine-tRNA	
Chain Z:	46% 54%	
6 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	011 111 112 113 114 114 114 114 114 114 114 114 114	G68 G69 G70 C71 A76
	WORLDWIDE PROTEIN DATA BANK	

 \bullet Molecule 32: 23S ribosomal RNA

C C C C C C C C C C C C C C C C C C C
A2322 A2325 C2325 A2333 A2335 A2335 A2335 A2335 A2355 C2347 C2345 A2405 C2403 C2345 A2405 C2403 C2445 C2403 C2445 A2465 C2435 C2435 C2435 C2435 C2445 C2435 C2445 C245 C2
42502 42503 12504 12504 12504 12505 12506 12506 12506 12506 12506 12506 12506 12506 12506 12506 12507 12508 12509 12509 12509 12509 12509 12509 12509 12509 12509 12509 12509 12509 12509 12509 12509 12509 12509 12509 12609 12609 12609 12609 12609 12609 12609 12609 12609 12609 12609 12699 12699 </td
A27 16 C27 14 C27 14 C27 14 C27 15 C27 15 C27 15 C27 15 C27 15 C27 15 C27 15 A27 55 A27 55 A28 50 A28 50 A28 50 A28 50 A28 51 A28 51 A28 51 A28 55 A28 55
12900 (22901 120902 12903 12903
• Molecule 33: 5S ribosomal RNA
Chain b: 88% 12% .
U C17 C17 C17 C17 C42 C42 C42 C42 C42 C42 C42 C42 C42 C42
\bullet Molecule 34: 50S ribosomal protein L2
Chain c: 98%
MET V3 V1 M132 LVS LVS
\bullet Molecule 35: 50S ribosomal protein L3
Chain d: 100%
\bullet Molecule 36: 50S ribosomal protein L4
Chain e: 98% .
M142 L143 L153 A201
\bullet Molecule 37: 50S ribosomal protein L5
Chain f: 97% ···

MET A2 R30 F109 F109 K178 K178 LYS

• Molecule 38: 50S ribosomal protein L6

Chain g:	97% · ·	
MET 82 83 83 812 134 134 136 835 835		
• Molecule 39	9: 50S ribosomal protein L9	
Chain h:	27% · 72%	
M1 L6 K41 LYS ASN TLE GLU PHE	PHE ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	SER SER GLY THR
ARG ASP ILE ALA ALA ALA ALA ALA ALA	GLY VAL VAL VAL VAL VAL LYS SER SER ARG GLY ARG GLY ARG GLY ARG GLY ARG GLV VAL VAL VAL VAL VAL VAL VAL VAL CVAL C	
• Molecule 40): 50S ribosomal protein L13	
Chain i: There are no o • Molecule 41	100% outlier residues recorded for this chain. 1: 50S ribosomal protein L14	
Chain j:	97%	
M1 P48 R49 Q93 M113 M113 L123		
• Molecule 42	2: 50S ribosomal protein L15	
Chain k:	98% .	
M1 K29 L1 12 K1 29 K1 29 E1 44		
• Molecule 43	3: 50S ribosomal protein L16	
Chain l:	98% .	
M1 V36 M53 M82 M136		
• Molecule 44	4: 50S ribosomal protein L17	
Chain m:	92% • 7%	

• Molecule 45: 50S ribosomal protein L18

Chain n: 97% • Molecule 46: 50S ribosomal protein L19 Chain o: 99% MET S2 • Molecule 47: 50S ribosomal protein L20 Chain p: 97% MEJ • Molecule 48: 50S ribosomal protein L21 Chain q: 100% There are no outlier residues recorded for this chain. • Molecule 49: 50S ribosomal protein L22 Chain r: 97% • Molecule 50: 50S ribosomal protein L23 Chain s: 91% •• 7% L93 ASP PHE VAL VAL CLY GLY GLV GLU • Molecule 51: 50S ribosomal protein L24 Chain t: 91% 7% •

• Molecule 52:	50S ribosomal protein L25	
Chain u:	97%	
M1 L61 T62 D90 A94		
• Molecule 53:	50S ribosomal protein L27	
Chain v:	92%	8%
MET ALA LYS LYS GLY GLY BS BS		
• Molecule 54:	50S ribosomal protein L28	
Chain w:	96%	• •
MET S2 V40 K54 V78		
• Molecule 55:	50S ribosomal protein L29	
Chain x:	94%	5% •
MET K2 (36 (36 L56 L56 A63		
• Molecule 56:	50S ribosomal protein L30	
Chain y:	97%	• •
MET A2 X3 E59 E59		
• Molecule 57:	50S ribosomal protein L32	
Chain z:	98%	
MET A2 K57		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	137449	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	400	Depositor
Maximum defocus (nm)	900	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: A2G, 2MG, UR3, H2U, 5MU, OMC, 5MC, OMU, 6MZ, 4OC, 2MA, OMG, ZN, MG, G7M, 1MG, MEQ, SPM, PSU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		B	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	0	0.26	0/424	0.50	0/565	
2	1	0.33	0/380	0.60	0/498	
3	2	0.28	0/513	0.54	0/676	
4	3	0.30	0/303	0.55	0/397	
5	4	0.26	0/488	0.46	0/649	
6	А	0.51	0/162	0.66	0/221	
7	В	0.55	12/36287~(0.0%)	0.94	9/56602~(0.0%)	
8	С	0.66	0/1784	0.72	0/2403	
9	D	0.65	0/1651	0.73	0/2225	
10	Е	0.65	0/1665	0.74	0/2227	
11	F	0.66	0/1165	0.75	0/1568	
12	G	0.73	1/858~(0.1%)	0.73	0/1160	
13	Н	0.67	0/1219	0.74	0/1635	
14	Ι	0.64	0/989	0.73	0/1326	
15	J	0.65	0/1034	0.74	0/1375	
16	Κ	0.65	0/796	0.73	0/1077	
17	L	0.65	0/893	0.75	0/1205	
18	М	0.62	0/969	0.77	0/1300	
19	Ν	0.66	0/900	0.74	0/1204	
20	0	0.64	0/817	0.72	0/1088	
21	Р	0.63	0/722	0.70	0/964	
22	Q	0.63	0/653	0.76	0/877	
23	R	0.66	0/650	0.77	0/871	
24	S	0.63	0/553	0.70	0/742	
25	Т	0.64	0/685	0.72	0/922	
26	U	0.65	0/676	0.72	0/895	
27	V	0.63	0/597	0.72	0/792	
28	W	0.65	0/2832	0.72	0/3816	
29	Х	1.04	1/1813~(0.1%)	1.17	0/2823	
30	Y	1.03	0/209	1.16	0/322	
31	Ζ	0.98	0/1805	1.11	0/2812	

Mal	Chain	E	Bond lengths	Bond angles	
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
32	a	1.09	206/65700~(0.3%)	1.27	188/102494~(0.2%)
33	b	1.02	2/2850~(0.1%)	1.19	0/4444
34	с	0.61	0/2121	0.76	0/2852
35	d	0.62	0/1576	0.77	0/2119
36	е	0.63	0/1571	0.73	0/2113
37	f	0.65	0/1434	0.72	0/1926
38	g	0.67	0/1343	0.75	0/1816
39	h	0.69	0/306	0.77	0/413
40	i	0.60	0/1152	0.72	0/1551
41	j	0.61	0/955	0.77	0/1279
42	k	0.65	0/1062	0.74	0/1413
43	1	0.59	0/1093	0.74	0/1460
44	m	0.61	0/958	0.76	0/1281
45	n	0.64	0/902	0.75	0/1209
46	0	0.62	0/929	0.74	0/1242
47	р	0.60	0/960	0.76	0/1278
48	q	0.62	0/829	0.78	0/1107
49	r	0.63	0/864	0.74	0/1156
50	s	0.63	0/744	0.73	0/994
51	t	0.66	0/787	0.78	0/1051
52	u	0.63	0/766	0.73	0/1025
53	V	0.61	0/593	0.77	0/785
54	W	0.61	0/635	0.75	0/848
55	Х	0.64	0/502	0.70	0/667
56	У	0.64	0/453	0.74	0/605
57	Z	0.63	0/450	0.74	0/599
All	All	0.86	222/156027~(0.1%)	1.06	197/232964~(0.1%)

All (222) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	а	2018	G	C5-C4	15.35	1.49	1.38
32	а	682	G	C8-N7	15.01	1.40	1.30
32	a	2396	G	C8-N7	14.63	1.39	1.30
32	a	1846	G	C8-N7	14.50	1.39	1.30
32	а	796	С	C4-C5	13.17	1.53	1.43
32	a	2018	G	N1-C2	12.99	1.48	1.37
32	а	2018	G	N9-C8	12.46	1.46	1.37
32	a	2018	G	C8-N7	12.41	1.38	1.30
7	В	579	А	N7-C5	12.35	1.46	1.39
32	a	2692	G	C8-N7	11.16	1.37	1.30
32	a	682	G	C2-N3	10.95	1.41	1.32

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	a	2070	А	N3-C4	10.80	1.41	1.34
32	a	2018	G	C6-N1	10.66	1.47	1.39
32	a	796	С	N1-C2	10.61	1.50	1.40
32	a	683	U	C4-C5	10.60	1.53	1.43
32	a	1895	С	N1-C2	10.34	1.50	1.40
32	a	1256	G	C8-N7	10.25	1.37	1.30
32	a	563	А	C6-N6	10.11	1.42	1.33
32	a	794	А	N9-C4	10.09	1.44	1.37
32	a	2070	А	C6-N1	10.02	1.42	1.35
12	G	103	VAL	C-O	9.82	1.42	1.23
32	a	771	G	C8-N7	9.68	1.36	1.30
32	a	598	U	C4-C5	9.48	1.52	1.43
32	а	585	G	N3-C4	9.43	1.42	1.35
32	a	2014	А	N7-C5	9.37	1.44	1.39
32	a	1262	А	C8-N7	9.29	1.38	1.31
32	a	733	G	C6-N1	9.29	1.46	1.39
32	a	1259	G	N7-C5	9.24	1.44	1.39
32	а	1254	А	N7-C5	9.23	1.44	1.39
32	a	382	А	C6-N1	9.19	1.42	1.35
32	a	581	С	N3-C4	9.00	1.40	1.33
32	a	1262	А	N9-C4	8.98	1.43	1.37
32	a	733	G	N3-C4	8.96	1.41	1.35
32	a	699	А	N3-C4	8.94	1.40	1.34
32	a	2037	А	N7-C5	8.85	1.44	1.39
32	a	2279	G	C8-N7	8.73	1.36	1.30
32	a	795	С	C4-C5	8.71	1.50	1.43
32	a	988	А	N9-C4	8.70	1.43	1.37
32	a	581	С	N1-C6	8.55	1.42	1.37
32	a	666	А	N9-C4	8.54	1.43	1.37
32	а	2717	С	C4-C5	8.54	1.49	1.43
32	a	1256	G	C2-N3	8.36	1.39	1.32
32	a	798	G	N3-C4	8.22	1.41	1.35
32	a	683	U	N1-C2	8.20	1.46	1.38
32	а	2037	А	N9-C4	8.16	1.42	1.37
32	a	1847	А	C6-N1	8.11	1.41	1.35
32	а	1846	G	C5-C4	8.10	1.44	1.38
32	a	684	G	N9-C8	8.08	1.43	1.37
32	a	733	G	N7-C5	7.92	1.44	1.39
7	В	579	A	N3-C4	7.84	1.39	1.34
7	В	579	А	N9-C4	7.83	1.42	1.37
7	В	1387	G	C8-N7	7.81	1.35	1.30
32	a	666	А	N7-C5	7 69	1 43	1 39

$\alpha \cdot \cdot \cdot$	C	•	
Continued	trom	previous	page
		1	1 0

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
32	a	2420	С	C4-C5	7.65	1.49	1.43
7	В	1392	G	N7-C5	7.59	1.43	1.39
32	a	2239	G	N9-C8	7.53	1.43	1.37
32	a	2717	С	N1-C2	7.51	1.47	1.40
32	a	2070	А	N7-C5	7.42	1.43	1.39
32	a	2438	U	C4-C5	7.41	1.50	1.43
32	a	2018	G	N7-C5	7.40	1.43	1.39
29	Х	1	G	OP3-P	-7.40	1.52	1.61
32	a	2420	С	N3-C4	7.40	1.39	1.33
32	a	2844	G	C5-C4	7.39	1.43	1.38
32	a	598	U	N1-C2	7.38	1.45	1.38
32	a	662	G	C8-N7	7.37	1.35	1.30
32	а	1894	С	C5-C6	7.30	1.40	1.34
32	a	2280	G	C8-N7	7.26	1.35	1.30
32	a	1254	А	N3-C4	7.21	1.39	1.34
32	а	467	G	C2-N3	7.20	1.38	1.32
32	a	585	G	C6-N1	7.17	1.44	1.39
32	а	798	G	C6-N1	7.17	1.44	1.39
32	а	592	А	N7-C5	7.16	1.43	1.39
32	a	2018	G	C2'-C1'	7.07	1.61	1.53
32	а	1846	G	C2'-C1'	7.06	1.61	1.53
32	a	658	U	N1-C2	7.00	1.44	1.38
32	a	682	G	C5-C4	7.00	1.43	1.38
32	а	2844	G	N1-C2	6.99	1.43	1.37
32	a	2844	G	C8-N7	6.94	1.35	1.30
32	a	1844	С	C4-C5	6.92	1.48	1.43
32	a	1894	С	C4-C5	6.88	1.48	1.43
32	a	2438	U	N1-C2	6.84	1.44	1.38
32	a	684	G	C8-N7	6.83	1.35	1.30
32	a	733	G	N9-C8	6.82	1.42	1.37
32	a	1894	С	C2-N3	6.78	1.41	1.35
32	a	662	G	C5-C4	6.77	1.43	1.38
32	a	467	G	C8-N7	6.77	1.35	1.30
32	a	798	G	N7-C5	6.77	1.43	1.39
32	a	1959	G	C8-N7	6.66	1.34	1.30
32	a	2420	С	N1-C2	6.65	1.46	1.40
32	a	795	С	C2-N3	6.64	1.41	1.35
32	a	979	А	C5-C4	6.64	1.43	1.38
32	a	2090	A	N3-C4	$6.\overline{63}$	1.38	1.34
32	a	2009	А	N7-C5	6.62	1.43	1.39
32	a	976	G	C8-N7	6.61	1.34	1.30
32	a	597	G	C8-N7	6.56	1.34	1.30

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	previous	page
		1	1 0

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
32	a	1307	А	N9-C4	6.54	1.41	1.37
32	a	1948	G	C8-N7	6.54	1.34	1.30
32	a	684	G	C2-N3	6.50	1.38	1.32
32	a	795	С	N1-C2	6.49	1.46	1.40
32	a	1254	А	C6-N1	6.46	1.40	1.35
32	a	682	G	C2'-C1'	6.45	1.60	1.53
32	a	2090	А	N7-C5	6.43	1.43	1.39
32	a	682	G	N1-C2	6.38	1.42	1.37
32	a	1895	С	C4-C5	6.37	1.48	1.43
32	a	2070	А	N9-C8	6.37	1.42	1.37
32	a	681	G	N1-C2	6.36	1.42	1.37
32	a	1895	С	C5-C6	6.36	1.39	1.34
32	а	699	А	C6-N1	6.35	1.40	1.35
32	a	938	G	C8-N7	6.32	1.34	1.30
32	a	2037	А	N3-C4	6.29	1.38	1.34
32	a	683	U	C2'-C1'	6.29	1.60	1.53
32	a	1847	А	C2-N3	6.26	1.39	1.33
32	a	2090	А	C6-N1	6.26	1.40	1.35
32	a	2281	А	C6-N1	6.25	1.40	1.35
32	a	592	А	N9-C4	6.23	1.41	1.37
32	a	597	G	N7-C5	6.19	1.43	1.39
32	a	658	U	C4-C5	6.19	1.49	1.43
32	а	699	А	N1-C2	6.15	1.39	1.34
32	a	825	А	N7-C5	6.13	1.43	1.39
32	a	382	А	C5-C4	6.13	1.43	1.38
32	a	2700	А	N7-C5	6.10	1.43	1.39
32	a	683	U	C5-C6	6.09	1.39	1.34
32	a	1844	С	N1-C2	6.09	1.46	1.40
32	a	2014	А	N3-C4	6.05	1.38	1.34
32	a	1846	G	N1-C2	6.05	1.42	1.37
32	a	765	С	C4-C5	6.03	1.47	1.43
32	a	1936	А	N9-C4	6.02	1.41	1.37
32	a	976	G	N9-C4	5.98	1.42	1.38
32	a	661	А	C8-N7	5.96	1.35	1.31
32	a	1846	G	C6-O6	5.96	1.29	1.24
32	a	2014	А	N9-C4	5.95	1.41	1.37
32	a	660	C	C5-C6	5.95	1.39	1.34
32	a	2281	А	N3-C4	5.94	1.38	1.34
32	a	1896	G	C8-N7	5.91	1.34	1.30
32	a	1455	G	C8-N7	5.89	1.34	1.30
32	a	661	A	N9-C4	5.87	1.41	1.37
32	a	597	G	N9-C4	5.86	1.42	1.38

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	a	579	G	C8-N7	5.86	1.34	1.30
32	a	1649	G	C8-N7	5.83	1.34	1.30
32	a	979	А	C2'-C1'	5.83	1.59	1.53
32	a	1959	G	C5-C4	5.79	1.42	1.38
32	a	1894	С	N1-C2	5.79	1.46	1.40
32	a	592	А	C8-N7	5.74	1.35	1.31
7	В	925	G	C8-N7	5.71	1.34	1.30
32	a	662	G	N1-C2	5.70	1.42	1.37
32	a	699	А	C5-C4	5.62	1.42	1.38
32	a	2705	А	N9-C4	5.62	1.41	1.37
32	a	1850	G	N3-C4	5.58	1.39	1.35
32	a	1263	U	C2'-C1'	5.55	1.59	1.53
7	В	1387	G	C5-C4	5.54	1.42	1.38
32	a	1850	G	C6-N1	5.54	1.43	1.39
32	a	604	G	C8-N7	5.53	1.34	1.30
32	a	1258	U	C4-C5	5.51	1.48	1.43
32	a	804	А	N7-C5	5.51	1.42	1.39
32	a	841	G	C8-N7	5.50	1.34	1.30
32	a	1659	G	C8-N7	5.50	1.34	1.30
33	b	72	G	N3-C4	5.49	1.39	1.35
32	a	985	С	C5-C6	5.48	1.38	1.34
32	a	2700	А	N3-C4	5.44	1.38	1.34
32	a	1258	U	N1-C2	5.44	1.43	1.38
32	a	585	G	C2-N2	5.43	1.40	1.34
7	В	667	G	C8-N7	5.42	1.34	1.30
32	а	1168	G	N9-C4	5.42	1.42	1.38
32	a	467	G	N7-C5	5.40	1.42	1.39
32	a	1337	G	C5-C4	5.39	1.42	1.38
32	a	593	U	C4-C5	5.38	1.48	1.43
32	a	787	С	C4-C5	5.37	1.47	1.43
32	a	2700	A	N9-C4	5.37	1.41	1.37
32	a	979	A	N1-C2	5.35	1.39	1.34
32	a	1337	G	N1-C2	5.34	1.42	1.37
32	a	936	A	N9-C4	5.33	1.41	1.37
32	a	2399	G	C5-C4	5.33	1.42	1.38
32	a	856	G	C8-N7	5.33	1.34	1.30
32	a	1107	G	P-O5'	5.32	1.65	1.59
32	a	798	G	N9-C8	5.32	1.41	1.37
32	a	1259	G	C2-N3	5.32	1.37	1.32
32	a	2399	G	N9-C8	5.31	1.41	1.37
32	a	1265	A	C6-N1	5.30	1.39	1.35
32	a	1794	A	N7-C5	5.30	1.42	1.39

001000	nucu jion	" proove	al page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	a	657	U	N1-C2	5.29	1.43	1.38
32	a	1259	G	N9-C4	5.26	1.42	1.38
32	a	1846	G	N7-C5	-5.26	1.36	1.39
32	a	382	А	N7-C5	5.26	1.42	1.39
32	a	771	G	N1-C2	5.24	1.42	1.37
32	a	1814	G	C8-N7	5.23	1.34	1.30
32	a	2443	С	C4-C5	5.23	1.47	1.43
32	a	600	G	C2-N3	5.23	1.36	1.32
32	a	763	G	C8-N7	5.22	1.34	1.30
32	a	1895	С	C2-N3	5.22	1.40	1.35
32	a	585	G	N9-C8	5.21	1.41	1.37
33	b	72	G	C6-N1	5.21	1.43	1.39
32	a	742	А	N9-C4	5.20	1.41	1.37
7	В	1392	G	N9-C4	5.20	1.42	1.38
32	a	787	С	N1-C2	5.19	1.45	1.40
32	a	656	G	C8-N7	5.18	1.34	1.30
7	В	881	G	C8-N7	5.18	1.34	1.30
32	a	581	С	C2-O2	5.18	1.29	1.24
32	a	1895	С	C2'-C1'	5.17	1.59	1.53
32	a	1256	G	N9-C4	5.17	1.42	1.38
32	a	581	С	C4-C5	5.16	1.47	1.43
7	В	1387	G	N1-C2	5.15	1.41	1.37
32	a	2397	G	C6-O6	5.15	1.28	1.24
32	a	592	А	C2-N3	5.13	1.38	1.33
32	a	825	А	N3-C4	5.12	1.38	1.34
32	a	2241	А	N9-C4	5.11	1.41	1.37
32	a	463	G	C8-N7	5.10	1.34	1.30
32	a	2845	U	C4-O4	5.10	1.27	1.23
32	a	467	G	N1-C2	5.08	1.41	1.37
32	a	2018	G	C2-N3	5.08	1.36	1.32
32	a	825	А	C6-N1	5.07	1.39	1.35
32	a	756	А	N7-C5	5.06	1.42	1.39
32	a	1181	U	C4-C5	5.06	1.48	1.43
32	a	1847	А	P-O5'	5.04	1.64	1.59
32	a	131	А	N3-C4	5.03	1.37	1.34
32	a	2396	G	C5-C4	5.02	1.41	1.38
32	a	1368	G	C8-N7	5.02	1.33	1.30
32	a	$1\overline{261}$	С	N1-C6	5.02	1.40	1.37
32	a	659	G	C8-N7	5.01	1.33	1.30
32	a	1850	G	N7-C5	5.01	1.42	1.39
32	a	1168	G	N7-C5	5.01	1.42	1.39
7	B	1392	G	C8-N7	5.01	1.33	1.30

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
32	a	1337	G	C8-N7	5.00	1.33	1.30

All (197) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	a	682	G	N9-C4-C5	13.85	110.94	105.40
32	a	682	G	C4-C5-N7	-12.50	105.80	110.80
32	a	2018	G	C5-C6-N1	-10.43	106.28	111.50
32	a	682	G	C8-N9-C4	-8.55	102.98	106.40
32	a	1256	G	N9-C4-C5	8.47	108.79	105.40
32	a	1846	G	C5-C6-N1	-8.13	107.44	111.50
32	a	1846	G	N9-C4-C5	8.12	108.65	105.40
32	a	682	G	C4-C5-C6	8.09	123.66	118.80
32	a	512	G	O4'-C1'-N9	8.06	114.64	108.20
32	a	1846	G	C8-N9-C4	-7.88	103.25	106.40
7	В	22	G	O5'-P-OP2	-7.86	98.63	105.70
32	a	2018	G	C6-C5-N7	-7.76	125.75	130.40
32	a	1913	A	P-O3'-C3'	-7.46	110.75	119.70
32	a	1915	U	P-O3'-C3'	-7.46	110.75	119.70
32	a	1256	G	C4-C5-N7	-7.40	107.84	110.80
32	a	2018	G	C5-C6-O6	7.32	132.99	128.60
32	a	662	G	C8-N9-C4	-7.20	103.52	106.40
7	В	579	А	C8-N9-C4	7.14	108.66	105.80
32	a	1251	С	C4-C5-C6	7.09	120.94	117.40
32	a	329	G	O3'-P-O5'	-6.98	90.74	104.00
32	a	1914	С	P-O3'-C3'	-6.93	111.38	119.70
32	a	681	G	C8-N9-C4	-6.70	103.72	106.40
32	a	1254	A	C8-N9-C4	6.67	108.47	105.80
32	a	784	G	OP1-P-O3'	6.63	119.80	105.20
32	a	985	C	C5-C6-N1	-6.52	117.74	121.00
32	a	1251	С	N3-C4-C5	-6.52	119.29	121.90
32	a	2018	G	C5-N7-C8	-6.51	101.05	104.30
32	a	158	U	P-O3'-C3'	-6.45	111.97	119.70
32	a	242	G	C3'-C2'-C1'	-6.42	96.36	101.50
32	a	1153	C	OP1-P-O3'	6.42	119.33	105.20
32	a	2014	A	C8-N9-C4	6.42	108.37	105.80
32	a	467	G	N9-C4-C5	6.41	107.97	105.40
32	a	796	С	C5-C6-N1	-6.37	117.81	121.00
32	a	1895	C	C4-C5-C6	6.34	120.57	117.40
32	a	2573	C	O4'-C1'-N1	6.30	113.24	108.20
32	a	1936	A	04'-C1'-N9	6.26	113.21	108.20
32	a	772	С	N3-C4-C5	-6.22	119.41	121.90

$\alpha \rightarrow 1$	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	а	2267	А	OP1-P-O3'	6.21	118.86	105.20
32	a	2018	G	N7-C8-N9	6.19	116.20	113.10
32	a	2396	G	C5-N7-C8	-6.19	101.20	104.30
32	a	794	A	C5-N7-C8	6.19	107.00	103.90
32	a	782	А	OP1-P-O3'	6.17	118.78	105.20
32	a	682	G	N1-C6-O6	6.12	123.57	119.90
32	a	795	С	C4-C5-C6	6.10	120.45	117.40
32	а	2208	С	P-O3'-C3'	-6.07	112.42	119.70
32	a	958	U	OP1-P-O3'	6.03	118.46	105.20
32	a	684	G	N9-C4-C5	6.02	107.81	105.40
32	a	984	А	O4'-C1'-N9	6.00	113.00	108.20
32	a	2239	G	C8-N9-C4	-5.94	104.02	106.40
32	a	1936	А	C1'-O4'-C4'	-5.94	105.15	109.90
32	a	1133	А	C1'-O4'-C4'	-5.93	105.16	109.90
32	а	2447	G	C3'-C2'-C1'	-5.87	96.81	101.50
32	a	1930	G	C3'-C2'-C1'	-5.82	96.85	101.50
32	a	1825	U	OP1-P-O3'	5.80	117.96	105.20
32	a	658	U	C5-C6-N1	-5.76	119.82	122.70
32	a	328	U	OP1-P-O3'	5.75	117.85	105.20
7	В	976	G	O3'-P-O5'	-5.73	93.11	104.00
7	В	561	U	O3'-P-O5'	-5.73	93.12	104.00
32	a	592	А	C4-C5-N7	-5.70	107.85	110.70
32	a	973	А	OP1-P-O3'	5.68	117.70	105.20
32	a	2051	А	OP1-P-O3'	5.67	117.67	105.20
32	a	659	G	C8-N9-C4	-5.64	104.14	106.40
32	a	2062	А	OP1-P-O3'	5.62	117.58	105.20
32	а	1128	G	C1'-O4'-C4'	-5.62	105.40	109.90
32	а	984	A	C1'-O4'-C4'	-5.60	105.42	109.90
32	a	2280	G	N9-C4-C5	5.59	107.64	105.40
32	a	1649	G	C8-N9-C4	-5.59	104.16	106.40
32	a	1668	A	OP1-P-O3'	5.59	117.50	105.20
32	а	1262	A	N9-C4-C5	5.58	108.03	105.80
32	а	2207	C	P-O3'-C3'	-5.58	113.00	119.70
32	a	202	U	OP1-P-O3'	5.58	117.47	105.20
32	a	2546	U	OP1-P-O3'	5.57	117.46	105.20
32	а	952	G	OP1-P-O3'	5.55	117.41	105.20
32	a	2018	G	C6-N1-C2	5.55	128.43	125.10
32	a	166	U	P-O3'-C3'	-5.54	113.05	119.70
32	a	1022	G	OP1-P-O3'	5.54	117.39	105.20
32	a	395	U	O4'-C1'-N1	5.54	112.63	108.20
32	a	2848	G	O4'-C1'-N9	5.52	112.62	108.20
32	a	582	A	N7-C8-N9	-5.52	111.04	113.80

a 1	C	•	
Continued	trom	previous	page
001000000	J. 00	p. 0000 a0	$P \approx g \circ \cdots$

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	a	775	G	OP1-P-O3'	5.51	117.33	105.20
32	a	2724	U	O5'-P-OP2	-5.51	100.74	105.70
32	a	732	С	OP1-P-O3'	5.51	117.32	105.20
32	a	2566	А	OP1-P-O3'	5.50	117.31	105.20
32	a	2055	С	OP1-P-O3'	5.50	117.31	105.20
32	a	2823	А	OP1-P-O3'	5.50	117.30	105.20
32	a	61	С	OP1-P-O3'	5.49	117.27	105.20
32	a	512	G	C1'-O4'-C4'	-5.48	105.52	109.90
32	a	682	G	N3-C4-C5	-5.43	125.89	128.60
32	a	1134	А	OP1-P-O3'	5.43	117.15	105.20
32	a	1632	А	OP1-P-O3'	5.43	117.14	105.20
32	a	683	U	N1-C2-N3	5.42	118.16	114.90
7	В	576	С	O5'-P-OP1	5.42	117.20	110.70
32	a	2550	G	OP1-P-O3'	5.41	117.10	105.20
32	a	467	G	C8-N9-C4	-5.40	104.24	106.40
32	a	639	U	OP1-P-O3'	5.40	117.07	105.20
32	a	1846	G	C4-C5-C6	5.40	122.04	118.80
32	a	1936	А	C5-C6-N1	-5.39	115.00	117.70
32	a	997	G	OP1-P-O3'	5.38	117.04	105.20
32	a	944	С	OP1-P-O3'	5.37	117.02	105.20
32	a	2505	G	OP2-P-O3'	5.36	117.00	105.20
32	a	825	А	OP2-P-O3'	5.36	117.00	105.20
32	a	860	U	OP1-P-O3'	5.36	116.98	105.20
32	a	2873	А	C1'-O4'-C4'	-5.34	105.63	109.90
32	a	2225	А	OP1-P-O3'	5.33	116.93	105.20
32	a	1151	А	OP1-P-O3'	5.33	116.93	105.20
7	В	932	С	N3-C4-C5	-5.33	119.77	121.90
32	a	2573	С	C3'-C2'-C1'	-5.32	97.24	101.50
32	a	2045	С	OP1-P-O3'	5.32	116.89	105.20
32	a	1254	А	N9-C4-C5	-5.29	103.68	105.80
32	a	2767	С	OP1-P-O3'	5.29	116.83	105.20
32	a	205	G	C3'-C2'-C1'	-5.27	97.28	101.50
32	a	1256	G	C8-N9-C4	-5.26	104.30	106.40
32	a	771	G	N9-C4-C5	5.25	107.50	105.40
32	a	582	А	C8-N9-C4	5.25	107.90	105.80
7	В	686	U	C3'-C2'-C1'	-5.25	97.30	101.50
32	a	2640	G	OP2-P-O3'	5.25	116.74	105.20
7	В	1347	G	C3'-C2'-C1'	-5.24	97.31	101.50
32	a	199	A	C1'-O4'-C4'	-5.24	105.71	109.90
32	a	598	U	C5-C6-N1	-5.24	120.08	122.70
32	a	2820	А	OP1-P-O3'	5.24	116.72	105.20
32	a	971	G	OP1-P-O3'	5.23	116.71	105.20

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	5	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	a	748	G	C1'-O4'-C4'	-5.22	105.72	109.90
32	a	567	U	OP1-P-O3'	5.22	116.69	105.20
32	a	1266	G	C3'-C2'-C1'	-5.22	97.32	101.50
32	a	1395	А	C1'-O4'-C4'	-5.22	105.72	109.90
32	a	334	С	OP1-P-O3'	5.21	116.67	105.20
32	a	117	G	OP1-P-O3'	5.20	116.65	105.20
32	a	458	G	C3'-C2'-C1'	-5.20	97.34	101.50
32	a	2463	С	OP1-P-O3'	5.20	116.65	105.20
32	a	1185	G	OP1-P-O3'	5.20	116.64	105.20
32	a	2636	C	OP1-P-O3'	5.20	116.64	105.20
32	a	2776	А	OP1-P-O3'	5.20	116.63	105.20
32	a	407	G	OP1-P-O3'	5.19	116.62	105.20
32	a	1966	A	OP1-P-O3'	5.19	116.62	105.20
32	a	1259	G	C5-C6-O6	-5.19	125.49	128.60
32	a	329	G	OP1-P-O3'	5.19	116.61	105.20
32	a	198	С	OP1-P-OP2	-5.18	111.82	119.60
32	a	2600	A	OP1-P-O3'	5.18	116.60	105.20
32	a	2570	G	OP1-P-O3'	5.18	116.59	105.20
32	a	176	А	OP1-P-O3'	5.17	116.58	105.20
32	a	1766	G	OP1-P-O3'	5.17	116.58	105.20
32	a	2835	A	OP1-P-O3'	5.17	116.58	105.20
32	a	2826	A	OP1-P-O3'	5.17	116.57	105.20
32	а	2196	C	OP1-P-O3'	5.16	116.56	105.20
32	a	25	U	OP1-P-O3'	5.16	116.55	105.20
32	а	2023	C	OP1-P-O3'	5.16	116.54	105.20
32	a	1375	U	OP1-P-O3'	5.14	116.51	105.20
32	a	1325	U	OP1-P-O3'	5.14	116.50	105.20
32	a	1324	G	O4'-C1'-N9	5.14	112.31	108.20
32	a	2849	U	OP1-P-O3'	5.14	116.50	105.20
32	a	467	G	C4-C5-N7	-5.13	108.75	110.80
32	a	2718	G	OP1-P-O3'	5.13	116.49	105.20
32	a	809	G	N9-C4-C5	5.13	107.45	105.40
32	a	1133	A	O4'-C1'-N9	5.13	112.30	108.20
32	a	1662	U	OP1-P-O3'	5.12	116.47	105.20
32	a	668	A	OP1-P-O3'	5.12	116.46	105.20
32	a	$52\overline{2}$	A	OP1-P-03'	$5.1\overline{1}$	116.44	105.20
32	a	662	G	N9-C4-C5	5.11	107.44	105.40
32	a	1025	G	OP1-P-O3'	5.10	116.43	105.20
32	a	1377	G	OP1-P-O3'	5.10	116.43	105.20
32	a	418	C	OP1-P-O3'	5.10	116.42	105.20
32	a	1238	G	OP1-P-O3'	5.10	116.42	105.20
32	a	1836	C	OP1-P-O3'	5.10	116.42	105.20

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	a	775	G	O4'-C1'-N9	5.10	112.28	108.20
32	a	248	G	OP1-P-O3'	5.09	116.41	105.20
32	a	1992	G	OP1-P-O3'	5.09	116.39	105.20
32	a	604	G	OP1-P-O3'	5.09	116.39	105.20
32	a	2817	U	OP1-P-O3'	5.09	116.39	105.20
32	a	2781	А	OP1-P-O3'	5.08	116.38	105.20
32	a	187	G	OP1-P-O3'	5.08	116.38	105.20
32	a	528	А	OP2-P-O3'	5.08	116.36	105.20
32	a	2457	PSU	OP1-P-O3'	5.07	116.36	105.20
32	a	565	С	OP2-P-O3'	5.07	116.35	105.20
32	a	1781	U	OP1-P-O3'	5.06	116.34	105.20
32	a	1128	G	OP1-P-O3'	5.05	116.32	105.20
32	a	255	А	OP1-P-O3'	5.05	116.32	105.20
32	a	1773	А	OP2-P-O3'	5.05	116.32	105.20
32	a	1565	С	O3'-P-O5'	-5.05	94.40	104.00
32	a	450	G	OP1-P-O3'	5.04	116.29	105.20
32	a	204	А	OP1-P-O3'	5.04	116.28	105.20
32	a	223	А	OP1-P-O3'	5.04	116.28	105.20
32	a	2605	PSU	OP2-P-O3'	5.04	116.28	105.20
32	a	752	А	OP1-P-O3'	5.03	116.27	105.20
32	a	375	G	OP1-P-O3'	5.03	116.26	105.20
32	a	204	А	O3'-P-O5'	-5.03	94.45	104.00
32	a	2446	G	OP1-P-O3'	5.03	116.26	105.20
32	a	2717	С	C5-C6-N1	-5.02	118.49	121.00
32	a	536	G	OP1-P-O3'	5.02	116.25	105.20
32	a	947	А	OP1-P-O3'	5.02	116.24	105.20
32	a	382	А	N1-C2-N3	-5.02	126.79	129.30
32	a	1135	С	OP1-P-O3'	5.02	116.24	105.20
32	a	1189	А	OP1-P-O3'	5.01	116.23	105.20
7	В	576	С	O5'-P-OP2	-5.01	101.19	105.70
32	a	417	С	OP1-P-O3'	5.01	116.22	105.20
32	a	2644	G	OP1-P-O3'	5.01	116.21	105.20
32	a	662	G	C2-N3-C4	-5.00	109.40	111.90
32	a	817	С	OP1-P-O3'	5.00	116.21	105.20

Continued from previous page...

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	0	49/55~(89%)	49 (100%)	0	0	100	100
2	1	44/46~(96%)	44 (100%)	0	0	100	100
3	2	62/65~(95%)	60 (97%)	1 (2%)	1 (2%)	8	7
4	3	36/38~(95%)	35~(97%)	1 (3%)	0	100	100
5	4	56/70~(80%)	52 (93%)	4 (7%)	0	100	100
6	А	17/19~(90%)	17 (100%)	0	0	100	100
8	С	222/241~(92%)	203 (91%)	17 (8%)	2(1%)	14	17
9	D	204/233~(88%)	174 (85%)	30 (15%)	0	100	100
10	Е	203/206~(98%)	191 (94%)	10 (5%)	2 (1%)	13	15
11	F	154/167~(92%)	143 (93%)	11 (7%)	0	100	100
12	G	101/135~(75%)	96 (95%)	2 (2%)	3 (3%)	3	2
13	Н	151/179~(84%)	125 (83%)	23 (15%)	3 (2%)	6	5
14	Ι	127/130~(98%)	116 (91%)	11 (9%)	0	100	100
15	J	125/130~(96%)	112 (90%)	10 (8%)	3 (2%)	5	4
16	Κ	96/103~(93%)	86 (90%)	7 (7%)	3(3%)	3	2
17	L	115/129~(89%)	104 (90%)	9 (8%)	2(2%)	7	7
18	М	121/124~(98%)	115 (95%)	4 (3%)	2(2%)	7	7
19	Ν	113/118 (96%)	107 (95%)	6 (5%)	0	100	100
20	Ο	98/101~(97%)	94 (96%)	3 (3%)	1 (1%)	13	15
21	Р	86/89~(97%)	80 (93%)	6 (7%)	0	100	100
22	Q	79/82~(96%)	73 (92%)	5 (6%)	1 (1%)	10	11
23	R	77/84~(92%)	72 (94%)	4 (5%)	1 (1%)	10	11
24	S	64/75~(85%)	59 (92%)	5 (8%)	0	100	100
25	Т	82/92~(89%)	77 (94%)	5 (6%)	0	100	100
26	U	84/87~(97%)	83 (99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
27	V	68/71~(96%)	65~(96%)	2(3%)	1 (2%)	8	8
28	W	352/360~(98%)	327~(93%)	15 (4%)	10 (3%)	4	3
34	с	269/273~(98%)	254 (94%)	14 (5%)	1 (0%)	30	39
35	d	206/209~(99%)	195~(95%)	11 (5%)	0	100	100
36	е	199/201 (99%)	191 (96%)	7 (4%)	1 (0%)	25	32
37	f	175/179~(98%)	163 (93%)	11 (6%)	1 (1%)	22	27
38	g	174/177~(98%)	160 (92%)	13 (8%)	1 (1%)	22	27
39	h	39/149~(26%)	33~(85%)	6 (15%)	0	100	100
40	i	140/142~(99%)	134 (96%)	6 (4%)	0	100	100
41	j	121/123 (98%)	113 (93%)	7 (6%)	1 (1%)	16	20
42	k	142/144~(99%)	132 (93%)	9 (6%)	1 (1%)	19	23
43	1	134/136~(98%)	127 (95%)	7 (5%)	0	100	100
44	m	116/127~(91%)	108 (93%)	8 (7%)	0	100	100
45	n	114/117~(97%)	109 (96%)	4 (4%)	1 (1%)	14	17
46	О	112/115~(97%)	105 (94%)	7 (6%)	0	100	100
47	р	115/118 (98%)	115 (100%)	0	0	100	100
48	q	101/103 (98%)	93~(92%)	8 (8%)	0	100	100
49	r	108/110 (98%)	103 (95%)	4 (4%)	1 (1%)	14	17
50	s	91/100 (91%)	86 (94%)	4 (4%)	1 (1%)	12	13
51	t	100/104~(96%)	89~(89%)	6 (6%)	5 (5%)	1	1
52	u	92/94~(98%)	88 (96%)	4 (4%)	0	100	100
53	V	76/85~(89%)	73~(96%)	3 (4%)	0	100	100
54	W	75/78~(96%)	67~(89%)	8 (11%)	0	100	100
55	x	60/63~(95%)	55~(92%)	3 (5%)	2 (3%)	3	2
56	У	56/59~(95%)	52 (93%)	3 (5%)	1 (2%)	7	6
57	Z	54/57~(95%)	51 (94%)	3 (6%)	0	100	100
All	All	5855/6292~(93%)	5455 (93%)	348 (6%)	52 (1%)	17	17

All (52) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
13	Н	5	ARG
13	Н	130	ASN
	<i>a i</i> :	1	

Mol	Chain	Res	Type
28	W	70	ASP
28	W	211	ASP
28	W	323	ASN
34	с	71	LYS
49	r	12	SER
51	t	98	SER
8	С	64	LYS
8	С	77	SER
12	G	33	GLU
13	Н	113	ASP
16	К	31	ARG
16	K	57	VAL
27	V	65	ALA
28	W	143	ARG
28	W	212	ALA
50	s	89	GLU
51	t	39	ILE
51	t	97	LYS
51	t	99	ASN
55	Х	37	LEU
56	У	4	THR
17	L	89	PRO
17	L	119	ASN
18	М	17	ALA
23	R	50	ASN
55	Х	36	GLN
3	2	28	ASN
10	Е	166	GLU
12	G	38	ARG
12	G	68	GLN
16	K	91	ASP
18	М	48	ALA
28	W	38	LEU
28	W	73	GLU
42	k	29	LYS
45	n	99	TYR
51	t	76	ALA
15	J	13	LYS
15	J	109	ARG
20	0	33	ASP
15	J	107	ASP
22	Q	80	LYS

contracta from prettous page						
Mol	Chain	Res	Type			
28	W	141	ALA			
36	е	142	ALA			
28	W	210	PRO			
28	W	342	GLU			
37	f	109	PRO			
10	Е	64	ILE			
38	g	12	PRO			
41	j	48	PRO			

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	0	46/49~(94%)	45 (98%)	1 (2%)	47	65
2	1	38/38~(100%)	36~(95%)	2(5%)	19	28
3	2	51/52~(98%)	50 (98%)	1 (2%)	50	68
4	3	34/34~(100%)	33~(97%)	1 (3%)	37	54
5	4	55/62~(89%)	53~(96%)	2(4%)	30	44
6	А	18/18~(100%)	17 (94%)	1 (6%)	17	26
8	С	186/199~(94%)	181 (97%)	5(3%)	40	57
9	D	170/190~(90%)	165~(97%)	5(3%)	37	54
10	Ε	172/173~(99%)	165~(96%)	7 (4%)	26	39
11	F	119/126~(94%)	119 (100%)	0	100	100
12	G	90/116~(78%)	84 (93%)	6 (7%)	13	19
13	Η	126/147~(86%)	124 (98%)	2(2%)	58	74
14	Ι	104/105~(99%)	102 (98%)	2(2%)	52	69
15	J	105/107~(98%)	100~(95%)	5 (5%)	21	32
16	Κ	86/90~(96%)	81 (94%)	5~(6%)	17	24
17	L	90/99~(91%)	89 (99%)	1 (1%)	70	83
18	М	$10\overline{3}/104~(99\%)$	101 (98%)	2(2%)	52	69

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
19	Ν	93/96~(97%)	92~(99%)	1 (1%)	70	83
20	Ο	83/84~(99%)	82 (99%)	1 (1%)	67	81
21	Р	76/77~(99%)	75~(99%)	1 (1%)	65	79
22	Q	65/65~(100%)	65~(100%)	0	100	100
23	R	73/78~(94%)	70~(96%)	3~(4%)	26	39
24	S	57/65~(88%)	55~(96%)	2~(4%)	31	46
25	Т	72/79~(91%)	70 (97%)	2(3%)	38	55
26	U	65/66~(98%)	64 (98%)	1 (2%)	60	76
27	V	60/61~(98%)	60 (100%)	0	100	100
28	W	294/300~(98%)	287 (98%)	7~(2%)	44	61
34	с	216/218~(99%)	214 (99%)	2(1%)	75	87
35	d	163/163~(100%)	162 (99%)	1 (1%)	84	92
36	е	165/165~(100%)	162 (98%)	3~(2%)	54	71
37	f	148/150~(99%)	145 (98%)	3(2%)	50	68
38	g	137/138~(99%)	133 (97%)	4 (3%)	37	54
39	h	32/114~(28%)	31~(97%)	1 (3%)	35	51
40	i	116/116~(100%)	116 (100%)	0	100	100
41	j	104/104~(100%)	101 (97%)	3~(3%)	37	54
42	k	103/103~(100%)	101~(98%)	2(2%)	52	69
43	1	109/109~(100%)	106 (97%)	3~(3%)	38	55
44	m	98/103~(95%)	97~(99%)	1 (1%)	73	85
45	n	86/87~(99%)	85~(99%)	1 (1%)	67	81
46	О	99/100~(99%)	99 (100%)	0	100	100
47	р	89/90~(99%)	87~(98%)	2(2%)	47	65
48	q	84/84 (100%)	84 (100%)	0	100	100
49	r	93/93~(100%)	91 (98%)	2(2%)	47	65
50	S	80/84~(95%)	78 (98%)	2(2%)	42	60
51	\mathbf{t}	83/85~(98%)	81 (98%)	2(2%)	44	61
52	u	78/78~(100%)	75~(96%)	3 (4%)	28	42
53	V	58/63~(92%)	58 (100%)	0	100	100
54	W	67/68~(98%)	65~(97%)	2(3%)	36	52

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
55	х	54/55~(98%)	53~(98%)	1 (2%)	52	69
56	У	48/49~(98%)	48 (100%)	0	100	100
57	Z	47/48~(98%)	47 (100%)	0	100	100
All	All	4888/5147~(95%)	4784 (98%)	104 (2%)	49	66

All (104) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	0	28	ARG
2	1	1	MET
2	1	25	LYS
3	2	31	HIS
4	3	2	LYS
5	4	34	LEU
5	4	63	ARG
6	А	19	VAL
8	С	23	TRP
8	С	32	PHE
8	С	93	ASN
8	С	105	LYS
8	С	222	ARG
9	D	27	LYS
9	D	105	GLU
9	D	123	GLN
9	D	178	LEU
9	D	195	VAL
10	Е	8	LYS
10	Е	14	ARG
10	Е	34	ILE
10	Е	45	LYS
10	Е	57	GLU
10	E	181	THR
10	Е	188	ARG
12	G	17	GLN
12	G	37	HIS
12	G	62	MET
12	G	74	LEU
12	G	91	ARG
12	G	102	MET
13	Н	67	GLU
13	Н	92	ARG

Mol	Chain	Res	Type
14	Ι	27	MET
14	Ι	56	LYS
15	J	27	LYS
15	J	56	ASP
15	J	85	ARG
15	J	100	LYS
15	J	123	ARG
16	K	17	LEU
16	K	18	ILE
16	K	27	GLU
16	К	45	ARG
16	K	90	LEU
17	L	129	VAL
18	М	34	CYS
18	М	44	LYS
19	N	14	HIS
20	0	33	ASP
21	Р	17	ARG
23	R	6	ARG
23	R	57	ASP
23	R	67	LEU
24	S	10	PHE
24	S	16	GLU
25	Т	15	LEU
25	Т	55	ARG
26	U	85	LYS
28	W	69	LEU
28	W	96	LEU
28	W	103	LYS
28	W	149	MET
28	W	254	VAL
28	W	271	LEU
28	W	356	LEU
34	с	4	VAL
34	с	132	MET
35	d	1	MET
36	е	61	ARG
36	е	143	LEU
36	e	153	LEU
37	f	30	ARG
37	f	83	TYR
37	f	120	LYS

Mol	Chain	Res	Type
38	g	3	ARG
38	g	34	THR
38	g	36	THR
38	g	86	LYS
39	h	6	LEU
41	j	49	ARG
41	j	93	GLN
41	j	113	MET
42	k	112	LEU
42	k	129	LYS
43	1	36	VAL
43	1	53	MET
43	1	82	MET
44	m	51	LEU
45	n	35	ILE
47	р	51	ARG
47	р	112	LYS
49	r	62	ASP
49	r	66	ILE
50	s	89	GLU
50	S	93	LEU
51	t	52	LEU
51	t	74	ASN
52	u	61	LEU
52	u	62	THR
52	u	90	ASP
54	W	40	VAL
54	W	54	LYS
55	Х	56	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (16) such sidechains are listed below:

Mol	Chain	Res	Type
8	С	177	ASN
8	С	203	ASN
9	D	123	GLN
11	F	97	GLN
13	Н	68	ASN
15	J	110	GLN
17	L	118	HIS
20	0	60	GLN
22	Q	26	ASN

Continued from previous page...

Mol	Chain	Res	Type
23	R	9	GLN
25	Т	52	HIS
28	W	97	GLN
28	W	307	ASN
48	q	6	GLN
50	s	48	GLN
57	Z	6	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
29	Х	75/76~(98%)	18 (24%)	4(5%)
30	Y	8/9~(88%)	0	0
31	Ζ	75/76~(98%)	41 (54%)	3~(4%)
32	a	2747/2903~(94%)	341~(12%)	0
33	b	118/120~(98%)	13 (11%)	0
7	В	1516/1534~(98%)	235~(15%)	24 (1%)
All	All	4539/4718~(96%)	648 (14%)	31~(0%)

All (648) RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
7	В	4	U
7	В	5	U
7	В	6	G
7	В	7	А
7	В	8	А
7	В	9	G
7	В	22	G
7	В	32	А
7	В	39	G
7	В	44	А
7	В	47	С
7	В	48	С
7	В	50	А
7	В	51	А
7	В	58	С
7	В	65	А
7	В	66	А
7	В	70	U
7	В	71	А

Mol	Chain	\mathbf{Res}	Type
7	В	72	А
7	В	75	G
7	В	78	А
7	В	81	А
7	В	83	С
7	В	85	U
7	В	86	G
7	В	87	С
7	В	88	U
7	В	96	U
7	В	119	А
7	В	120	А
7	В	121	U
7	В	122	G
7	В	131	A
7	В	142	G
7	В	143	А
7	В	144	G
7	В	159	G
7	В	163	С
7	В	164	G
7	В	182	А
7	В	189	А
7	В	191	G
7	В	197	А
7	В	199	А
7	В	203	G
7	В	204	G
7	В	215	С
7	В	226	G
7	В	240	G
7	В	245	U
7	В	247	G
7	В	251	G
7	В	266	G
7	В	267	С
7	В	271	С
7	В	280	С
7	В	289	G
7	В	299	G
7	B	319	G
7	В	321	А

Mol	Chain	\mathbf{Res}	Type
7	В	328	С
7	В	329	А
7	В	347	G
7	В	352	С
7	В	354	G
7	В	367	U
7	В	369	G
7	В	372	С
7	В	376	G
7	В	392	С
7	В	393	А
7	В	397	A
7	В	404	G
7	В	406	G
7	В	412	A
7	В	413	G
7	В	414	А
7	В	421	U
7	В	422	С
7	В	423	G
7	В	424	G
7	В	429	U
7	В	435	А
7	В	446	G
7	В	451	A
7	В	453	G
7	В	457	G
7	В	467	U
7	В	468	А
7	В	479	U
7	В	484	G
7	В	486	U
7	В	500	G
7	В	511	С
7	В	518	С
7	В	519	С
7	В	521	G
7	В	547	A
7	В	559	A
7	В	572	A
7	В	573	A
7	В	576	С

Mol	Chain	Res	Type
7	В	579	А
7	В	596	А
7	В	614	С
7	В	615	G
7	В	639	G
7	В	649	А
7	В	650	G
7	В	653	U
7	В	661	G
7	В	665	А
7	В	671	G
7	В	682	G
7	В	723	U
7	В	724	G
7	В	734	G
7	В	747	A
7	В	748	G
7	В	755	G
7	В	777	A
7	В	793	U
7	В	794	A
7	В	815	A
7	В	817	С
7	В	851	G
7	В	857	С
7	В	885	G
7	В	890	G
7	В	914	А
7	В	926	G
7	В	931	С
7	В	934	С
7	В	935	А
7	В	936	C
7	В	960	U
7	В	966	2MG
7	В	968	A
7	В	969	A
7	В	971	G
7	В	975	A
7	В	976	G
7	В	977	А
7	В	978	А

Mol	Chain	Res	Type
7	В	984	С
7	В	993	G
7	В	994	А
7	В	996	А
7	В	1003	G
7	В	1004	А
7	В	1005	А
7	В	1008	U
7	В	1020	G
7	В	1023	U
7	В	1026	G
7	В	1027	С
7	В	1030	U
7	В	1031	С
7	В	1032	G
7	В	1033	G
7	В	1034	G
7	В	1036	А
7	В	1037	С
7	В	1039	G
7	В	1042	А
7	В	1044	А
7	В	1053	G
7	В	1060	U
7	В	1065	U
7	В	1070	U
7	В	1085	U
7	В	1094	G
7	В	1095	U
7	В	1101	A
7	В	1124	G
7	В	1125	U
7	В	1132	С
7	В	1135	U
7	B	1136	C
7	В	1137	С
7	В	1139	G
7	В	1159	U
7	В	1169	A
7	В	1171	A
7	В	1174	G
7	В	1184	G

Mol	Chain	Res	Type
7	В	1187	G
7	В	1196	А
7	В	1197	А
7	В	1213	А
7	В	1214	С
7	В	1221	G
7	В	1226	С
7	В	1227	А
7	В	1228	С
7	В	1238	А
7	В	1247	U
7	В	1248	A
7	В	1256	A
7	В	1257	A
7	В	1260	G
7	В	1274	A
7	В	1275	А
7	В	1280	А
7	В	1287	А
7	В	1300	G
7	В	1302	С
7	В	1312	G
7	В	1317	С
7	В	1320	С
7	В	1338	G
7	В	1340	А
7	В	1346	А
7	В	1353	G
7	В	1363	А
7	В	1364	U
7	В	1370	G
7	В	1378	С
7	В	1379	G
7	В	1381	U
7	В	1419	G
7	В	1429	A
7	В	1441	A
7	В	1450	U
7	В	1452	С
7	В	1453	G
7	В	1487	G
7	В	1497	G

Mol	Chain	Res	Type
7	В	1505	G
7	В	1506	U
7	В	1517	G
7	В	1529	G
7	В	1530	G
7	В	1534	А
29	Х	14	А
29	Х	17	С
29	Х	18	G
29	Х	19	G
29	Х	21	А
29	Х	22	G
29	Х	42	C
29	X	43	С
29	Х	46	G
29	X	47	U
29	Х	48	С
29	Х	51	U
29	Х	60	U
29	Х	62	С
29	Х	64	А
29	Х	65	G
29	Х	75	С
29	Х	76	А
31	Ζ	3	С
31	Ζ	4	С
31	Ζ	8	U
31	Ζ	9	А
31	Ζ	10	G
31	Ζ	11	С
31	Z	12	U
31	Ζ	13	С
31	Z	14	A
31	Z	15	G
31	Ζ	16	U
31	Ζ	17	G
31	Ζ	18	G
31	Ζ	19	U
31	Ζ	20	U
31	Ζ	21	A
31	Ζ	26	A
31	Ζ	29	С

Mol	Chain	Res	Type
31	Ζ	30	G
31	Ζ	34	U
31	Ζ	37	А
31	Z	38	А
31	Ζ	39	U
31	Ζ	40	С
31	Ζ	43	U
31	Ζ	45	G
31	Ζ	47	U
31	Ζ	48	С
31	Ζ	49	G
31	Ζ	50	С
31	Ζ	52	G
31	Ζ	53	G
31	Ζ	58	A
31	Z	59	G
31	Ζ	60	U
31	Ζ	61	С
31	Ζ	65	С
31	Ζ	68	G
31	Ζ	69	G
31	Ζ	71	С
31	Ζ	76	А
32	a	10	А
32	a	34	U
32	a	42	А
32	a	45	G
32	a	71	А
32	a	74	A
32	a	75	G
32	a	84	A
32	a	101	A
32	a	102	U
32	a	110	G
32	a	118	A
32	a	119	A
32	a	120	U
32	a	135	U
32	a	139	U
32	a	140	C
32	a	142	A
32	a	163	C

Mol	Chain	Res	Type
32	a	164	С
32	a	165	А
32	a	181	А
32	a	196	А
32	a	199	А
32	a	200	U
32	a	215	G
32	a	216	А
32	a	221	А
32	a	222	А
32	a	233	А
32	a	248	G
32	a	272	А
32	a	276	U
32	a	278	А
32	a	282	А
32	a	285	G
32	a	289	G
32	a	311	А
32	a	321	U
32	a	322	А
32	a	329	G
32	a	330	А
32	a	345	А
32	a	353	С
32	a	361	G
32	a	362	А
32	a	367	G
32	a	383	С
32	a	386	G
32	a	396	G
32	a	404	А
32	a	405	U
32	a	411	G
32	a	412	А
32	a	420	С
32	a	425	G
32	a	451	U
32	a	481	G
32	a	489	G
32	a	490	С
32	a	491	G

Mol	Chain	Res	Type
32	a	505	А
32	a	508	А
32	a	509	С
32	a	530	G
32	a	531	С
32	a	532	A
32	a	533	G
32	a	545	U
32	a	546	U
32	a	547	А
32	a	549	G
32	a	563	А
32	a	573	U
32	a	575	A
32	a	586	A
32	a	603	A
32	a	614	А
32	a	615	U
32	a	618	G
32	a	627	А
32	a	637	А
32	a	645	С
32	a	647	G
32	a	653	U
32	a	654	А
32	a	655	А
32	a	659	G
32	a	668	А
32	a	685	А
32	a	686	U
32	a	717	С
32	a	724	U
32	a	730	A
32	a	738	G
32	a	747	5MU
32	a	764	A
32	a	765	С
32	a	775	G
32	a	776	G
32	a	782	A
32	a	784	G
32	a	785	G

Mol	Chain	Res	Type
32	a	792	А
32	a	805	G
32	a	812	С
32	a	827	U
32	a	828	U
32	a	845	А
32	a	846	U
32	a	858	G
32	a	859	G
32	a	869	G
32	a	879	G
32	a	881	G
32	a	883	G
32	a	888	С
32	a	890	С
32	a	891	G
32	a	893	С
32	a	895	U
32	a	896	А
32	a	897	С
32	a	907	G
32	a	910	А
32	a	914	G
32	a	915	С
32	a	931	U
32	a	934	U
32	a	946	С
32	a	961	С
32	a	974	G
32	a	983	А
32	a	984	А
32	a	985	С
32	a	996	А
32	a	1005	С
32	a	1012	U
32	a	1013	С
32	a	1022	G
32	a	1026	G
32	a	1033	U
32	a	1040	А
32	a	1046	А
32	a	1047	G

Mol	Chain	Res	Type
32	a	1108	U
32	a	1109	С
32	a	1111	А
32	a	1112	G
32	a	1116	G
32	a	1119	U
32	a	1128	G
32	a	1129	А
32	a	1132	U
32	a	1133	А
32	a	1135	С
32	a	1142	А
32	a	1171	G
32	a	1179	G
32	a	1187	G
32	a	1205	А
32	a	1250	G
32	a	1253	А
32	a	1256	G
32	a	1271	G
32	a	1272	А
32	a	1300	G
32	a	1301	А
32	a	1321	А
32	a	1329	U
32	a	1352	U
32	a	1365	А
32	a	1379	U
32	a	1383	А
32	a	1416	G
32	a	1428	С
32	a	1434	А
32	a	1452	G
32	a	1453	A
32	a	1482	G
32	a	1490	A
32	a	1491	G
32	a	1493	С
32	a	1504	A
32	a	1508	A
32	a	1510	G
32	a	1515	A

Mol	Chain	Res	Type
32	a	1529	G
32	a	1531	С
32	a	1534	U
32	a	1535	А
32	a	1536	С
32	a	1537	G
32	a	1538	G
32	a	1542	U
32	a	1569	А
32	a	1578	U
32	a	1583	А
32	a	1584	U
32	a	1585	С
32	a	1593	А
32	a	1608	А
32	a	1609	A
32	a	1622	G
32	a	1647	U
32	a	1648	U
32	a	1649	G
32	a	1674	G
32	a	1715	G
32	a	1729	U
32	a	1730	С
32	a	1731	G
32	a	1732	С
32	a	1733	G
32	a	1738	G
32	a	1739	А
32	a	1750	G
32	a	1764	С
32	a	1773	А
32	a	1800	С
32	a	1801	А
32	a	1807	G
32	a	1808	A
32	a	1816	С
32	a	1829	А
32	a	1841	U
32	a	1847	А
32	a	1848	А
32	a	1858	А

Mol	Chain	Res	Type
32	a	1862	G
32	a	1866	А
32	a	1870	С
32	a	1871	A
32	a	1872	A
32	a	1873	G
32	a	1905	С
32	a	1906	G
32	a	1907	G
32	a	1913	A
32	a	1929	G
32	a	1930	G
32	a	1937	А
32	a	1938	А
32	a	1955	U
32	a	1965	С
32	a	1967	С
32	a	1970	A
32	a	1971	U
32	a	1972	G
32	a	1987	A
32	a	1991	U
32	a	1993	U
32	a	2023	С
32	a	2030	A
32	a	2031	A
32	a	2033	A
32	a	2043	С
32	a	2055	С
32	a	2056	G
32	a	2060	A
32	a	2061	G
32	a	2069	G7M
32	a	2077	A
32	a	2093	G
32	a	2192	U
32	a	2198	A
32	a	2203	U
32	a	2204	G
32	a	2211	A
32	a	2223	G
32	a	2225	A

Mol	Chain	Res	Type
32	a	2238	G
32	a	2268	А
32	a	2283	С
32	a	2287	А
32	a	2305	U
32	a	2308	G
32	a	2312	U
32	a	2322	A
32	a	2325	G
32	a	2333	А
32	a	2335	А
32	a	2347	С
32	a	2350	С
32	a	2361	G
32	a	2372	U
32	a	2383	G
32	a	2385	С
32	a	2396	G
32	a	2402	U
32	a	2403	С
32	a	2406	А
32	a	2425	А
32	a	2429	G
32	a	2430	A
32	a	2435	А
32	a	2441	U
32	a	2447	G
32	a	2448	А
32	a	2474	U
32	a	2476	А
32	a	2480	С
32	a	2502	G
32	a	2505	G
32	a	2506	U
32	a	2518	A
32	a	2529	G
32	a	2535	G
32	a	2547	A
32	a	2554	U
32	a	2566	A
32	a	2567	G
32	a	2573	С

Mol	Chain	Res	Type
32	a	2574	G
32	a	2602	А
32	a	2613	U
32	a	2629	U
32	a	2630	G
32	a	2663	G
32	a	2671	G
32	a	2682	А
32	a	2689	U
32	a	2690	U
32	a	2714	G
32	a	2726	А
32	a	2744	G
32	a	2748	А
32	a	2757	А
32	a	2758	А
32	a	2765	А
32	a	2778	А
32	a	2798	U
32	a	2800	А
32	a	2820	А
32	a	2821	А
32	a	2880	С
32	a	2884	U
32	a	2885	G
32	a	2891	U
32	a	2899	А
32	a	2901	С
33	b	9	G
33	b	17	С
33	b	25	U
33	b	34	А
33	b	42	С
33	b	45	А
33	b	56	G
33	b	89	U
33	b	90	С
33	b	99	А
33	b	105	G
33	b	109	A
33	b	119	A

All (31) RNA pucker outliers are listed below:

\mathbf{Mol}	Chain	\mathbf{Res}	Type
7	В	7	А
7	В	65	А
7	В	70	U
7	В	83	С
7	В	119	А
7	В	214	С
7	В	251	G
7	В	266	G
7	В	329	А
7	В	468	А
7	В	559	А
7	В	575	G
7	В	653	U
7	В	793	U
7	В	884	U
7	В	992	U
7	В	993	G
7	В	1026	G
7	В	1035	А
7	В	1129	С
7	В	1136	С
7	В	1225	А
7	В	1319	А
7	В	1445	U
29	Х	16	U
29	Х	18	G
29	Х	60	U
29	Х	74	С
31	Ζ	9	A
31	Ζ	20	U
31	Ζ	39	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

32 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tune	Chain	Dec	Link	Bo	Bond lengths		Bond angles		
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
32	G7M	a	2069	32	20,26,27	1.51	2 (10%)	17,39,42	0.78	0
32	PSU	a	955	32	18,21,22	0.93	1 (5%)	22,30,33	0.83	1 (4%)
7	5MC	В	1407	7	18,22,23	0.31	0	26,32,35	0.70	0
32	OMC	a	2498	32,60	19,22,23	0.29	0	26,31,34	0.56	0
32	2MA	a	2503	32,60	19,25,26	0.86	0	21,37,40	1.95	4 (19%)
32	5MU	a	747	32	19,22,23	0.31	0	28,32,35	0.46	0
7	2MG	В	1207	7	18,26,27	1.01	1(5%)	16,38,41	0.84	0
32	1MG	a	745	32	18,26,27	0.88	1 (5%)	19,39,42	0.67	0
32	5MU	a	1939	32	19,22,23	0.33	0	28,32,35	0.50	0
32	PSU	a	2604	32	18,21,22	1.01	1 (5%)	22,30,33	0.96	1 (4%)
32	2MG	a	1835	32	18,26,27	1.23	2 (11%)	16,38,41	0.88	0
32	H2U	a	2449	32	18,21,22	0.55	0	21,30,33	0.86	1 (4%)
7	PSU	В	516	7	18,21,22	0.95	1 (5%)	22,30,33	0.63	0
7	2MG	В	1516	7	18,26,27	0.98	1 (5%)	16,38,41	0.87	1 (6%)
7	UR3	В	1498	7	19,22,23	0.33	0	26,32,35	0.62	0
7	G7M	В	527	7	20,26,27	1.17	3 (15%)	17,39,42	0.51	0
32	OMU	a	2552	32	19,22,23	0.24	0	26,31,34	0.57	0
7	4OC	В	1402	7	20,23,24	0.45	0	26,32,35	0.58	0
32	OMG	a	2251	32,60,29	18,26,27	1.01	2 (11%)	19,38,41	0.68	0
32	PSU	a	1917	32	18,21,22	0.88	1 (5%)	22,30,33	0.65	0
32	6MZ	a	1618	32	18,25,26	<mark>3.26</mark>	1 (5%)	16,36,39	1.90	1 (6%)
7	5MC	В	967	7	18,22,23	0.29	0	26,32,35	0.56	0
7	2MG	В	966	7	18,26,27	1.04	2 (11%)	16,38,41	0.73	0
32	PSU	a	746	32,60	18,21,22	0.88	1 (5%)	22,30,33	0.79	0
32	PSU	a	2580	32,60	18,21,22	1.07	1 (5%)	22,30,33	0.82	1 (4%)
35	MEQ	d	150	35	8,9,10	0.47	0	5,10,12	0.72	0
32	5MC	a	1962	32	18,22,23	0.37	0	26,32,35	0.52	0
32	PSU	a	2504	32	18,21,22	0.95	1 (5%)	22,30,33	0.65	0
32	PSU	a	2605	32	18,21,22	1.70	1 (5%)	22,30,33	0.78	1 (4%)
32	PSU	a	1911	32	18,21,22	0.92	1 (5%)	22,30,33	0.67	0
32	2MG	a	2445	32	18,26,27	1.09	3 (16%)	16,38,41	0.89	1 (6%)
32	PSU	a	2457	32	18,21,22	1.11	1 (5%)	22,30,33	0.64	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
32	G7M	a	2069	32	-	2/3/25/26	0/3/3/3
32	PSU	a	955	32	-	0/7/25/26	0/2/2/2
7	5MC	В	1407	7	-	0/7/25/26	0/2/2/2
32	OMC	a	2498	32,60	-	0/9/27/28	0/2/2/2
32	2MA	a	2503	32,60	-	2/3/25/26	0/3/3/3
32	5MU	a	747	32	-	2/7/25/26	0/2/2/2
7	2MG	В	1207	7	-	2/5/27/28	0/3/3/3
32	1MG	a	745	32	-	0/3/25/26	0/3/3/3
32	$5 \mathrm{MU}$	a	1939	32	-	0/7/25/26	0/2/2/2
32	PSU	a	2604	32	-	0/7/25/26	0/2/2/2
32	2MG	a	1835	32	-	0/5/27/28	0/3/3/3
32	H2U	a	2449	32	-	0/7/38/39	0/2/2/2
7	PSU	В	516	7	-	0/7/25/26	0/2/2/2
7	2MG	В	1516	7	-	0/5/27/28	0/3/3/3
7	UR3	В	1498	7	_	0/7/25/26	0/2/2/2
7	G7M	В	527	7	-	0/3/25/26	0/3/3/3
32	OMU	a	2552	32	-	0/9/27/28	0/2/2/2
7	4OC	В	1402	7	-	1/9/29/30	0/2/2/2
32	OMG	a	2251	32,60,29	-	1/5/27/28	0/3/3/3
32	PSU	a	1917	32	-	0/7/25/26	0/2/2/2
32	6MZ	a	1618	32	-	0/5/27/28	0/3/3/3
7	5MC	В	967	7	-	0/7/25/26	0/2/2/2
7	2MG	В	966	7	-	2/5/27/28	0/3/3/3
32	PSU	a	746	32,60	-	2/7/25/26	0/2/2/2
32	PSU	a	2580	32,60	-	0/7/25/26	0/2/2/2
35	MEQ	d	150	35	-	2/8/9/11	-
32	5MC	a	1962	32	-	2/7/25/26	0/2/2/2
32	PSU	a	2504	32	-	0/7/25/26	0/2/2/2
32	PSU	a	2605	32	-	0/7/25/26	0/2/2/2
32	PSU	a	1911	32	-	0/7/25/26	0/2/2/2
32	2MG	a	2445	32	_	0/5/27/28	0/3/3/3
32	PSU	a	2457	32	-	0/7/25/26	0/2/2/2

All (28) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
32	a	1618	6MZ	C9-N6	13.52	1.68	1.45
32	a	2605	PSU	C6-C5	6.57	1.43	1.35
32	a	2457	PSU	C6-C5	4.30	1.40	1.35
32	a	2580	PSU	C6-C5	4.13	1.40	1.35
32	a	2069	G7M	C8-N9	4.01	1.40	1.33

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	a	2069	G7M	C8-N7	3.91	1.40	1.33
7	В	516	PSU	C6-C5	3.66	1.39	1.35
32	a	1911	PSU	C6-C5	3.55	1.39	1.35
32	а	2504	PSU	C6-C5	3.53	1.39	1.35
7	В	527	G7M	C8-N9	3.48	1.39	1.33
32	a	1835	2MG	CM2-N2	3.45	1.51	1.45
32	a	955	PSU	C6-C5	3.42	1.39	1.35
32	a	1917	PSU	C6-C5	3.38	1.39	1.35
32	a	2604	PSU	C6-C5	3.38	1.39	1.35
32	a	746	PSU	C6-C5	3.29	1.39	1.35
32	a	2251	OMG	C5-C6	-2.65	1.42	1.47
7	В	966	2MG	C5-C6	-2.55	1.42	1.47
7	В	1207	2MG	C5-C6	-2.49	1.42	1.47
7	В	527	G7M	C8-N7	2.48	1.37	1.33
32	a	2445	2MG	C5-C6	-2.48	1.42	1.47
7	В	527	G7M	C5-C6	-2.44	1.39	1.45
7	В	1516	2MG	C5-C6	-2.39	1.42	1.47
32	a	1835	2MG	C5-C6	-2.22	1.42	1.47
32	a	745	1MG	C5-C4	-2.11	1.37	1.43
32	a	2445	2MG	C8-N7	-2.10	1.31	1.35
7	В	966	2MG	C8-N7	-2.10	1.31	1.35
32	a	2251	OMG	C5-C4	-2.08	1.37	1.43
32	a	2445	2MG	C5-C4	-2.02	1.37	1.43

All (12) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	a	1618	6MZ	C9-N6-C6	-7.05	116.80	122.87
32	a	2503	2MA	C5-C6-N1	-6.66	116.64	121.01
32	а	2503	2MA	C5-C6-N6	4.37	126.99	120.35
32	a	2449	H2U	C4-N3-C2	-2.62	123.62	125.79
32	a	2580	PSU	C3'-C2'-C1'	2.53	104.59	101.64
32	а	2503	2MA	C2-N1-C6	2.50	121.97	118.08
32	a	2604	PSU	C2'-C3'-C4'	-2.44	97.90	102.64
32	а	2605	PSU	C2'-C3'-C4'	-2.38	98.02	102.64
32	а	2503	2MA	N3-C2-N1	-2.12	121.86	125.73
7	В	1516	2MG	O6-C6-C5	2.07	128.41	124.37
32	a	2445	2MG	O6-C6-C5	2.06	128.40	124.37
32	a	955	PSU	C5-C6-N1	-2.05	119.03	122.11

There are no chirality outliers.

All (18) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
7	В	966	2MG	O4'-C4'-C5'-O5'
7	В	966	2MG	C3'-C4'-C5'-O5'
7	В	1207	2MG	N1-C2-N2-CM2
7	В	1207	2MG	N3-C2-N2-CM2
32	a	746	PSU	C2'-C1'-C5-C4
32	a	2251	OMG	C1'-C2'-O2'-CM2
35	d	150	MEQ	NE2-CD-CG-CB
35	d	150	MEQ	OE1-CD-CG-CB
32	а	747	5MU	C3'-C4'-C5'-O5'
32	а	747	5MU	O4'-C4'-C5'-O5'
32	a	2069	G7M	C4'-C5'-O5'-P
32	а	1962	5MC	O4'-C1'-N1-C6
32	a	1962	5MC	C2'-C1'-N1-C6
7	В	1402	4OC	O4'-C4'-C5'-O5'
32	a	746	PSU	O4'-C1'-C5-C6
32	a	2503	2MA	O4'-C4'-C5'-O5'
32	a	2069	G7M	O4'-C4'-C5'-O5'
32	a	2503	2MA	C4'-C5'-O5'-P

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 309 ligands modelled in this entry, 307 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dag	Tinle	Bond lengths			Bond angles		
	туре	Unann	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
61	SPM	a	6209	-	13,13,13	0.21	0	12,12,12	0.20	0
59	A2G	А	101	6	14,14,15	0.48	0	17,19,21	0.95	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
61	SPM	a	6209	-	-	5/11/11/11	-
59	A2G	А	101	6	-	0/6/23/26	0/1/1/1

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
59	А	101	A2G	O5-C1-C2	-3.34	106.01	111.29

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
61	a	6209	SPM	C2-C3-C4-N5
61	a	6209	SPM	N5-C6-C7-C8
61	a	6209	SPM	C11-C12-C13-N14
61	a	6209	SPM	N1-C2-C3-C4
61	a	6209	SPM	N10-C11-C12-C13

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

