

Jun 1, 2024 – 01:43 PM EDT

PDB ID	:	7UG6
EMDB ID	:	EMD-26485
Title	:	Cryo-EM structure of pre-60S ribosomal subunit, unmethylated G2922
Authors	:	Yelland, J.N.; Bravo, J.P.K.; Black, J.J.B.; Taylor, D.W.; Johnson, A.W.
Deposited on	:	2022-03-24
Resolution	:	2.90 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	1	3396	68% 20%	• 10%
2	2	158	7%	22% •
3	3	121	83%	17% ·
4	7	105	92%	8%
5	А	254	84%	16%
6	В	387	9%	•
7	С	362	15%	
8	D	297	87%	13%

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
9	Е	176	88%	• 11%
10	F	244	91%	9%
11	G	256	35%	• 9%
12	Н	191	10%	
13	Ι	166	49% 67%	33%
14	J	174	47% 96%	••
15	L	199	93%	• 6%
16	М	138	99%	
17	Ν	204	100%	
18	Ο	199	99%	
19	Р	184	99%	••
20	Q	186	72%	28%
21	R	189	82%	• 17%
22	S	172	28% 99%	
23	Т	160	62% 74%	• 26%
24	U	121	88%	12%
25	V	137	99%	
26	W	236	99%	
27	Х	142	99%	
28	Y	127	99%	
29	Ζ	136	99%	
30	a	149	62%	38%
31	b	647	79%	• 21%
32	с	175	4170 53%	47%
33	d	113	94%	• 5%

Mol	Chain	Length	Quality of chain	
34	е	130	18%	
		100	7%	
35	f	107	99%	•
36	g	121	93%	7%
37	h	120	98%	••
		100	54%	
38	i	100	98%	••
39	j	88	99%	
40	k	78	27%	
			10%	
41	1	51	98%	٠
42	m	519	90%	10%
/3	n	02	12%	
- 40	Р	52		••
44	q	165	76%	• 24%
45	r	261	88%	12%
			9%	
46	S	520	13% 87%	
47	u	199	75%	25%
48	v	344	83%	. 17%
			43%	2770
49	W	203	88%	12%
50	х	514	25% 95%	5%
51	V	245	9%	7%
	<u> </u>	- 10	44%	/ /0
52	Z	106	73%	27%

2 Entry composition (i)

There are 54 unique types of molecules in this entry. The entry contains 140950 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 25S rRNA.

Mol	Chain	Residues			AltConf	Trace			
1	1	3058	Total 65424	C 29223	N 11807	0 21337	Р 3057	0	0

• Molecule 2 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues		Α	AltConf	Trace			
2	2	158	Total 3350	C 1500	N 586	O 1107	Р 157	0	0

• Molecule 3 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		At	AltConf	Trace			
3	3	121	Total 2576	C 1152	N 461	0 843	Р 120	0	0

• Molecule 4 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	7	97	Total 743	C 479	N 124	0 139	S 1	0	0

• Molecule 5 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	А	213	Total 1634	C 1023	N 326	0 284	S 1	0	0

• Molecule 6 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	В	386	Total 3082	C 1956	N 584	0 534	S 8	0	0

• Molecule 7 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
7	С	361	Total 2750	C 1730	N 522	0 495	${ m S} { m 3}$	0	0

• Molecule 8 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
8	D	257	Total 2073	C 1313	N 362	O 396	${ m S} { m 2}$	0	0

• Molecule 9 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	Е	156	Total 1240	C 800	N 222	0 217	S 1	0	0

• Molecule 10 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues		At	AltConf	Trace			
10	F	222	Total 1785	C 1151	N 324	O 309	S 1	0	0

• Molecule 11 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
11	G	233	Total 1818	C 1159	N 326	O 330	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	Н	191	Total 1519	C 963	N 274	0 278	${S \atop 4}$	0	0

• Molecule 13 is a protein called Bud site selection protein 20.

Mol	Chain	Residues	Atoms					AltConf	Trace
13	Ι	111	Total 905	C 567	N 170	0 164	${S \over 4}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	112	LEU	VAL	conflict	UNP Q08004

• Molecule 14 is a protein called 60S ribosomal protein L11-A.

Mol	Chain	Residues		At	AltConf	Trace			
14	J	169	Total 1354	C 847	N 253	O 250	${S \atop 4}$	0	0

• Molecule 15 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
15	L	187	Total 1499	C 934	N 307	O 258	0	0

• Molecule 16 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	М	137	Total 1060	C 678	N 200	0 180	${S \over 2}$	0	0

• Molecule 17 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues		At	AltConf	Trace			
17	Ν	203	Total 1721	C 1077	N 361	0 282	S 1	0	0

• Molecule 18 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues		At	AltConf	Trace			
18	0	197	Total 1556	C 1003	N 289	O 263	S 1	0	0

• Molecule 19 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
19	Р	183	Total 1443	C 896	N 287	O 260	0	0

• Molecule 20 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	Q	134	Total 1035	$\begin{array}{c} \mathrm{C} \\ 659 \end{array}$	N 196	O 179	S 1	0	0

• Molecule 21 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
21	R	156	Total 1258	C 781	N 265	O 212	0	0

• Molecule 22 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	S	171	Total 1438	C 925	N 266	0 244	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	Т	119	Total 943	C 595	N 180	0 165	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
24	U	106	Total 844	C 545	N 138	0 161	0	0

• Molecule 25 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	V	136	Total 1004	C 628	N 189	O 180	${ m S} 7$	0	0

• Molecule 26 is a protein called Ribosome assembly factor MRT4.

Mol	Chain	Residues		At	AltConf	Trace			
26	W	234	Total 1885	C 1194	N 323	O 362	S 6	0	0

• Molecule 27 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	Х	141	Total 1101	C 705	N 196	0 198	${ m S} { m 2}$	0	0

• Molecule 28 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
28	Y	126	Total 994	C 625	N 192	O 177	0	0

• Molecule 29 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
29	Ζ	135	Total 1093	C 710	N 202	0 181	0	0

• Molecule 30 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
30	a	93	Total 736	C 479	N 130	0 126	S 1	0	0

• Molecule 31 is a protein called Nucleolar GTP-binding protein 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
31	b	514	Total 4169	C 2630	N 745	О 773	S 21	0	0

• Molecule 32 is a protein called Ribosome biogenesis protein ALB1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
32	с	92	Total 743	C 460	N 152	0 131	0	0

• Molecule 33 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	d	107	Total 873	C 553	N 165	0 154	S 1	0	0

• Molecule 34 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	е	127	Total 1020	C 647	N 205	O 167	S 1	0	0

• Molecule 35 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	f	106	Total 851	C 540	N 165	0 145	S 1	0	0

• Molecule 36 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	g	112	Total 881	C 546	N 179	0 152	$\frac{S}{4}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	h	119	Total 970	C 615	N 186	0 168	S 1	0	0

• Molecule 38 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues		At	AltConf	Trace			
38	i	99	Total 772	C 481	N 156	0 133	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 39 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	j	87	Total 682	C 414	N 148	0 115	${f S}{5}$	0	0

• Molecule 40 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
40	k	77	Total 613	C 391	N 115	O 107	0	0

• Molecule 41 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
41	1	50	Total 437	C 272	N 97	O 66	${ m S} { m 2}$	0	0

• Molecule 42 is a protein called Nucleolar GTP-binding protein 2.

Mol	Chain	Residues		Ate	AltConf	Trace			
42	m	469	Total 3774	C 2381	N 685	O 699	S 9	0	0

There are 33 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
m	487	GLY	-	expression tag	UNP P53742
m	488	SER	-	expression tag	UNP P53742
m	489	ASP	-	expression tag	UNP P53742
m	490	TYR	-	expression tag	UNP P53742
m	491	LYS	-	expression tag	UNP P53742
m	492	ASP	-	expression tag	UNP P53742
m	493	ASP	-	expression tag	UNP P53742
m	494	ASP	-	expression tag	UNP P53742
m	495	ASP	-	expression tag	UNP P53742
m	496	LYS	-	expression tag	UNP P53742
m	497	ASP	-	expression tag	UNP P53742
m	498	TYR	-	expression tag	UNP P53742
m	499	LYS	-	expression tag	UNP P53742
m	500	ASP	-	expression tag	UNP P53742
m	501	ASP	-	expression tag	UNP P53742
m	502	ASP	-	expression tag	UNP P53742
m	503	ASP	-	expression tag	UNP P53742
m	504	LYS	_	expression tag	UNP P53742
m	505	ASP	-	expression tag	UNP P53742
m	506	TYR	-	expression tag	UNP P53742
m	507	LYS	-	expression tag	UNP P53742
m	508	ASP	-	expression tag	UNP P53742
m	509	ASP	-	expression tag	UNP P53742
m	510	ASP	-	expression tag	UNP P53742
m	511	ASP	-	expression tag	UNP P53742
m	512	LYS	-	expression tag	UNP P53742
m	513	GLY	-	expression tag	UNP P53742
m	514	HIS	-	expression tag	UNP P53742
m	515	HIS	-	expression tag	UNP P53742
m	516	HIS	-	expression tag	UNP P53742
m	517	HIS	-	expression tag	UNP P53742

Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
m	518	HIS	-	expression tag	UNP P53742
m	519	HIS	-	expression tag	UNP P53742

• Molecule 43 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	р	91	Total 695	C 429	N 138	0 122	S 6	0	0

• Molecule 44 is a protein called 60S ribosomal protein L12-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	q	126	Total 961	C 606	N 171	0 182	${S \over 2}$	0	0

• Molecule 45 is a protein called Ribosome biogenesis protein NSA2.

Mol	Chain	Residues		Ate	AltConf	Trace			
45	r	230	Total 1861	С 1177	N 352	O 325	S 7	0	0

• Molecule 46 is a protein called Nuclear GTP-binding protein NUG1.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
46	S	69	Total 573	C 359	N 113	O 98	${ m S} { m 3}$	0	0

• Molecule 47 is a protein called Ribosome biogenesis protein RLP24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
47	u	150	Total 1265	C 793	N 253	0 210	S 9	0	0

• Molecule 48 is a protein called Ribosome biogenesis protein RPF2.

Mol	Chain	Residues		At	AltConf	Trace			
48	V	287	Total 2318	C 1482	N 408	0 412	S 16	0	0

• Molecule 49 is a protein called Regulator of ribosome biosynthesis.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	W	179	Total 1425	C 896	N 258	O 266	${ m S}{ m 5}$	0	0

• Molecule 50 is a protein called Ribosome assembly protein 4.

Mol	Chain	Residues		At	AltConf	Trace			
50	x	488	Total 3808	C 2398	N 677	0 712	S 21	0	0

• Molecule 51 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues		Ate	AltConf	Trace			
51	У	228	Total 1723	C 1068	N 299	0 349	${f S}{7}$	0	0

• Molecule 52 is a protein called UPF0642 protein YBL028C.

Mol	Chain	Residues	Atoms					AltConf	Trace
52	Z	77	Total 644	C 403	N 130	0 110	S 1	0	0

• Molecule 53 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $C_{10}H_{15}N_5O_{11}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				AltConf	
53	m	1	Total 28	C 10	N 5	0 11	Р 2	0

• Molecule 54 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
54	m	1	Total Mg 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 \bullet Molecule 1: 25S rRNA

• Molecule 5: 60S ribosomal protein L2-A

Chain a:	20%	6	38%		
MET PRO SER ARG PHE THR THR THR ARG ARG LYS	HIS ARG CLY HIS HIS VAL SER ALA CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	L VEL L VEL H HES ARG PRO OLY GLY MET ARG GLY OLY OLY OLY OLY OLY OLY OLY OLY OLY O	CLY CLY CLM CLM CLM CLM CLM CLM CLM CLM CLM CLM	CLY TYR PHIE CLY VAL CST CST CST CST CST	
F61 H62 K63 Q64 Q65 A66 H67 F68	D76 E84 B85 K86 K86 R87 D88 D88 D88	K92 893 895 895 895 895 895 895 895 8117	E135 R139 E146		
• Molecule 31	: Nucleolar GTP	-binding protein 1			
Chain b:	30%	79%	• 2	1%	
M1 Q2 L3 D7 D1 D1	D63 K66 D73 E87 R100	L143 F144 D145 F168 T168 L170 N177 V178 V179	K180 K181 K185 K189 K189 V192 V192 V192 V194 V194	A198 F199 T200 T201 K202 B226 E230 B226 B265 C256 C256	
Q259 C260 E265 A266 K269 K269	N275 A279 A279 N280 N281 N288 N281 T290	1231 1292 1293 R294 P295 E296 E296 D297 E299 D297 E300 E300 E300	R302 A303 Q304 L305 E307 S308 V309 K310 V309 V312 V312	P313 0314 V315 E316 S320 S320 C322 C322 C322 C322 E326 E326 E326 N327 V328	M329 E330 S342 R343 I344
E345 N346 K347 L348 K349 S350 Q351 S350	R355 TLE ASN VASN VASN LEU LEU LEU LYS TLE H362 V363	A364 Q365 P366 Q367 A368 A369 B371 D370 B371 K373	E380 N384 N384 K386 K387 Y388 Y388 P390 E391 E391	P393 M394 R395 R396 R396 R397 F403 F403 F403 F403 F403 F403 F403 F403	L416 K417 D418 K419
E423 E426 W427 K428 N429	E434 0443 F444 E448 E448 K452 L453 L453 Q454	A455 L4456 E457 E457 E459 E459 E461 E461 E461 L463 E464	A405 E466 F467 F468 F468 F468 SER A5P CUU CUU CUU CUU CUU	TYR ASP GLV GLV GLU GLU ALA ASP ASP ASP ASP CLV GLU GLU ALA ALA ATA	
ILE ARG ASN ARG GLN CYS LYS THR MET ILE ALA	GLU ARG ASN ASN ASN LYS SER LYS SER LYS ASN LYS ASN	MET PRO PRO SER LIYS LIYS LIYS SER PHE QLY MET MET	GLU GLU GLU HET MET MET THR LEU GLY HIS MET SER ALA	GLN ASP LYS GLN ASN ARG ALA ALA ALA ALA LYS	
ASN ARG TYR VAL GLU GLU ARG CLY SER ASP VAL	VAL PHE GLY GLY ASP GLN ASP ASP ASP ATA ATA SER SER STR SER	ASN ASN CLY VAL VAL VAL EV ANC ANC ANC ANC ANC ANC ANC ANC ANC ANC	GLY VAL ALA ALA ASP GS96 SS97 NIS98 RG92 S600 K601 A002 A002 A002	R604 M605 A606 A606 R607 R607 R608 R610 B611 B611 B611 B612 R613 R615 R615	
H616 A617 K618 Q619 G620 E621 E621 E622 D623	R624 H625 N625 A627 A627 L630 S631 K632 H633 L634 H633 L634	S636 6637 K638 K638 6640 C641 6642 K643 K643 T644 D645	F646		
• Molecule 32	2: Ribosome bioge	enesis protein ALE	31		
Chain c:	41% 53%		47%		
MET PRO NS SS SS R9 R9	P10 K11 L12 T13 S14 N15 H17 H17 K19	V20 822 123 123 123 123 123 123 123 123 123 1	E31 R32 A33 C34 C35 C34 C33 C33 F36 R37 P38 R40 S41 S41	V43 N44 S45 S45 S47 S47 G48 E49 E49 E49 E50 A54 A54	Y58 F59 Q60 N61
K62 K63 N64 GLU SER GLN SER SER THR	ALA VAL THR LLBU GLN GLN ALS SER SER SER SER PRO	S83 184 185 890 890 890 890 890 896 896	197 E38 E38 N100 L101 L101 L102 1105 R107 R107 R107	LILLO VIII VIII VIII VIII SER LVS LVS LLSU GLU ASP ASP ILEU LEU LEU	
ASP GLY GLY LYS LYS LYS VAL LYS GLU ASN GLU	LYS LYS SER SER SER LEU LEU LEU ALA CLU CVS GLU	SER VAL ASP ASP ASP ASP ASP ASP GSC GCIN CLEU LEU LEU	GLU ASN GLY GLY GLY THR THR THR CLY GLY PRO PRO		
		PROTEIN	D W I D E D EB DATA BANK		

• Molecule 33: 60S ribosomal protein L31-A

Chain d:	94%	• 5%	
MET ALLA LIFS LIFS DA DA DA BA BB BB BB BB BB BB BB BB BB BB SA SA SA SA SA SA SA SA SA SA SA SA SA	197 498 8100 111 111 ALA		
• Molecule 34: 60S ribosom	al protein L32		
Chain e:	98%		
MET A2 A2 B5 P5 P7 F7 K15 K15 C2 B3 B3 B3 B3 B30 B30 B30 B30 B30 B30 B30	D39 S40 S51 S51 S69 K80 M110 K113 K113 K113 K123	L128 GLU ALA	
• Molecule 35: 60S ribosom	al protein L33-A		
Chain f:	99%		
MET 42 121 821 821 848 848 848 858 858 858 866 858 8106			
• Molecule 36: 60S ribosom	al protein L34-A		
Chain g:	93%	7%	
MET A2 K103 V104 V105 F105 F105 F100 F110 A111 A111 A111 A112 F110 F110 F110 F110 F110 F110 F110 F	LYS ALA LYS LYS		
• Molecule 37: 60S ribosom	al protein L35-A		
Chain h:	98%		
MET A2 E15 E33 833 833 833 840 848 848 848 848 848 848 848 848 848	R105 K105 K107 A120		
• Molecule 38: 60S ribosom	nal protein L36-A		
Chain i:	98%		
MET T2 V3 K4 M12 K13 K13 K15 K15 K15 K23 A23 A23 A23 P24	L26 126 227 227 228 229 428 432 433 433 433 433 433 433 634 834 834 834 834 834 834 835 835 835 835 835 835 835 835 835 835	I C I R C 2 N C 3 S 4 S 64 C 5 S 64 C 65 K 67 R C 6 R C 6 R C 6 K 7 K 7 K 7 K 7 K 7 S	K84 E88 E88 M90 N91 N92 N92
194 A95 A96 B97 B99 H100 H100			

• Molecule 39: 60S ribosomal protein L37-A

Chain j:	99%	-
MET G2 S84 K85 A85 A85 A88		
• Molecule 40: 605	S ribosomal protein L38	
Chain k:	99%	.
MET A2 18 K9 Q10 F31 F31 F31 F31 F34 F34 F37 F37 F37 F37 F37 F37 F37 F37 F37 F37	Kasa Kasa Kasa Kasa Kasa Kasa Kasa Kasa	
• Molecule 41: 605	S ribosomal protein L39	
Chain l:	98%	
MET A2 R30 T31 N32 R36 R36 R36 R46		
• Molecule 42: Nu	cleolar GTP-binding protein 2	
Chain m:	33% 90%	10%
MET G2 G4 K5 K6 K6 K6 K6 K8 K8 K8 K8 K8 K8 K8 K8 K8 K8 K8 K8 K8	R11 112 R13 E14 C15 C15 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	K46 E47 I48 K51 K51 K51 K53 K53 K53 A58 A58 A58 A58 A58 A58 A58 A58 A58 A58
T65 166 767 863 870 870 972 773 773 773	G97 G97 E98 T199 K101 K101 K112 K112 K112 K123 M123 M123 K123 M123 K130 K130 K130 K130 K139 K139 K130 K139	A154
K174 q175 v176 L177 A179 A179 T180 L181 C182 C182 MET	C185 C185 C185 C185 C189 C199 C199 C199 C199 C199 C199 C199	244 K247 K248 E249 B312 K314 K337 K338 K338 K338 K338 K338 K338 K339 R342 R342 R342 R347
C348 C348 C349 C349 C349 C349 C349 C349 C340 C340 C340 C340 C340 C340 C340 C340	D3377 5378 5378 5380 5381 1382 1382 1382 1382 1394 1395 1395 1395 1395 1395 1395 1420 1420 1433 1433 1433 1433 1433 1433 1435 1435	EA46 10452 10452 10471 10472 10472 10472 1047 1047200000000000000000000000000000000000
LYS THR ALA ALA GLY SER ASP ASP ASP ASP ASP LYS	ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
• Molecule 43: 605	S ribosomal protein L43-A	
Chain p:	98%	
MET A2 C42 A75 R84 R86 R84 R86 L86	R87 888 890 891 891 892	

• Molecule 44: 60S ribosomal protein L12-A

SER CALLA OF CALLARY AND CALLY AND CALY AND CALLY AND CALLY AND CALLY AND CALLY AN

• Molecule 47: Ribosome biogenesis protein RLP24

E138

ALA PHE

• Molecule 48: Ribosome biogenesis protein RPF2

• Molecule 49: Regulator of ribosome biosynthesis

• Molecule 50: Ribosome assembly protein 4

5%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	15954	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	70	Depositor
Minimum defocus (nm)	-1500	Depositor
Maximum defocus (nm)	-2500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 ($6k \ge 4k$)	Depositor
Maximum map value	0.756	Depositor
Minimum map value	-0.093	Depositor
Average map value	0.016	Depositor
Map value standard deviation	0.032	Depositor
Recommended contour level	0.18	Depositor
Map size (Å)	414.72, 414.72, 414.72	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.81, 0.81, 0.81	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, GDP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	1.03	2/73231~(0.0%)	0.98	190/114163~(0.2%)
2	2	1.16	0/3743	0.91	5/5828~(0.1%)
3	3	0.91	0/2880	0.96	6/4487~(0.1%)
4	7	0.55	0/751	0.51	0/1008
5	А	0.59	0/1666	0.57	0/2241
6	В	0.59	2/3153~(0.1%)	0.58	1/4239~(0.0%)
7	С	0.50	0/2802	0.51	0/3792
8	D	0.50	0/2119	0.57	0/2859
9	Е	0.47	0/1261	0.56	0/1694
10	F	0.54	0/1822	0.52	0/2451
11	G	0.44	0/1850	0.55	0/2495
12	Н	0.56	0/1540	0.58	0/2073
13	Ι	0.38	0/919	0.48	0/1232
14	J	0.42	0/1375	0.59	0/1842
15	L	0.48	0/1524	0.53	0/2046
16	М	0.49	0/1075	0.50	0/1446
17	Ν	0.53	0/1758	0.53	0/2354
18	0	0.57	0/1586	0.54	0/2128
19	Р	0.52	0/1466	0.53	1/1968~(0.1%)
20	Q	0.46	0/1050	0.52	0/1419
21	R	0.54	0/1275	0.49	0/1702
22	S	0.53	0/1474	0.57	0/1980
23	Т	0.37	0/957	0.58	0/1285
24	U	0.47	0/861	0.60	0/1167
25	V	0.55	0/1019	0.59	1/1369~(0.1%)
26	W	0.43	0/1918	0.54	0/2586
27	Х	0.55	0/1117	0.55	0/1503
28	Y	0.50	0/1005	0.57	0/1341
29	Ζ	0.58	0/1119	0.52	0/1497
30	a	0.42	0/752	0.58	0/1013
31	b	0.48	0/4243	0.55	2/5704~(0.0%)
32	с	0.34	0/749	0.46	0/994

Mol Chain		Bo	ond lengths	I	Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	d	0.53	0/887	0.51	0/1191
34	е	0.49	0/1041	0.51	0/1394
35	f	0.60	0/869	0.55	0/1168
36	g	0.57	0/891	0.58	0/1191
37	h	0.52	0/979	0.53	0/1301
38	i	0.35	0/779	0.52	0/1034
39	j	0.61	0/697	0.54	0/923
40	k	0.49	0/619	0.60	0/826
41	1	0.58	0/444	0.62	0/588
42	m	0.47	0/3848	0.53	0/5181
43	р	0.63	1/702~(0.1%)	0.54	0/934
44	q	0.39	0/969	0.60	0/1301
45	r	0.53	0/1893	0.53	0/2528
46	s	0.35	0/577	0.49	0/752
47	u	0.50	0/1287	0.49	0/1711
48	V	0.50	0/2361	0.64	1/3153~(0.0%)
49	W	0.41	0/1448	0.57	0/1948
50	Х	0.50	0/3898	0.60	0/5282
51	У	0.50	0/1744	0.58	0/2373
52	Z	0.36	0/651	0.51	0/854
All	All	0.82	5/150644~(0.0%)	0.82	207/219539~(0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
15	L	0	1
31	b	0	1
37	h	0	1
44	q	0	1
48	V	0	2
All	All	0	6

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
6	В	114	VAL	CB-CG1	-6.30	1.39	1.52
6	В	16	PHE	C-N	-5.94	1.20	1.34
1	1	2898	G	C5-C6	-5.66	1.36	1.42
1	1	2898	G	N9-C4	-5.46	1.33	1.38

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
43	р	42	CYS	CB-SG	-5.04	1.73	1.81

All (207) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	1279	С	C5-C6-N1	11.43	126.72	121.00
3	3	98	С	N1-C2-O2	10.70	125.32	118.90
1	1	1279	С	C6-N1-C2	-10.50	116.10	120.30
1	1	2376	G	O4'-C1'-N9	10.30	116.44	108.20
3	3	98	С	C2-N1-C1'	10.28	130.11	118.80
1	1	3217	С	N1-C2-O2	10.22	125.03	118.90
1	1	3217	С	C2-N1-C1'	8.89	128.58	118.80
1	1	2979	U	C2-N1-C1'	8.84	128.30	117.70
3	3	98	С	N3-C2-O2	-8.69	115.82	121.90
1	1	3217	С	N3-C2-O2	-8.69	115.82	121.90
1	1	2898	G	C4-C5-N7	8.66	114.26	110.80
1	1	3153	U	C2-N1-C1'	8.48	127.88	117.70
3	3	98	С	C6-N1-C2	-8.48	116.91	120.30
1	1	1567	U	C2-N1-C1'	8.47	127.86	117.70
1	1	3027	А	N1-C2-N3	8.37	133.48	129.30
1	1	2898	G	C5-C6-O6	-8.33	123.60	128.60
1	1	3153	U	N1-C2-O2	8.31	128.62	122.80
1	1	2979	U	N1-C2-O2	8.17	128.52	122.80
1	1	2257	С	N1-C2-O2	8.11	123.77	118.90
1	1	2759	U	C2-N1-C1'	8.09	127.40	117.70
1	1	1567	U	N1-C2-O2	8.04	128.43	122.80
1	1	2943	G	OP1-P-OP2	-7.86	107.81	119.60
1	1	1227	С	C2-N1-C1'	7.85	127.43	118.80
1	1	2652	U	C2-N1-C1'	7.78	127.03	117.70
1	1	2970	С	C5-C6-N1	7.77	124.88	121.00
1	1	977	С	N1-C2-O2	7.75	123.55	118.90
1	1	2257	С	C2-N1-C1'	7.66	127.23	118.80
1	1	1496	С	C2-N1-C1'	7.57	127.12	118.80
1	1	1567	U	N3-C2-O2	-7.51	116.94	122.20
1	1	2652	U	N1-C2-O2	7.48	128.03	122.80
1	1	2898	G	N1-C6-O6	7.47	124.38	119.90
1	1	2376	G	N9-C1'-C2'	7.46	123.70	114.00
3	3	98	C	C5-C6-N1	7.43	124.72	121.00
1	1	2898	G	C2-N3-C4	-7.32	108.24	111.90
1	1	1187	C	C2-N1-C1	7.26	126.79	118.80
1	1	2248	C	N1-C2-O2	7.21	123.23	118.90
1	1	2724	U	N1-C2-O2	7.19	127.83	122.80

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	2094	С	N3-C2-O2	-7.18	116.87	121.90
1	1	3027	А	C2-N3-C4	-7.18	107.01	110.60
1	1	1227	С	C5-C6-N1	7.16	124.58	121.00
1	1	2652	U	N3-C2-O2	-7.15	117.20	122.20
1	1	2376	G	OP1-P-OP2	-7.12	108.93	119.60
1	1	3023	U	N3-C2-O2	-7.10	117.23	122.20
1	1	2979	U	N3-C2-O2	-7.07	117.25	122.20
1	1	977	С	N3-C2-O2	-7.00	117.00	121.90
1	1	2501	U	OP1-P-OP2	-6.95	109.18	119.60
1	1	3306	U	N3-C2-O2	-6.95	117.34	122.20
1	1	494	G	OP1-P-OP2	-6.94	109.19	119.60
1	1	3058	U	C2-N1-C1'	6.93	126.01	117.70
1	1	922	U	C2-N1-C1'	6.88	125.95	117.70
1	1	2724	U	N3-C2-O2	-6.87	117.39	122.20
1	1	3131	U	C2-N1-C1'	6.87	125.94	117.70
1	1	2861	U	C2-N1-C1'	6.87	125.94	117.70
1	1	2877	G	O4'-C1'-N9	6.84	113.68	108.20
1	1	2257	C	N3-C2-O2	-6.81	117.13	121.90
6	В	140	ASP	CB-CG-OD1	6.76	124.39	118.30
1	1	2898	G	C5-N7-C8	-6.75	100.93	104.30
1	1	2093	A	OP1-P-OP2	-6.74	109.49	119.60
1	1	2760	C	C2-N1-C1'	6.73	126.21	118.80
1	1	3019	U	N3-C2-O2	-6.73	117.49	122.20
1	1	292	U	C2-N1-C1'	6.69	125.73	117.70
1	1	1187	С	N3-C2-O2	-6.65	117.25	121.90
1	1	2313	A	OP1-P-OP2	-6.59	109.71	119.60
1	1	977	С	C2-N1-C1'	6.56	126.02	118.80
1	1	2112	U	N3-C2-O2	-6.55	117.61	122.20
1	1	1255	С	C2-N1-C1'	6.55	126.00	118.80
1	1	1082	U	OP1-P-OP2	-6.53	109.80	119.60
3	3	98	С	C6-N1-C1'	-6.53	112.96	120.80
1	1	2970	С	C6-N1-C2	-6.53	117.69	120.30
1	1	3217	С	C6-N1-C1'	-6.46	113.05	120.80
1	1	1047	A	OP1-P-OP2	-6.43	109.96	119.60
1	1	2825	С	C2-N1-C1'	6.38	125.81	118.80
1	1	406	G	O4'-C1'-N9	6.37	113.30	108.20
1	1	3023	U	C2-N1-C1'	6.28	125.24	117.70
2	2	82	U	N1-C2-O2	6.26	127.18	122.80
1	1	1604	G	$C4-N9-\overline{C1'}$	$6.2\overline{5}$	134.63	126.50
1	1	2235	C	N1-C2-O2	6.22	122.63	118.90
1	1	2869	U	N1-C2-O2	6.20	127.14	122.80
1	1	2541	U	P-O3'-C3'	6.17	127.11	119.70

α \cdot 1	C		
Continued	trom	previous	page
	J	1	r J

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
1	1	835	G	O4'-C1'-N9	6.17	113.13	108.20
1	1	2550	U	N1-C2-O2	6.16	127.11	122.80
1	1	2898	G	C6-C5-N7	-6.15	126.71	130.40
1	1	3153	U	C6-N1-C1'	-6.12	112.63	121.20
1	1	2676	А	O4'-C1'-N9	6.12	113.09	108.20
1	1	3058	U	N1-C2-O2	6.10	127.07	122.80
2	2	82	U	N3-C2-O2	-6.08	117.94	122.20
1	1	1561	G	O4'-C1'-N9	6.07	113.06	108.20
1	1	1117	G	O4'-C1'-N9	6.03	113.03	108.20
1	1	961	С	C2-N1-C1'	6.03	125.43	118.80
1	1	1283	С	N3-C2-O2	-6.02	117.68	121.90
1	1	1299	U	C2-N1-C1'	6.00	124.89	117.70
1	1	1187	С	N1-C2-O2	5.91	122.44	118.90
1	1	292	U	N3-C2-O2	-5.90	118.07	122.20
1	1	3181	С	N1-C2-O2	5.89	122.43	118.90
1	1	1400	G	N3-C4-N9	-5.88	122.47	126.00
1	1	2979	U	C6-N1-C1'	-5.86	112.99	121.20
1	1	2825	С	C2-N3-C4	5.84	122.82	119.90
1	1	2759	U	N1-C2-O2	5.83	126.88	122.80
1	1	2112	U	C2-N1-C1'	5.80	124.66	117.70
1	1	1103	А	P-O3'-C3'	5.79	126.65	119.70
48	V	104	ARG	NE-CZ-NH2	-5.78	117.41	120.30
1	1	3058	U	N3-C2-O2	-5.78	118.16	122.20
1	1	2550	U	N3-C2-O2	-5.77	118.16	122.20
1	1	648	С	N1-C2-O2	5.75	122.35	118.90
1	1	2869	U	N3-C2-O2	-5.74	118.18	122.20
1	1	2549	G	C4-N9-C1'	5.74	133.97	126.50
1	1	3019	U	C2-N1-C1'	5.74	124.59	117.70
1	1	958	С	C2-N1-C1'	5.73	125.11	118.80
31	b	143	LEU	CA-CB-CG	5.73	128.47	115.30
1	1	2235	С	N3-C2-O2	-5.72	117.90	121.90
1	1	3306	U	C2-N1-C1'	5.71	124.55	117.70
1	1	1604	G	C8-N9-C1'	-5.70	119.59	127.00
25	V	46	LEU	C-N-CA	-5.70	107.46	121.70
1	1	244	G	N3-C4-N9	5.69	129.41	126.00
1	1	3181	C	$C2-\overline{N1}-\overline{C1}$	5.68	$1\overline{25.04}$	118.80
1	1	2899	C	C2-N1-C1'	5.67	125.04	118.80
2	2	64	U	N3-C2-O2	-5.66	118.24	122.20
1	1	1278	A	C8-N9-C4	-5.64	103.55	105.80
1	1	922	U	N1-C2-O2	5.64	126.75	122.80
1	1	1496	C	$C6-\overline{N1}-\overline{C1}$	-5.63	114.04	120.80
1	1	$2\overline{629}$	U	N3-C2-O2	-5.62	118.26	122.20

α \cdots 1	c		
Continued	trom	previous	page
• • • • • • • • • • • •	J	<i>r</i> · · · · · · · · · · · · · · · · · · ·	r - g - · · ·

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	1227	С	C6-N1-C2	-5.60	118.06	120.30
1	1	2825	С	C5-C6-N1	5.60	123.80	121.00
1	1	2979	U	C5-C6-N1	5.60	125.50	122.70
1	1	2428	U	C2-N1-C1'	5.60	124.42	117.70
1	1	3153	U	C5-C6-N1	5.59	125.50	122.70
1	1	2759	U	C6-N1-C1'	-5.58	113.39	121.20
1	1	1724	U	O4'-C1'-N1	5.57	112.66	108.20
1	1	2248	С	C2-N1-C1'	5.55	124.91	118.80
1	1	2550	U	C2-N1-C1'	5.52	124.33	117.70
1	1	2629	U	N1-C2-O2	5.52	126.66	122.80
2	2	156	U	C2-N1-C1'	5.51	124.31	117.70
1	1	3153	U	N3-C2-O2	-5.51	118.34	122.20
1	1	2624	G	N3-C4-N9	-5.50	122.70	126.00
1	1	2868	U	OP1-P-O3'	5.50	117.31	105.20
1	1	2722	U	C2-N1-C1'	5.50	124.30	117.70
19	Р	22	LEU	CB-CG-CD1	-5.49	101.66	111.00
1	1	284	А	P-O3'-C3'	5.48	126.28	119.70
1	1	1567	U	C6-N1-C1'	-5.48	113.53	121.20
1	1	2094	С	N1-C2-O2	5.48	122.19	118.90
1	1	2760	С	N1-C2-O2	5.46	122.18	118.90
1	1	3306	U	N1-C2-O2	5.46	126.62	122.80
1	1	1227	С	N1-C2-O2	5.45	122.17	118.90
1	1	995	U	N1-C2-O2	5.45	126.61	122.80
1	1	3181	С	N3-C2-O2	-5.44	118.09	121.90
1	1	2248	С	N3-C2-O2	-5.43	118.10	121.90
1	1	2772	С	C2-N1-C1'	5.43	124.78	118.80
1	1	40	А	P-O3'-C3'	5.39	126.17	119.70
1	1	995	U	C2-N1-C1'	5.36	124.14	117.70
1	1	1199	С	C2-N1-C1'	5.36	124.69	118.80
1	1	3078	U	P-O3'-C3'	5.35	126.12	119.70
1	1	1124	U	N3-C2-O2	-5.34	118.46	122.20
1	1	1878	G	C4-N9-C1'	5.34	133.44	126.50
1	1	545	U	N1-C2-O2	5.34	126.54	122.80
1	1	1568	U	P-O3'-C3'	5.33	126.09	119.70
1	1	2862	U	N3-C2-O2	-5.31	118.48	122.20
31	b	170	LEU	CA-CB-CG	5.31	127.51	115.30
1	1	648	С	C2-N1-C1'	5.30	124.63	118.80
1	1	1400	G	N3-C4-C5	5.29	131.25	128.60
1	1	1770	G	C4-N9-C1'	5.29	133.37	126.50
1	1	2257	С	C6-N1-C2	-5.28	118.19	120.30
1	1	977	C	C6-N1-C2	-5.28	118.19	120.30
1	1	2701	U	C5-C6-N1	5.27	$1\overline{25.34}$	122.70

α \cdot \cdot \cdot	e		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	1	1235	U	C5-C4-O4	-5.27	122.74	125.90
1	1	1227	С	C6-N1-C1'	-5.26	114.48	120.80
1	1	244	G	C4-N9-C1'	5.26	133.34	126.50
1	1	1604	G	N3-C4-N9	5.26	129.15	126.00
1	1	1255	С	C6-N1-C1'	-5.25	114.49	120.80
1	1	1355	А	P-O3'-C3'	5.24	125.99	119.70
1	1	1283	С	N1-C2-O2	5.24	122.04	118.90
1	1	2406	С	C2-N1-C1'	5.24	124.56	118.80
1	1	2112	U	N1-C2-O2	5.23	126.46	122.80
1	1	1187	С	C6-N1-C1'	-5.22	114.53	120.80
1	1	2629	U	C2-N1-C1'	5.22	123.96	117.70
1	1	2861	U	N1-C2-O2	5.22	126.45	122.80
1	1	244	G	C6-C5-N7	-5.19	127.28	130.40
1	1	2257	С	C6-N1-C1'	-5.19	114.57	120.80
1	1	1495	U	N1-C2-N3	5.18	118.01	114.90
1	1	1278	А	O4'-C1'-N9	5.18	112.35	108.20
1	1	1255	С	N3-C2-O2	-5.18	118.28	121.90
1	1	2759	U	N3-C2-O2	-5.17	118.58	122.20
1	1	2954	U	OP2-P-O3'	5.17	116.58	105.20
1	1	2619	G	OP1-P-OP2	-5.17	111.85	119.60
1	1	161	G	N7-C8-N9	5.14	115.67	113.10
1	1	2528	G	O4'-C1'-N9	5.12	112.30	108.20
1	1	3116	G	N1-C6-O6	-5.12	116.83	119.90
1	1	1201	С	C2-N1-C1'	5.11	124.43	118.80
1	1	2513	U	P-O3'-C3'	5.11	125.83	119.70
1	1	720	А	P-O3'-C3'	5.10	125.82	119.70
1	1	2760	С	N3-C2-O2	-5.10	118.33	121.90
1	1	922	U	N3-C2-O2	-5.09	118.64	122.20
1	1	40	А	OP1-P-O3'	5.09	116.39	105.20
1	1	2278	С	C2-N1-C1'	5.09	124.40	118.80
1	1	3155	U	C2-N1-C1'	5.08	123.80	117.70
2	2	156	U	N3-C2-O2	-5.08	118.64	122.20
1	1	1123	U	C2-N1-C1'	5.06	123.78	117.70
1	1	3217	С	C6-N1-C2	-5.05	118.28	120.30
1	1	2537	U	P-O3'-C3'	5.04	125.75	119.70
1	1	3350	C	C2-N1-C1'	5.04	124.35	118.80
1	1	2803	А	N1-C6-N6	-5.04	115.58	118.60
1	1	1269	U	C2-N1-C1'	5.03	123.73	117.70
1	1	3027	A	O4'-C1'-N9	5.03	112.22	108.20
1	1	2699	G	N9-C4-C5	-5.02	103.39	105.40
1	1	1763	U	N3-C2-O2	-5.01	118.69	122.20
1	1	1302	A	OP1-P-O3'	5.01	116.22	105.20

001000	nucu jion	e precee	we page.	••			
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$ $ Ideal(o)
1	1	41	G	C4-N9-C1'	5.01	133.01	126.50
1	1	2542	U	O4'-C1'-N1	5.01	112.20	108.20

There are no chirality outliers.

All (6) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
15	L	46	ILE	Peptide
31	b	258	GLU	Peptide
37	h	83	LYS	Peptide
44	q	51	LYS	Peptide
48	V	112	ASP	Peptide
48	V	195	PRO	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percent	iles
4	7	95/105~(90%)	93~(98%)	2(2%)	0	100 1	.00
5	А	211/254~(83%)	198 (94%)	13~(6%)	0	100 1	.00
6	В	384/387~(99%)	368~(96%)	16 (4%)	0	100 1	.00
7	С	359/362~(99%)	348~(97%)	11 (3%)	0	100 1	.00
8	D	253/297~(85%)	241~(95%)	12 (5%)	0	100 1	.00
9	Е	152/176~(86%)	145~(95%)	7 (5%)	0	100 1	.00
10	F	220/244~(90%)	216 (98%)	4 (2%)	0	100 1	.00
11	G	231/256~(90%)	217 (94%)	14 (6%)	0	100 1	.00

\mathbf{Mol}	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles	;
12	Н	189/191~(99%)	180 (95%)	9~(5%)	0	100	100	
13	Ι	109/166~(66%)	103 (94%)	6 (6%)	0	100	100	
14	J	167/174~(96%)	153 (92%)	14 (8%)	0	100	100	
15	L	185/199~(93%)	175 (95%)	9(5%)	1 (0%)	29	61	
16	М	135/138~(98%)	132 (98%)	3 (2%)	0	100	100	
17	Ν	201/204~(98%)	190 (94%)	11 (6%)	0	100	100	
18	Ο	195/199~(98%)	192 (98%)	3 (2%)	0	100	100	
19	Р	181/184~(98%)	173 (96%)	8 (4%)	0	100	100	
20	Q	132/186~(71%)	128 (97%)	4 (3%)	0	100	100	
21	R	154/189~(82%)	154 (100%)	0	0	100	100	
22	S	169/172~(98%)	161 (95%)	8 (5%)	0	100	100	
23	Т	115/160~(72%)	106 (92%)	9~(8%)	0	100	100	
24	U	104/121~(86%)	95 (91%)	9 (9%)	0	100	100	
25	V	134/137~(98%)	130 (97%)	4 (3%)	0	100	100	
26	W	232/236~(98%)	217 (94%)	15 (6%)	0	100	100	
27	Х	139/142~(98%)	130 (94%)	9~(6%)	0	100	100	
28	Y	124/127~(98%)	121 (98%)	3~(2%)	0	100	100	
29	Z	133/136~(98%)	129 (97%)	4(3%)	0	100	100	
30	a	91/149~(61%)	84 (92%)	7 (8%)	0	100	100	
31	b	508/647~(78%)	490 (96%)	18 (4%)	0	100	100	
32	с	88/175~(50%)	87 (99%)	1 (1%)	0	100	100	
33	d	105/113~(93%)	101 (96%)	4 (4%)	0	100	100	
34	е	125/130~(96%)	119 (95%)	6~(5%)	0	100	100	
35	f	104/107~(97%)	101 (97%)	3~(3%)	0	100	100	
36	g	110/121~(91%)	107 (97%)	3~(3%)	0	100	100	
37	h	117/120~(98%)	113 (97%)	4(3%)	0	100	100	
38	i	97/100~(97%)	91 (94%)	6~(6%)	0	100	100	
39	j	85/88~(97%)	81 (95%)	4(5%)	0	100	100	ĺ
40	k	$75/78~(9\overline{6\%})$	72 (96%)	3(4%)	0	100	100	
41	1	48/51 (94%)	47 (98%)	1 (2%)	0	100	100	ĺ
42	m	465/519 (90%)	442 (95%)	23 (5%)	0	100	100	

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
43	р	89/92~(97%)	82 (92%)	7 (8%)	0	100	100
44	q	120/165~(73%)	109 (91%)	11 (9%)	0	100	100
45	r	224/261~(86%)	217~(97%)	7 (3%)	0	100	100
46	S	65/520~(12%)	63~(97%)	2(3%)	0	100	100
47	u	148/199~(74%)	144 (97%)	4 (3%)	0	100	100
48	v	283/344~(82%)	271~(96%)	12 (4%)	0	100	100
49	W	175/203~(86%)	166~(95%)	9~(5%)	0	100	100
50	х	476/514~(93%)	439 (92%)	37~(8%)	0	100	100
51	У	226/245~(92%)	210~(93%)	16 (7%)	0	100	100
52	Z	$7\overline{3}/106~(69\%)$	71 (97%)	2(3%)	0	100	100
All	All	8600/10189 (84%)	8202 (95%)	397~(5%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
15	L	61	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
4	7	81/88~(92%)	81 (100%)	0	100	100
5	А	166/196~(85%)	166 (100%)	0	100	100
6	В	322/323~(100%)	321 (100%)	1 (0%)	92	98
7	С	288/289~(100%)	288 (100%)	0	100	100
8	D	216/245~(88%)	216 (100%)	0	100	100
9	Ε	134/153~(88%)	133~(99%)	1 (1%)	84	95
10	F	186/205~(91%)	186 (100%)	0	100	100
11	G	191/208~(92%)	189 (99%)	2(1%)	76	92

α \cdot 1	C		
Continued	trom	previous	page
001000100000	J. 0110	proceedae	P ~ 9 ~

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
12	Н	$171/171 \ (100\%)$	171 (100%)	0	100	100
13	Ι	99/141~(70%)	99~(100%)	0	100	100
14	J	147/150~(98%)	145~(99%)	2(1%)	67	89
15	L	149/159~(94%)	149 (100%)	0	100	100
16	М	108/109~(99%)	108 (100%)	0	100	100
17	Ν	175/176~(99%)	175 (100%)	0	100	100
18	О	160/162~(99%)	160 (100%)	0	100	100
19	Р	145/146~(99%)	145 (100%)	0	100	100
20	Q	110/151~(73%)	110 (100%)	0	100	100
21	R	129/154 (84%)	128 (99%)	1 (1%)	81	94
22	S	155/156~(99%)	155 (100%)	0	100	100
23	Т	102/137~(74%)	101 (99%)	1 (1%)	76	92
24	U	93/107~(87%)	93 (100%)	0	100	100
25	V	104/105~(99%)	104 (100%)	0	100	100
26	W	211/213~(99%)	210 (100%)	1 (0%)	88	96
27	Х	117/118~(99%)	117 (100%)	0	100	100
28	Y	109/110~(99%)	109 (100%)	0	100	100
29	Ζ	115/116~(99%)	115 (100%)	0	100	100
30	a	76/119~(64%)	76 (100%)	0	100	100
31	b	459/573~(80%)	456 (99%)	3 (1%)	84	95
32	с	84/153~(55%)	84 (100%)	0	100	100
33	d	94/97~(97%)	93~(99%)	1 (1%)	73	92
34	е	109/111~(98%)	109 (100%)	0	100	100
35	f	90/91~(99%)	90 (100%)	0	100	100
36	g	95/103~(92%)	95 (100%)	0	100	100
37	h	104/105~(99%)	104 (100%)	0	100	100
38	i	81/82~(99%)	80 (99%)	1 (1%)	71	91
39	j	70/71~(99%)	70 (100%)	0	100	100
40	k	68/69~(99%)	68 (100%)	0	100	100
41	l	45/46~(98%)	45 (100%)	0	100	100
42	m	413/459~(90%)	411 (100%)	2 (0%)	88	96

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
43	р	71/72~(99%)	71 (100%)	0	100	100
44	q	105/136~(77%)	105 (100%)	0	100	100
45	r	203/229~(89%)	203 (100%)	0	100	100
46	S	62/445~(14%)	62 (100%)	0	100	100
47	u	133/180~(74%)	133 (100%)	0	100	100
48	v	258/309~(84%)	258 (100%)	0	100	100
49	W	158/179~(88%)	157~(99%)	1 (1%)	86	96
50	х	428/450~(95%)	428 (100%)	0	100	100
51	У	195/211~(92%)	195 (100%)	0	100	100
52	Z	69/95~(73%)	69 (100%)	0	100	100
All	All	7453/8673~(86%)	7436 (100%)	17 (0%)	93	98

All (17) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
6	В	332	ARG
9	Е	46	ARG
11	G	240	ASN
11	G	251	LYS
14	J	16	LYS
14	J	29	ARG
21	R	151	ARG
23	Т	146	ASN
26	W	214	LYS
31	b	168	ARG
31	b	395	ARG
31	b	639	ARG
33	d	86	LYS
38	i	98	ARG
42	m	10	ARG
42	m	57	ARG
49	W	55	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (15) such sidechains are listed below:

Mol	Chain	Res	Type
5	А	79	ASN

\mathbf{Mol}	Chain	\mathbf{Res}	Type
6	В	231	HIS
12	Н	59	ASN
12	Н	102	ASN
14	J	109	HIS
21	R	134	HIS
22	S	88	HIS
32	с	24	ASN
40	k	10	GLN
44	q	65	GLN
45	r	256	ASN
48	V	99	ASN
48	V	187	GLN
49	W	180	ASN
49	W	198	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	3050/3396~(89%)	698~(22%)	50 (1%)
2	2	157/158~(99%)	33~(21%)	1 (0%)
3	3	120/121~(99%)	21 (17%)	1 (0%)
All	All	3327/3675~(90%)	752~(22%)	52 (1%)

All (752) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	2	U
1	1	14	U
1	1	26	А
1	1	40	А
1	1	41	G
1	1	49	А
1	1	58	G
1	1	60	А
1	1	65	А
1	1	66	А
1	1	75	G
1	1	92	G
1	1	95	А
1	1	96	G
1	1	110	G

Mol	Chain	Res	Type
1	1	116	А
1	1	118	U
1	1	122	А
1	1	133	U
1	1	135	С
1	1	136	G
1	1	146	U
1	1	150	А
1	1	156	G
1	1	157	А
1	1	159	А
1	1	161	G
1	1	172	G
1	1	181	U
1	1	187	А
1	1	190	U
1	1	197	G
1	1	200	С
1	1	206	G
1	1	210	U
1	1	213	А
1	1	218	G
1	1	219	А
1	1	220	G
1	1	240	U
1	1	241	G
1	1	243	G
1	1	245	U
1	1	247	С
1	1	249	U
1	1	250	U
1	1	251	G
1	1	252	U
1	1	257	U
1	1	265	А
1	1	266	А
1	1	269	G
1	1	284	A
1	1	285	А
1	1	286	U
1	1	295	А
1	1	305	U

Mol	Chain	Res	Type
1	1	307	А
1	1	308	А
1	1	323	А
1	1	329	U
1	1	337	G
1	1	368	G
1	1	370	U
1	1	376	G
1	1	395	А
1	1	398	А
1	1	399	А
1	1	401	U
1	1	402	А
1	1	403	С
1	1	421	G
1	1	422	A
1	1	438	А
1	1	439	С
1	1	440	А
1	1	503	С
1	1	518	G
1	1	521	А
1	1	523	А
1	1	535	G
1	1	544	С
1	1	546	С
1	1	547	G
1	1	548	G
1	1	550	А
1	1	552	G
1	1	556	U
1	1	557	A
1	1	558	U
1	1	559	А
1	1	564	G
1	1	569	A
1	1	578	A
1	1	579	G
1	1	582	G
1	1	592	А
1	1	597	G
1	1	600	G

\mathbf{Mol}	Chain	Res	Type
1	1	604	G
1	1	611	А
1	1	620	U
1	1	621	A
1	1	629	U
1	1	634	С
1	1	635	G
1	1	636	С
1	1	637	С
1	1	643	U
1	1	646	А
1	1	647	A
1	1	668	G
1	1	677	A
1	1	681	U
1	1	690	A
1	1	691	A
1	1	699	А
1	1	712	G
1	1	715	А
1	1	716	А
1	1	719	U
1	1	720	А
1	1	721	G
1	1	722	G
1	1	728	G
1	1	742	G
1	1	743	С
1	1	758	С
1	1	762	U
1	1	765	С
1	1	767	U
1	1	768	С
1	1	771	A
1	1	776	U
1	1	777	U
1	1	779	G
1	1	780	A
1	1	785	G
1	1	808	A
1	1	816	A
1	1	817	А

Mol	Chain	Res	Type
1	1	830	А
1	1	835	G
1	1	837	А
1	1	845	G
1	1	849	С
1	1	850	U
1	1	861	С
1	1	874	U
1	1	875	G
1	1	879	U
1	1	880	G
1	1	895	А
1	1	896	А
1	1	907	G
1	1	908	G
1	1	909	G
1	1	914	А
1	1	916	G
1	1	917	А
1	1	921	A
1	1	923	С
1	1	924	G
1	1	925	A
1	1	936	A
1	1	944	С
1	1	958	С
1	1	971	G
1	1	974	G
1	1	976	U
1	1	977	С
1	1	978	G
1	1	979	U
1	1	980	A
1	1	981	U
1	1	991	G
1	1	992	A
1	1	994	G
1	1	995	U
1	1	996	A
1	1	997	A
1	1	998	A
1	1	1000	С

Mol	Chain	Res	Type
1	1	1003	А
1	1	1048	А
1	1	1049	С
1	1	1050	U
1	1	1051	U
1	1	1055	А
1	1	1057	А
1	1	1058	U
1	1	1059	G
1	1	1063	G
1	1	1064	А
1	1	1065	А
1	1	1071	U
1	1	1072	G
1	1	1084	A
1	1	1085	A
1	1	1095	U
1	1	1097	G
1	1	1098	А
1	1	1103	А
1	1	1104	G
1	1	1105	А
1	1	1107	С
1	1	1108	U
1	1	1111	U
1	1	1112	А
1	1	1115	G
1	1	1117	G
1	1	1118	C
1	1	1127	G
1	1	1128	U
1	1	1129	A
1	1	1130	A
1	1	1132	C
1	1	1143	A
1	1	1144	U
1	1	1152	G
1	1	1153	A
1	1	1154	A
1	1	1159	A
1	1	1160	С
1	1	1179	А

Mol	Chain	Res	Type
1	1	1180	А
1	1	1181	U
1	1	1182	А
1	1	1192	С
1	1	1193	A
1	1	1196	С
1	1	1197	А
1	1	1198	С
1	1	1199	С
1	1	1200	А
1	1	1201	С
1	1	1202	А
1	1	1204	A
1	1	1208	U
1	1	1209	G
1	1	1221	А
1	1	1222	G
1	1	1223	А
1	1	1227	С
1	1	1235	U
1	1	1241	U
1	1	1242	G
1	1	1245	А
1	1	1250	G
1	1	1252	А
1	1	1258	U
1	1	1263	А
1	1	1271	А
1	1	1272	С
1	1	1278	A
1	1	1279	С
1	1	1286	A
1	1	1287	A
1	1	1302	A
1	1	1303	A
1	1	1304	A
1	1	1305	U
1	1	1307	G
1	1	1313	G
1	1	$1\overline{3}25$	U
1	1	1330	A
1	1	1348	U

Mol	Chain	Res	Type
1	1	1349	G
1	1	1352	А
1	1	1354	G
1	1	1355	А
1	1	1356	U
1	1	1357	G
1	1	1386	А
1	1	1399	А
1	1	1400	G
1	1	1408	G
1	1	1417	G
1	1	1419	А
1	1	1431	G
1	1	1434	G
1	1	1437	С
1	1	1446	А
1	1	1469	С
1	1	1483	G
1	1	1484	U
1	1	1487	G
1	1	1503	А
1	1	1508	С
1	1	1527	С
1	1	1533	U
1	1	1555	U
1	1	1556	С
1	1	1561	G
1	1	1562	С
1	1	1566	А
1	1	1567	U
1	1	1568	U
1	1	1569	U
1	1	1573	G
1	1	1580	A
1	1	1581	С
1	1	1582	С
1	1	1583	A
1	1	1587	А
1	1	1589	А
1	1	1590	G
1	1	1593	A
1	1	1613	А

Mol	Chain	Res	Type
1	1	1620	U
1	1	1629	U
1	1	1631	С
1	1	1639	С
1	1	1643	А
1	1	1657	С
1	1	1677	G
1	1	1717	U
1	1	1724	U
1	1	1725	С
1	1	1741	А
1	1	1742	U
1	1	1750	А
1	1	1751	G
1	1	1761	С
1	1	1762	С
1	1	1763	U
1	1	1764	U
1	1	1765	U
1	1	1770	G
1	1	1775	G
1	1	1780	G
1	1	1796	G
1	1	1797	А
1	1	1810	А
1	1	1813	А
1	1	1814	А
1	1	1815	U
1	1	1816	А
1	1	1817	G
1	1	1820	U
1	1	1821	U
1	1	1839	A
1	1	1842	A
1	1	1846	С
1	1	1847	A
1	1	1849	C
1	1	1850	А
1	1	1878	G
1	1	1880	U
1	1	1906	G
1	1	1909	А

Mol	Chain	Res	Type
1	1	1935	G
1	1	1951	С
1	1	1952	G
1	1	1953	G
1	1	2094	С
1	1	2112	U
1	1	2113	А
1	1	2121	G
1	1	2122	G
1	1	2126	А
1	1	2131	А
1	1	2140	U
1	1	2149	А
1	1	2158	A
1	1	2169	G
1	1	2176	U
1	1	2193	U
1	1	2194	G
1	1	2195	С
1	1	2196	С
1	1	2198	А
1	1	2201	G
1	1	2205	U
1	1	2207	А
1	1	2209	U
1	1	2210	G
1	1	2212	С
1	1	2220	А
1	1	2222	А
1	1	2225	U
1	1	2239	G
1	1	$2\overline{242}$	A
1	1	2243	А
1	1	2244	A
1	1	2246	G
1	1	2247	G
1	1	$2\overline{2}48$	С
1	1	2249	G
1	1	2250	G
1	1	2255	A
1	1	2256	А
1	1	2262	А

Mol	Chain	Res	Type
1	1	2264	U
1	1	2267	С
1	1	2268	U
1	1	2269	U
1	1	2270	А
1	1	2271	А
1	1	2272	G
1	1	2278	С
1	1	2279	А
1	1	2280	A
1	1	2316	G
1	1	2317	А
1	1	2318	U
1	1	2334	U
1	1	2335	G
1	1	2336	U
1	1	2371	G
1	1	2388	U
1	1	2393	G
1	1	2397	А
1	1	2398	А
1	1	2401	А
1	1	2402	А
1	1	2404	А
1	1	2409	G
1	1	2410	U
1	1	2411	U
1	1	2412	G
1	1	2413	А
1	1	2414	G
1	1	2418	G
1	1	2442	G
1	1	2445	A
1	1	2502	А
1	1	2503	G
1	1	$250\overline{4}$	U
1	1	2507	С
1	1	2509	U
1	1	2511	А
1	1	2512	С
1	1	2514	U
1	1	2522	G

Mol	Chain	Res	Type
1	1	2528	G
1	1	2529	А
1	1	2530	G
1	1	2531	С
1	1	2532	U
1	1	2533	G
1	1	2537	U
1	1	2538	U
1	1	2540	А
1	1	2541	U
1	1	2542	U
1	1	2543	U
1	1	2544	U
1	1	2545	С
1	1	2546	С
1	1	2547	А
1	1	2548	С
1	1	2551	U
1	1	2552	С
1	1	2559	U
1	1	2561	А
1	1	2569	А
1	1	2570	U
1	1	2571	U
1	1	2572	С
1	1	2573	G
1	1	2576	G
1	1	2586	G
1	1	2593	А
1	1	2594	С
1	1	2606	G
1	1	2607	G
1	1	2613	U
1	1	2614	G
1	1	$2\overline{615}$	G
1	1	2620	G
1	1	2621	G
1	1	2623	G
1	1	2624	G
1	1	2625	С
1	1	2627	С
1	1	2628	А

Mol	Chain	Res	Type
1	1	2632	G
1	1	2634	U
1	1	2638	С
1	1	2640	А
1	1	2642	А
1	1	2643	А
1	1	2644	С
1	1	2645	G
1	1	2648	G
1	1	2650	U
1	1	2651	G
1	1	2652	U
1	1	2653	С
1	1	2654	С
1	1	2655	U
1	1	2656	A
1	1	2657	А
1	1	2658	G
1	1	2659	G
1	1	2674	А
1	1	2676	А
1	1	2677	G
1	1	2687	G
1	1	2688	U
1	1	2689	А
1	1	2690	G
1	1	2691	А
1	1	2692	А
1	1	2693	С
1	1	2695	А
1	1	2701	U
1	1	2702	А
1	1	2704	A
1	1	2705	А
1	1	2714	G
1	1	2715	А
1	1	2720	G
1	1	2721	A
1	1	2722	U
1	1	2725	U
1	1	2726	С
1	1	2728	G

Mol	Chain	Res	Type
1	1	2730	G
1	1	2731	U
1	1	2732	G
1	1	2734	А
1	1	2740	А
1	1	2741	С
1	1	2752	U
1	1	2754	G
1	1	2756	С
1	1	2757	U
1	1	2761	G
1	1	2762	А
1	1	2763	U
1	1	2766	U
1	1	2767	U
1	1	2768	U
1	1	2770	G
1	1	2771	U
1	1	2772	С
1	1	2773	С
1	1	2777	G
1	1	2780	А
1	1	2788	С
1	1	2789	U
1	1	2790	А
1	1	2797	С
1	1	2798	С
1	1	2799	А
1	1	2801	А
1	1	2802	A
1	1	2803	A
1	1	2809	С
1	1	2810	С
1	1	2814	G
1	1	2815	G
1	1	2817	A
1	1	2819	A
1	1	2820	A
1	1	2821	С
1	1	2822	U
1	1	2823	G
1	1	2824	G

Mol	Chain	Res	Type
1	1	2825	С
1	1	2826	U
1	1	2834	G
1	1	2839	G
1	1	2842	U
1	1	2843	U
1	1	2844	С
1	1	2845	А
1	1	2847	А
1	1	2856	G
1	1	2857	С
1	1	2858	U
1	1	2859	U
1	1	2860	U
1	1	2861	U
1	1	2863	G
1	1	2864	A
1	1	2866	U
1	1	2867	С
1	1	2868	U
1	1	2869	U
1	1	2872	А
1	1	2873	U
1	1	2874	G
1	1	2875	U
1	1	2876	С
1	1	2877	G
1	1	2878	G
1	1	2879	С
1	1	2887	А
1	1	2898	G
1	1	2899	С
1	1	2922	G
1	1	2923	U
1	1	2930	A
1	1	2935	U
1	1	2936	A
1	1	2945	G
1	1	2947	G
1	1	$2\overline{952}$	G
1	1	2954	U
1	1	2955	U

Mol	Chain	Res	Type
1	1	2957	G
1	1	2970	С
1	1	2971	А
1	1	2972	G
1	1	2978	U
1	1	2980	U
1	1	2981	U
1	1	2982	А
1	1	2983	С
1	1	2996	U
1	1	2997	G
1	1	3012	А
1	1	3017	А
1	1	3021	A
1	1	3022	G
1	1	3027	A
1	1	3029	А
1	1	3030	G
1	1	3032	А
1	1	3056	U
1	1	3058	U
1	1	3059	G
1	1	3074	G
1	1	3078	U
1	1	3079	U
1	1	3080	G
1	1	3086	А
1	1	3092	С
1	1	3093	С
1	1	3099	С
1	1	3100	U
1	1	3109	G
1	1	3122	А
1	1	3129	А
1	1	3130	А
1	1	3131	U
1	1	3142	А
1	1	3143	С
1	1	3156	U
1	1	3163	A
1	1	3164	C
1	1	3165	А

Mol	Chain	Res	Type
1	1	3166	С
1	1	3167	А
1	1	3169	U
1	1	3170	А
1	1	3172	А
1	1	3173	G
1	1	3174	А
1	1	3176	G
1	1	3179	U
1	1	3181	С
1	1	3187	А
1	1	3196	U
1	1	3206	С
1	1	3207	U
1	1	3217	С
1	1	3218	A
1	1	3224	G
1	1	3229	G
1	1	3243	А
1	1	3244	А
1	1	3247	G
1	1	3253	G
1	1	3256	G
1	1	3259	U
1	1	3263	G
1	1	3270	U
1	1	3276	G
1	1	3279	А
1	1	3280	U
1	1	3281	U
1	1	3282	U
1	1	3289	G
1	1	3294	А
1	1	3303	G
1	1	3304	U
1	1	3313	U
1	1	3316	A
1	1	3320	A
1	1	3328	G
1	1	3341	U
1	1	3342	А
1	1	3345	G

Mol	Chain	Res	Type
1	1	3350	С
1	1	3351	U
1	1	3352	U
1	1	3354	U
1	1	3355	U
1	1	3356	G
1	1	3359	А
1	1	3369	G
1	1	3378	С
1	1	3389	U
1	1	3396	U
2	2	34	U
2	2	35	С
2	2	50	С
2	2	51	G
2	2	59	А
2	2	60	U
2	2	62	С
2	2	63	G
2	2	78	G
2	2	79	А
2	2	80	А
2	2	81	U
2	2	82	U
2	2	83	С
2	2	84	С
2	2	86	U
2	2	87	G
2	2	88	А
2	2	89	А
2	2	90	U
2	2	95	G
2	2	96	A
2	2	97	А
2	2	104	A
2	2	106	С
2	2	110	С
2	2	111	A
2	2	123	G
2	2	124	G
2	2	125	U
2	2	138	А

Mol	Chain	Res	Type
2	2	152	G
2	2	158	U
3	3	7	G
3	3	16	U
3	3	52	G
3	3	53	U
3	3	54	U
3	3	64	А
3	3	65	G
3	3	73	С
3	3	74	С
3	3	76	А
3	3	83	U
3	3	84	А
3	3	86	U
3	3	87	G
3	3	98	С
3	3	99	G
3	3	100	С
3	3	102	А
3	3	103	А
3	3	112	G
3	3	121	U

All (52) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	40	А
1	1	160	G
1	1	284	А
1	1	646	А
1	1	720	А
1	1	761	А
1	1	849	С
1	1	916	G
1	1	1047	А
1	1	1064	А
1	1	1097	G
1	1	1102	А
1	1	1103	А
1	1	1128	U
1	1	1129	А

Mol	Chain	Res	Type
1	1	1159	А
1	1	1192	С
1	1	1241	U
1	1	1302	А
1	1	1329	U
1	1	1355	А
1	1	1567	U
1	1	1568	U
1	1	1816	А
1	1	1820	U
1	1	1842	А
1	1	2209	U
1	1	2263	С
1	1	2269	U
1	1	2317	А
1	1	2397	А
1	1	2410	U
1	1	2501	U
1	1	2511	А
1	1	2513	U
1	1	2537	U
1	1	2541	U
1	1	2593	А
1	1	2651	G
1	1	2753	G
1	1	2808	А
1	1	2824	G
1	1	2868	U
1	1	2954	U
1	1	3021	А
1	1	3078	U
1	1	3121	U
1	1	3228	С
1	1	3340	G
1	1	3350	С
2	2	123	G
3	3	52	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 2 ligands modelled in this entry, 1 is monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
Moi Type	Chain Res	5 LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
53	GDP	m	601	54	24,30,30	1.06	1 (4%)	30,47,47	1.39	5 (16%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
53	GDP	m	601	54	-	3/12/32/32	0/3/3/3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
53	m	601	GDP	C6-N1	-3.20	1.33	1.37

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(°)	$Ideal(^{o})$
53	m	601	GDP	PA-O3A-PB	-3.98	119.16	132.83
53	m	601	GDP	C5-C6-N1	2.75	118.82	113.95
53	m	601	GDP	C8-N7-C5	2.34	107.45	102.99
53	m	601	GDP	C3'-C2'-C1'	2.30	104.45	100.98
53	m	601	GDP	O6-C6-C5	-2.11	120.25	124.37

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
53	m	601	GDP	C3'-C4'-C5'-O5'
53	m	601	GDP	O4'-C4'-C5'-O5'
53	m	601	GDP	C5'-O5'-PA-O3A

All (3) torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks				
6	В	1				

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	В	16:PHE	С	17:LEU	Ν	1.20

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-26485. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 249

Z Index: 197

6.3.2 Raw map

X Index: 0

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.18. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{26485}msk_{1.map}$ (i) 6.6.1

Υ

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 436 nm^3 ; this corresponds to an approximate mass of 394 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.345 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.345 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.90	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	4.22	8.89	4.53

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.22 differs from the reported value 2.9 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-26485 and PDB model 7UG6. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.18 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.18).

9.4 Atom inclusion (i)

At the recommended contour level, 69% of all backbone atoms, 61% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.18) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6110	0.5330
1	0.6630	0.5230
2	0.8020	0.5820
3	0.6840	0.4580
7	0.6130	0.5520
А	0.6140	0.5680
В	0.6650	0.5890
\mathbf{C}	0.6190	0.5810
D	0.5880	0.5080
Ε	0.5210	0.5500
F	0.6200	0.5690
G	0.4570	0.5060
Н	0.6530	0.5770
Ι	0.2860	0.5280
J	0.4050	0.4190
L	0.4790	0.5290
М	0.5910	0.5670
Ν	0.5800	0.5690
0	0.6730	0.5930
Р	0.5880	0.5650
Q	0.5580	0.5530
R	0.6860	0.5760
S	0.5180	0.5420
Т	0.2280	0.4550
U	0.4720	0.4930
V	0.6340	0.5780
W	0.5240	0.5130
Х	0.6040	0.5810
Y	0.6410	0.5730
Z	0.6720	0.5750
a	0.4800	0.4970
b	0.4720	0.5200
С	0.2780	0.5130
d	0.6370	0.5630
е	0.5740	0.5850

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
f	0.6560	0.6010
g	0.6600	0.5850
h	0.6440	0.5750
i	0.3580	0.4940
j	0.7450	0.6050
k	0.5280	0.5550
1	0.6680	0.5980
m	0.4820	0.5270
р	0.6580	0.5760
q	0.3150	0.4630
r	0.6100	0.5720
S	0.2510	0.4440
u	0.5210	0.5280
V	0.5840	0.5230
W	0.4230	0.4910
X	0.5390	0.5060
У	0.6420	0.5610
Z	0.3440	0.5190

