

Jul 15, 2024 – 01:04 am BST

PDB ID	:	7ZUW
EMDB ID	:	EMD-14978
Title	:	Structure of RQT (C1) bound to the stalled ribosome in a disome unit from
		S. cerevisiae
Authors	:	Best, K.M.; Ikeuchi, K.; Kater, L.; Best, D.M.; Musial, J.; Matsuo, Y.; Bern-
		inghausen, O.; Becker, T.; Inada, T.; Beckmann, R.
Deposited on	:	2022-05-13
Resolution	:	4.30 Å(reported)
This is	<u>а</u> Т	All any DDD FM Validation Depart for a publicly palaged DDD entry

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	2	1800	73%	25% ••
2	3	158	• 79%	20% •
3	4	121	86%	13% •
4	5	3396	75%	18% 7%
5	6	76	• 79%	21%
6	AA	206	100%	
7	AB	255	87%	• 11%
8	AC	216	100%	

Continued on next page...

Mol	Chain	Length	Quality of chain
9	AD	222	100%
10	AE	258	98% •
11	AF	206	100%
12	AG	228	98%
13	AH	184	
14	AT	200	02%
15		184	9270 · 070
10		00	99% ·
10	AK	92	100%
17	AL	144	99% ·
18	AM	121	97% .
19	AN	150	100%
20	AO	127	100%
21	AP	117	99%
22	AQ	141	99%
23	AR	136	89% 11%
24	AS	145	99%
25	AT	143	99%
26	AU	100	98%
27	AV	87	97% •
28	AW	129	100%
29	AX	144	00%
20		194	• •
0U	AI	104	99% ·
31	AZ	82	100%
32	Aa	97	98%
33	Ab	81	100%

Continued from previous page...

Continued on next page...

Chain Length Mol Quality of chain 5% 63 34Ac 98% . 35Ad 5398% 5% 36 Ae 60 98% • 11% Af 7337 99% . 96% 38312Ag 99% 39BA 251100% 40BΒ 386 99% BC41 36199% . 42BD 294 100% ΒE 4317694% • 5% BF44222100% • BG 4523399% i. 46BH191100% i BI 47218100% ÷ BJ 48169100% 49ΒK 19397% 50BL136100% BM20351100% BN 52197 •• 98% BO 18353100% BP 5418599% 55BQ18899% BR17156100% BS57159100% BT5810099%

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of chain
59	BU	136	100%
60	BV	126	9 9% •
61	BW	121	98%
62	BX	125	99% .
63	BY	135	• 99%
64	ΒZ	148	99% •
65	Ba	58	97% •
66	Bb	96	100%
67	Bc	109	100%
68	Bd	127	100%
69	Be	106	99% ·
70	Bf	112	100%
71	Bg	119	100%
72	Bh	99	100%
73	Bi	85	100%
74	Bj	77	<u>99%</u> .
75	Bk	50	100%
76	Bl	52	100%
77	Bm	25	100%
78	Bn	103	100%
79	Bo	91	99% ·
80	CA	1967	88% • 11%
81	CB	297	99%
82	CC	530	22% 78%

Continued from previous page...

2 Entry composition (i)

There are 84 unique types of molecules in this entry. The entry contains 218071 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	2	1771	Total 37739	C 16872	N 6683	0 12413	Р 1771	0	0

• Molecule 2 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues		Α	AltConf	Trace			
2	3	158	Total 3353	C 1500	N 586	O 1109	Р 158	0	0

• Molecule 3 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		At	AltConf	Trace			
3	4	121	Total 2579	C 1152	N 461	0 845	Р 121	0	0

• Molecule 4 is a RNA chain called 25S ribosomal RNA.

Mol	Chain	Residues			AltConf	Trace			
4	5	3163	Total 67650	C 30218	N 12191	O 22078	Р 3163	0	0

• Molecule 5 is a RNA chain called tRNA.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
5	6	76	Total 1619	С 722	N 288	O 533	Р 76	0	0

• Molecule 6 is a protein called 40S ribosomal protein S0-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	АА	206	Total 1603	C 1030	N 284	0 287	${S \over 2}$	0	0

• Molecule 7 is a protein called 40S ribosomal protein S1-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
7	AB	226	Total 1798	C 1139	N 330	O 325	${S \atop 4}$	0	0

• Molecule 8 is a protein called RPS2 isoform 1.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
8	AC	216	Total 1626	C 1042	N 287	O 295	${S \over 2}$	0	0

• Molecule 9 is a protein called RPS3 isoform 1.

Mol	Chain	Residues		Ate	AltConf	Trace			
9	AD	222	Total 1729	C 1098	N 312	0 313	S 6	0	0

• Molecule 10 is a protein called 40S ribosomal protein S4-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
10	AE	258	Total 2056	C 1308	N 387	O 358	${ m S} { m 3}$	0	0

• Molecule 11 is a protein called Rps5p.

Mol	Chain	Residues		At	AltConf	Trace			
11	AF	206	Total 1605	C 1005	N 299	0 298	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 40S ribosomal protein S6-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
12	AG	228	Total 1815	C 1138	N 351	O 323	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called 40S ribosomal protein S7-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
13	AH	184	Total 1473	C 946	N 263	О 264	0	0

• Molecule 14 is a protein called 40S ribosomal protein S8-B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	AI	187	Total 1476	C 916	N 295	O 263	${ m S} { m 2}$	0	0

• Molecule 15 is a protein called 40S ribosomal protein S9-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	AJ	184	Total 1479	C 935	N 285	O 258	S 1	0	0

• Molecule 16 is a protein called 40S ribosomal protein S10-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	AK	92	Total 752	C 487	N 122	0 141	${S \over 2}$	0	0

• Molecule 17 is a protein called 40S ribosomal protein S11-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	AL	144	Total 1159	C 742	N 219	0 195	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	AM	121	Total 875	C 551	N 153	O 169	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 19 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	AN	150	Total 1192	C 759	N 224	O 207	${ m S} { m 2}$	0	0

• Molecule 20 is a protein called 40S ribosomal protein S14-B.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	AO	127	Total 926	C 569	N 185	O 169	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called RPS15 isoform 1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	AP	117	Total 916	C 583	N 171	0 155	${ m S} 7$	0	0

• Molecule 22 is a protein called 40S ribosomal protein S16-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
22	AQ	141	Total 1105	C 708	N 203	0 194	0	0

• Molecule 23 is a protein called 40S ribosomal protein S17-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	AR	121	Total 948	C 596	N 179	0 171	${ m S} { m 2}$	0	0

• Molecule 24 is a protein called 40S ribosomal protein S18-A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
24	AS	145	Total 1192	C 743	N 237	0 210	${ m S} { m 2}$	0	0

• Molecule 25 is a protein called 40S ribosomal protein S19-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	AT	143	Total 1112	C 694	N 208	O 208	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called RPS20 isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	AU	100	Total 797	C 506	N 144	0 146	S 1	0	0

• Molecule 27 is a protein called 40S ribosomal protein S21-A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
27	AV	87	Total 673	C 415	N 125	0 131	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 28 is a protein called RPS22A isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	AW	129	Total 1021	$\begin{array}{c} \mathrm{C} \\ 650 \end{array}$	N 188	0 180	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called 40S ribosomal protein S23-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	AX	144	Total 1121	C 708	N 220	0 191	${ m S} { m 2}$	0	0

• Molecule 30 is a protein called 40S ribosomal protein S24-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
30	AY	134	Total 1073	C 676	N 208	O 189	0	0

• Molecule 31 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
31	AZ	82	Total 651	C 416	N 123	0 112	0	0

• Molecule 32 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	AltConf	Trace			
32	Aa	97	Total 769	C 475	N 160	0 129	${ m S}{ m 5}$	0	0

• Molecule 33 is a protein called 40S ribosomal protein S27-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	Ab	81	Total 610	C 382	N 110	0 113	${ m S}{ m 5}$	0	0

• Molecule 34 is a protein called RPS28A isoform 1.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
34	Δα	63	Total	С	Ν	0	S	0	0
- 34	AC	05	491	303	96	91	1	0	0

• Molecule 35 is a protein called RPS29A isoform 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
35	Ad	53	Total 442	С 274	N 92	0 72	${f S}$ 4	0	0

• Molecule 36 is a protein called 40S ribosomal protein S30-A.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
36	Ae	60	Total 472	C 298	N 97	O 76	S 1	0	0

• Molecule 37 is a protein called RPS31 isoform 1.

Mol	Chain	Residues		Ate	\mathbf{oms}			AltConf	Trace
37	Af	73	Total 556	C 352	N 105	O 95	${S \atop 4}$	0	0

• Molecule 38 is a protein called Guanine nucleotide-binding protein subunit beta-like protein.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
38	Ag	312	Total 2383	C 1514	N 409	0 452	S 8	0	0

• Molecule 39 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
39	BA	251	Total 1899	C 1182	N 385	0 331	S 1	0	0

• Molecule 40 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	BB	386	Total 3075	C 1950	N 584	O 533	S 8	0	0

• Molecule 41 is a protein called RPL4A isoform 1.

Mol	Chain	Residues		At	Atoms						
41	BC	361	Total 2748	C 1729	N 522	0 494	${ m S} { m 3}$	0	0		

• Molecule 42 is a protein called RPL5 isoform 1.

Mol	Chain	Residues		Ate	AltConf	Trace			
42	BD	294	Total 2351	C 1484	N 410	O 455	${ m S} { m 2}$	0	0

• Molecule 43 is a protein called 60S ribosomal protein L6-B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	BE	167	Total 1305	C 841	N 234	0 229	S 1	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BE	146	ILE	LEU	conflict	UNP P05739
BE	173	MET	LEU	conflict	UNP P05739

• Molecule 44 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	BF	222	Total 1784	C 1151	N 324	O 308	S 1	0	0

• Molecule 45 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	BG	233	Total 1804	C 1151	N 323	0 327	${ m S} { m 3}$	0	0

• Molecule 46 is a protein called RPL9A isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	BH	191	Total 1508	C 957	N 274	0 273	${f S}$ 4	0	0

• Molecule 47 is a protein called RPL10 isoform 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
47	BI	218	Total 1764	C 1117	N 334	O 306	S 7	0	0

• Molecule 48 is a protein called RPL11B isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
48	BJ	169	Total 1350	C 846	N 253	O 247	$\frac{S}{4}$	0	0

• Molecule 49 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
49	BK	193	Total 1543	C 962	N 315	O 266	0	0

• Molecule 50 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	BL	136	Total 1053	C 675	N 199	0 177	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 51 is a protein called Ribosomal protein L15.

Mol	Chain	Residues	Atoms					AltConf	Trace
51	ВМ	203	Total 1720	C 1077	N 361	0 281	S 1	0	0

• Molecule 52 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues		At	AltConf	Trace			
52	BN	197	Total 1555	C 1003	N 289	O 262	S 1	197	0

• Molecule 53 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
53	BO	183	Total	С	Ν	Ο	0	0
00	DO	100	1416	879	284	253	0	0

• Molecule 54 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
54	BP	185	Total 1441	C 908	N 290	0 241	${S \over 2}$	0	0

• Molecule 55 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
55	BQ	188	Total 1515	C 932	N 323	O 260	0	0

• Molecule 56 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues		At	AltConf	Trace			
56	BR	171	Total 1437	C 925	N 266	0 243	${ m S} { m 3}$	0	0

• Molecule 57 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
57	BS	159	Total 1276	C 805	N 246	0 221	$\frac{S}{4}$	0	0

• Molecule 58 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
58	BT	100	Total 796	C 516	N 131	O 149	0	0

• Molecule 59 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	AltConf	Trace			
59	BU	136	Total 1003	C 628	N 189	O 179	${f S}{7}$	0	0

• Molecule 60 is a protein called RPL24A isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
60	BV	126	Total 836	C 525	N 165	0 145	S 1	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BV	104	GLN	ASN	conflict	UNP A0A6A5PY83
BV	109	GLN	LEU	conflict	UNP A0A6A5PY83
BV	112	ASP	ASN	conflict	UNP A0A6A5PY83
BV	119	ALA	GLU	conflict	UNP A0A6A5PY83

• Molecule 61 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues		At	AltConf	Trace			
61	BW	121	Total 964	C 620	N 169	O 173	${ m S} { m 2}$	0	0

• Molecule 62 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
62	BX	125	Total 984	C 620	N 191	0 173	0	0

• Molecule 63 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
63	BY	135	Total 1092	C 710	N 202	O 180	0	0

• Molecule 64 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues	Atoms					AltConf	Trace
64	ΒZ	148	Total 1173	C 749	N 231	O 190	${ m S} { m 3}$	0	0

• Molecule 65 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
65	Ba	58	Total 462	C 289	N 100	O 73	0	0

• Molecule 66 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms			AltConf	Trace
66	Bb	96	Total 737	C 476	N 123	0 137	S 1	0	0

• Molecule 67 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	Bc	109	Total 876	C 556	N 167	0 152	S 1	0	0

• Molecule 68 is a protein called RPL32 isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
68	Bd	127	Total 1017	C 644	N 205	O 167	S 1	0	0

• Molecule 69 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
69	Be	106	Total 850	C 540	N 165	0 144	S 1	0	0

• Molecule 70 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	Bf	112	Total 880	С 545	N 179	0 152	$\frac{S}{4}$	0	0

• Molecule 71 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
71	Bg	119	Total 969	C 615	N 186	0 167	S 1	0	0

• Molecule 72 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
72	Bh	99	Total 766	C 478	N 154	0 132	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 73 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
73	Bi	85	Total 670	C 408	N 146	0 111	${ m S}{ m 5}$	0	0

• Molecule 74 is a protein called RPL38 isoform 1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
74	Bj	77	Total 612	C 391	N 115	O 106	0	0

• Molecule 75 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues	Atoms					AltConf	Trace
75	Bk	50	Total 436	С 272	N 97	O 65	${ m S} { m 2}$	0	0

• Molecule 76 is a protein called 60S ribosomal protein L40-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
76	Bl	52	Total 417	C 259	N 86	O 67	${f S}{5}$	0	0

• Molecule 77 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues	Atoms			AltConf	Trace		
77	Bm	25	Total 229	C 139	N 62	O 27	S 1	0	0

• Molecule 78 is a protein called 60S ribosomal protein L42-A.

Mol	Chain	Residues	Atoms			AltConf	Trace		
78	Bn	103	Total 824	C 517	N 167	0 135	${ m S}{ m 5}$	0	0

• Molecule 79 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues	Atoms			AltConf	Trace		
79	Во	91	Total 694	C 429	N 138	0 121	S 6	0	0

• Molecule 80 is a protein called RQC trigger complex helicase SLH1.

Mol	Chain	Residues	Atoms				AltConf	Trace	
80	CA	1742	Total 14008	C 8959	N 2378	O 2596	S 75	0	0

• Molecule 81 is a protein called CUE3 isoform 1.

Mol	Chain	Residues	Atoms			AltConf	Trace		
81	СВ	297	Total 2415	C 1568	N 414	0 427	S 6	0	0

• Molecule 82 is a protein called RQC trigger complex subunit RQT4.

Mol	Chain	Residues	Atoms			AltConf	Trace		
82	CC	114	Total 886	$\begin{array}{c} \mathrm{C} \\ 539 \end{array}$	N 167	0 172	S 8	0	0

• Molecule 83 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
83	2	84	TotalMg8484	0
83	AC	1	Total Mg 1 1	0
83	AQ	1	Total Mg 1 1	0

• Molecule 84 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
84	Ad	1	Total Zn 1 1	0
84	Af	1	Total Zn 1 1	0
84	Bf	1	Total Zn 1 1	0
84	Bi	1	Total Zn 1 1	0
84	Bl	1	Total Zn 1 1	0
84	Bn	1	Total Zn 1 1	0
84	Во	1	Total Zn 1 1	0
84	CC	2	Total Zn 2 2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 18S ribosomal RNA

• Molecule 10: 40S ribosomal protein S4-A

Chain AE:	98%
A2 L42 P43 G193 K21 1 K233	
• Molecule 11	: Rps5p
Chain AF:	100%
F20 E39 K45 E50 D60	C151 C152 C152 A154 H225 H225
• Molecule 12	2: 40S ribosomal protein S6-A
Chain AG:	98%
M1 H22 K51 L68 R98 R98	<mark>71.64</mark> 12.73 12.72
• Molecule 13	3: 40S ribosomal protein S7-A
Chain AH:	99%
P4 Q11 A12 E33 R79 R79	◆ ◆ 18 18 18 18 18 18 18 18 18 18
• Molecule 14	l: 40S ribosomal protein S8-B
Chain AI:	92% • 6%
MET G2 H9 K10 K123 LYS LYS ASN	VAL VAL GLU GLU GLU GLU GLU GLU GLU GLU K13 VAL K13 C LYS
• Molecule 15	5: 40S ribosomal protein S9-A
Chain AJ:	99%
P2 L99 G185	
• Molecule 16	5: 40S ribosomal protein S10-A
Chain AK:	100%
M1 E70	

• Molecule 17: 40S ribosomal protein S11-A	
Chain AL: 99%	·
22 13 867 4145	
• Molecule 18: 40S ribosomal protein S12	
Chain AM: 97%	•
T23 B39 B39 B109 K108 B130 Q142 Q142	
• Molecule 19: 40S ribosomal protein S13	
Chain AN: 100%	
• Molecule 20: 40S ribosomal protein S14-B	
Chain AO: 100%	
There are no outlier residues recorded for this chain.	
• Molecule 21: RPS15 isoform 1	
Chain AP:	•
 Karalia Karalia	
• Molecule 22: 40S ribosomal protein S16-A	
Chain AQ: 99%	
13 13 13 13 13 13 13 13 13 13 13 13 13 1	
• Molecule 23: 40S ribosomal protein S17-A	
Chain AR: 89%	11%
MET C2 C2 R96 R96 R96 SER SER SER C1 V A126 A126 A126 A126 A126 A126 A126 A126	
WORLDWIDE PROTEIN DATA BANK	

• Molecule 24:	40S ribosomal protein S18-A
Chain AS:	99%
S2 R110 A146 ▲	
• Molecule 25:	40S ribosomal protein S19-A
Chain A1:	99% •
P2 V30 D35 K78 E142 E142	
• Molecule 26:	RPS20 isoform 1
Chain AU:	98%
I20 K43 K52 105	
• Molecule 27:	40S ribosomal protein S21-A
Chain AV:	97% •
M1 133 133 133 133 133 133 133 133 133 1	
• Molecule 28:	RPS22A isoform 1
Chain AW:	100%
There are no or	utlier residues recorded for this chain.
• Molecule 29:	40S ribosomal protein S23-A
Chain AX:	99%
G2 P88 N89 R144 S145 ↔	
• Molecule 30:	40S ribosomal protein S24-A
Chain AY:	99% .

• Molecule 31: 40S ribosomal protein S25	
Chain AZ: 100%	
K25 K25 K29 K32 K33 K33 K33 K33 K33 K33 M32 K33 M32 K33 M32 K33 T100	
• Molecule 32: 40S ribosomal protein S26	
Chain Aa: 98%	·
¹ 23 199 199 199 199 199 199 199 199 199 19	
• Molecule 33: 40S ribosomal protein S27-A	
Chain Ab: 100%	
• Molecule 34: RPS28A isoform 1	
Chain Ac: 98%	·
\bullet Molecule 35: RPS29A isoform 1	
Chain Ad: 98%	·
• Molecule 36: 40S ribosomal protein S30-A	
Chain Ae: 98%	·
A2 K3 K54 K61 B61	
• Molecule 37: RPS31 isoform 1	
Chain Af: 99%	·
R116 R122 R122 R124 R123 R122 R123 R122 R124 R149 R149 R152	

• Molecule 38: Guanine nucleotide-binding protein subunit beta-like protein

• Molecule 39: 60S ribosomal protein L2-A

Chain BA: 100% • Molecule 40: 60S ribosomal protein L3 Chain BB: 99% • Molecule 41: RPL4A isoform 1 Chain BC: 99% • Molecule 42: RPL5 isoform 1 Chain BD: 100%

• Molecule 43: 60S ribosomal protein L6-B

Chain BE:	94%	• 5%
MET 12 12 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14		
• Molecule 44: 60S rib	osomal protein L7-A	
Chain BF:	100%	
A23 V26 N244		
• Molecule 45: 60S rib	osomal protein L8	
Chain BG:	99%	
M24 130 130 130 130 130 130 130 130 130 125 130 125 130 1255		
• Molecule 46: RPL9A	isoform 1	
Chain BH:	100%	
• Molecule 47: RPL10	isoform 1	
Chain BI:	100%	
A2 C105 A219 A219		
• Molecule 48: RPL11	B isoform 1	
Chain BJ:	100%	
06 Ka 15 b1 73 Ka 74		

 \bullet Molecule 49: 60S ribosomal protein L13-A

Chain BK:	97%	·
A2 N6 R21 R21 F75 T76 E194		
• Molecule 50: 60S ribosoma	al protein L14-A	
Chain BL:	100%	
T3 A138		
• Molecule 51: Ribosomal p	rotein L15	
Chain BM:	100%	
02 K204		
• Molecule 52: 60S ribosoma	al protein L16-A	
Chain BN:	98%	
V3 N50 P110 P111 P111 A117 Y199		
• Molecule 53: 60S ribosoma	al protein L17-A	
Chain BO:	100%	
A2 K159 A161 A161 A184		
• Molecule 54: 60S ribosoma	al protein L18-A	
Chain BP:	99%	·
C2 R141 V186		
• Molecule 55: 60S ribosoma	al protein L19-A	
Chain BQ:	99%	
A2 K153 L184 L185 K186 E187 A189 A189		

• Molecule 56: 60S ribosomal protein L20-A

There are no outlier residues recorded for this chain. • Molecule 57: 60S ribosomal protein L21-A Chain BS: 100% There are no outlier residues recorded for this chain. • Molecule 58: 60S ribosomal protein L22-A Chain BT: 99%
 Molecule 57: 60S ribosomal protein L21-A Chain BS: 100% There are no outlier residues recorded for this chain. Molecule 58: 60S ribosomal protein L22-A Chain BT: 99%
Chain BS: 100% There are no outlier residues recorded for this chain. • Molecule 58: 60S ribosomal protein L22-A Chain BT: 99%
There are no outlier residues recorded for this chain. • Molecule 58: 60S ribosomal protein L22-A Chain BT: 99%
• Molecule 58: 60S ribosomal protein L22-A Chain BT:
Chain BT: 99%
\bullet Molecule 59: 60S ribosomal protein L23-A
Chain BU: 100%
• Molecule 60: RPL24A isoform 1
Chain BV: 99%
• Molecule 61: 60S ribosomal protein $L25$
Chain BW: 98% .
\bullet Molecule 62: 60S ribosomal protein L26-A
Chain BX: 99%
\bullet Molecule 63: 60S ribosomal protein L27-A
Chain BY: 99%

WORLDWIDE PROTEIN DATA BANK

٠		
		9
A2	K27	F13

• Molecule 64: 60S ribosomal protein L28

Chain BZ: 99%
K115 A145
Molecule 65: 60S ribosomal protein L29
Chain Ba: 97% ·
20 20 20
Molecule 66: 60S ribosomal protein L30
Chain Bb: 100%
There are no outlier residues recorded for this chain.
Molecule 67: 60S ribosomal protein L31-A
Chain Bc:
Molecule 68: RPL32 isoform 1
Chain Bd:
Molecule 69: 60S ribosomal protein L33-A
Chain Be: 99%
Molecule 70: 60S ribosomal protein L34-A
Chain Bf:

	•	•	•	•
A2	E110	A111	A112	K113

• Molecule 71: 60S ribosomal protein L35-A
Chain Bg: 100%
• Molecule 72: 60S ribosomal protein L36-A
Chain Bh: 100%
H1000 H100
• Molecule 73: 60S ribosomal protein L37-A
Chain Bi: 100%
There are no outlier residues recorded for this chain.
• Molecule 74: RPL38 isoform 1
Chain Bi:
• Molecule 75: 60S ribosomal protein L39
Chain Bk: 100%
There are no outlier residues recorded for this chain.
• Molecule 76: 60S ribosomal protein L40-A
Chain Bl:
• Molecule 77: 60S ribosomal protein L41
Chain Bm: 100%
There are no outlier residues recorded for this chain.

• Molecule 7	78: 60S ribosomal protein L42-A	
Chain Bn:	100%	-
There are no	o outlier residues recorded for this chain.	
• Molecule 7	9: 60S ribosomal protein L43-A	
Chain Bo:	99%	-
A2 K3 R4 V90 E91 A92		
• Molecule 8	80: RQC trigger complex helicase SLH1	
Chain CA:	50% 88% · 11%	-
MET SER THR GLU TYR SER ALA ASP SER	SER SER PHE PHE PHE PHE PHE ALA ALA ALA ALA ALA ALA ALA ASP PHE CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	LEU THR VAL LEU
SER GLN ASP ASP ASP ASP ASP ASP	TLE PHE GLU GLU GLU CHE GLU CHE CLY CLY GLU GLU CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	LEU LEU GLU THR
VAL LEU GLN MET VAL TYR LYS HIS GLN	LYNS GLNN GLU GLU GLU GLU GLU GLU LEEU LEEU LEEU	ASN SER THR PRO GLU
PHE LEU THR GLN GLN ASP ILE AAG ASN	CLN VAL LEDU LEDU SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	V238 V238 R242 N243 S244 V245 N246
1247 H248 1252 D257 Q258	A255 A256 N2561 N2561 N2563 Y2665 Y2665 Y2665 Y2265 K271 L275 K271 L275 K271 L275 K271 K271 K271 K268 K271 K271 K275 K273 K276 K275 K276 K276 K276 K276 K276 K276 K276 K276	Y300 Y302 Y302 N305 N305 N305 N306 N306 N306 N306 N310 C313 C315 C315 C315 C315 C315
T317 D318 D318 A320 L321 L321 L322 T323	1324 1325 1325 1325 1328 1328 1329 1329 1320 1340 1340 1340 1340 1340 1340 1340 134	K369 L370 A371 P372 F373 R374 Q376 R375 L379 L380 T381 C382
D383 M384 Q385 L386 T387 K388 A389	L392 L392 L392 L392 L392 L392 K410 K411 M411 M412 G413 G413 M412 G413 M411 M412 G413 L424 L425 L424 L425 L425 L426 P414 L426 P414 L426 P414 P414 P426 P430 P435 P435 P436 P436 P436 P436 P436 S456 S455 P456 S456 P456	1458 1450 1450 1461 6462 6462 6462 6462 8464 8464 8465 8464 8475 7475 7476 7476
G478 V479 N480 R481 G484 M485	F486 Y487 F488 P489 8491 F422 F422 F492 F492 F492 F492 F601 F493 F502 F505 F511 F507 F503 F511 F511 F513 F511 F513 F513 F513 F51	K554 K554 L555 A556 E557 S558 N559 H560 E561 V562 D563 L664 F565 F565 A566
P567 ♦ D568 ♦ P569 ♦ K572 ♦ D573 ♦ D573 ♦	 15.15 15.75 15.77 15.77 15.77 15.77 15.75 15.84 15.94 15.94 15.94 15.94 15.94 15.94 15.95 15.95 15.97 	D516 D516 K620 V621 V621 L622 C623 C623 C624 C623 A626 V632 A626 V633 L624 L624 V633 L624 V633 L624 V633 V633 V633 V633 V633 V633 V633 V633 V633 V633 V633 V633
A636 D637 C638 V639 I640 I641 K642	6643 6643 T644 7 7645 9 7644 9 7645 9 7645 9 7644 9 7645 9 8649 9 8649 9 8649 9 8649 9 8649 9 8649 9 8650 9 9 9 9 9 1655 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <td>D688 H869 H869 D691 H892 H701 H701 P702 H703 H703 F703 F703 F705</td>	D688 H869 H869 D691 H892 H701 H701 P702 H703 H703 F703 F703 F705

G7 08 S7 09	K710	S720	L721	D7 28 E7 29	A730		L/ 34	M7 39 F7 40	R744	K745	T749	Y750		W7 54	N7 59	Q762	L763 Y764	E7 65		R7 69	M770	R777	61719 H779	A780 L781	F7 86	D787	E7 88	F793	F805		L808	E813	C819		
R822	A825	L829	M834	F838	D839 G840	I841 K842	F843 R844	E845	E846	K849	K852	S855	D856	1863 G864	S865	Q 866	F888	D889	R958	D959	K961	E977	L1048	L1060	64.075	D1074	T1113	K1114		K1117	R1119	P1120	P1122		
T1123 S1124	A1125 L1126 D1127	N1128	L1130	E1132	S1133 I1134	Y1135	F1137	K1138	M1146	F1148	N1155	F1159	T1164	G1165	S1166 G1167	K1168	A1172	E1173	H1178	F1180	K1181 T1182	F1183	G1185	K1186	I1188	Y1190	11191 A1192	P1193	L1197	D1203	D1204	R1206	K1207 K1208	I1209	
T1210	V1212 T1213 G1214	01215	V1217	V1218 E1219	L1220	G1222	D1223	L1225	P1226 D1227	P1228	D1230	V1231 H1232	D1233	A1234 T1235	11236	V1237	1010	F1 24 1	F1244	11247	W1251	T1253	K1255	F1256 V1257	q1258	V1260	S1261	11263	11264 M1265	D1266	11268	A1272	S1273 D1274	R1275 G1276	
M1281	R1285	T1293 K1294	q1295 P1296	V1297 R1298	L1299		V1306	K1319 D1320	1,1323	01 202	51328	S1329	R1331	P1332	P1334	11339	D1340	G1341 F1342	P1343		F1348	K1353	T1354 M1355	F1360	M1361	Q1365	H1366	D1369	K1370	A1372	L1373 I1374	F1375	A1377	S1378	
Q1381	11382 T1385	L1392	M1395	E1396 D1397	N1398	R1400	K1401 F1402	L1403 N1404	I1405	D1406	E1408	E1410	L1411	Y1413	Y1414	S1416	Q1417 V1418	T1419	D1420	L1427	11431 G1432	L1433	H1434 H1435	A1436	L1438	V1439	K1441	D1442 R1443	S1444	I1445	F1450	K1452	N1453 🕈 K1454	11457	
L1458 11459	A1460 • T1461 • S1462 •	T1463	A1465	W1466 G1467	V1468	L1470	P1471 • • • • • • • • • • • • • • • • • • •	H1473	K1478	G1479 T1480	Q1481 F1482	F1483 D1484	D1404 A1485	K1486	1148/ E1488	G1489 v1490	R1491	D1492 M1493	D1494	L1495 T1496	L1499	Q1500	M1502	G1503 • R1504 •	A1505	A1509	T1512	T1513	T1515	A1516	S1523	K1525	Y1528	V1534	
S1540	H1543 + K1544	V1545 L1546	D1547 D1548	H1549 L1550	G1551 A1552	E1553	S1556	G1557	I1559	11560 N1561	K1562 Q1563	W1571		Y1585	D1589	T1591	S1592 T1593	A1594	E1598	H1599	D1605	L1608	L1009 N1610	L1611	E1613		C1616 V1617	L1618	L1619 H1620	G1621	D1622	A1626	T1627	F1028	
F1629 L1630	51031 11632 51633	Y1636	Y1637	S1639	L1641	T1642 11643	R1644	41040 L1646	L1647	Q1649	I1650 + + + + + + + + + + + + + + + + + + +	D1652	CC01U	F1656	E1658	V1659	R1661	W1662	S1664	L1665 A1666	V1667	Y1669	N1670 • E1671 •	L1672	P1673	R1675	G1677	E1678	11680	M1681	E1683	E1684 • M1685 •	S1686	4100/ Q1688	Y1691
S1692 V1693	E1694	F1697	D1699	E1700 F1701	E1702	P1704	M1705	D1707	H1 709	V1710	T1712	F1713	L1715	L1716	A1718	H1719 L1720	S1721	K1/22	D1724	P1726	11727	D1729	11731	u1732 D1733	T1734	S1736	V1737	D1739	L1742	R1743	11/44 L1745	Q1746	Y1748	I1749 D1750	V1751
s1753 ♦ 31754 ♦	L1755	F1758	T1760	1761	r1763 41764 🔶	11765	v1767	M1768	C1770 11771 ♦	K1772	11773	Y1775	1777	E1778	01780	P1781	V1782 \$1783	V1784	01786	31787	1789	t1790	R1792	X1794	01795	r1797	F1798	E1800		F1803	1180 4 51805	M1806	1808	11809	K1811
13	15		5	21	23	25	26	, i		31 32		34 35	36	37	39	40	42	43	45	40	48		52	23	55	56		59	61	62	64	65 66	67		
K18 K18	L18 L18 T18	L18 F18	E18	118 G18	R18 F18	G18	Y18 K18	K18	L18 L18	N18 V18	F18	D18 Q18	L18	T18 F18	G18	M18 T18	E18	S18 E18	D18	118 K18	K18 R18	F18	V18 S18	V18	018 018	R18	P18	V18 L18	E18.	G18 M18	K18	F18 E18	E18	E 10	N18 E18
V1873 L1874	T1875 F1876 V1877	\$1878 \$1878 \$1879	H1880	L1881 S1882	S1883 K1884	H1885	N1886 N1887	G1888	F1889 E1890	V1891 Y1892	C1893	D1894 K1895	F1896	P1897 K1898	I1899	Q1900 🕴 K1901	E1902	L1903 W1904	F1905	L1906 11907	G1908 H1909	K1910	D1912	E1913	L1914 L1915	M1916	K1918	R1919	Q1921	P1922 K1923	Q1924	M1925 N1926	K1927	V1929	11930 11931 H1932

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	17885	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	44	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	4.383	Depositor
Minimum map value	-1.015	Depositor
Average map value	0.020	Depositor
Map value standard deviation	0.109	Depositor
Recommended contour level	0.3	Depositor
Map size (Å)	585.19995, 585.19995, 585.19995	wwPDB
Map dimensions	560, 560, 560	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.045, 1.045, 1.045	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles	
WIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	2	0.93	1/42211~(0.0%)	0.94	40/65773~(0.1%)
2	3	1.07	0/3746	0.93	2/5832~(0.0%)
3	4	0.92	0/2883	0.95	5/4491~(0.1%)
4	5	1.16	6/75723~(0.0%)	0.97	50/118057~(0.0%)
5	6	0.66	0/1808	0.86	2/2816~(0.1%)
6	AA	0.39	0/1644	0.56	0/2249
7	AB	0.39	0/1823	0.60	0/2447
8	AC	0.47	0/1656	0.58	0/2251
9	AD	0.40	0/1754	0.58	0/2361
10	AE	0.45	0/2097	0.60	1/2823~(0.0%)
11	AF	0.37	0/1625	0.59	0/2197
12	AG	0.37	0/1839	0.60	1/2460~(0.0%)
13	AH	0.34	0/1498	0.56	0/2019
14	AI	0.49	0/1501	0.66	0/2006
15	AJ	0.44	0/1504	0.61	0/2016
16	AK	0.40	0/769	0.62	0/1039
17	AL	0.52	0/1185	0.57	0/1598
18	AM	0.28	0/883	0.59	0/1199
19	AN	0.46	0/1215	0.60	0/1638
20	AO	0.42	0/937	0.68	0/1261
21	AP	0.33	0/936	0.59	0/1259
22	AQ	0.40	0/1125	0.61	0/1510
23	AR	0.34	0/957	0.61	0/1283
24	AS	0.36	0/1211	0.61	0/1628
25	AT	0.35	0/1130	0.62	1/1517~(0.1%)
26	AU	0.39	0/807	0.56	0/1091
27	AV	0.45	0/682	0.62	0/921
28	AW	0.47	0/1038	0.63	0/1395
29	AX	0.52	0/1139	0.63	0/1518
30	AY	0.42	0/1087	0.59	0/1449
31	AZ	0.31	0/661	0.64	0/888
32	Aa	0.45	0/782	0.68	0/1047

Mal	Chain	Bo	ond lengths	E	Bond angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	Ab	0.40	0/620	0.62	0/838
34	Ac	0.39	0/493	0.73	0/663
35	Ad	0.46	0/452	0.64	0/600
36	Ae	0.37	0/480	0.62	0/639
37	Af	0.31	0/567	0.59	0/764
38	Ag	0.27	0/2436	0.55	0/3318
39	BA	0.56	0/1933	0.64	0/2598
40	BB	0.52	0/3146	0.60	0/4228
41	BC	0.52	0/2800	0.61	0/3790
42	BD	0.43	0/2400	0.55	0/3239
43	BE	0.40	0/1327	0.53	0/1790
44	BF	0.53	0/1821	0.55	0/2451
45	BG	0.39	0/1836	0.54	0/2481
46	BH	0.45	0/1529	0.58	0/2060
47	BI	0.52	0/1801	0.60	0/2416
48	BJ	0.39	0/1371	0.60	0/1838
49	BK	0.45	0/1568	0.63	0/2106
50	BL	0.39	0/1068	0.57	0/1438
51	BM	0.57	0/1757	0.63	0/2354
52	BN	0.54	0/1585	0.58	0/2128
53	BO	0.57	0/1439	0.62	0/1938
54	BP	0.52	0/1465	0.64	0/1965
55	BQ	0.47	0/1532	0.60	0/2043
56	BR	0.53	0/1473	0.61	0/1980
57	BS	0.52	0/1300	0.59	0/1743
58	BT	0.45	0/812	0.62	1/1099~(0.1%)
59	BU	0.57	0/1018	0.61	0/1369
60	BV	0.45	0/850	0.55	0/1152
61	BW	0.48	0/979	0.60	0/1321
62	BX	0.47	0/995	0.61	0/1329
63	BY	0.41	0/1118	0.55	0/1497
64	BZ	0.57	0/1204	0.62	0/1612
65	Ba	0.41	0/473	0.55	0/629
66	Bb	0.46	0/745	0.50	0/1001
67	Bc	0.52	0/890	0.63	0/1196
68	Bd	0.54	0/1038	0.61	0/1390
69	Be	0.58	0/868	0.61	0/1168
70	Bf	0.50	0/890	0.61	0/1189
71	Bg	0.42	0/978	0.57	0/1301
72	Bh	0.37	0/772	0.60	0/1026
73	Bi	0.59	0/685	0.65	0/908
74	Bj	0.37	0/618	0.58	0/826
75	Bk	0.51	0/443	0.64	0/588

Mol Chain		Bo	ond lengths	Bond angles		
Moi Chair	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
76	Bl	0.48	0/423	0.64	0/562	
77	Bm	0.51	0/230	0.77	0/296	
78	Bn	0.49	0/836	0.60	0/1104	
79	Bo	0.58	0/701	0.62	0/934	
80	CA	0.27	0/14309	0.49	0/19348	
81	CB	0.23	0/2463	0.46	0/3324	
82	CC	0.24	0/897	0.53	0/1203	
All	All	0.84	7/233290~(0.0%)	0.82	103/340819~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
7	AB	0	1
10	AE	0	1
12	AG	0	1
14	AI	0	1
18	AM	0	3
22	AQ	0	1
29	AX	0	1
32	Aa	0	2
37	Af	0	1
38	Ag	0	1
40	BB	0	1
41	BC	0	1
45	BG	0	2
49	BK	0	1
52	BN	0	1
61	BW	0	1
64	BZ	0	1
65	Ba	0	1
All	All	0	22

All (7) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
4	5	2408	C	N1-C6	-6.41	1.33	1.37
4	5	1134	А	N9-C4	-6.33	1.34	1.37
4	5	2183	А	N9-C4	-6.12	1.34	1.37
4	5	889	А	N9-C4	-6.04	1.34	1.37

	j = j	Protection	no rugo				
Mol	Chain	\mathbf{Res}	Type	Atoms		Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
4	5	2186	G	C5-C4	-5.39	1.34	1.38
4	5	919	С	N1-C6	-5.26	1.33	1.37
1	2	13	С	N1-C6	-5.07	1.34	1.37

All (103) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	934	С	C2-N1-C1'	8.82	128.50	118.80
1	2	1533	С	N3-C2-O2	-7.92	116.35	121.90
4	5	3058	U	N3-C2-O2	-7.83	116.72	122.20
1	2	1527	С	C2-N1-C1'	7.82	127.40	118.80
1	2	934	С	N1-C2-O2	7.45	123.37	118.90
1	2	1257	U	C2-N1-C1'	7.42	126.61	117.70
1	2	1527	С	C6-N1-C1'	-7.34	111.99	120.80
4	5	2816	G	N1-C6-O6	-7.25	115.55	119.90
1	2	1389	С	C2-N1-C1'	7.17	126.69	118.80
4	5	2715	G	N3-C4-C5	7.09	132.15	128.60
1	2	934	С	C6-N1-C1'	-6.77	112.68	120.80
4	5	1497	С	C2-N1-C1'	6.74	126.21	118.80
4	5	3154	U	N1-C2-O2	6.67	127.47	122.80
1	2	583	С	C2-N1-C1'	6.60	126.06	118.80
4	5	42	С	C6-N1-C2	-6.47	117.71	120.30
4	5	3049	А	O4'-C1'-N9	6.39	113.32	108.20
4	5	923	U	C2-N1-C1'	6.38	125.35	117.70
4	5	406	G	O4'-C1'-N9	6.32	113.25	108.20
4	5	1605	G	C4-N9-C1'	6.26	134.64	126.50
1	2	610	G	C4-N9-C1'	6.24	134.61	126.50
58	BT	50	LEU	CA-CB-CG	6.14	129.43	115.30
4	5	1497	С	C6-N1-C2	-6.14	117.84	120.30
4	5	3154	U	C2-N1-C1'	6.07	124.99	117.70
1	2	426	G	C4-N9-C1'	6.00	134.29	126.50
1	2	1533	С	N1-C2-O2	5.99	122.49	118.90
4	5	2985	С	C6-N1-C2	-5.98	117.91	120.30
2	3	39	G	O4'-C1'-N9	5.97	112.97	108.20
1	2	1791	А	P-O3'-C3'	5.93	126.82	119.70
1	2	965	U	C2-N1-C1'	5.85	124.72	117.70
1	2	1274	С	P-O3'-C3'	5.82	126.69	119.70
4	5	3214	A	N1-C2-N3	5.82	132.21	129.30
4	5	1127	G	N9-C4-C5	-5.81	103.08	105.40
1	2	322	G	P-O3'-C3'	5.80	126.66	119.70
1	2	1642	G	C8-N9-C4	5.80	108.72	106.40
4	5	1175	G	C4-N9-C1'	5.80	134.04	126.50

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	1082	С	C2-N1-C1'	5.71	125.08	118.80
4	5	847	А	C2-N3-C4	5.71	113.45	110.60
4	5	1175	G	C8-N9-C1'	-5.70	119.60	127.00
4	5	42	С	N1-C2-O2	5.66	122.30	118.90
1	2	610	G	C8-N9-C1'	-5.59	119.74	127.00
1	2	1274	С	N3-C2-O2	-5.59	117.99	121.90
4	5	3215	U	C2-N1-C1'	5.58	124.39	117.70
4	5	3058	U	N1-C2-O2	5.57	126.70	122.80
4	5	3154	U	N3-C2-O2	-5.50	118.35	122.20
1	2	1571	С	N3-C2-O2	-5.50	118.05	121.90
1	2	934	С	N3-C2-O2	-5.46	118.08	121.90
1	2	426	G	C8-N9-C1'	-5.42	119.95	127.00
4	5	2618	U	N3-C2-O2	-5.40	118.42	122.20
4	5	1605	G	C8-N9-C1'	-5.39	119.99	127.00
4	5	2730	U	N3-C2-O2	-5.38	118.43	122.20
4	5	2874	U	N3-C2-O2	-5.38	118.44	122.20
3	4	77	G	C4-N9-C1'	-5.38	119.51	126.50
4	5	2837	С	N3-C2-O2	-5.37	118.14	121.90
4	5	1127	G	N3-C4-N9	5.36	129.22	126.00
4	5	1116	G	C4-N9-C1'	5.36	133.46	126.50
1	2	1162	С	C2-N1-C1'	5.35	124.69	118.80
4	5	2238	С	N3-C2-O2	-5.34	118.17	121.90
4	5	1496	U	C5-C6-N1	-5.33	120.03	122.70
4	5	2247	G	C4-C5-N7	5.33	112.93	110.80
4	5	2727	С	C6-N1-C2	-5.32	118.17	120.30
4	5	2951	G	O4'-C1'-N9	5.32	112.45	108.20
1	2	767	U	N3-C2-O2	-5.31	118.48	122.20
12	AG	68	LEU	CA-CB-CG	5.31	127.51	115.30
1	2	1082	С	N1-C2-O2	5.28	122.07	118.90
3	4	77	G	N3-C4-N9	-5.26	122.84	126.00
4	5	2816	G	C6-C5-N7	5.23	133.54	130.40
4	5	847	A	N3-C4-C5	-5.23	123.14	126.80
1	2	992	А	N1-C2-N3	5.20	131.90	129.30
4	5	836	G	O4'-C1'-N9	5.18	112.34	108.20
4	5	1281	С	N3-C2-O2	-5.18	118.28	121.90
1	2	1596	С	C2-N1-C1'	5.17	124.49	118.80
25	AT	35	ASP	CB-CG-OD1	5.17	122.95	118.30
4	5	1231	G	N3-C4-N9	-5.16	122.90	126.00
4	5	2238	С	N1-C2-O2	5.16	121.99	118.90
4	5	1449	U	N3-C2-O2	-5.15	118.59	122.20
4	5	$2\overline{367}$	C	C2-N1-C1'	5.15	$1\overline{24.47}$	118.80
3	4	77	G	N3-C4-C5	5.15	131.18	128.60

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	189	С	N1-C2-O2	5.14	121.98	118.90
4	5	2715	G	C2-N3-C4	-5.13	109.34	111.90
3	4	78	U	C2-N1-C1'	5.13	123.85	117.70
4	5	917	G	P-O3'-C3'	5.11	125.84	119.70
1	2	1589	С	C6-N1-C2	5.11	122.34	120.30
4	5	2715	G	N3-C4-N9	-5.10	122.94	126.00
1	2	1389	С	N1-C2-O2	5.10	121.96	118.90
1	2	1527	С	N1-C2-O2	5.10	121.96	118.90
10	AE	193	GLY	N-CA-C	5.09	125.83	113.10
1	2	1458	G	C4-N9-C1'	5.08	133.10	126.50
4	5	1200	С	C2-N1-C1'	-5.08	113.22	118.80
1	2	583	С	C6-N1-C1'	-5.06	114.72	120.80
4	5	3354	G	N3-C4-C5	5.06	131.13	128.60
2	3	100	U	C2-N1-C1'	5.06	123.77	117.70
4	5	2404	G	C6-C5-N7	-5.04	127.38	130.40
5	6	34	U	N3-C2-O2	-5.04	118.67	122.20
1	2	1389	С	C5-C6-N1	5.03	123.52	121.00
1	2	387	А	P-O3'-C3'	5.03	125.73	119.70
1	2	1389	С	C6-N1-C2	-5.03	118.29	120.30
1	2	1373	С	C2-N1-C1'	5.02	124.32	118.80
4	5	3354	G	N3-C4-N9	-5.02	122.99	126.00
1	2	426	G	C6-C5-N7	-5.02	127.39	130.40
3	4	39	C	N3-C2-O2	-5.02	118.39	121.90
4	5	3182	С	N1-C2-O2	5.01	121.91	118.90
5	6	36	G	N3-C4-C5	-5.01	126.09	128.60
1	2	1563	С	N1-C2-O2	5.00	121.90	118.90

There are no chirality outliers.

All (22) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
7	AB	81	PHE	Peptide
10	AE	42	LEU	Peptide
12	AG	68	LEU	Peptide
14	AI	9	HIS	Peptide
18	AM	108	ARG	Peptide
18	AM	130	THR	Peptide
18	AM	83	GLU	Peptide
22	AQ	40	GLU	Peptide
29	AX	88	PRO	Peptide
32	Aa	84	VAL	Peptide
32	Aa	9	GLY	Peptide

Mol	Chain	Res	Type	Group
37	Af	144	CYS	Peptide
38	Ag	176	LYS	Peptide
40	BB	127	LYS	Peptide
41	BC	3	ARG	Peptide
45	BG	30	THR	Peptide
45	BG	76	ALA	Peptide
49	BK	75	PHE	Peptide
52	BN	110[A]	PRO	Peptide
61	BW	43	ALA	Peptide
64	ΒZ	115	LYS	Peptide
65	Ba	20	GLY	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
6	AA	204/206~(99%)	186 (91%)	18 (9%)	0	100	100
7	AB	222/255~(87%)	207~(93%)	13~(6%)	2(1%)	17	56
8	AC	214/216~(99%)	204~(95%)	10 (5%)	0	100	100
9	AD	220/222~(99%)	215~(98%)	5 (2%)	0	100	100
10	AE	256/258~(99%)	237~(93%)	18 (7%)	1 (0%)	34	72
11	AF	204/206~(99%)	197~(97%)	7 (3%)	0	100	100
12	AG	226/228~(99%)	212 (94%)	13~(6%)	1 (0%)	34	72
13	AH	182/184~(99%)	171 (94%)	11 (6%)	0	100	100
14	AI	183/200~(92%)	167 (91%)	14 (8%)	2(1%)	14	52
15	AJ	182/184~(99%)	171 (94%)	10 (6%)	1 (0%)	29	68

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
16	AK	90/92~(98%)	86 (96%)	4 (4%)	0	100	100
17	AL	142/144~(99%)	134 (94%)	8~(6%)	0	100	100
18	AM	119/121~(98%)	95~(80%)	23~(19%)	1 (1%)	19	60
19	AN	148/150~(99%)	141 (95%)	7~(5%)	0	100	100
20	AO	125/127~(98%)	114 (91%)	11 (9%)	0	100	100
21	AP	115/117~(98%)	112 (97%)	3(3%)	0	100	100
22	AQ	139/141~(99%)	127 (91%)	12 (9%)	0	100	100
23	AR	117/136~(86%)	113 (97%)	4 (3%)	0	100	100
24	AS	143/145~(99%)	130 (91%)	13 (9%)	0	100	100
25	AT	141/143~(99%)	130 (92%)	11 (8%)	0	100	100
26	AU	98/100~(98%)	96 (98%)	2 (2%)	0	100	100
27	AV	85/87~(98%)	72 (85%)	13 (15%)	0	100	100
28	AW	127/129~(98%)	121 (95%)	6 (5%)	0	100	100
29	AX	142/144~(99%)	129 (91%)	12 (8%)	1 (1%)	22	62
30	AY	132/134~(98%)	124 (94%)	7 (5%)	1 (1%)	19	60
31	AZ	80/82~(98%)	75 (94%)	5~(6%)	0	100	100
32	Aa	95/97~(98%)	77 (81%)	16 (17%)	2(2%)	7	39
33	Ab	79/81~(98%)	72 (91%)	7 (9%)	0	100	100
34	Ac	61/63~(97%)	59 (97%)	2(3%)	0	100	100
35	Ad	51/53~(96%)	49 (96%)	2(4%)	0	100	100
36	Ae	58/60~(97%)	54 (93%)	4 (7%)	0	100	100
37	Af	71/73~(97%)	62 (87%)	9 (13%)	0	100	100
38	Ag	310/312~(99%)	300~(97%)	10 (3%)	0	100	100
39	BA	249/251~(99%)	236~(95%)	12 (5%)	1 (0%)	34	72
40	BB	384/386~(100%)	361 (94%)	22~(6%)	1 (0%)	41	76
41	BC	359/361~(99%)	338~(94%)	19 (5%)	2(1%)	25	65
42	BD	$292/29\overline{4}\ (99\%)$	280 (96%)	11 (4%)	1 (0%)	41	76
43	BE	163/176 (93%)	158 (97%)	5(3%)	0	100	100
44	BF	$220/22\overline{2}$ (99%)	209 (95%)	11 (5%)	0	100	100
45	BG	231/233~(99%)	217 (94%)	14 (6%)	0	100	100
46	BH	189/191~(99%)	183 (97%)	6(3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
47	BI	216/218~(99%)	210 (97%)	6 (3%)	0	100	100
48	BJ	167/169~(99%)	154 (92%)	13 (8%)	0	100	100
49	BK	191/193~(99%)	176 (92%)	13 (7%)	2(1%)	15	54
50	BL	134/136~(98%)	126 (94%)	8 (6%)	0	100	100
51	BM	201/203~(99%)	189 (94%)	12 (6%)	0	100	100
52	BN	195/197~(99%)	189 (97%)	4 (2%)	2 (1%)	15	54
53	BO	181/183~(99%)	172 (95%)	9 (5%)	0	100	100
54	BP	183/185~(99%)	174 (95%)	9 (5%)	0	100	100
55	BQ	186/188~(99%)	177 (95%)	9 (5%)	0	100	100
56	BR	169/171~(99%)	165 (98%)	4 (2%)	0	100	100
57	BS	157/159~(99%)	147 (94%)	10 (6%)	0	100	100
58	BT	98/100~(98%)	93 (95%)	5 (5%)	0	100	100
59	BU	134/136~(98%)	130 (97%)	4 (3%)	0	100	100
60	BV	124/126~(98%)	122 (98%)	2 (2%)	0	100	100
61	BW	119/121~(98%)	114 (96%)	4 (3%)	1 (1%)	19	60
62	BX	123/125~(98%)	121 (98%)	2 (2%)	0	100	100
63	BY	133/135~(98%)	129 (97%)	4 (3%)	0	100	100
64	BZ	146/148~(99%)	135 (92%)	10 (7%)	1 (1%)	22	62
65	Ba	56/58~(97%)	49 (88%)	7 (12%)	0	100	100
66	Bb	94/96~(98%)	93 (99%)	1 (1%)	0	100	100
67	Bc	107/109~(98%)	99 (92%)	8 (8%)	0	100	100
68	Bd	125/127~(98%)	120 (96%)	5 (4%)	0	100	100
69	Be	104/106~(98%)	102 (98%)	2 (2%)	0	100	100
70	Bf	110/112~(98%)	107 (97%)	3 (3%)	0	100	100
71	Bg	117/119~(98%)	113 (97%)	4 (3%)	0	100	100
72	Bh	97/99~(98%)	96 (99%)	1 (1%)	0	100	100
73	Bi	83/85~(98%)	80 (96%)	3 (4%)	0	100	100
74	Bj	75/77~(97%)	74 (99%)	1 (1%)	0	100	100
75	Bk	48/50~(96%)	47 (98%)	1 (2%)	0	100	100
76	Bl	50/52~(96%)	48 (96%)	2 (4%)	0	100	100
77	Bm	23/25~(92%)	23 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
78	Bn	101/103~(98%)	97~(96%)	4 (4%)	0	100	100
79	Bo	89/91~(98%)	85~(96%)	4 (4%)	0	100	100
80	CA	1738/1967~(88%)	1664 (96%)	70 (4%)	4 (0%)	47	81
81	CB	295/297~(99%)	291~(99%)	3 (1%)	1 (0%)	41	76
82	CC	110/530~(21%)	107~(97%)	3~(3%)	0	100	100
All	All	13127/14000~(94%)	12439 (95%)	660 (5%)	28 (0%)	50	81

All (28) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
14	AI	10	LYS
32	Aa	84	VAL
52	BN	111[A]	PRO
80	CA	224	THR
80	CA	621	VAL
81	CB	9	ILE
49	BK	63	VAL
7	AB	212	VAL
10	AE	43	PRO
18	AM	109	GLU
40	BB	128	LYS
52	BN	110[A]	PRO
61	BW	44	PRO
80	CA	1148	PHE
12	AG	173	PRO
30	AY	37	LYS
64	ΒZ	78	LEU
7	AB	213	ARG
14	AI	9	HIS
15	AJ	99	LEU
29	AX	89	ASN
39	BA	126	LEU
41	BC	292	SER
32	Aa	9	GLY
41	BC	4	PRO
42	BD	20	PHE
49	BK	77	LEU
80	CA	507	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
6	AA	170/173~(98%)	170~(100%)	0	100	100
7	AB	200/224~(89%)	199 (100%)	1 (0%)	88	93
8	AC	175/175~(100%)	175 (100%)	0	100	100
9	AD	182/182~(100%)	181 (100%)	1 (0%)	88	93
10	AE	220/220~(100%)	218 (99%)	2 (1%)	78	88
11	AF	172/173~(99%)	171 (99%)	1 (1%)	86	92
12	AG	189/195~(97%)	186 (98%)	3 (2%)	62	79
13	AH	163/165~(99%)	162 (99%)	1 (1%)	86	92
14	AI	148/161~(92%)	146 (99%)	2 (1%)	67	81
15	AJ	156/157~(99%)	156 (100%)	0	100	100
16	AK	77/85~(91%)	77 (100%)	0	100	100
17	AL	129/129~(100%)	128 (99%)	1 (1%)	81	89
18	AM	88/98~(90%)	88 (100%)	0	100	100
19	AN	127/127~(100%)	127 (100%)	0	100	100
20	AO	91/96~(95%)	91 (100%)	0	100	100
21	AP	95/98~(97%)	94 (99%)	1 (1%)	73	85
22	AQ	117/117~(100%)	116 (99%)	1 (1%)	78	88
23	AR	101/124~(82%)	101 (100%)	0	100	100
24	AS	128/128~(100%)	126 (98%)	2 (2%)	62	79
25	AT	115/115~(100%)	114 (99%)	1 (1%)	78	88
26	AU	93/93~(100%)	91 (98%)	2 (2%)	52	71
27	AV	71/74~(96%)	68 (96%)	3 (4%)	30	55
28	AW	110/110 (100%)	110 (100%)	0	100	100
29	AX	$\overline{119/119}\ (100\%)$	119 (100%)	0	100	100
30	AY	112/112~(100%)	112 (100%)	0	100	100
31	AZ	67/73~(92%)	67 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
32	Aa	83/83~(100%)	83 (100%)	0	100	100
33	Ab	70/70~(100%)	70 (100%)	0	100	100
34	Ac	55/56~(98%)	54 (98%)	1 (2%)	59	77
35	Ad	47/47~(100%)	46 (98%)	1 (2%)	53	72
36	Ae	50/51~(98%)	49 (98%)	1 (2%)	55	73
37	Af	56/64~(88%)	56 (100%)	0	100	100
38	Ag	250/257~(97%)	248 (99%)	2 (1%)	81	89
39	BA	190/193~(98%)	190 (100%)	0	100	100
40	BB	321/322~(100%)	319 (99%)	2 (1%)	86	92
41	BC	288/288~(100%)	288 (100%)	0	100	100
42	BD	241/243~(99%)	241 (100%)	0	100	100
43	BE	138/155~(89%)	137 (99%)	1 (1%)	84	90
44	BF	186/186~(100%)	186 (100%)	0	100	100
45	BG	187/191~(98%)	186 (100%)	1 (0%)	88	93
46	BH	168/171~(98%)	168 (100%)	0	100	100
47	BI	185/185~(100%)	185 (100%)	0	100	100
48	BJ	146/147~(99%)	146 (100%)	0	100	100
49	BK	154/154~(100%)	152 (99%)	2 (1%)	69	82
50	BL	107/107~(100%)	107 (100%)	0	100	100
51	BM	175/175~(100%)	174 (99%)	1 (1%)	86	92
52	BN	160/160~(100%)	158 (99%)	2 (1%)	69	82
53	BO	138/145~(95%)	138 (100%)	0	100	100
54	BP	150/150~(100%)	148 (99%)	2 (1%)	69	82
55	BQ	152/153~(99%)	151 (99%)	1 (1%)	84	90
56	BR	155/155~(100%)	155 (100%)	0	100	100
57	BS	136/136 (100%)	136 (100%)	0	100	100
58	BT	87/87~(100%)	87 (100%)	0	100	100
59	BU	104/104 (100%)	104 (100%)	0	100	100
60	BV	56/107~(52%)	55 (98%)	1 (2%)	59	77
61	BW	104/105~(99%)	104 (100%)	0	100	100
62	BX	108/108~(100%)	107 (99%)	1 (1%)	78	88

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
63	BY	$11\overline{5}/115~(100\%)$	114 (99%)	1 (1%)	78	88
64	BZ	118/118 (100%)	118 (100%)	0	100	100
65	Ba	46/46 (100%)	45 (98%)	1 (2%)	52	71
66	Bb	81/81 (100%)	81 (100%)	0	100	100
67	Bc	92/96~(96%)	92 (100%)	0	100	100
68	Bd	108/109~(99%)	108 (100%)	0	100	100
69	Be	90/90~(100%)	89 (99%)	1 (1%)	73	85
70	Bf	95/95~(100%)	95 (100%)	0	100	100
71	Bg	104/104~(100%)	104 (100%)	0	100	100
72	Bh	80/81~(99%)	80 (100%)	0	100	100
73	Bi	69/69~(100%)	69 (100%)	0	100	100
74	Bj	68/68~(100%)	67~(98%)	1 (2%)	65	80
75	Bk	45/45~(100%)	45 (100%)	0	100	100
76	Bl	47/47~(100%)	47 (100%)	0	100	100
77	Bm	22/23~(96%)	22 (100%)	0	100	100
78	Bn	87/88~(99%)	87 (100%)	0	100	100
79	Во	71/71~(100%)	70 (99%)	1 (1%)	67	81
80	CA	1560/1770~(88%)	1545 (99%)	15 (1%)	76	86
81	CB	266/266~(100%)	264 (99%)	2 (1%)	81	89
82	CC	97/482~(20%)	97 (100%)	0	100	100
All	All	11123/11942 (93%)	11060 (99%)	63 (1%)	86	92

All (63) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
7	AB	26	ARG
9	AD	76	ARG
10	AE	211	LYS
10	AE	233	LYS
11	AF	45	LYS
12	AG	51	LYS
12	AG	98	ARG
12	AG	164	LYS
13	AH	79	ARG
14	AI	137	LYS

Mol	Chain	Res	Type
14	AI	138	ASN
17	AL	67	ARG
21	AP	103	ASN
22	AQ	95	LYS
24	AS	110	ARG
24	AS	145	ARG
25	AT	78	LYS
26	AU	43	LYS
26	AU	52	LYS
27	AV	1	MET
27	AV	33	GLN
27	AV	44	ARG
34	Ac	65	ARG
35	Ad	13	ARG
36	Ae	54	ARG
38	Ag	137	LYS
38	Ag	229	LYS
40	BB	90	VAL
40	BB	332	ARG
43	BE	139	LYS
45	BG	240	ASN
49	BK	6	ASN
49	BK	21	ARG
51	BM	138	GLN
52	BN	50[A]	ASN
52	BN	117[A]	ARG
54	BP	141	ARG
54	BP	180	ARG
55	BQ	153	LYS
60	BV	2	LYS
62	BX	3	LYS
63	BY	27	LYS
65	Ba	59	LYS
69	Be	21	ARG
74	Bj	9	LYS
79	Bo	4	ARG
80	CA	218	LYS
80	CA	233	LYS
80	CA	378	ARG
80	CA	384	MET
80	CA	410	LYS
80	CA	612	LYS

Mol	Chain	Res	Type
80	CA	689	ARG
80	CA	706	ARG
80	CA	849	LYS
80	CA	1146	MET
80	CA	1187	LYS
80	CA	1229	LYS
80	CA	1319	LYS
80	CA	1441	LYS
80	CA	1443	ARG
81	CB	24	LYS
81	CB	254	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (35) such sidechains are listed below:

Mol	Chain	Res	Type
7	AB	149	GLN
7	AB	183	GLN
10	AE	36	HIS
10	AE	98	ASN
10	AE	201	HIS
16	AK	39	ASN
16	AK	62	GLN
24	AS	122	HIS
28	AW	42	GLN
28	AW	66	ASN
30	AY	22	GLN
33	Ab	19	HIS
41	BC	221	ASN
45	BG	240	ASN
46	BH	157	ASN
47	BI	208	ASN
49	BK	112	ASN
50	BL	105	GLN
51	BM	70	ASN
56	BR	8	GLN
56	BR	62	ASN
56	BR	138	GLN
63	BY	127	ASN
64	BZ	64	GLN
67	Bc	57	GLN
71	Bg	62	GLN
78	Bn	22	GLN

Continued from previous page...

Mol	Chain	Res	Type
80	CA	258	GLN
80	CA	261	ASN
80	CA	1096	HIS
80	CA	1144	GLN
80	CA	1435	HIS
80	CA	1773	GLN
81	CB	103	GLN
82	CC	212	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	2	1768/1800~(98%)	433 (24%)	36~(2%)
2	3	157/158~(99%)	31 (19%)	1 (0%)
3	4	120/121~(99%)	14 (11%)	1 (0%)
4	5	3159/3396~(93%)	584 (18%)	32~(1%)
5	6	75/76~(98%)	14 (18%)	0
All	All	5279/5551~(95%)	1076~(20%)	70 (1%)

All (1076) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	2	2	А
1	2	4	С
1	2	5	U
1	2	9	U
1	2	17	С
1	2	25	С
1	2	26	А
1	2	34	G
1	2	43	А
1	2	46	А
1	2	47	А
1	2	56	U
1	2	57	G
1	2	60	U
1	2	62	А
1	2	63	G
1	2	65	А
1	2	66	U
1	2	68	А

Mol	Chain	Res	Type
1	2	69	G
1	2	71	А
1	2	74	U
1	2	75	U
1	2	76	А
1	2	78	А
1	2	79	С
1	2	81	G
1	2	100	А
1	2	104	А
1	2	114	С
1	2	126	А
1	2	129	U
1	2	130	С
1	2	131	С
1	2	132	U
1	2	134	U
1	2	138	A
1	2	140	А
1	2	141	U
1	2	142	G
1	2	153	G
1	2	159	U
1	2	169	А
1	2	171	А
1	2	176	С
1	2	178	U
1	2	180	A
1	2	186	С
1	2	187	G
1	2	188	A
1	2	191	С
1	2	193	U
1	2	195	G
1	2	196	G
1	2	198	A
1	2	215	А
1	2	216	U
1	2	217	A
1	2	218	A
1	2	225	А
1	2	227	U

Mol	Chain	Res	Type
1	2	228	G
1	2	230	С
1	2	232	U
1	2	233	С
1	2	234	G
1	2	236	А
1	2	240	U
1	2	241	U
1	2	250	С
1	2	257	А
1	2	260	U
1	2	261	U
1	2	265	А
1	2	274	G
1	2	276	С
1	2	278	U
1	2	279	G
1	2	280	U
1	2	281	G
1	2	287	G
1	2	299	А
1	2	308	С
1	2	312	А
1	2	314	С
1	2	316	А
1	2	322	G
1	2	323	А
1	2	330	G
1	2	337	G
1	2	338	С
1	2	352	A
1	2	359	A
1	2	361	С
1	2	370	A
1	2	388	G
1	2	400	A
1	2	401	А
1	2	402	С
1	2	404	G
1	2	411	С
1	2	415	С
1	2	417	A

Mol	Chain	Res	Type
1	2	419	G
1	2	423	G
1	2	424	С
1	2	425	А
1	2	426	G
1	2	428	А
1	2	434	G
1	2	437	A
1	2	439	U
1	2	444	С
1	2	448	С
1	2	460	A
1	2	464	A
1	2	468	A
1	2	477	A
1	2	483	A
1	2	485	А
1	2	487	G
1	2	493	U
1	2	494	U
1	2	495	С
1	2	496	G
1	2	498	G
1	2	499	U
1	2	500	С
1	2	502	U
1	2	506	А
1	2	510	G
1	2	511	А
1	2	515	A
1	2	525	A
1	2	527	A
1	2	534	A
1	2	537	G
1	2	538	A
1	2	540	G
1	2	541	А
1	2	542	A
1	2	544	A
1	2	548	G
1	2	555	A
1	2	556	A

Mol	Chain	Res	Type
1	2	557	G
1	2	558	U
1	2	559	С
1	2	565	С
1	2	568	G
1	2	579	A
1	2	580	А
1	2	594	А
1	2	595	G
1	2	606	А
1	2	611	U
1	2	619	А
1	2	620	А
1	2	622	A
1	2	623	А
1	2	624	G
1	2	629	U
1	2	630	A
1	2	634	G
1	2	639	U
1	2	640	U
1	2	641	G
1	2	651	G
1	2	653	С
1	2	655	G
1	2	677	G
1	2	678	А
1	2	679	U
1	2	680	U
1	2	681	U
1	2	687	G
1	2	693	U
1	2	694	U
1	2	696	C
1	2	697	С
1	2	698	U
1	2	700	С
1	2	704	С
1	2	705	U
1	2	706	A
1	2	707	A
1	2	708	С

Mol	Chain	Res	Type
1	2	709	С
1	2	710	U
1	2	711	U
1	2	712	G
1	2	728	U
1	2	730	G
1	2	732	G
1	2	733	А
1	2	734	А
1	2	741	С
1	2	742	U
1	2	743	U
1	2	745	U
1	2	753	A
1	2	765	G
1	2	766	U
1	2	771	А
1	2	774	А
1	2	775	G
1	2	778	G
1	2	780	А
1	2	781	U
1	2	782	U
1	2	783	G
1	2	789	А
1	2	803	А
1	2	812	А
1	2	813	U
1	2	814	А
1	2	815	G
1	2	816	G
1	2	820	U
1	2	821	U
1	2	823	G
1	2	833	U
1	2	836	U
1	2	840	U
1	2	841	U
1	2	846	G
1	2	852	С
1	2	856	А
1	2	857	U
		-	

Mol	Chain	Res	Type
1	2	860	U
1	2	861	U
1	2	863	A
1	2	876	G
1	2	886	U
1	2	899	G
1	2	901	G
1	2	902	G
1	2	904	G
1	2	912	U
1	2	913	G
1	2	914	G
1	2	915	А
1	2	929	A
1	2	933	А
1	2	934	С
1	2	935	U
1	2	942	G
1	2	945	U
1	2	960	U
1	2	964	U
1	2	966	A
1	2	970	А
1	2	971	А
1	2	988	А
1	2	992	А
1	2	993	А
1	2	1004	U
1	2	1005	A
1	2	1023	А
1	2	1024	U
1	2	1025	A
1	2	1028	С
1	2	1029	U
1	2	1039	А
1	2	1052	U
1	2	1053	G
1	2	1058	U
1	2	1060	U
1	2	1061	A
1	2	$107\overline{6}$	A
1	2	1082	С

Mol	Chain	Res	Type
1	2	1092	А
1	2	1093	А
1	2	1096	С
1	2	1100	G
1	2	1108	G
1	2	1109	G
1	2	1126	G
1	2	1138	А
1	2	1150	G
1	2	1158	С
1	2	1160	А
1	2	1164	G
1	2	1166	А
1	2	1167	G
1	2	1170	G
1	2	1185	U
1	2	1194	А
1	2	1196	А
1	2	1198	G
1	2	1199	G
1	2	1200	G
1	2	1212	G
1	2	1217	А
1	2	1218	G
1	2	1219	А
1	2	1227	А
1	2	1228	G
1	2	1229	G
1	2	1241	G
1	2	1243	G
1	2	1244	А
1	2	1245	G
1	2	1246	С
1	2	1249	U
1	2	1252	С
1	2	1256	A
1	2	1257	U
1	2	1274	С
1	2	1275	A
1	2	1276	U
1	2	1285	U
1	2	1286	U

Mol	Chain	Res	Type
1	2	1298	U
1	2	1299	G
1	2	1301	U
1	2	1314	U
1	2	1315	U
1	2	1321	А
1	2	1322	А
1	2	1325	А
1	2	1337	А
1	2	1338	С
1	2	1340	U
1	2	1344	А
1	2	1345	А
1	2	1346	A
1	2	1348	A
1	2	1360	А
1	2	1361	U
1	2	1363	U
1	2	1367	G
1	2	1370	U
1	2	1371	А
1	2	1372	U
1	2	1373	С
1	2	1382	А
1	2	1383	G
1	2	1389	С
1	2	1390	U
1	2	1398	U
1	2	1399	С
1	2	1400	А
1	2	1402	G
1	2	1412	G
1	2	1414	U
1	2	1427	A
1	2	1428	G
1	2	1429	G
1	2	1431	С
1	2	1432	U
1	2	1436	A
1	2	1437	U
1	2	1445	G
1	2	1446	A

Mol	Chain	Res	Type
1	2	1456	С
1	2	1459	С
1	2	1460	А
1	2	1465	С
1	2	1466	G
1	2	1471	А
1	2	1472	С
1	2	1473	U
1	2	1479	А
1	2	1491	U
1	2	1493	А
1	2	1496	U
1	2	1503	А
1	2	1514	U
1	2	1516	А
1	2	1520	U
1	2	1521	G
1	2	1523	G
1	2	1524	А
1	2	1535	U
1	2	1536	G
1	2	1537	С
1	2	1540	G
1	2	1542	G
1	2	1543	А
1	2	1545	А
1	2	1546	G
1	2	1557	U
1	2	1558	U
1	2	1559	A
1	2	1561	U
1	2	1563	С
1	2	1564	U
1	2	1569	А
1	2	1570	А
1	2	1573	A
1	2	1575	G
1	2	1576	A
1	2	1577	A
1	2	1583	А
1	2	1584	G
1	2	1585	U

Mol	Chain	Res	Type
1	2	1601	G
1	2	1611	А
1	2	1614	А
1	2	1616	G
1	2	1619	С
1	2	1622	G
1	2	1631	А
1	2	1634	С
1	2	1636	С
1	2	1637	С
1	2	1651	А
1	2	1657	U
1	2	1658	G
1	2	1688	U
1	2	1701	А
1	2	1709	С
1	2	1711	С
1	2	1715	G
1	2	1717	G
1	2	1742	U
1	2	1750	А
1	2	1756	А
1	2	1760	G
1	2	1767	G
1	2	1769	U
1	2	1770	U
1	2	1780	G
1	2	1782	А
1	2	1783	С
1	2	1791	A
1	2	1792	G
1	2	1793	G
1	2	1794	A
1	2	1795	U
1	2	1796	С
1	2	1799	U
2	3	9	А
2	3	20	U
2	3	23	U
2	3	34	U
2	3	35	С
2	3	39	G

Mol	Chain	Res	Type
2	3	52	А
2	3	59	А
2	3	62	С
2	3	63	G
2	3	80	А
2	3	81	U
2	3	82	U
2	3	84	С
2	3	86	U
2	3	87	G
2	3	90	U
2	3	95	G
2	3	99	С
2	3	104	A
2	3	105	А
2	3	106	С
2	3	111	А
2	3	113	U
2	3	116	G
2	3	125	U
2	3	126	А
2	3	148	G
2	3	152	G
2	3	156	U
2	3	158	U
3	4	7	G
3	4	11	А
3	4	29	С
3	4	53	U
3	4	54	U
3	4	55	A
3	4	65	G
3	4	74	С
3	4	76	A
3	4	77	G
3	4	101	G
3	4	102	А
3	4	112	G
3	4	121	U
4	5	6	A
4	5	14	U
4	5	18	G

Mol	Chain	Res	Type
4	5	22	G
4	5	26	А
4	5	40	А
4	5	43	А
4	5	49	А
4	5	59	G
4	5	60	А
4	5	65	А
4	5	66	А
4	5	76	G
4	5	85	А
4	5	92	G
4	5	99	А
4	5	109	А
4	5	110	G
4	5	111	С
4	5	113	С
4	5	118	U
4	5	121	А
4	5	122	А
4	5	123	А
4	5	133	U
4	5	135	С
4	5	136	G
4	5	146	U
4	5	156	G
4	5	157	А
4	5	161	G
4	5	166	С
4	5	187	А
4	5	190	U
4	5	191	U
4	5	210	U
4	5	211	А
4	5	213	А
4	5	218	G
4	5	219	А
4	5	237	G
4	5	240	U
4	5	241	G
4	5	243	G
4	5	245	U

Mol	Chain	Res	Type
4	5	248	U
4	5	249	U
4	5	252	U
4	5	263	С
4	5	266	А
4	5	269	G
4	5	282	G
4	5	283	G
4	5	286	U
4	5	295	А
4	5	298	U
4	5	323	А
4	5	329	U
4	5	339	С
4	5	350	С
4	5	351	А
4	5	370	U
4	5	371	G
4	5	374	А
4	5	376	G
4	5	378	А
4	5	390	G
4	5	395	А
4	5	398	А
4	5	401	U
4	5	402	A
4	5	403	С
4	5	421	G
4	5	422	А
4	5	439	С
4	5	521	U
4	5	522	A
4	5	524	A
4	5	536	G
4	5	537	U
4	5	$54\overline{4}$	C
4	5	547	С
4	5	548	G
4	5	549	G
4	5	551	A
4	5	$55\overline{3}$	G
4	5	556	U

4 5 558 A 4 5 579 A 4 5 579 A 4 5 590 A 4 5 593 A 4 5 593 A 4 5 601 G 4 5 610 G 4 5 612 A 4 5 621 U 4 5 637 C 4 5 639 C 4 5 668 C 4 5 668 C 4 5 6682 U 4 5 6682 U 4 5 713 G 4 5 716 A 4 5 720 U 4 5 765 U 4 5 776 U 4 5 777 U 4 5 778 U	Mol	Chain	Res	Type
4 5 560 A 4 5 579 A 4 5 590 A 4 5 593 A 4 5 601 G 4 5 610 G 4 5 612 A 4 5 621 U 4 5 623 A 4 5 637 C 4 5 637 A 4 5 637 A 4 5 637 A 4 5 678 A 4 5 716 A 4 5 717 A 4 5 765 U </td <td>4</td> <td>5</td> <td>558</td> <td>А</td>	4	5	558	А
4 5 579 A 4 5 590 A 4 5 593 A 4 5 601 G 4 5 610 G 4 5 611 G 4 5 612 A 4 5 621 U 4 5 623 A 4 5 623 A 4 5 637 C 4 5 637 C 4 5 639 C 4 5 668 C 4 5 668 C 4 5 668 C 4 5 678 A 4 5 716 A 4 5 713 G 4 5 716 A 4 5 720 U 4 5 765 U 4 5 777 U 4 5 781 A 4 5 781 A 4 5 787 A 4 5 787 A 4 5 787 A 4 5 817 A 4 5 817 A	4	5	560	А
4 5 580 G 4 5 593 A 4 5 601 G 4 5 610 G 4 5 611 G 4 5 612 A 4 5 621 U 4 5 622 A 4 5 623 A 4 5 637 C 4 5 637 C 4 5 637 C 4 5 639 C 4 5 668 C 4 5 668 C 4 5 678 A 4 5 678 A 4 5 678 A 4 5 713 G 4 5 716 A 4 5 717 A 4 5 720 U 4 5 765 U 4 5 768 U 4 5 777 U 4 5 781 A 4 5 787 A 4 5 787 A 4 5 817 A	4	5	579	A
4 5 590 A 4 5 601 G 4 5 610 G 4 5 611 G 4 5 612 A 4 5 621 U 4 5 622 A 4 5 623 A 4 5 637 C 4 5 639 C 4 5 668 C 4 5 678 A 4 5 668 C 4 5 678 A 4 5 678 A 4 5 678 A 4 5 713 G 4 5 716 A 4 5 716 A 4 5 720 U 4 5 765 U 4 5 765 U 4 5 777 U 4 5 781 A 4 5 786 G 4 5 787 A 4 5 787 A 4 5 817 A 4 5 817 A	4	5	580	G
4 5 593 A 4 5 601 G 4 5 610 G 4 5 612 A 4 5 621 U 4 5 622 A 4 5 623 A 4 5 637 C 4 5 637 C 4 5 639 C 4 5 668 C 4 5 668 C 4 5 668 C 4 5 692 A 4 5 713 G 4 5 716 A 4 5 716 A 4 5 718 C 4 5 765 U 4 5 768 U 4 5 777 U 4 5 781 A 4 5 787 A 4 5 787 A 4 5 807 A 4 5 817 A	4	5	590	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	593	А
4 5 610 G 4 5 611 G 4 5 621 U 4 5 622 A 4 5 623 A 4 5 637 C 4 5 639 C 4 5 650 A 4 5 668 C 4 5 668 C 4 5 668 C 4 5 668 U 4 5 692 A 4 5 716 A 4 5 716 A 4 5 717 A 4 5 720 U 4 5 765 U 4 5 776 U 4 5 778 U 4 5 781 A 4 5 787 A 4 5 787 A 4 5 787 A 4 5 817 A	4	5	601	G
4 5 611 G 4 5 612 A 4 5 621 U 4 5 623 A 4 5 637 C 4 5 637 C 4 5 639 C 4 5 650 A 4 5 668 C 4 5 668 C 4 5 668 C 4 5 668 C 4 5 678 A 4 5 692 A 4 5 716 A 4 5 716 A 4 5 717 A 4 5 720 U 4 5 765 U 4 5 776 U 4 5 778 U 4 5 781 A 4 5 787 A 4 5 787 A 4 5 817 A	4	5	610	G
4 5 612 A 4 5 621 U 4 5 622 A 4 5 637 C 4 5 637 C 4 5 639 C 4 5 668 C 4 5 668 C 4 5 678 A 4 5 668 U 4 5 692 A 4 5 716 A 4 5 716 A 4 5 718 C 4 5 720 U 4 5 765 U 4 5 765 U 4 5 777 U 4 5 781 A 4 5 786 G 4 5 787 A 4 5 787 A 4 5 817 A	4	5	611	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	612	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	621	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	622	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	623	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	637	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	639	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	650	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	668	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	678	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	682	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	692	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	706	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	713	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	716	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	717	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	718	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	720	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	726	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	765	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	768	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	777	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	778	U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	781	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	782	G
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	786	G
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	787	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5	807	A
Λ 5 818 Λ	4	5	817	A
т 010 Л	4	5	818	A
4 5 831 A	4	5	831	A
4 5 847 A	4	5	847	A
4 5 848 A	4	5	848	A
4 5 850 C	4	5	850	С

Mol	Chain	Res	Type
4	5	862	С
4	5	870	G
4	5	872	U
4	5	875	U
4	5	880	U
4	5	896	А
4	5	897	А
4	5	908	G
4	5	909	G
4	5	915	А
4	5	917	G
4	5	918	А
4	5	922	А
4	5	924	С
4	5	926	А
4	5	938	G
4	5	940	U
4	5	945	С
4	5	960	С
4	5	961	U
4	5	975	G
4	5	980	U
4	5	995	G
4	5	996	U
4	5	1003	A
4	5	1011	G
4	5	1016	U
4	5	1025	G
4	5	1026	A
4	5	1029	U
4	5	1030	G
4	5	1033	С
4	5	1037	A
4	5	1042	U
4	5	1048	A
4	5	1050	С
4	5	1065	A
4	5	1066	A
4	5	1073	G
4	5	1082	U
4	5	1094	A
4	5	1095	U

Mol	Chain	Res	Type
4	5	1096	U
4	5	1098	G
4	5	1099	А
4	5	1104	А
4	5	1105	G
4	5	1118	G
4	5	1130	А
4	5	1132	G
4	5	1144	А
4	5	1145	U
4	5	1154	А
4	5	1156	С
4	5	1160	А
4	5	1161	С
4	5	1180	А
4	5	1181	А
4	5	1182	U
4	5	1191	А
4	5	1193	С
4	5	1194	A
4	5	1197	С
4	5	1202	С
4	5	1203	А
4	5	1207	G
4	5	1209	U
4	5	1218	А
4	5	1223	G
4	5	1226	А
4	5	1227	G
4	5	1228	С
4	5	1232	А
4	5	1233	С
4	5	1237	G
4	5	1241	A
4	5	1243	G
4	5	1246	А
4	5	1247	G
4	5	1254	U
4	5	1255	C
4	5	1259	U
4	5	1263	G
4	5	1264	А

Mol	Chain	Res	Type
4	5	1265	G
4	5	1266	U
4	5	1267	G
4	5	1270	U
4	5	1271	А
4	5	1272	А
4	5	1273	С
4	5	1275	А
4	5	1279	А
4	5	1280	С
4	5	1286	G
4	5	1287	А
4	5	1288	А
4	5	1296	G
4	5	1306	U
4	5	1310	U
4	5	1314	G
4	5	1331	А
4	5	1332	U
4	5	1346	G
4	5	1349	U
4	5	1350	G
4	5	1352	U
4	5	1353	А
4	5	1355	G
4	5	1356	А
4	5	1357	U
4	5	1358	G
4	5	1387	А
4	5	1392	С
4	5	1400	А
4	5	1401	G
4	5	1419	A
4	5	1420	А
4	5	1435	G
4	5	1438	С
4	5	1447	А
4	5	1451	G
4	5	1467	G
4	5	1482	А
4	5	1483	А
4	5	1484	G

Mol	Chain	Res	Type
4	5	1495	U
4	5	1496	U
4	5	1509	С
4	5	1524	U
4	5	1534	U
4	5	1537	G
4	5	1540	А
4	5	1557	С
4	5	1558	А
4	5	1559	А
4	5	1561	G
4	5	1563	С
4	5	1564	С
4	5	1568	U
4	5	1569	U
4	5	1570	U
4	5	1573	U
4	5	1574	G
4	5	1576	А
4	5	1577	G
4	5	1581	А
4	5	1584	А
4	5	1588	А
4	5	1589	А
4	5	1590	А
4	5	1594	А
4	5	1595	А
4	5	1597	С
4	5	1606	А
4	5	1621	U
4	5	1630	U
4	5	1640	С
4	5	1643	А
4	5	1644	А
4	5	1646	U
4	5	1718	U
4	5	1725	U
4	5	1726	С
4	5	1742	A
4	5	1751	А
4	5	1752	G
4	5	1766	U

Mol	Chain	Res	Type
4	5	1767	G
4	5	1771	G
4	5	1776	G
4	5	1781	G
4	5	1797	G
4	5	1798	А
4	5	1815	А
4	5	1817	А
4	5	1818	G
4	5	1820	U
4	5	1821	U
4	5	1822	U
4	5	1840	А
4	5	1843	А
4	5	1847	С
4	5	1851	А
4	5	1865	А
4	5	1867	С
4	5	1868	А
4	5	1872	U
4	5	1879	G
4	5	1881	U
4	5	1894	А
4	5	1896	А
4	5	1907	G
4	5	1909	А
4	5	1926	U
4	5	1927	С
4	5	1931	А
4	5	1933	А
4	5	1936	G
4	5	1952	С
4	5	1953	G
4	5	1955	G
4	5	2102	С
4	5	2103	U
4	5	2114	А
4	5	2115	С
4	5	2122	G
4	5	2123	G
4	5	2127	А
4	5	2132	А

Mol	Chain	Res	Type
4	5	2141	U
4	5	2143	А
4	5	2145	A
4	5	2146	А
4	5	2159	А
4	5	2170	G
4	5	2172	G
4	5	2188	G
4	5	2189	А
4	5	2193	С
4	5	2194	U
4	5	2205	С
4	5	2206	U
4	5	2207	G
4	5	2208	А
4	5	2210	U
4	5	2211	G
4	5	2223	А
4	5	2224	А
4	5	2226	U
4	5	2245	А
4	5	2247	G
4	5	2250	G
4	5	2253	A
4	5	2257	А
4	5	2258	С
4	5	2273	G
4	5	2274	G
4	5	2282	А
4	5	2283	U
4	5	2284	G
4	5	2288	С
4	5	2289	G
4	5	2308	G
4	5	2311	U
4	5	2314	А
4	5	2315	U
4	5	2316	G
4	5	2335	U
4	5	2337	U
4	5	2351	С
4	5	2357	А

Mol	Chain	Res	Type
4	5	2368	А
4	5	2373	А
4	5	2374	А
4	5	2375	С
4	5	2376	G
4	5	2389	U
4	5	2390	С
4	5	2394	G
4	5	2398	А
4	5	2403	А
4	5	2404	G
4	5	2405	А
4	5	2412	U
4	5	2419	G
4	5	2420	А
4	5	2436	G
4	5	2440	А
4	5	2447	U
4	5	2448	А
4	5	2450	А
4	5	2453	G
4	5	2497	С
4	5	2499	U
4	5	2500	U
4	5	2502	U
4	5	2503	А
4	5	2506	U
4	5	2507	U
4	5	2508	С
4	5	2509	U
4	5	2515	U
4	5	2516	А
4	5	2523	G
4	5	2532	С
4	5	2534	G
4	5	2538	U
4	5	2539	U
4	5	2540	С
4	5	2541	А
4	5	2542	U
4	5	2543	U
4	5	2547	С

Mol	Chain	Res	Type
4	5	2550	G
4	5	2551	U
4	5	2553	С
4	5	2562	А
4	5	2570	А
4	5	2571	U
4	5	2572	U
4	5	2573	С
4	5	2574	G
4	5	2586	G
4	5	2588	U
4	5	2594	А
4	5	2607	G
4	5	2608	G
4	5	2615	G
4	5	2627	A
4	5	2630	U
4	5	2637	А
4	5	2640	G
4	5	2653	U
4	5	2657	А
4	5	2658	А
4	5	2675	А
4	5	2678	G
4	5	2682	U
4	5	2690	А
4	5	2691	G
4	5	2692	A
4	5	2697	A
4	5	2700	G
4	5	2704	A
4	5	2705	A
4	5	2720	U
4	5	2729	G
4	5	2730	U
4	5	2738	С
4	5	2753	U
4	5	2754	G
4	5	2756	С
4	5	2769	U
4	5	2778	G
4	5	2779	G

Mol	Chain	Res	Type
4	5	2797	G
4	5	2798	С
4	5	2800	А
4	5	2801	G
4	5	2802	А
4	5	2803	А
4	5	2804	А
4	5	2811	С
4	5	2815	G
4	5	2817	G
4	5	2818	А
4	5	2822	С
4	5	2843	U
4	5	2844	U
4	5	2845	С
4	5	2846	A
4	5	2847	U
4	5	2848	А
4	5	2850	С
4	5	2857	G
4	5	2861	U
4	5	2872	G
4	5	2873	А
4	5	2876	U
4	5	2887	U
4	5	2888	А
4	5	2890	С
4	5	2899	G
4	5	2912	А
4	5	2924	U
4	5	2929	С
4	5	2936	U
4	5	2937	А
4	5	2939	G
4	5	2943	С
4	5	2952	G
4	5	2972	A
4	5	2973	G
4	5	2984	С
4	5	2991	G
4	5	2998	G
4	5	3013	А

Mol	Chain	Res	Type
4	5	3052	U
4	5	3057	U
4	5	3060	G
4	5	3079	U
4	5	3081	G
4	5	3087	А
4	5	3093	С
4	5	3102	G
4	5	3110	G
4	5	3114	А
4	5	3123	А
4	5	3130	А
4	5	3131	A
4	5	3132	U
4	5	3143	А
4	5	3144	С
4	5	3155	С
4	5	3156	U
4	5	3157	U
4	5	3158	U
4	5	3166	А
4	5	3171	А
4	5	3173	А
4	5	3174	G
4	5	3175	А
4	5	3177	G
4	5	3180	U
4	5	3182	С
4	5	3186	U
4	5	3188	А
4	5	3206	G
4	5	3207	С
4	5	3208	U
4	5	3211	A
4	5	3218	С
4	5	3219	A
4	5	3220	G
4	5	3228	A
4	5	3230	G
4	5	3236	С
4	5	3240	G
4	5	3244	A

Mol Chain Res Ty	vpe
4 5 3246	A
4 5 3248 (G
4 5 3260 U	U
4 5 3261 0	G
4 5 3271 U	IJ
4 5 3273 (C
4 5 3274	A
4 5 3277 (G
4 5 3282 U	IJ
4 5 3289 0	G
4 5 3290 0	G
4 5 3295	A
4 5 3296	A
4 5 3305 U	U
4 5 3308 4	A
4 5 3317	A
4 5 3319 0	G
4 5 3320 U	IJ
4 5 3321	A
4 5 3335 U	IJ
4 5 3342 U	IJ
4 5 3343	A
4 5 3346 0	G
4 5 3352 U	U
4 5 3353 U	IJ
4 5 3354 0	G
4 5 3355 U	U
4 5 3357 0	G
4 5 3364 U	U
4 5 3369 U	IJ
4 5 3370 0	G
4 5 3376 A	A
4 5 3379 0	C
4 5 3391 (G
4 5 3397 U	U
5 6 6 0	C
5 6 9 (G
5 6 16 1	U
5 6 17 0	G
5 6 19 U	U
5 6 21 4	A
5 6 22 0	C

Continued from previous page...

Mol	Chain	Res	Type
5	6	46	А
5	6	47	U
5	6	48	U
5	6	58	А
5	6	60	U
5	6	73	G
5	6	76	А

All (70) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	2	59	С
1	2	68	А
1	2	77	U
1	2	78	А
1	2	139	С
1	2	141	U
1	2	280	U
1	2	322	G
1	2	387	А
1	2	400	А
1	2	539	G
1	2	541	А
1	2	555	А
1	2	639	U
1	2	640	U
1	2	705	U
1	2	711	U
1	2	765	G
1	2	819	G
1	2	912	U
1	2	928	U
1	2	963	А
1	2	1023	А
1	2	1226	А
1	2	1256	A
1	2	1273	G
1	2	$12\overline{74}$	C
1	2	1344	А
1	2	1382	А
1	2	1430	U
1	2	1471	A

Mol	Chain	Res	Type
1	2	1534	G
1	2	1584	G
1	2	1633	А
1	2	1636	С
1	2	1791	А
2	3	85	G
3	4	52	G
4	5	239	G
4	5	282	G
4	5	706	А
4	5	716	А
4	5	764	G
4	5	847	А
4	5	874	С
4	5	917	G
4	5	1065	А
4	5	1098	G
4	5	1356	А
4	5	1563	С
4	5	1816	U
4	5	1817	А
4	5	1821	U
4	5	2101	А
4	5	2102	С
4	5	2113	U
4	5	2447	U
4	5	2496	С
4	5	2501	А
4	5	2538	U
4	5	2542	U
4	5	2587	G
4	5	2802	А
4	5	3122	U
4	5	3219	А
4	5	3229	С
4	5	3270	U
4	5	3320	U
4	5	3351	С
4	5	3352	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 95 ligands modelled in this entry, 95 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-14978. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 280

Y Index: 280

Z Index: 280

6.2.2 Raw map

X Index: 280

Y Index: 280

Z Index: 280

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

6.3.2 Raw map

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.3. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

6.6.1 emd_14978_msk_1.map (i)

6.6.2 emd_14978_msk_2.map (i)

Υ

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 4493 $\rm nm^3;$ this corresponds to an approximate mass of 4059 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.233 ${\rm \AA}^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.233 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	4.30	-	-
Author-provided FSC curve	4.25	7.43	4.30
Unmasked-calculated*	6.46	11.49	6.92

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 6.46 differs from the reported value 4.3 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-14978 and PDB model 7ZUW. Per-residue inclusion information can be found in section 3 on page 19.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.3 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.3).

9.4 Atom inclusion (i)

At the recommended contour level, 91% of all backbone atoms, 89% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.3) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8940	0.4470
2	0.9700	0.4490
3	0.9880	0.5060
4	0.9930	0.4820
5	0.9790	0.5100
6	0.9660	0.3900
AA	0.8950	0.4260
AB	0.8510	0.4360
AC	0.9320	0.4800
AD	0.8650	0.3930
AE	0.9540	0.4910
AF	0.8550	0.3850
AG	0.9110	0.3870
AH	0.8330	0.3740
AI	0.9590	0.4980
AJ	0.9500	0.4460
AK	0.8970	0.3180
AL	0.9220	0.5140
AM	0.7540	0.2070
AN	0.9140	0.4800
AO	0.9180	0.4910
AP	0.9100	0.3570
AQ	0.8830	0.3830
AR	0.8230	0.3630
AS	0.9050	0.3610
AT	0.8810	0.3400
AU	0.8860	0.3600
AV	0.9080	0.4500
AW	0.9560	0.5190
AX	0.9700	0.5350
AY	0.9440	0.4420
AZ	0.7330	0.3040
Aa	0.9200	0.4790
Ab	0.8600	0.4290
Ac	0.8010	0.4040

Chain	Atom inclusion	Q-score
Ad	0.9690	0.4690
Ae	0.8840	0.4330
Af	0.8220	0.2180
Ag	0.0700	0.1180
BA	0.9590	0.5570
BB	0.9760	0.5300
BC	0.9670	0.5180
BD	0.9160	0.4200
BE	0.9280	0.4320
BF	0.9670	0.5180
BG	0.8670	0.4130
BH	0.9420	0.4780
BI	0.9420	0.4950
BJ	0.9020	0.4000
BK	0.9450	0.4840
BL	0.9510	0.4520
BM	0.9730	0.5520
BN	0.9700	0.5230
BO	0.9670	0.5300
BP	0.9770	0.5400
BQ	0.9200	0.4810
BR	0.9530	0.5150
BS	0.9650	0.5140
BT	0.9360	0.4360
BU	0.9560	0.5600
BV	0.9420	0.4570
BW	0.9500	0.4830
BX	0.9720	0.4800
BY	0.9170	0.4450
BZ	0.9530	0.5280
Ba	0.9490	0.5030
Bb	0.9350	0.4890
Bc	0.9540	0.5040
Bd	0.9740	0.5520
Be	0.9610	0.5490
Bf	0.9170	0.5050
Bg	0.9510	0.4680
Bh	0.9010	0.4400
Bi	0.9950	0.5690
Bj	0.9160	0.4040
Bk	0.9830	0.5650
Bl	0.9510	0.5160

Chain	Atom inclusion	Q-score
Bm	0.9860	0.5870
Bn	0.9430	0.5110
Bo	0.9390	0.5410
CA	0.3620	0.1550
CB	0.0060	0.0480
CC	0.2120	0.1450

