

Dec 29, 2024 – 05:40 PM EST

PDB ID 7UOO : EMDB ID EMD-26651 : Title : Nucleoplasmic pre-60S intermediate of the Nog2 containing pre-rotation state Authors Sekulski, K.; Cruz, V.E.; Weirich, C.S.; Erzberger, J.P. : Deposited on 2022-04-13 : 2.34 Å(reported) Resolution : Based on initial model 3JCT ·

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.34 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	254	7% 84%	16%
2	1	3396	14%	16% • 12%
3	2	158	6% 83%	17%
4	3	121	74%	21% •
5	5	120	61%	39%
6	6	87	43% 46% 21%	33%
7	8	165	87%	· ·
8	9	175	67%	33%

Continued on next page...

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol 9 В 387 99% 5% 10 \mathbf{C} 36299% 52% 11 D 297 91% 9% 10% 12Е 17688% 12% F 1324490% 10% 11% \mathbf{G} 1425688% 12% 8% Η 15191100% 45% 16Ι 16679% 21% 96% J 1717498% 67% Κ 3761871% 29% 19% 19L 19990% 10% 8% 20М 13899% 6% 21Ν 20493% 7% 22Ο 19999% . ٠ Р 231845% 95% 8% 24Q 18679% 21% 6% 25R 18983% 17% 15% \mathbf{S} 1722699% 28% 27Т 16071% 29% 11% U 2812188% 12% 7% V 2913799% 32% W 30 31275% 25% 31Х 14298% • ••• Y 3212798% 7% 33 Ζ 13699%

Continued on next page...

Continued from previous page... Chain Length Quality of chain Mol 13% 34149 \mathbf{a} 62% 38% 22% 35 \mathbf{b} 64799% 15% 36 105 \mathbf{c} 92% 8% 10% 37 d 11395% 5% • 38130е 98% 39f 10799% . 9% 40121g 93% 7% 120• 41 h 99% 23% 42100 i 99% 4388 j 95% 5% 24% 44k 7899% • 451 5198% . 20% 46486 \mathbf{m} 95% • 23% 47n 60561% 39% 34% 482200 60% 40% 9% ... 4992р 98% 23% 50455q 34% 66% 5% 51261r 88% 12% 7% 52520 \mathbf{S} 14% 86% 59% 32253 \mathbf{t} 89% 11% 5% 54199u 75% 25% 49% 55344v 85% 15% 45% 20356W 96% • 38% •• 57515х 97% 12% 58245у 100%

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality	of chain
			15%	
59	Z	106	82%	18%
			32%	
60	4	593	90%	• 9%

2 Entry composition (i)

There are 67 unique types of molecules in this entry. The entry contains 157947 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
1	А	213	Total 1634	C 1023	N 326	0 284	S 1	0	0

• Molecule 2 is a RNA chain called 25S rRNA.

Mol	Chain	Residues			AltConf	Trace			
2	1	2991	Total 64043	C 28619	N 11563	O 20870	Р 2991	0	0

• Molecule 3 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues		Α	AltConf	Trace			
3	2	158	Total 3353	C 1500	N 586	O 1109	Р 158	0	0

• Molecule 4 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
4	3	121	Total 2579	C 1152	N 461	O 845	Р 121	0	0

• Molecule 5 is a protein called rRNA-processing protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	5	73	Total 645	C 395	N 133	0 114	${ m S} { m 3}$	0	0

• Molecule 6 is a RNA chain called ITS2 rRNA.

Mol	Chain	Residues		A	toms	AltConf	Trace		
6	6	58	Total 1227	C 550	N 210	O 409	Р 58	0	0

• Molecule 7 is a protein called 60S ribosomal protein L12-A.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
7	8	158	Total 1196	C 750	N 216	0 228	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 8 is a protein called Ribosome biogenesis protein ALB1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
8	9	118	Total 937	C 590	N 181	O 166	0	0

• Molecule 9 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		Ate	AltConf	Trace			
9	В	386	Total 3081	C 1956	N 584	O 533	S 8	0	0

• Molecule 10 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	С	361	Total 2749	C 1730	N 522	0 494	${ m S} { m 3}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	D	270	Total 2180	C 1379	N 382	0 417	${S \over 2}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
12	Е	155	Total 1230	C 795	N 221	0 213	S 1	0	0

• Molecule 13 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
13	F	219	Total 1761	C 1138	N 320	O 302	S 1	0	0

• Molecule 14 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	G	224	Total 1753	C 1122	N 314	0 314	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	Н	191	Total 1518	C 963	N 274	0 277	$\frac{S}{4}$	0	0

• Molecule 16 is a protein called Bud site selection protein 20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	Ι	131	Total 1059	C 662	N 195	0 198	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 17 is a protein called 60S ribosomal protein L11-A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
17	J	171	Total 1368	C 856	N 256	O 252	${S \atop 4}$	0	0

• Molecule 18 is a protein called Proteasome-interacting protein CIC1.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	K	268	Total 2155	C 1387	N 355	O 409	${S \atop 4}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
10	T	180	Total	С	Ν	Ο	0	0
15		100	1438	892	296	250		0

• Molecule 20 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	М	137	Total 1059	C 678	N 200	0 179	${ m S} { m 2}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues		At	AltConf	Trace			
21	Ν	189	Total 1620	C 1016	N 342	0 261	S 1	0	0

• Molecule 22 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues		At	AltConf	Trace			
22	Ο	197	Total 1555	C 1003	N 289	O 262	S 1	0	0

• Molecule 23 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
23	Р	175	Total 1388	C 862	N 277	O 249	0	0

• Molecule 24 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues		At	AltConf	Trace			
24	Q	147	Total 1136	C 718	N 219	0 198	S 1	0	0

• Molecule 25 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
25	R	156	Total 1258	C 781	N 265	O 212	0	0

• Molecule 26 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues		At	AltConf	Trace			
26	S	171	Total 1437	C 925	N 266	0 243	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues		At	AltConf	Trace			
27	Т	114	Total 905	C 568	N 175	O 159	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
28	U	106	Total	С	Ν	0	0	0
	Ũ	200	844	545	138	161		Ŭ

• Molecule 29 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	AltConf	Trace			
29	V	136	Total 1003	C 628	N 189	0 179	${ m S} 7$	0	0

• Molecule 30 is a protein called Ribosome assembly factor MRT4.

Mol	Chain	Residues		Ate	AltConf	Trace			
30	W	234	Total 1887	C 1194	N 323	0 364	S 6	0	0

• Molecule 31 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues		At	AltConf	Trace			
31	Х	139	Total 1088	C 697	N 194	0 195	$\frac{S}{2}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
32	Y	126	Total 993	$\begin{array}{c} \mathrm{C} \\ 625 \end{array}$	N 192	O 176	0	0

• Molecule 33 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
33	Z	135	Total	С	N	Ō	0	0
00	<i>L</i>	100	1092	710	202	180	0	0

• Molecule 34 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	a	92	Total 731	С 477	N 129	0 124	S 1	0	0

• Molecule 35 is a protein called Nucleolar GTP-binding protein 1.

Mol	Chain	Residues		At	AltConf	Trace			
35	b	642	Total 5185	C 3251	N 938	O 970	S 26	0	0

• Molecule 36 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	с	97	Total 743	C 479	N 124	O 139	S 1	0	0

• Molecule 37 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	d	107	Total 873	C 553	N 165	0 154	S 1	0	0

• Molecule 38 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	е	127	Total 1020	C 647	N 205	0 167	S 1	0	0

• Molecule 39 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	f	106	Total 850	C 540	N 165	0 144	S 1	0	0

• Molecule 40 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	g	112	Total 881	С 546	N 179	0 152	$\frac{S}{4}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
41	h	119	Total 969	C 615	N 186	0 167	S 1	0	0

• Molecule 42 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	i	99	Total 771	C 481	N 156	0 132	${ m S} { m 2}$	0	0

• Molecule 43 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	j	84	Total 665	C 405	N 145	0 110	${ m S}{ m 5}$	0	0

• Molecule 44 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
44	k	77	Total 612	C 391	N 115	O 106	0	0

• Molecule 45 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
45	1	50	Total	С	N	O	S	0	0
40	1	50	436	272	97	65	2	0	0

• Molecule 46 is a protein called Nucleolar GTP-binding protein 2.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	m	466	Total 3754	C 2372	N 681	O 691	S 10	0	0

• Molecule 47 is a protein called Pescadillo homolog.

Mol	Chain	Residues		At	AltConf	Trace			
47	n	369	Total 3014	C 1954	N 521	O 530	S 9	0	0

• Molecule 48 is a protein called Ribosome biogenesis protein 15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	О	133	Total 1107	C 716	N 198	0 189	$\frac{S}{4}$	0	0

• Molecule 49 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	р	91	Total 694	C 429	N 138	0 121	S 6	0	0

• Molecule 50 is a protein called Ribosome biogenesis protein NOP53.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	q	156	Total 1298	C 821	N 233	0 243	S 1	0	0

• Molecule 51 is a protein called Ribosome biogenesis protein NSA2.

Mol	Chain	Residues		Ate	AltConf	Trace			
51	r	230	Total 1860	C 1177	N 352	0 324	S 7	0	0

• Molecule 52 is a protein called Nuclear GTP-binding protein NUG1.

Mol	Chain	Residues	Atoms					AltConf	Trace
52	S	72	Total 602	C 377	N 118	0 104	${ m S} { m 3}$	0	0

• Molecule 53 is a protein called Ribosome biogenesis protein RLP7.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	t	287	Total 2306	C 1459	N 427	0 417	$\frac{S}{3}$	0	0

• Molecule 54 is a protein called Ribosome biogenesis protein RLP24.

Mol	Chain	Residues		At	oms	Atoms					
54	u	150	Total 1265	C 793	N 253	O 210	S 9	0	0		

• Molecule 55 is a protein called Ribosome production factor 2 homolog.

Mol	Chain	Residues		At	AltConf	Trace			
55	V	293	Total 2366	C 1512	N 415	0 422	S 17	0	0

• Molecule 56 is a protein called Ribosome biogenesis regulatory protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
56	W	194	Total 1541	C 965	N 277	0 294	${ m S}{ m 5}$	0	0

• Molecule 57 is a protein called RSA4 isoform 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
57	x	504	Total 3927	C 2468	N 695	0 743	S 21	0	0

• Molecule 58 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues	Atoms					AltConf	Trace
58	У	244	Total 1849	C 1146	N 319	0 377	S 7	0	0

• Molecule 59 is a protein called UPF0642 protein YBL028C.

Mol	Chain	Residues	Atoms				AltConf	Trace	
59	Z	87	Total 714	C 444	N 142	0 127	S 1	0	0

• Molecule 60 is a protein called Probable metalloprotease ARX1.

Mol	Chain	Residues	Atoms					AltConf	Trace
60	4	538	Total 4166	C 2633	N 718	O 800	S 15	0	0

• Molecule 61 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
61	1	77	Total Mg 77 77	0
61	R	1	Total Mg 1 1	0
61	V	1	Total Mg 1 1	0
61	b	1	Total Mg 1 1	0
61	m	1	Total Mg 1 1	0

• Molecule 62 is 2-[3-(2-HYDROXY-1,1-DIHYDROXYMETHYL-ETHYLAMINO)-PROPYL AMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL (three-letter code: B3P) (formula:

 $C_{11}H_{26}N_2O_6).$

Mol	Chain	Residues	Atoms	AltConf
62	1	1	Total C N O 19 11 2 6	0
62	1	1	Total C N O 19 11 2 6	0
62	1	1	Total C N O 19 11 2 6	0

• Molecule 63 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
63	Ι	1	Total Zn 1 1	0
63	g	1	Total Zn 1 1	0
63	j	1	Total Zn 1 1	0
63	р	1	Total Zn 1 1	0
63	u	1	Total Zn 1 1	0

• Molecule 64 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $\rm C_{10}H_{15}N_5O_{11}P_2).$

Mol	Chain	Residues		Atoms			AltConf	
64	h	1	Total	С	Ν	Ο	Р	0
04	U	1	28	10	5	11	2	0

• Molecule 65 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf	
65	m	1	Total	С	Ν	Ο	Р	0
60	111	1	32	10	5	14	3	U

• Molecule 66 is POTASSIUM ION (three-letter code: K) (formula: K) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
66	m	1	Total K 1 1	0

• Molecule 67 is water.

Mol	Chain	Residues	Atoms	AltConf
67	1	346	Total O 346 346	0
67	2	6	Total O 6 6	0
67	С	3	Total O 3 3	0
67	F	1	Total O 1 1	0
67	Ν	3	Total O 3 3	0
67	Ο	1	Total O 1 1	0
67	R	2	Total O 2 2	0
67	V	1	Total O 1 1	0
67	Х	1	Total O 1 1	0
67	b	3	Total O 3 3	0
67	d	1	Total O 1 1	0
67	j	2	Total O 2 2	0
67	m	3	Total O 3 3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 60S ribosomal protein L2-A

• Molecule 15: 60S ribosomal protein L9-A

• Molecule 16: Bud site selection protein 20

ALA GLU SER THR ALA SER ALA ALA SER SER

• Molecule 17: 60S ribosomal protein L11-A

Chain V:	99%		
MET S2 G3 G3 M4 P67 E68 R70 K71 K71 K72 V137			
• Molecule 30: Ribosome	assembly factor MRT4	1	
Chain W:	75%	25%	-
MET PRO PRO RS K8 K8 L9 V10 V10 E21 R25 R25 E23	A33 L34 D35 B35 R38 R38 C45 D47 D47 S59 K60 S59	A61 662 863 863 863 863 881 881 881 882 883 883 883 883 883 883 883 883 883	189 189 199 192 192 195 195 195 195 195 100 100 100 100
D108 T111 T111 V112 K113 E114 K117 S118 V120 R121 S123 D123	1128 1129 1129 1133 1134 1133 1134 1134 1135 1134 1145 1145	1149 P150 A151 E152 E153 P154 V155 K168 K168 S184 S184	V188 C189 C189 C192 C192 C192 C195 C195 V195 V195 A198 A211 S211 S211
V217 S218 A219 Y220 Y221 D222 S225 S225 S226 Y228 Y228 S226 S226 S226 S226 S226 S229 S229 S220 S220 S220 S220 S220 S220	T231 T231 N232 N233 M235 M235 M235 M235 M235 M235 CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLU THR PRO LIFE CIFS LIFS LIFS GLA GLA GLA GLA GLA THR THR THR THR THR THR THR THR THR THR	CYS THR GLU GLY GLY CLY CLY ASP VAL ASP VAL ASP CLN
ALA LEU LEU LEU LEU LEU LEU PIEL ALA ALA ALA ALA ALA ALA ALA VIL L'YS VIL L'YS VIL L'YS VIL C'YS VIL ALA ALA ALA C'EU LEU LEU LEU LEU LEU LEU LEU LEU LEU L	A SEA TYR TYR ASP ASP ASP ASP ASP CUL CUU SER SER SER SER SER ASN	MET MET	
• Molecule 31: 60S riboso	omal protein L25		
Chain X:	98%		
MET ALA PRO S4 A5 D78 D78 I142			
• Molecule 32: 60S ribose	omal protein L26-A		
Chain Y:	98%		
MET A2 A2 A2 K124 K125 L126 E127			
• Molecule 33: 60S ribose	omal protein L27-A		
Chain Z:	99%		
MET 42 42 K3 K3 B30 K34 K34 K34 K34 K34 E90 E90 E102 C103	200 200 200 200 200 200 200 200 200 200		
• Molecule 34: 60S ribose	omal protein L28		
Chain a:	62%	38%	-

• Molecule 35: Nucleolar GTP-binding protein 1

• Molecule 36: 60S ribosomal protein L30

15%		
Chain c:	92%	8%
** ** (
MET ALA PRO PRO VAL LYAL CALN GLN GLN GLN GLU 110 110 116 115	071 071 095 096 0997 1100 1100 1100 1102 1104 1103	
• Molecule 37: 60S ri	bosomal protein L31-A	
10%		
Chain d	95%	5

MET ALA GLY LEU D6 E81 E83 E83 E82 E83 E83 B94 A95 A95 A95 A95 A95 A112 A112 A112

53 L4

 \bullet Molecule 38: 60S ribosomal protein L32

Chain e:

• Molecule 39: 60S ribosomal protein L33-A

5%

Chain f:	99%	
MET A2 I 107		
• Molecule 40: 6	60S ribosomal protein L34-A	
Chain g:	93% 7%	-
MET A2	E110 A1111 LYS SER CLU CIV CIV CIV CIV CIV CIV CIV CIV CIV CIV	
• Molecule 41: 6	60S ribosomal protein L35-A	
Chain h:	99%	•
MET A2 E15 G72 C72 C79 K119	VII0	
• Molecule 42: 6	60S ribosomal protein L36-A	
Chain i:	99%	
MET T2 V3 M12 A23 A23 A23	D59 161 161 862 864 864 866 866 866 869 897 895 897 895 895 895 895 895 895 895 895 895 895	
• Molecule 43: 6	60S ribosomal protein L37-A	
Chain j:	95% 5%	
MET G2 K88 ALA ALA ALA ALA		
• Molecule 44: 6	60S ribosomal protein L38	
Chain k:	99%	·
MET A2 D7 Q10 K29 K30 L31	N32 A34 A34 C35 A34 A53 A55 A55 A55 A55 A55 A55 A55 A55 A55	
• Molecule 45: 6	60S ribosomal protein L39	
Chain l:	98% •	1
MET A2 A2 I51		

• Molecule 46: Nucleolar GTP-binding protein 2

DE

• Molecule 55: Ribosome production factor 2 homolog

• Molecule 56: Ribosome biogenesis regulatory protein

•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•											
L543	N544	P545	Q546	D547	S548	1549 V550	Q551	G552	I 553	F554	Q555	L556	A557	T558	L559	A560	K561	D562	K563	R564	F565	G566	L567	L568	L569	K570	E571	T572	Q573 P574	M575	K576	Q577	K578	SER	GLU	THR	ASN	GLY	GLY	VAL	GLU	THR	MET I VS	MET

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	1358921	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1.4	Depositor
Minimum defocus (nm)	900	Depositor
Maximum defocus (nm)	2200	Depositor
Magnification	81000	Depositor
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.265	Depositor
Minimum map value	-0.116	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.007	Depositor
Recommended contour level	0.025	Depositor
Map size (Å)	432.00003, 432.00003, 432.00003	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.08, 1.08, 1.08	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, PSU, OMG, GDP, K, MG, B3P, OMU, 1MA, OMC, GTP, A2M, 5MC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	$\mathbf{lengths}$	Bond angles							
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5						
1	А	0.25	0/1666	0.57	0/2241						
2	1	0.30	0/70356	0.83	19/109681~(0.0%)						
3	2	0.31	0/3724	0.80	0/5798						
4	3	0.19	0/2861	0.78	0/4457						
5	5	0.24	0/649	0.51	0/848						
6	6	0.23	0/1367	0.86	0/2118						
7	8	0.25	0/1210	0.47	0/1627						
8	9	0.24	0/948	0.46	0/1264						
9	В	0.25	0/3152	0.54	0/4239						
10	С	0.25	0/2801	0.51	0/3792						
11	D	0.24	0/2227	0.49	0/3004						
12	Ε	0.25	0/1251	0.49	0/1682						
13	F	0.26	0/1798	0.49	0/2420						
14	G	0.25	0/1784	0.46	0/2408						
15	Н	0.26	0/1539	0.51	0/2073						
16	Ι	0.24	0/1075	0.48	0/1443						
17	J	0.25	0/1389	0.52	0/1860						
18	Κ	0.24	0/2190	0.47	0/2955						
19	L	0.25	0/1460	0.56	0/1960						
20	М	0.24	0/1074	0.50	0/1446						
21	Ν	0.25	0/1654	0.59	0/2213						
22	0	0.27	0/1585	0.50	0/2128						
23	Р	0.25	0/1410	0.56	0/1893						
24	Q	0.25	0/1153	0.53	0/1555						
25	R	0.25	0/1275	0.53	0/1702						
26	S	0.26	0/1473	0.51	0/1980						
27	Т	0.25	0/916	0.50	0/1226						
28	U	0.27	0/861	0.50	0/1167						
29	V	0.27	0/1018	0.54	0/1369						
30	W	0.25	0/1919	0.48	0/2586						
31	Х	0.25	0/1103	0.50	0/1484						
32	Y	0.24	0/1004	0.53	0/1341						

Mal	Chain	Bond	lengths	Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
33	Z	0.25	0/1118	0.48	0/1497
34	a	0.24	0/747	0.46	0/1008
35	b	0.25	0/5270	0.50	0/7080
36	с	0.26	0/751	0.46	0/1008
37	d	0.24	0/887	0.53	0/1191
38	е	0.24	0/1041	0.51	0/1394
39	f	0.27	0/868	0.57	0/1168
40	g	0.25	0/891	0.56	0/1191
41	h	0.26	0/978	0.51	0/1301
42	i	0.24	0/778	0.54	0/1034
43	j	0.26	0/680	0.59	0/901
44	k	0.25	0/618	0.52	0/826
45	1	0.24	0/443	0.58	0/588
46	m	0.25	0/3828	0.49	0/5154
47	n	0.25	0/3085	0.47	0/4166
48	0	0.25	0/1129	0.48	0/1502
49	р	0.25	0/701	0.56	0/934
50	q	0.25	0/1321	0.48	0/1766
51	r	0.25	0/1892	0.51	0/2528
52	S	0.25	0/608	0.49	0/798
53	t	0.25	0/2333	0.50	0/3128
54	u	0.26	0/1287	0.54	0/1711
55	V	0.25	0/2410	0.48	0/3220
56	W	0.24	0/1565	0.46	0/2108
57	X	0.24	0/4022	0.50	0/5460
58	У	0.24	0/1872	0.52	0/2548
59	Z	0.24	0/721	0.46	0/948
60	4	0.24	0/4242	0.47	0/5758
All	All	0.27	0/165978	0.69	19/239876~(0.0%)

There are no bond length outliers.

All (19)	bond	angle	outliers	are	listed	below:
-------	-----	------	-------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	1	406	G	O4'-C1'-N9	9.18	115.54	108.20
2	1	1495	U	C2-N1-C1'	6.90	125.98	117.70
2	1	1495	U	C6-N1-C1'	-6.65	111.89	121.20
2	1	1604	G	C4-N9-C1'	6.52	134.97	126.50
2	1	1496	С	C2-N1-C1'	6.35	125.79	118.80
2	1	922	U	C2-N1-C1'	6.13	125.06	117.70
2	1	835	G	O4'-C1'-N9	6.12	113.10	108.20
2	1	2112	U	C2-N1-C1'	6.00	124.89	117.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	1	922	U	C6-N1-C1'	-5.96	112.85	121.20
2	1	2112	U	C6-N1-C1'	-5.85	113.01	121.20
2	1	1496	C	C6-N1-C1'	-5.76	113.89	120.80
2	1	1604	G	C8-N9-C1'	-5.34	120.05	127.00
2	1	3058	U	C2-N1-C1'	5.32	124.09	117.70
2	1	3058	U	C6-N1-C1'	-5.28	113.81	121.20
2	1	2212	С	C2-N1-C1'	5.25	124.58	118.80
2	1	2567	C	C2-N1-C1'	5.11	124.43	118.80
2	1	2983	С	C2-N1-C1'	5.10	124.41	118.80
2	1	1355	A	P-O3'-C3'	5.08	125.79	119.70
2	1	961	С	C2-N1-C1'	5.01	124.31	118.80

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	211/254~(83%)	201~(95%)	10 (5%)	0	100	100
5	5	71/120~(59%)	70~(99%)	1 (1%)	0	100	100
7	8	156/165~(94%)	152 (97%)	4 (3%)	0	100	100
8	9	110/175~(63%)	109 (99%)	1 (1%)	0	100	100
9	В	384/387~(99%)	379~(99%)	5 (1%)	0	100	100
10	С	359/362~(99%)	349~(97%)	10 (3%)	0	100	100
11	D	266/297~(90%)	254 (96%)	12 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
12	Е	151/176~(86%)	148 (98%)	3 (2%)	0	100	100
13	F	217/244~(89%)	214 (99%)	3 (1%)	0	100	100
14	G	220/256~(86%)	216 (98%)	4 (2%)	0	100	100
15	Н	189/191~(99%)	183 (97%)	6 (3%)	0	100	100
16	Ι	129/166~(78%)	127 (98%)	2 (2%)	0	100	100
17	J	169/174~(97%)	166 (98%)	3 (2%)	0	100	100
18	K	262/376~(70%)	257 (98%)	5 (2%)	0	100	100
19	L	178/199~(89%)	175 (98%)	3 (2%)	0	100	100
20	М	135/138~(98%)	132 (98%)	3 (2%)	0	100	100
21	Ν	185/204~(91%)	179 (97%)	6 (3%)	0	100	100
22	Ο	195/199~(98%)	193 (99%)	2 (1%)	0	100	100
23	Р	171/184~(93%)	165 (96%)	6 (4%)	0	100	100
24	Q	145/186~(78%)	143 (99%)	2 (1%)	0	100	100
25	R	154/189~(82%)	152 (99%)	2 (1%)	0	100	100
26	S	169/172~(98%)	164 (97%)	5 (3%)	0	100	100
27	Т	110/160~(69%)	106 (96%)	4 (4%)	0	100	100
28	U	104/121~(86%)	101 (97%)	3 (3%)	0	100	100
29	V	134/137~(98%)	132 (98%)	2 (2%)	0	100	100
30	W	232/312~(74%)	226 (97%)	6 (3%)	0	100	100
31	Х	137/142~(96%)	135 (98%)	2 (2%)	0	100	100
32	Y	124/127~(98%)	121 (98%)	3 (2%)	0	100	100
33	Ζ	133/136~(98%)	130 (98%)	3 (2%)	0	100	100
34	a	90/149~(60%)	86 (96%)	4 (4%)	0	100	100
35	b	638/647~(99%)	618 (97%)	20 (3%)	0	100	100
36	с	95/105~(90%)	95 (100%)	0	0	100	100
37	d	105/113~(93%)	105 (100%)	0	0	100	100
38	е	125/130~(96%)	123 (98%)	2 (2%)	0	100	100
39	f	104/107~(97%)	99~(95%)	5 (5%)	0	100	100
40	g	$110/121 \ (91\%)$	109 (99%)	1 (1%)	0	100	100
41	h	117/120~(98%)	114 (97%)	3 (3%)	0	100	100
42	i	97/100~(97%)	93 (96%)	4 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
43	j	82/88~(93%)	80~(98%)	2(2%)	0	100	100
44	k	75/78~(96%)	75 (100%)	0	0	100	100
45	1	48/51~(94%)	47 (98%)	1 (2%)	0	100	100
46	m	462/486~(95%)	454 (98%)	8 (2%)	0	100	100
47	n	363/605~(60%)	353~(97%)	10 (3%)	0	100	100
48	О	131/220~(60%)	128 (98%)	3 (2%)	0	100	100
49	р	89/92~(97%)	84 (94%)	5 (6%)	0	100	100
50	q	152/455~(33%)	143 (94%)	9 (6%)	0	100	100
51	r	224/261~(86%)	219~(98%)	5 (2%)	0	100	100
52	s	68/520~(13%)	66~(97%)	2 (3%)	0	100	100
53	t	283/322 (88%)	275~(97%)	8 (3%)	0	100	100
54	u	148/199~(74%)	147 (99%)	1 (1%)	0	100	100
55	v	291/344~(85%)	284 (98%)	7 (2%)	0	100	100
56	W	192/203~(95%)	187~(97%)	5(3%)	0	100	100
57	х	500/515~(97%)	487 (97%)	13 (3%)	0	100	100
58	У	242/245~(99%)	231~(96%)	11 (4%)	0	100	100
59	Z	83/106 (78%)	83 (100%)	0	0	100	100
60	4	534/593~(90%)	529~(99%)	5 (1%)	0	100	100
All	All	10648/12924 (82%)	10393 (98%)	255 (2%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	166/196~(85%)	166 (100%)	0	100	100
5	5	67/106~(63%)	67~(100%)	0	100	100
7	8	129/136~(95%)	129 (100%)	0	100	100

$\alpha \cdot \cdot \cdot$	C		
Continued	trom	previous	page
	J	1	ro

Mol	Chain	Analysed	Rotameric	Outliers	Outliers Percen	
8	9	106/153~(69%)	106 (100%)	0	100	100
9	В	322/323~(100%)	321 (100%)	1 (0%)	91	95
10	С	288/289~(100%)	287~(100%)	1 (0%)	91	95
11	D	226/245~(92%)	226 (100%)	0	100	100
12	Е	133/153~(87%)	133 (100%)	0	100	100
13	F	184/205~(90%)	184 (100%)	0	100	100
14	G	185/208~(89%)	185 (100%)	0	100	100
15	Н	$171/171\ (100\%)$	171 (100%)	0	100	100
16	Ι	117/141 (83%)	117 (100%)	0	100	100
17	J	148/150~(99%)	148 (100%)	0	100	100
18	К	247/346~(71%)	247 (100%)	0	100	100
19	L	142/159~(89%)	142 (100%)	0	100	100
20	М	108/109~(99%)	108 (100%)	0	100	100
21	Ν	165/176~(94%)	165 (100%)	0	100	100
22	Ο	160/162~(99%)	160 (100%)	0	100	100
23	Р	141/146~(97%)	141 (100%)	0	100	100
24	Q	121/151~(80%)	121 (100%)	0	100	100
25	R	129/154~(84%)	129 (100%)	0	100	100
26	S	155/156~(99%)	154~(99%)	1 (1%)	84	90
27	Т	98/137~(72%)	98~(100%)	0	100	100
28	U	93/107~(87%)	93~(100%)	0	100	100
29	V	104/105~(99%)	104 (100%)	0	100	100
30	W	211/281~(75%)	211~(100%)	0	100	100
31	Х	116/118~(98%)	116 (100%)	0	100	100
32	Y	109/110~(99%)	108~(99%)	1 (1%)	75	85
33	Ζ	115/116~(99%)	115 (100%)	0	100	100
34	a	76/119~(64%)	76 (100%)	0	100	100
35	b	568/573~(99%)	566 (100%)	2(0%)	89	94
36	с	81/88~(92%)	81 (100%)	0	100	100
37	d	94/97~(97%)	94 (100%)	0	100	100
38	е	$\overline{109/111}~(98\%)$	109 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
39	f	90/91~(99%)	90 (100%)	0	100	100
40	g	95/103~(92%)	95~(100%)	0	100	100
41	h	104/105~(99%)	104 (100%)	0	100	100
42	i	81/82~(99%)	81 (100%)	0	100	100
43	j	69/71~(97%)	69 (100%)	0	100	100
44	k	68/69~(99%)	68 (100%)	0	100	100
45	1	45/46~(98%)	45 (100%)	0	100	100
46	m	411/428 (96%)	409 (100%)	2(0%)	86	92
47	n	332/548~(61%)	331 (100%)	1 (0%)	91	95
48	О	118/199~(59%)	117~(99%)	1 (1%)	79	87
49	р	71/72~(99%)	70~(99%)	1 (1%)	62	75
50	q	145/420~(34%)	145 (100%)	0	100	100
51	r	203/229~(89%)	203 (100%)	0	100	100
52	s	65/445~(15%)	65~(100%)	0	100	100
53	t	256/287~(89%)	256~(100%)	0	100	100
54	u	133/180~(74%)	133 (100%)	0	100	100
55	v	264/309~(85%)	264~(100%)	0	100	100
56	W	172/179~(96%)	172~(100%)	0	100	100
57	х	442/451~(98%)	439~(99%)	3~(1%)	81	89
58	У	210/211~(100%)	210 (100%)	0	100	100
59	Z	77/95~(81%)	77~(100%)	0	100	100
60	4	471/520 (91%)	468 (99%)	3(1%)	84	90
All	All	$9306/111\overline{37}\ (84\%)$	9289 (100%)	17 (0%)	91	96

All (17) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
9	В	332	ARG
10	С	120	TYR
26	S	172	TYR
32	Y	74	TYR
35	b	278	PHE
35	b	549	GLN
46	m	325	ASN

	Chain	Res	Tvpe
46	m	353	TRP
47	n	427	ILE
48	0	102	PHE
49	р	60	CYS
57	X	208	ASN
57	Х	410	PHE
57	х	424	ASN
60	4	200	CYS
60	4	255	ASN
60	4	401	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such sidechains are listed below:

Mol	Chain	Res	Type
46	m	227	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
2	1	2976/3396~(87%)	509~(17%)	4 (0%)
3	2	157/158~(99%)	26 (16%)	0
4	3	120/121~(99%)	26 (21%)	0
6	6	54/87~(62%)	18 (33%)	0
All	All	3307/3762~(87%)	579 (17%)	4 (0%)

All (579) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
2	1	2	U
2	1	5	G
2	1	42	С
2	1	43	А
2	1	45	А
2	1	49	А
2	1	59	G
2	1	60	А
2	1	65	А
2	1	66	А
2	1	77	А
2	1	109	А

Mol	Chain	Res	Type
2	1	110	G
2	1	111	С
2	1	116	А
2	1	121	А
2	1	122	А
2	1	135	С
2	1	136	G
2	1	156	G
2	1	157	А
2	1	166	С
2	1	172	G
2	1	182	U
2	1	187	А
2	1	190	U
2	1	191	U
2	1	192	С
2	1	200	С
2	1	206	G
2	1	210	U
2	1	213	А
2	1	218	G
2	1	219	А
2	1	220	G
2	1	238	А
2	1	239	G
2	1	243	G
2	1	244	G
2	1	245	U
2	1	249	U
2	1	250	U
2	1	251	G
2	1	252	U
2	1	253	A
2	1	262	U
2	1	263	С
2	1	269	G
2	1	284	A
2	1	286	U
2	1	295	A
2	1	305	U
2	1	311	С
2	1	323	A

Mol	Chain	Res	Type
2	1	329	U
2	1	339	С
2	1	376	G
2	1	398	A
2	1	399	А
2	1	401	U
2	1	402	А
2	1	403	С
2	1	421	G
2	1	422	А
2	1	439	С
2	1	495	G
2	1	517	G
2	1	521	A
2	1	523	A
2	1	535	G
2	1	543	С
2	1	547	G
2	1	548	G
2	1	550	А
2	1	555	U
2	1	557	А
2	1	559	А
2	1	579	G
2	1	592	А
2	1	604	G
2	1	609	G
2	1	611	А
2	1	620	U
2	1	621	A
2	1	637	C
2	1	643	U
2	1	644	G
2	1	645	A
2	1	646	A
2	1	648	С
2	1	649	A2M
2	1	660	A
2	1	677	A
2	1	681	U
2	1	705	A
2	1	715	А

Mol	Chain	Res	Type
2	1	719	U
2	1	720	А
2	1	735	А
2	1	742	G
2	1	761	A
2	1	763	G
2	1	764	U
2	1	765	С
2	1	766	U
2	1	767	U
2	1	776	PSU
2	1	777	U
2	1	779	G
2	1	781	G
2	1	785	G
2	1	806	А
2	1	808	A
2	1	817	A2M
2	1	830	А
2	1	838	G
2	1	861	С
2	1	874	U
2	1	875	G
2	1	896	A
2	1	907	G
2	1	914	A
2	1	916	G
2	1	917	А
2	1	921	A
2	1	936	А
2	1	938	С
2	1	944	С
2	1	954	U
2	1	957	С
2	1	960	PSU
2	1	971	G
2	1	973	A
2	1	974	G
2	1	975	С
2	1	976	U
2	1	979	U
2	1	980	A

Mol	Chain	Res	Type
2	1	993	G
2	1	1064	А
2	1	1066	G
2	1	1086	С
2	1	1094	U
2	1	1095	U
2	1	1096	U
2	1	1097	G
2	1	1098	А
2	1	1105	А
2	1	1109	U
2	1	1112	А
2	1	1116	G
2	1	1117	G
2	1	1127	G
2	1	1129	A
2	1	1132	С
2	1	1143	А
2	1	1153	А
2	1	1155	С
2	1	1157	G
2	1	1159	А
2	1	1180	А
2	1	1181	U
2	1	1189	\mathbf{C}
2	1	1191	U
2	1	1192	С
2	1	1193	А
2	1	1198	С
2	1	1204	A
2	1	1217	А
2	1	1224	С
2	1	1244	A
2	1	1245	А
2	1	1250	G
2	1	1252	A
2	1	1263	A
2	1	1271	A
2	1	1272	С
2	1	1277	С
2	1	1278	А
2	1	1287	А

Mol	Chain	Res	Type
2	1	1307	G
2	1	1308	А
2	1	1313	G
2	1	1330	А
2	1	1348	U
2	1	1356	U
2	1	1386	А
2	1	1391	C
2	1	1399	A
2	1	1404	G
2	1	1419	A
2	1	1421	G
2	1	1432	C
2	1	1434	G
2	1	1437	OMC
2	1	1446	А
2	1	1481	A
2	1	1503	А
2	1	1508	С
2	1	1527	C
2	1	1555	U
2	1	1557	А
2	1	1560	G
2	1	1561	G
2	1	1567	U
2	1	1568	U
2	1	1569	U
2	1	1570	U
2	1	1571	А
2	1	1572	U
2	1	1573	G
2	1	1574	С
2	1	1581	С
2	1	1582	С
2	1	1583	A
2	1	1587	A
2	1	1589	А
2	1	1593	A
2	1	1604	G
2	1	1628	С
2	1	1629	U
2	1	1639	С

Mol	Chain	Res	Type
2	1	1641	U
2	1	1642	A
2	1	1643	A
2	1	1715	A
2	1	1724	U
2	1	1725	С
2	1	1741	А
2	1	1750	А
2	1	1751	G
2	1	1763	U
2	1	1775	G
2	1	1780	G
2	1	1796	G
2	1	1797	A
2	1	1798	A
2	1	1813	A
2	1	1816	А
2	1	1817	G
2	1	1820	U
2	1	1821	U
2	1	1839	A
2	1	1842	А
2	1	1849	С
2	1	1866	С
2	1	1880	U
2	1	1886	A
2	1	1906	G
2	1	1909	А
2	1	1952	G
2	1	1953	G
2	1	2094	С
2	1	2112	U
2	1	2121	G
2	1	$2\overline{122}$	G
2	1	2131	A
2	1	2140	U
2	1	2142	1MA
2	1	2158	A
2	1	2169	G
2	1	$2\overline{193}$	U
2	1	2194	G
2	1	2197	OMC

Mol	Chain	Res	Type
2	1	2198	А
2	1	2209	U
2	1	2220	A2M
2	1	2221	G
2	1	2222	А
2	1	2223	А
2	1	2244	А
2	1	2249	G
2	1	2250	G
2	1	2268	U
2	1	2269	U
2	1	2271	А
2	1	2272	G
2	1	2274	U
2	1	2276	G
2	1	2277	С
2	1	2316	G
2	1	2317	А
2	1	2334	U
2	1	2335	G
2	1	2336	U
2	1	2340	PSU
2	1	2371	G
2	1	2373	А
2	1	2374	С
2	1	2376	G
2	1	2385	G
2	1	2388	U
2	1	2393	G
2	1	2397	А
2	1	2398	А
2	1	2399	А
2	1	2401	А
2	1	2402	А
2	1	2416	PSU
2	1	2417	OMU
2	1	2418	G
2	1	2419	A
2	1	2421	OMU
2	1	2422	С
2	1	2435	G
2	1	2445	А

Mol	Chain	Res	Type
2	1	2502	А
2	1	2504	U
2	1	2506	U
2	1	2514	U
2	1	2523	А
2	1	2524	А
2	1	2530	G
2	1	2531	С
2	1	2532	U
2	1	2546	С
2	1	2547	А
2	1	2549	G
2	1	2552	С
2	1	2554	A
2	1	2555	G
2	1	2561	А
2	1	2566	С
2	1	2567	С
2	1	2569	А
2	1	2570	U
2	1	2571	U
2	1	2572	С
2	1	2573	G
2	1	2586	G
2	1	2593	А
2	1	2595	А
2	1	2596	U
2	1	2606	G
2	1	2607	G
2	1	2618	G
2	1	2619	G
2	1	2623	G
2	1	2624	G
2	1	2627	С
2	1	2653	С
2	1	2655	U
2	1	2656	А
2	1	2671	А
2	1	2674	А
2	1	2676	А
2	1	2677	G
2	1	2678	А

Mol	Chain	Res	Type
2	1	2691	А
2	1	2693	С
2	1	2696	А
2	1	2697	А
2	1	2698	G
2	1	2699	G
2	1	2704	А
2	1	2705	А
2	1	2712	U
2	1	2715	А
2	1	2718	U
2	1	2719	U
2	1	2721	А
2	1	2729	OMU
2	1	2731	U
2	1	2749	G
2	1	2750	U
2	1	2754	G
2	1	2758	А
2	1	2759	U
2	1	2760	С
2	1	2761	G
2	1	2762	А
2	1	2763	U
2	1	2766	U
2	1	2767	U
2	1	2771	U
2	1	2772	С
2	1	2777	G
2	1	2791	OMG
2	1	2794	G
2	1	2797	С
2	1	2798	С
2	1	2799	A
2	1	2800	G
2	1	2801	A
2	1	2803	А
2	1	2804	A
2	1	2810	С
2	1	2811	А
2	1	2817	А
2	1	2818	U

Mol	Chain	Res	Type
2	1	2819	А
2	1	2821	С
2	1	2822	U
2	1	2824	G
2	1	2825	С
2	1	2838	А
2	1	2847	А
2	1	2861	U
2	1	2864	А
2	1	2865	PSU
2	1	2872	А
2	1	2873	U
2	1	2876	С
2	1	2878	G
2	1	2887	А
2	1	2889	С
2	1	2898	G
2	1	2899	С
2	1	2923	PSU
2	1	2924	U
2	1	2925	С
2	1	2926	А
2	1	2935	U
2	1	2936	А
2	1	2940	А
2	1	2941	А
2	1	2948	OMC
2	1	2952	G
2	1	2953	U
2	1	2954	U
2	1	2955	U
2	1	2970	С
2	1	2971	А
2	1	2978	U
2	1	2979	U
2	1	2980	U
2	1	2981	U
2	1	2983	С
2	1	2990	G
2	1	2996	U
2	1	2997	G
2	1	3012	А

Mol	Chain	Res	Type
2	1	3022	G
2	1	3023	U
2	1	3032	А
2	1	3055	U
2	1	3059	G
2	1	3078	U
2	1	3079	U
2	1	3080	G
2	1	3086	А
2	1	3092	С
2	1	3093	С
2	1	3100	U
2	1	3102	G
2	1	3104	U
2	1	3109	G
2	1	3117	С
2	1	3122	А
2	1	3127	А
2	1	3129	А
2	1	3130	А
2	1	3131	U
2	1	3142	А
2	1	3155	U
2	1	3156	U
2	1	3157	U
2	1	3161	С
2	1	3163	А
2	1	3165	А
2	1	3168	А
2	1	3171	U
2	1	3172	A
2	1	3173	G
2	1	3174	A
2	1	3176	G
2	1	3179	U
2	1	3180	A
2	1	3181	С
2	1	3187	A
2	1	3196	U
2	1	3207	U
2	1	3217	С
2	1	3218	А

Mol	Chain	Res	Type
2	1	3219	G
2	1	3243	А
2	1	3245	А
2	1	3247	G
2	1	3253	G
2	1	3256	G
2	1	3259	U
2	1	3260	G
2	1	3263	G
2	1	3276	G
2	1	3279	А
2	1	3280	U
2	1	3282	U
2	1	3283	U
2	1	3284	G
2	1	3285	С
2	1	3286	G
2	1	3287	U
2	1	3288	G
2	1	3294	А
2	1	3295	А
2	1	3304	U
2	1	3313	U
2	1	3316	А
2	1	3318	G
2	1	3319	U
2	1	3341	U
2	1	3345	G
2	1	3369	G
2	1	3375	A
2	1	3378	C
2	1	3382	U
2	1	$3\overline{386}$	G
2	1	3389	U
2	1	3396	U
3	2	23	U
3	2	34	U
3	2	35	C
3	2	38	U
3	2	52	A
3	2	59	A
3	2	62	С

Mol	Chain	Res	Type
3	2	63	G
3	2	75	G
3	2	80	A
3	2	82	U
3	2	83	С
3	2	84	С
3	2	85	G
3	2	86	U
3	2	87	G
3	2	88	A
3	2	90	U
3	2	95	G
3	2	104	А
3	2	106	С
3	2	111	А
3	2	113	U
3	2	125	U
3	2	126	А
3	2	151	С
4	3	7	G
4	3	11	А
4	3	14	U
4	3	22	А
4	3	33	U
4	3	49	G
4	3	50	PSU
4	3	51	А
4	3	54	U
4	3	55	A
4	3	65	G
4	3	72	A
4	3	73	С
4	3	74	С
4	3	76	A
4	3	83	U
4	3	86	U
4	3	87	G
4	3	93	С
4	3	95	А
4	3	99	G
4	3	102	А
4	3	109	G

	•	-	
Mol	Chain	Res	Type
4	3	112	G
4	3	114	U
4	3	121	U
6	6	4	U
6	6	5	С
6	6	6	U
6	6	7	С
6	6	23	U
6	6	24	А
6	6	33	U
6	6	43	А
6	6	47	А
6	6	48	А
6	6	49	С
6	6	52	G
6	6	54	А
6	6	56	U
6	6	58	G
6	6	59	С
6	6	228	U
6	6	231	А

All (4) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
2	1	1355	А
2	1	1568	U
2	1	3121	U
2	1	3283	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

58 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	Bond lengths		Bond angles		
WIOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	5MC	1	2278	2	19,22,23	1.64	3 (15%)	26,32,35	1.10	3 (11%)
2	PSU	1	2340	2	18,21,22	1.04	1 (5%)	21,30,33	1.52	4 (19%)
2	OMU	1	2724	2	19,22,23	2.95	8 (42%)	25,31,34	1.77	5 (20%)
2	OMG	1	2922	2	19,26,27	1.14	2 (10%)	21,38,41	0.81	1 (4%)
2	A2M	1	1449	2,61	18,25,26	1.33	1 (5%)	20,36,39	0.90	0
2	A2M	1	649	2	18,25,26	1.38	1 (5%)	20,36,39	0.96	3 (15%)
4	PSU	3	50	4	18,21,22	1.20	2 (11%)	21,30,33	1.60	4 (19%)
2	OMG	1	2815	2	19,26,27	1.12	2 (10%)	21,38,41	0.84	1 (4%)
2	PSU	1	776	2	18,21,22	1.20	2 (11%)	21,30,33	1.57	5 (23%)
2	A2M	1	2220	2	18,25,26	1.38	2 (11%)	20,36,39	1.00	1 (5%)
2	OMG	1	867	2	19,26,27	1.15	2 (10%)	21,38,41	0.83	1 (4%)
2	OMG	1	2793	2	19,26,27	1.11	2 (10%)	21,38,41	0.91	1 (4%)
2	OMC	1	2959	2	19,22,23	0.56	0	25,31,34	0.76	0
2	PSU	1	2351	2	18,21,22	1.08	1 (5%)	21,30,33	1.55	4 (19%)
2	OMU	1	2421	2	19,22,23	3.00	8 (42%)	25,31,34	1.82	5 (20%)
2	PSU	1	1110	2	18,21,22	1.17	1 (5%)	21,30,33	1.56	5 (23%)
2	OMC	1	1437	2	19,22,23	0.59	0	25,31,34	0.98	1 (4%)
2	PSU	1	2191	2	18,21,22	1.10	1 (5%)	21,30,33	1.54	4 (19%)
2	PSU	1	2266	2	18,21,22	1.18	1 (5%)	21,30,33	1.50	5 (23%)
2	OMC	1	2337	2	19,22,23	0.53	0	25,31,34	0.64	0
2	PSU	1	2133	2	18,21,22	1.08	1 (5%)	21,30,33	1.58	4 (19%)
2	OMC	1	2948	2	19,22,23	0.51	0	25,31,34	0.77	0
2	OMU	1	2417	2	19,22,23	2.97	7 (36%)	25,31,34	1.74	4 (16%)
2	5MC	1	2870	2	19,22,23	1.58	3 (15%)	26,32,35	1.12	2 (7%)
2	PSU	1	2314	2	18,21,22	1.19	1 (5%)	21,30,33	1.54	4 (19%)
2	PSU	1	2264	2	18,21,22	1.22	3 (16%)	21,30,33	1.57	4 (19%)
2	OMU	1	898	2	19,22,23	2.93	8 (42%)	25,31,34	1.79	5 (20%)
2	OMG	1	2791	2	19,26,27	1.08	2 (10%)	21,38,41	0.89	1 (4%)
2	PSU	1	966	2	18,21,22	1.23	3 (16%)	21,30,33	1.52	4 (19%)
2	A2M	1	1133	2	18,25,26	1.38	1 (5%)	20,36,39	0.88	0
2	OMG	1	805	2	19,26,27	1.14	2 (10%)	21,38,41	0.83	1 (4%)
2	OMG	1	1450	2	19,26,27	1.15	2 (10%)	21,38,41	0.77	1 (4%)
2	PSU	1	990	2	18,21,22	1.17	1 (5%)	21,30,33	1.54	4 (19%)
2	PSU	1	960	2	18,21,22	1.20	3 (16%)	21,30,33	1.50	4 (19%)
2	OMU	1	2921	2	19,22,23	2.99	8 (42%)	25,31,34	1.79	5 (20%)

Mal	Tuno	Chain	Dog	Tink	Bo	ond leng	ths	Bond angles		
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	PSU	1	2826	2,61	18,21,22	1.09	1 (5%)	21,30,33	1.62	4 (19%)
2	OMC	1	650	2	19,22,23	0.50	0	25,31,34	0.67	0
2	OMG	1	908	2	19,26,27	1.14	2 (10%)	21,38,41	0.87	1 (4%)
2	PSU	1	986	2	18,21,22	1.12	1 (5%)	21,30,33	1.44	4 (19%)
2	OMU	1	2347	2	19,22,23	2.95	7 (36%)	25,31,34	1.78	4 (16%)
2	PSU	1	2865	2	18,21,22	1.22	4 (22%)	21,30,33	1.53	4 (19%)
2	OMC	1	663	2	19,22,23	0.53	0	25,31,34	0.66	0
2	OMU	1	2729	2	19,22,23	2.97	8 (42%)	25,31,34	1.85	5 (20%)
2	OMC	1	2197	2	19,22,23	0.46	0	25,31,34	0.62	0
2	PSU	1	2349	2,61	18,21,22	1.13	1 (5%)	21,30,33	1.43	6 (28%)
2	PSU	1	2416	2	18,21,22	1.19	2 (11%)	21,30,33	1.59	5 (23%)
2	PSU	1	1124	2	18,21,22	1.21	1 (5%)	21,30,33	1.55	5 (23%)
2	PSU	1	2923	2	18,21,22	1.26	2 (11%)	21,30,33	1.47	4 (19%)
2	PSU	1	2975	2	18,21,22	1.13	1 (5%)	21,30,33	1.59	4 (19%)
2	A2M	1	876	2	18,25,26	1.31	1 (5%)	20,36,39	0.86	0
2	PSU	1	2880	2	18,21,22	1.20	2 (11%)	21,30,33	1.53	5 (23%)
2	1MA	1	2142	2,61	17,25,26	1.03	2 (11%)	17,37,40	1.16	2 (11%)
2	OMU	1	1888	2	19,22,23	<mark>3.05</mark>	7 (36%)	25,31,34	2.05	8 (32%)
3	PSU	2	73	3	18,21,22	1.11	1 (5%)	21,30,33	1.56	4 (19%)
2	A2M	1	807	2	18,25,26	1.33	1 (5%)	20,36,39	0.87	0
2	PSU	1	2129	2	18,21,22	1.20	2 (11%)	21,30,33	1.50	4 (19%)
2	A2M	1	817	2,61	18,25,26	1.25	1 (5%)	20,36,39	1.05	1 (5%)
2	PSU	1	2735	2	18,21,22	1.11	1 (5%)	21,30,33	1.58	4 (19%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	5MC	1	2278	2	-	0/7/25/26	0/2/2/2
2	PSU	1	2340	2	-	3/7/25/26	0/2/2/2
2	OMU	1	2724	2	-	1/9/27/28	0/2/2/2
2	OMG	1	2922	2	-	0/5/27/28	0/3/3/3
2	A2M	1	1449	2,61	-	0/5/27/28	0/3/3/3
2	A2M	1	649	2	-	3/5/27/28	0/3/3/3
4	PSU	3	50	4	_	2/7/25/26	0/2/2/2

α \cdot \cdot	C		
Continued	from	previous	page

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	OMG	1	2815	2	-	0/5/27/28	0/3/3/3
2	PSU	1	776	2	-	2/7/25/26	0/2/2/2
2	A2M	1	2220	2	-	2/5/27/28	0/3/3/3
2	OMG	1	867	2	-	0/5/27/28	0/3/3/3
2	OMG	1	2793	2	-	0/5/27/28	0/3/3/3
2	OMC	1	2959	2	-	0/9/27/28	0/2/2/2
2	PSU	1	2351	2	-	0/7/25/26	0/2/2/2
2	OMU	1	2421	2	-	2/9/27/28	0/2/2/2
2	PSU	1	1110	2	-	0/7/25/26	0/2/2/2
2	OMC	1	1437	2	-	4/9/27/28	0/2/2/2
2	PSU	1	2191	2	-	0/7/25/26	0/2/2/2
2	PSU	1	2266	2	-	0/7/25/26	0/2/2/2
2	OMC	1	2337	2	-	0/9/27/28	0/2/2/2
2	PSU	1	2133	2	-	0/7/25/26	0/2/2/2
2	OMC	1	2948	2	-	2/9/27/28	0/2/2/2
2	OMU	1	2417	2	-	2/9/27/28	0/2/2/2
2	5MC	1	2870	2	-	0/7/25/26	0/2/2/2
2	PSU	1	2314	2	-	0/7/25/26	0/2/2/2
2	PSU	1	2264	2	-	0/7/25/26	0/2/2/2
2	OMU	1	898	2	-	0/9/27/28	0/2/2/2
2	OMG	1	2791	2	-	3/5/27/28	0/3/3/3
2	PSU	1	966	2	-	0/7/25/26	0/2/2/2
2	A2M	1	1133	2	-	0/5/27/28	0/3/3/3
2	OMG	1	805	2	-	1/5/27/28	0/3/3/3
2	OMG	1	1450	2	-	2/5/27/28	0/3/3/3
2	PSU	1	990	2	-	0/7/25/26	0/2/2/2
2	PSU	1	960	2	-	2/7/25/26	0/2/2/2
2	OMU	1	2921	2	-	0/9/27/28	0/2/2/2
2	PSU	1	2826	2,61	-	1/7/25/26	0/2/2/2
2	OMC	1	650	2	-	0/9/27/28	0/2/2/2
2	OMG	1	908	2	-	0/5/27/28	0/3/3/3
2	PSU	1	986	2	-	1/7/25/26	0/2/2/2
2	OMU	1	2347	2	-	0/9/27/28	0/2/2/2
2	PSU	1	2865	2	_	2/7/25/26	0/2/2/2
2	OMC	1	663	2	-	0/9/27/28	0/2/2/2
2	OMU	1	2729	2	-	2/9/27/28	0/2/2/2
2	OMC	1	2197	2	-	2/9/27/28	$\overline{0/2/2/2}$
2	PSU	1	2349	2,61	-	0/7/25/26	0/2/2/2
2	PSU	1	2416	2	-	3/7/25/26	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	PSU	1	1124	2	-	0/7/25/26	0/2/2/2
2	PSU	1	2923	2	-	2/7/25/26	0/2/2/2
2	PSU	1	2975	2	-	0/7/25/26	0/2/2/2
2	A2M	1	876	2	-	0/5/27/28	0/3/3/3
2	PSU	1	2880	2	-	0/7/25/26	0/2/2/2
2	1MA	1	2142	2,61	-	2/3/25/26	0/3/3/3
2	OMU	1	1888	2	-	2/9/27/28	0/2/2/2
3	PSU	2	73	3	-	0/7/25/26	0/2/2/2
2	A2M	1	807	2	-	0/5/27/28	0/3/3/3
2	PSU	1	2129	2	-	0/7/25/26	0/2/2/2
2	A2M	1	817	2,61	-	1/5/27/28	0/3/3/3
2	PSU	1	2735	2	-	0/7/25/26	0/2/2/2

All (133) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	1	1888	OMU	C2-N1	7.77	1.50	1.38
2	1	2421	OMU	C2-N1	7.32	1.49	1.38
2	1	2921	OMU	C2-N1	7.30	1.49	1.38
2	1	2347	OMU	C2-N1	7.22	1.49	1.38
2	1	2417	OMU	C2-N1	7.17	1.49	1.38
2	1	2729	OMU	C2-N1	7.16	1.49	1.38
2	1	898	OMU	C2-N1	7.11	1.49	1.38
2	1	2724	OMU	C2-N1	7.06	1.49	1.38
2	1	2417	OMU	C2-N3	6.83	1.49	1.38
2	1	2421	OMU	C2-N3	6.80	1.49	1.38
2	1	2724	OMU	C2-N3	6.76	1.49	1.38
2	1	2921	OMU	C2-N3	6.75	1.49	1.38
2	1	2729	OMU	C2-N3	6.72	1.49	1.38
2	1	1888	OMU	C2-N3	6.68	1.49	1.38
2	1	2347	OMU	C2-N3	6.59	1.49	1.38
2	1	898	OMU	C2-N3	6.46	1.49	1.38
2	1	2278	5MC	C5-C4	5.99	1.48	1.44
2	1	2921	OMU	C6-C5	5.88	1.48	1.35
2	1	2421	OMU	C6-C5	5.87	1.48	1.35
2	1	2729	OMU	C6-C5	5.85	1.48	1.35
2	1	1888	OMU	C6-C5	5.83	1.48	1.35
2	1	898	OMU	C6-C5	5.81	1.48	1.35
2	1	2724	OMU	C6-C5	5.80	1.48	1.35
2	1	2417	OMU	C6-C5	5.80	1.48	1.35
2	1	2870	5MC	C5-C4	5.72	1.48	1.44
2	1	2347	OMU	C6-C5	5.70	1.48	1.35

COIIII	писи јгоп	i previc	rus puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
2	1	807	A2M	O5'-C5'	-3.79	1.33	1.44
2	1	2220	A2M	O5'-C5'	-3.78	1.33	1.44
2	1	876	A2M	O5'-C5'	-3.73	1.33	1.44
2	1	2421	OMU	C4-N3	3.69	1.44	1.38
2	1	649	A2M	O5'-C5'	-3.67	1.33	1.44
2	1	1133	A2M	O5'-C5'	-3.65	1.33	1.44
2	1	817	A2M	O5'-C5'	-3.63	1.33	1.44
2	1	2921	OMU	C4-N3	3.62	1.44	1.38
2	1	1449	A2M	O5'-C5'	-3.61	1.33	1.44
2	1	2729	OMU	C4-N3	3.58	1.44	1.38
2	1	2417	OMU	C4-N3	3.57	1.44	1.38
2	1	2724	OMU	C4-N3	3.47	1.44	1.38
2	1	898	OMU	C4-N3	3.38	1.44	1.38
2	1	2347	OMU	C4-N3	3.38	1.44	1.38
2	1	2865	PSU	C2-N1	3.33	1.41	1.36
4	3	50	PSU	C2-N1	3.31	1.41	1.36
2	1	1888	OMU	C4-N3	3.29	1.44	1.38
2	1	2264	PSU	C2-N1	3.28	1.40	1.36
2	1	2129	PSU	C2-N1	3.27	1.40	1.36
2	1	2923	PSU	C2-N1	3.24	1.40	1.36
2	1	1110	PSU	C2-N1	3.22	1.40	1.36
2	1	1124	PSU	C2-N1	3.16	1.40	1.36
2	1	2975	PSU	C2-N1	3.16	1.40	1.36
2	1	2880	PSU	C2-N1	3.15	1.40	1.36
2	1	776	PSU	C2-N1	3.14	1.40	1.36
2	1	1888	OMU	O2-C2	-3.10	1.17	1.23
2	1	966	PSU	C2-N1	3.09	1.40	1.36
2	1	2314	PSU	C2-N1	3.08	1.40	1.36
2	1	990	PSU	C2-N1	3.07	1.40	1.36
2	1	2191	PSU	C2-N1	3.05	1.40	1.36
2	1	2351	PSU	C2-N1	3.04	1.40	1.36
2	1	2266	PSU	C2-N1	3.03	1.40	1.36
2	1	2416	PSU	C2-N1	3.03	1.40	1.36
2	1	2922	OMG	C8-N7	-3.02	1.30	1.34
2	1	2735	PSU	C2-N1	3.01	1.40	1.36
2	1	960	PSU	C2-N1	3.00	1.40	1.36
2	1	1450	OMG	C8-N7	-2.99	1.30	1.34
3	2	73	PSU	C2-N1	2.97	1.40	1.36
2	1	867	OMG	C8-N7	-2.94	1.30	1.34
2	1	805	OMG	C8-N7	-2.94	1.30	1.34
2	1	2133	PSU	C2-N1	2.93	1.40	1.36
2	1	2826	PSU	C2-N1	2.92	1.40	1.36

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	1	2349	PSU	C2-N1	2.92	1.40	1.36
2	1	2347	OMU	O4-C4	-2.89	1.18	1.24
2	1	908	OMG	C8-N7	-2.88	1.30	1.34
2	1	898	OMU	O2-C2	-2.88	1.18	1.23
2	1	2347	OMU	O2-C2	-2.87	1.18	1.23
2	1	2815	OMG	C8-N7	-2.86	1.30	1.34
2	1	2142	1MA	C8-N7	-2.84	1.30	1.34
2	1	1888	OMU	O4-C4	-2.84	1.19	1.24
2	1	898	OMU	O4-C4	-2.80	1.19	1.24
2	1	2340	PSU	C2-N1	2.80	1.40	1.36
2	1	986	PSU	C2-N1	2.79	1.40	1.36
2	1	2791	OMG	C8-N7	-2.76	1.30	1.34
2	1	2278	5MC	C6-C5	2.75	1.39	1.34
2	1	2793	OMG	C8-N7	-2.74	1.30	1.34
2	1	2724	OMU	O4-C4	-2.73	1.19	1.24
2	1	2729	OMU	O2-C2	-2.72	1.18	1.23
2	1	2724	OMU	O2-C2	-2.70	1.18	1.23
2	1	2417	OMU	O2-C2	-2.66	1.18	1.23
2	1	2421	OMU	O4-C4	-2.65	1.19	1.24
2	1	2921	OMU	O2-C2	-2.64	1.18	1.23
2	1	2729	OMU	O4-C4	-2.64	1.19	1.24
2	1	2421	OMU	O2-C2	-2.63	1.18	1.23
2	1	2921	OMU	O4-C4	-2.62	1.19	1.24
2	1	2417	OMU	O4-C4	-2.59	1.19	1.24
2	1	2870	5MC	C6-C5	2.54	1.38	1.34
2	1	1450	OMG	C5-C6	-2.51	1.42	1.47
2	1	867	OMG	C5-C6	-2.48	1.42	1.47
2	1	2922	OMG	C5-C6	-2.41	1.42	1.47
2	1	805	OMG	C5-C6	-2.40	1.42	1.47
2	1	2815	OMG	C5-C6	-2.30	1.42	1.47
2	1	2142	1MA	C5-C4	-2.30	1.37	1.43
2	1	2793	OMG	C5-C6	-2.28	1.42	1.47
2	1	908	OMG	C5-C6	-2.27	1.43	1.47
2	1	2791	OMG	C5-C6	-2.25	1.43	1.47
2	1	2870	5MC	C6-N1	-2.22	1.34	1.38
2	1	1888	OMU	C6-N1	2.18	1.43	1.38
2	1	2278	5MC	C6-N1	-2.18	1.34	1.38
2	1	966	PSU	C6-N1	2.14	1.39	1.36
2	1	2729	OMU	C5-C4	2.13	1.48	1.43
2	1	2421	OMU	C5-C4	2.12	1.48	1.43
2	1	2416	PSU	C6-N1	2.11	1.39	1.36
2	1	960	PSU	C4-N3	2.10	1.42	1.38

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
4	3	50	PSU	C6-N1	2.09	1.39	1.36
2	1	2921	OMU	C6-N1	2.08	1.43	1.38
2	1	2921	OMU	C5-C4	2.08	1.48	1.43
2	1	2865	PSU	C2-N3	2.08	1.40	1.37
2	1	2347	OMU	C6-N1	2.08	1.43	1.38
2	1	2729	OMU	C6-N1	2.07	1.43	1.38
2	1	2880	PSU	C4-N3	2.07	1.42	1.38
2	1	2220	A2M	C2-N3	2.06	1.35	1.32
2	1	2264	PSU	C4-N3	2.06	1.42	1.38
2	1	2865	PSU	C6-N1	2.06	1.39	1.36
2	1	898	OMU	C5-C4	2.06	1.48	1.43
2	1	2923	PSU	C6-N1	2.06	1.39	1.36
2	1	2421	OMU	C6-N1	2.05	1.43	1.38
2	1	2417	OMU	C5-C4	2.05	1.48	1.43
2	1	2724	OMU	C5-C4	2.05	1.48	1.43
2	1	898	OMU	C6-N1	2.04	1.43	1.38
2	1	2264	PSU	C6-N1	2.03	1.39	1.36
2	1	2724	OMU	C6-N1	2.02	1.42	1.38
2	1	960	PSU	C2-N3	2.02	1.40	1.37
2	1	2865	PSU	$\overline{C4-N3}$	2.01	1.42	1.38
2	1	2129	PSU	C6-N1	2.00	1.39	1.36
2	1	776	PSU	C2-N3	2.00	1.40	1.37
2	1	966	PSU	$\overline{C4-N3}$	2.00	1.42	1.38

All	(170)) bond	angle	outliers	are	listed	below:
-----	-------	--------	-------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	1	2729	OMU	C4-N3-C2	-5.81	119.39	126.61
2	1	2421	OMU	C4-N3-C2	-5.61	119.65	126.61
2	1	898	OMU	C4-N3-C2	-5.58	119.69	126.61
2	1	2921	OMU	C4-N3-C2	-5.57	119.70	126.61
2	1	2347	OMU	C4-N3-C2	-5.51	119.77	126.61
2	1	2724	OMU	C4-N3-C2	-5.44	119.86	126.61
2	1	2417	OMU	C4-N3-C2	-5.24	120.11	126.61
2	1	1888	OMU	C4-N3-C2	-5.05	120.35	126.61
2	1	2865	PSU	C6-C5-C4	4.57	121.26	118.17
4	3	50	PSU	C6-C5-C4	4.47	121.19	118.17
2	1	1888	OMU	C1'-N1-C2	4.43	125.55	117.59
2	1	2826	PSU	C6-C5-C4	4.42	121.16	118.17
2	1	2264	PSU	$\overline{C6-C5-C4}$	4.38	121.13	118.17
2	1	2416	PSU	C6-C5-C4	4.38	121.13	118.17
2	1	2735	PSU	C6-C5-C4	4.30	121.08	118.17

Mol	Chain	Res	Type	Atoms	Z	Observed ^(o)	Ideal(°)
2	1	776	PSU	<u>C6-C5-C4</u>	4 18	121.00	118.17
2	1	2975	PSU	C6-C5-C4	4.16	120.98	118.17
2	1	2314	PSU	C6-C5-C4	4.13	120.96	118.17
2	1	2351	PSU	C6-C5-C4	4.12	120.95	118.17
2	1	1110	PSU	C6-C5-C4	4.10	120.94	118.17
2	1	990	PSU	C6-C5-C4	4.10	120.94	118.17
3	2	73	PSU	C6-C5-C4	4.07	120.92	118.17
2	1	2729	OMU	N3-C2-N1	4.05	120.17	114.89
2	1	1888	OMU	N3-C2-N1	4.02	120.13	114.89
2	1	2129	PSU	C6-C5-C4	4.01	120.88	118.17
2	1	2880	PSU	C6-C5-C4	4.01	120.88	118.17
2	1	966	PSU	C6-C5-C4	4.00	120.88	118.17
2	1	2923	PSU	C6-C5-C4	4.00	120.87	118.17
2	1	898	OMU	N3-C2-N1	3.97	120.06	114.89
2	1	2421	OMU	N3-C2-N1	3.88	119.94	114.89
2	1	2340	PSU	C6-C5-C4	3.81	120.75	118.17
2	1	1124	PSU	C6-C5-C4	3.80	120.74	118.17
2	1	2191	PSU	C6-C5-C4	3.79	120.73	118.17
2	1	2921	OMU	N3-C2-N1	3.76	119.78	114.89
2	1	2724	OMU	N3-C2-N1	3.75	119.77	114.89
2	1	2347	OMU	N3-C2-N1	3.71	119.72	114.89
2	1	2347	OMU	C5-C4-N3	3.70	119.99	114.80
2	1	2266	PSU	C6-C5-C4	3.70	120.67	118.17
2	1	2133	PSU	C6-C5-C4	3.64	120.63	118.17
2	1	2729	OMU	C5-C4-N3	3.63	119.89	114.80
2	1	2421	OMU	C5-C4-N3	3.59	119.83	114.80
2	1	2921	OMU	C5-C4-N3	3.57	119.80	114.80
2	1	2724	OMU	C5-C4-N3	3.57	119.80	114.80
2	1	2417	OMU	N3-C2-N1	3.53	119.49	114.89
2	1	2417	OMU	C5-C4-N3	3.50	119.70	114.80
2	1	898	OMU	C5-C4-N3	3.50	119.70	114.80
2	1	960	PSU	C6-C5-C4	3.48	120.53	118.17
2	1	1888	OMU	C5-C4-N3	3.40	119.56	114.80
2	1	2349	PSU	O4-C4-N3	-3.21	114.07	120.11
2	1	2870	5MC	C5-C6-N1	-3.18	119.86	123.31
2	1	986	PSU	C6-C5-C4	3.15	120.30	118.17
2	1	2865	PSU	C4-N3-C2	-3.15	122.03	126.37
2	1	2826	PSU	C4-N3-C2	-3.14	122.04	126.37
2	1	2133	PSU	C4-N3-C2	-3.11	122.09	126.37
2	1	$2\overline{2}64$	PSU	C4-N3-C2	-3.11	122.09	126.37
3	2	73	PSU	C4-N3-C2	-3.11	122.09	126.37
2	1	990	PSU	C4-N3-C2	-3.10	122.09	126.37

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	1	2735	PSU	C4-N3-C2	-3.09	122.11	126.37
2	1	2975	PSU	C4-N3-C2	-3.06	122.16	126.37
2	1	2880	PSU	C4-N3-C2	-3.05	122.17	126.37
4	3	50	PSU	C4-N3-C2	-3.04	122.19	126.37
2	1	2351	PSU	C4-N3-C2	-3.03	122.19	126.37
2	1	2416	PSU	C4-N3-C2	-3.02	122.21	126.37
2	1	776	PSU	C4-N3-C2	-3.01	122.22	126.37
2	1	2314	PSU	C4-N3-C2	-3.01	122.22	126.37
2	1	2133	PSU	O4-C4-N3	-3.00	114.47	120.11
2	1	1124	PSU	C4-N3-C2	-3.00	122.24	126.37
2	1	960	PSU	C4-N3-C2	-2.99	122.26	126.37
2	1	2278	5MC	C5-C6-N1	-2.99	120.07	123.31
2	1	2347	OMU	O4-C4-C5	-2.98	120.02	125.16
2	1	986	PSU	O4-C4-N3	-2.98	114.51	120.11
2	1	2266	PSU	C4-N3-C2	-2.98	122.27	126.37
2	1	2417	OMU	O4-C4-C5	-2.97	120.04	125.16
2	1	1110	PSU	C4-N3-C2	-2.97	122.28	126.37
2	1	966	PSU	C4-N3-C2	-2.95	122.31	126.37
2	1	2191	PSU	C4-N3-C2	-2.95	122.31	126.37
2	1	2129	PSU	C4-N3-C2	-2.94	122.32	126.37
2	1	2421	OMU	O4-C4-C5	-2.92	120.13	125.16
2	1	2340	PSU	C4-N3-C2	-2.91	122.36	126.37
2	1	2191	PSU	O4-C4-N3	-2.90	114.66	120.11
2	1	2923	PSU	C4-N3-C2	-2.90	122.38	126.37
2	1	2724	OMU	O4-C4-C5	-2.88	120.20	125.16
2	1	2921	OMU	O4-C4-C5	-2.86	120.23	125.16
2	1	2278	5MC	C5-C4-N3	-2.84	118.84	121.75
2	1	960	PSU	O4-C4-N3	-2.84	114.78	120.11
2	1	2729	OMU	O4-C4-C5	-2.83	120.28	125.16
2	1	986	PSU	C4-N3-C2	-2.82	122.48	126.37
2	1	2340	PSU	O4-C4-N3	-2.78	114.88	120.11
2	1	2349	PSU	C6-C5-C4	2.76	120.04	118.17
2	1	1124	PSU	O4-C4-N3	-2.74	114.96	120.11
2	1	1437	OMC	C1'-N1-C2	2.73	124.46	118.44
2	1	2923	PSU	O4-C4-N3	-2.72	115.00	120.11
2	1	2266	PSU	O4-C4-N3	-2.70	115.03	120.11
2	1	2975	PSU	O4-C4-N3	-2.70	115.05	120.11
2	1	1888	OMU	O4-C4-C5	-2.68	120.55	125.16
2	1	2351	PSU	O4-C4-N3	-2.66	115.11	120.11
2	1	1110	PSU	O4-C4-N3	-2.65	115.14	120.11
3	2	73	PSU	O4-C4-N3	-2.63	115.18	120.11
2	1	966	PSU	O4-C4-N3	-2.62	115.18	120.11

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
2	1	898	OMU	O4-C4-C5	-2.60	120.67	125.16
2	1	2349	PSU	C4-N3-C2	-2.57	122.82	126.37
2	1	990	PSU	O4-C4-N3	-2.54	115.33	120.11
2	1	2826	PSU	O4-C4-N3	-2.53	115.35	120.11
4	3	50	PSU	O4-C4-N3	-2.53	115.36	120.11
2	1	2735	PSU	O4-C4-N3	-2.53	115.36	120.11
2	1	2880	PSU	O4-C4-N3	-2.52	115.37	120.11
2	1	2870	5MC	C5-C4-N3	-2.51	119.18	121.75
2	1	2133	PSU	N1-C2-N3	2.51	117.81	115.17
2	1	776	PSU	O4-C4-N3	-2.50	115.41	120.11
2	1	2129	PSU	O4-C4-N3	-2.49	115.42	120.11
2	1	2314	PSU	O4-C4-N3	-2.49	115.43	120.11
2	1	2793	OMG	O6-C6-C5	2.48	129.24	124.32
2	1	2142	1MA	N1-C6-N6	2.46	125.88	119.71
2	1	2416	PSU	O4-C4-N3	-2.44	115.52	120.11
2	1	2791	OMG	O6-C6-C5	2.43	129.13	124.32
2	1	2815	OMG	O6-C6-C5	2.42	129.12	124.32
2	1	2264	PSU	O4-C4-N3	-2.41	115.58	120.11
2	1	2826	PSU	N1-C2-N3	2.40	117.70	115.17
2	1	1888	OMU	O2-C2-N3	-2.39	117.07	121.49
2	1	2729	OMU	O2-C2-N1	-2.39	119.68	122.80
2	1	2922	OMG	O6-C6-C5	2.39	129.06	124.32
2	1	908	OMG	O6-C6-C5	2.38	129.03	124.32
2	1	1888	OMU	C6-N1-C2	-2.37	118.11	121.00
2	1	2865	PSU	O4-C4-N3	-2.37	115.66	120.11
2	1	2142	1MA	C5-C6-N1	-2.35	110.58	113.95
3	2	73	PSU	N1-C2-N3	2.31	117.61	115.17
2	1	817	A2M	C3'-C2'-C1'	-2.29	98.42	102.81
2	1	2735	PSU	N1-C2-N3	2.28	117.57	115.17
2	1	2975	PSU	N1-C2-N3	2.28	117.57	115.17
4	3	50	PSU	N1-C2-N3	2.27	117.56	115.17
2	1	990	PSU	N1-C2-N3	2.27	117.56	115.17
2	1	1110	PSU	N1-C2-N3	2.26	117.55	115.17
2	1	960	PSU	N1-C2-N3	2.26	117.55	115.17
2	1	867	OMG	O6-C6-C5	2.24	128.76	124.32
2	1	776	PSU	O4'-C1'-C2'	2.24	108.24	105.15
2	1	2191	PSU	N1-C2-N3	2.23	117.52	115.17
2	1	1124	PSU	O4'-C1'-C2'	2.22	108.23	105.15
2	1	2314	PSU	N1-C2-N3	2.22	117.51	115.17
2	1	2880	PSU	N1-C2-N3	2.22	117.51	115.17
2	1	1124	PSU	N1-C2-N3	2.22	117.50	115.17
2	1	2264	PSU	N1-C2-N3	2.21	117.50	115.17

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	1	2351	PSU	N1-C2-N3	2.21	117.50	115.17
2	1	776	PSU	N1-C2-N3	2.21	117.49	115.17
2	1	2416	PSU	O4'-C1'-C2'	2.20	108.20	105.15
2	1	805	OMG	O6-C6-C5	2.20	128.68	124.32
2	1	2923	PSU	N1-C2-N3	2.20	117.49	115.17
2	1	2340	PSU	N1-C2-N3	2.19	117.48	115.17
2	1	898	OMU	O2-C2-N1	-2.19	119.95	122.80
2	1	2865	PSU	N1-C2-N3	2.18	117.47	115.17
2	1	966	PSU	N1-C2-N3	2.17	117.46	115.17
2	1	986	PSU	N1-C2-N3	2.17	117.45	115.17
2	1	2421	OMU	O2-C2-N1	-2.16	119.98	122.80
2	1	1110	PSU	O4'-C1'-C2'	2.15	108.12	105.15
2	1	2266	PSU	N1-C2-N3	2.14	117.42	115.17
2	1	2129	PSU	N1-C2-N3	2.14	117.42	115.17
2	1	2349	PSU	N1-C2-N3	2.13	117.41	115.17
2	1	1450	OMG	O6-C6-C5	2.12	128.52	124.32
2	1	2278	5MC	O2-C2-N3	-2.09	119.03	122.33
2	1	2416	PSU	N1-C2-N3	2.09	117.37	115.17
2	1	1888	OMU	C1'-N1-C6	-2.09	116.32	120.78
2	1	2349	PSU	O4-C4-C5	2.08	129.18	124.01
2	1	2921	OMU	O2-C2-N1	-2.07	120.10	122.80
2	1	2880	PSU	O4'-C1'-C2'	2.06	108.00	105.15
2	1	649	A2M	O4'-C1'-N9	-2.04	106.03	108.75
2	1	649	A2M	N3-C2-N1	2.03	131.43	128.67
2	1	649	A2M	C4-C5-N7	2.02	111.47	109.34
2	1	2724	OMU	O2-C2-N1	-2.02	120.17	122.80
2	1	2349	PSU	O4'-C1'-C2'	2.01	107.94	105.15
2	1	2266	PSU	O4'-C1'-C2'	2.01	107.94	105.15
2	1	2220	A2M	C4-C5-N7	2.00	111.45	109.34

There are no chirality outliers.

All (49) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
2	1	776	PSU	O4'-C4'-C5'-O5'
2	1	960	PSU	O4'-C4'-C5'-O5'
2	1	1437	OMC	C1'-C2'-O2'-CM2
2	1	1450	OMG	O4'-C4'-C5'-O5'
2	1	1888	OMU	O4'-C1'-N1-C2
2	1	1888	OMU	O4'-C1'-N1-C6
2	1	2142	1MA	O4'-C4'-C5'-O5'
2	1	2197	OMC	C3'-C4'-C5'-O5'

EMD-26651,	7UOO
------------	------

Mol	Chain	Res	Type	Atoms
2	1	2197	OMC	O4'-C4'-C5'-O5'
2	1	2220	A2M	C3'-C4'-C5'-O5'
2	1	2340	PSU	O4'-C4'-C5'-O5'
2	1	2417	OMU	C3'-C4'-C5'-O5'
2	1	2417	OMU	O4'-C4'-C5'-O5'
2	1	2724	OMU	C1'-C2'-O2'-CM2
2	1	2791	OMG	O4'-C4'-C5'-O5'
2	1	2865	PSU	O4'-C4'-C5'-O5'
2	1	2923	PSU	O4'-C1'-C5-C4
2	1	2923	PSU	O4'-C1'-C5-C6
2	1	2948	OMC	O4'-C4'-C5'-O5'
4	3	50	PSU	O4'-C4'-C5'-O5'
2	1	649	A2M	O4'-C4'-C5'-O5'
2	1	649	A2M	C3'-C4'-C5'-O5'
2	1	776	PSU	C3'-C4'-C5'-O5'
2	1	960	PSU	C3'-C4'-C5'-O5'
2	1	2421	OMU	C3'-C4'-C5'-O5'
2	1	2421	OMU	O4'-C4'-C5'-O5'
2	1	2729	OMU	O4'-C4'-C5'-O5'
2	1	2948	OMC	C3'-C4'-C5'-O5'
4	3	50	PSU	C3'-C4'-C5'-O5'
2	1	1437	OMC	O4'-C4'-C5'-O5'
2	1	2142	1MA	C3'-C4'-C5'-O5'
2	1	2220	A2M	O4'-C4'-C5'-O5'
2	1	2340	PSU	C3'-C4'-C5'-O5'
2	1	2791	OMG	C3'-C4'-C5'-O5'
2	1	2865	PSU	C3'-C4'-C5'-O5'
2	1	1450	OMG	C3'-C4'-C5'-O5'
2	1	2729	OMU	C3'-C4'-C5'-O5'
2	1	2416	PSU	O4'-C4'-C5'-O5'
2	1	1437	OMC	C3'-C4'-C5'-O5'
2	1	2416	PSU	C3'-C4'-C5'-O5'
2	1	2826	PSU	O4'-C4'-C5'-O5'
2	1	2340	PSU	C4'-C5'-O5'-P
2	1	986	PSU	O4'-C4'-C5'-O5'
2	1	649	A2M	C4'-C5'-O5'-P
2	1	805	OMG	C3'-C2'-O2'-CM2
2	1	817	A2M	C4'-C5'-O5'-P
2	1	$27\overline{91}$	OMG	C4'-C5'-O5'-P
2	1	2416	PSU	C4'-C5'-O5'-P
2	1	1437	OMC	C2'-C1'-N1-C2

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 92 ligands modelled in this entry, 87 are monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turna Chain Dag Lind		Tink	Bo	ths	Bond angles				
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
62	B3P	1	3478	61	18,18,18	1.65	3 (16%)	23,23,23	1.76	6 (26%)
62	B3P	1	3479	-	18,18,18	1.59	3 (16%)	23,23,23	1.83	6 (26%)
64	GDP	b	801	61	25,30,30	0.96	1 (4%)	30,47,47	1.05	2 (6%)
65	GTP	m	501	66,61	29,34,34	1.27	1 (3%)	35,54,54	1.47	5 (14%)
62	B3P	1	3480	-	18,18,18	1.56	2 (11%)	23,23,23	1.90	6 (26%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
62	B3P	1	3478	61	-	13/28/28/28	-
62	B3P	1	3479	-	-	10/28/28/28	-
64	GDP	b	801	61	-	3/12/32/32	0/3/3/3
65	GTP	m	501	66,61	-	4/18/38/38	0/3/3/3
62	B3P	1	3480	-	-	7/28/28/28	-

All (10) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
62	1	3480	B3P	C6-C4	5.43	1.59	1.53
62	1	3478	B3P	C6-C4	5.13	1.59	1.53
62	1	3479	B3P	C6-C4	4.93	1.59	1.53
65	m	501	GTP	C5-C6	-4.39	1.38	1.47
62	1	3479	B3P	C7-C4	2.75	1.56	1.53
62	1	3478	B3P	C7-C4	2.59	1.56	1.53
62	1	3480	B3P	C7-C4	2.35	1.56	1.53
64	b	801	GDP	C6-N1	-2.31	1.34	1.37
62	1	3478	B3P	C9-C8	2.22	1.56	1.53
62	1	3479	B3P	C11-C8	2.20	1.56	1.53

All (25) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
62	1	3480	B3P	O5-C6-C4	5.05	121.96	111.68
62	1	3478	B3P	O5-C6-C4	4.98	121.80	111.68
62	1	3479	B3P	O5-C6-C4	4.97	121.80	111.68
62	1	3480	B3P	C2-N2-C8	-4.00	110.31	116.17
62	1	3479	B3P	C3-N1-C4	-3.86	110.51	116.17
65	m	501	GTP	C8-N7-C5	3.85	109.11	102.55
62	1	3478	B3P	C3-N1-C4	-3.58	110.92	116.17
62	1	3480	B3P	C3-N1-C4	-3.51	111.02	116.17
65	m	501	GTP	C2-N1-C6	-3.10	119.43	125.11
62	1	3479	B3P	C2-N2-C8	-3.10	111.63	116.17
65	m	501	GTP	O2B-PB-O3B	3.00	115.38	107.27
65	m	501	GTP	C5-C6-N1	3.00	119.79	114.07
64	b	801	GDP	C8-N7-C5	2.85	107.40	102.55
62	1	3480	B3P	O6-C7-C4	-2.77	106.04	111.68
62	1	3478	B3P	C2-N2-C8	-2.72	112.19	116.17
62	1	3479	B3P	O6-C7-C4	-2.68	106.23	111.68
62	1	3480	B3P	O3-C11-C8	-2.60	106.40	111.68
62	1	3479	B3P	O4-C5-C4	-2.58	106.44	111.68
62	1	3478	B3P	O6-C7-C4	-2.54	106.52	111.68
62	1	3478	B3P	O4-C5-C4	-2.49	106.62	111.68
62	1	3479	B3P	O3-C11-C8	-2.41	106.78	111.68
65	m	501	GTP	O6-C6-C5	-2.32	119.72	124.32
62	1	3478	B3P	O3-C11-C8	-2.24	107.12	111.68
62	1	3480	B3P	O4-C5-C4	-2.10	107.42	111.68
64	b	801	GDP	C5-C6-N1	2.07	118.02	114.07

There are no chirality outliers.

All (37) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
62	1	3478	B3P	N1-C4-C6-O5
62	1	3478	B3P	C5-C4-C6-O5
62	1	3478	B3P	C7-C4-C6-O5
62	1	3478	B3P	N2-C8-C9-O1
62	1	3478	B3P	C10-C8-C9-O1
62	1	3478	B3P	C11-C8-C9-O1
62	1	3478	B3P	O3-C11-C8-N2
62	1	3478	B3P	O3-C11-C8-C9
62	1	3478	B3P	O3-C11-C8-C10
62	1	3479	B3P	N1-C4-C5-O4
62	1	3479	B3P	C6-C4-C5-O4
62	1	3479	B3P	C7-C4-C5-O4
62	1	3479	B3P	C10-C8-N2-C2
62	1	3479	B3P	C11-C8-N2-C2
62	1	3479	B3P	O3-C11-C8-N2
62	1	3479	B3P	O3-C11-C8-C9
62	1	3479	B3P	O3-C11-C8-C10
62	1	3480	B3P	N1-C4-C5-O4
62	1	3480	B3P	C6-C4-C5-O4
62	1	3480	B3P	C7-C4-C5-O4
62	1	3480	B3P	N1-C4-C6-O5
62	1	3480	B3P	C5-C4-C6-O5
62	1	3480	B3P	C7-C4-C6-O5
64	b	801	GDP	C5'-O5'-PA-O3A
64	b	801	GDP	C5'-O5'-PA-O1A
65	m	501	GTP	C5'-O5'-PA-O3A
65	m	501	GTP	C5'-O5'-PA-O2A
62	1	3479	B3P	C1-C2-N2-C8
65	m	501	GTP	O4'-C4'-C5'-O5'
65	m	501	GTP	C3'-C4'-C5'-O5'
62	1	3480	B3P	C3-C1-C2-N2
62	1	3478	B3P	C5-C4-C7-O6
62	1	3479	B3P	C10-C8-C9-O1
64	b	801	GDP	C5'-O5'-PA-O2A
62	1	3478	B3P	C6-C4-C7-O6
62	1	3478	B3P	C11-C8-N2-C2
62	1	3478	B3P	N1-C4-C7-O6

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will

also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and similar rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-26651. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 227

Z Index: 220

6.3.2 Raw map

X Index: 205

Y Index: 179

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.025. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{26651}_{msk_{1.map}}$ 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 526 nm^3 ; this corresponds to an approximate mass of 475 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.427 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.427 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.34	-	-
Author-provided FSC curve	2.32	2.66	2.36
Unmasked-calculated*	2.69	3.03	2.74

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.69 differs from the reported value 2.34 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-26651 and PDB model 7UOO. Per-residue inclusion information can be found in section 3 on page 18.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.025 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.025).

9.4 Atom inclusion (i)

At the recommended contour level, 68% of all backbone atoms, 69% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.025) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} ext{-score}$
All	0.6940	0.6330
1	0.7900	0.6380
2	0.9300	0.6910
3	0.2640	0.4310
4	0.5360	0.6280
5	0.0390	0.4230
6	0.3410	0.5170
8	0.1130	0.5020
9	0.6050	0.6370
А	0.8460	0.7120
В	0.8950	0.7100
С	0.8460	0.6980
D	0.3470	0.5510
Ε	0.7300	0.6580
F	0.8460	0.6890
G	0.7610	0.6670
Н	0.7480	0.6600
Ι	0.4000	0.6440
J	0.0540	0.3820
К	0.1060	0.4760
L	0.6970	0.6430
М	0.7910	0.6690
Ν	0.8800	0.7130
О	0.8860	0.7040
Р	0.8640	0.7040
Q	0.7540	0.6560
R	0.8520	0.6870
S	0.7240	0.6510
Т	0.4450	0.5680
U	0.7190	0.6480
V	0.8440	0.6900
W	0.4550	0.5870
Х	0.8470	0.7010
Y	0.8440	0.6960
Z	0.7800	0.6700

1.0

0.0 <0.0

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
a	0.6820	0.6550
b	0.6550	0.6360
с	0.7290	0.6570
d	0.8020	0.6850
е	0.8580	0.7060
f	0.9310	0.7130
g	0.8430	0.6910
h	0.8410	0.6920
i	0.5910	0.6200
j	0.9530	0.7360
k	0.6110	0.6310
1	0.9520	0.7390
m	0.7050	0.6560
n	0.5190	0.6220
О	0.3740	0.5250
р	0.8180	0.6980
q	0.3490	0.5870
r	0.8180	0.6830
s	0.4260	0.5750
t	0.3330	0.5580
u	0.7770	0.6670
V	0.3830	0.5870
W	0.4280	0.5770
х	0.4900	0.5840
У	0.7560	0.6610
Z	0.6850	0.6360

