

Dec 29, 2024 – 01:20 PM EST

PDB ID	:	7QGG
EMDB ID	:	EMD-13954
Title	:	Neuronal RNA granules are ribosome complexes stalled at the pre-
		translocation state
Authors	:	Pulk, A.; Kipper, K.; Mansour, A.
Deposited on	:	2021-12-08
Resolution	:	2.86 Å(reported)
Based on initial model	:	60LE

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.86 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	EM structures
Metric	$(\# {\rm Entries})$	$(\# { m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	Quality of chain							
1	S2	1872	7% 67%	23%	• 8%						
2	SA	295	6% 69% ·	2	27%						
3	SB	264	6% 78%	•	19%						
4	SD	243	16%		7% 7%						
5	SE	263	6% 		6% •						
6	SF	204	89%		• 7%						
7	SH	194	91%		5% •						
8	SI	208	91%		7% •						

Continued from previous page... Chain Length Quality of chain Mol 7% 9 SK16554% 5% 41% 13% SL10 15887% 7% • 5% 8% 11 SP 14584% 5% • 10% 12% 12SQ14692% 7% • 22% 5% • 13 SR 13594% 11% SS141527% • 5% 88% 8% ST1514593% 6% • 34% SU1611983% 13% • SV83 1787% 11% •• . . SX1814395% 7% 19 Sa 11584% 5% 10% 14% Sc 2069 83% 10% 7% ÷ 5% • 21 Sd 5693% 32% 9% • 22Sg 31789% SC293 2371% 5% 23% 24% 24 SG 24990% 6% 5% 6% SJ2519486% 9% • 5% 81% SM2613282% 8% 11% 7% SN27151. . 96% 7% 28SO15183% 7% 9% **.** 29SW13092% 8% 14% 30 SY7% • 13392% 11% SZ12531 54% 5% 42% 7% 32 Sb 84 8% • 89% 22% 33 Se • 5910% 86%

Mol	Chain	Length	Quality of chain	
34	Sf	156	38% 42% • 57%	
35	А	257	94%	
36	В	403	95%	• •
37	С	421	80%	6% 14%
38	D	157	5%	21%
39	Е	121	88%	10% ••
40	F	297	95%	
41	G	298	7%	• 18%
42	Н	260	83%	• 13%
43	Ι	266	9% 85%	5% 9%
44	J	192	93%	6% ••
45	K	214	91%	7% •
46	L	178	87%	8% •
47	М	211	<u> </u>	7% •
48	Ν	214	63%	35%
49	О	204	95%	5%
50	Р	203	91%	6% •
51	Q	184	* 82%	• 14%
52	R	188	95%	5% •
53	S	196	89%	7% •
54	Т	176	96%	•
55	U	160	90%	8% ••
56	V	128	66% 11%	23%
57	W	140	91%	5% •
58	Х	157	· 61%	

Continued from previous page...

Continued from previous page... Chain Length Quality of chain Mol ÷. Υ 5915674% 23% • ÷ Ζ 60 14586% 7% 8% 61 1368% • \mathbf{a} 90% i. ••• 62 b 14898% 63 156с 57% 39% • 5% 64d 1157% 81% 12% 12565е 81% • 15% 66 f 135• • 91% 110 67 . . g 95% 5% 68h 117. . 97% i 69 i 1236% • 93% • • • j 7010597% i. 71k 97 84% 5% 11% ÷ 721 706% • 93% 73516% • m 92% 74128n 38% 61% 75250 96% • ÷ 106765%• р 94% **.** 92 7710% • q 89% 7% • • 78137r 91% 79 \mathbf{t} 4803 23% 61% 15% • 36% 80 76u 70% 29% 25% 81 76 \mathbf{V} 61% 36% • 45% 82 20 W 55% 45% 93% 83 Cz 21788% 11%

Continued from previous page...

Mol	Chain	Length	Quality of chain
			50%
84	У	4	100%

2 Entry composition (i)

There are 87 unique types of molecules in this entry. The entry contains 218574 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called RNA (1872-MER).

Mol	Chain	Residues		1	AltConf	Trace			
1	S2	1714	Total 36502	C 16306	N 6533	O 11950	Р 1713	0	0

• Molecule 2 is a protein called 40S ribosomal protein SA.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	SA	214	Total 1693	C 1076	N 297	0 312	S 8	0	0

• Molecule 3 is a protein called 40S ribosomal protein S3a.

Mol	Chain	Residues		At	AltConf	Trace			
3	SB	214	Total 1738	C 1103	N 310	0 311	S 14	0	0

• Molecule 4 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	SD	226	Total 1756	C 1119	N 316	0 314	${ m S} 7$	0	0

• Molecule 5 is a protein called 40S ribosomal protein S4, X isoform.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	SE	259	Total 2059	C 1316	N 383	O 352	S 8	0	0

• Molecule 6 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	SF	189	Total 1495	C 934	N 284	0 270	S 7	0	0

• Molecule 7 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	SH	186	Total 1497	C 956	N 274	O 266	S 1	0	0

• Molecule 8 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		Ate	AltConf	Trace			
8	SI	204	Total 1673	C 1050	N 329	O 289	${ m S}{ m 5}$	0	0

• Molecule 9 is a protein called 40S ribosomal protein S10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	SK	98	Total 827	C 539	N 148	0 134	S 6	0	0

• Molecule 10 is a protein called 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	SL	150	Total 1220	C 776	N 228	O 210	S 6	0	0

• Molecule 11 is a protein called 40S ribosomal protein S15.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	SP	130	Total 1073	C 681	N 205	0 180	S 7	0	0

• Molecule 12 is a protein called Rps16 protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	SQ	146	Total 1158	C 736	N 218	O 200	${S \atop 4}$	0	0

• Molecule 13 is a protein called 40S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	SR	134	Total 1079	C 676	N 201	0 198	${S \atop 4}$	0	0

• Molecule 14 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	\mathbf{SS}	145	Total 1198	C 751	N 242	O 203	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 15 is a protein called 40S ribosomal protein S19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	ST	143	Total 1115	C 698	N 217	0 198	${S \over 2}$	0	0

• Molecule 16 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	SU	104	Total 822	C 514	N 156	0 148	S 4	0	0

• Molecule 17 is a protein called 40S ribosomal protein S21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	SV	82	Total 626	C 382	N 118	0 121	$\frac{S}{5}$	0	0

• Molecule 18 is a protein called 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	SX	141	Total 1098	C 693	N 219	0 183	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	Sa	103	Total 826	C 515	N 172	0 134	${ m S}{ m 5}$	0	0

• Molecule 20 is a protein called 40S ribosomal protein S28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Sc	64	Total 506	C 308	N 102	0 94	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 21 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
21	Sd	55	Total 459	C 286	N 94	0 74	${ m S}{ m 5}$	0	0

• Molecule 22 is a protein called Receptor of activated protein C kinase 1.

Mol	Chain	Residues		At	AltConf	Trace			
22	Sg	312	Total 2429	C 1531	N 423	O 463	S 12	0	0

• Molecule 23 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
23	SC	225	Total 1755	C 1134	N 303	O 309	S 9	1	0

• Molecule 24 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		At		AltConf	Trace		
24	SG	237	Total 1923	C 1200	N 387	O 329	${ m S} 7$	0	0

• Molecule 25 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	SJ	185	Total 1533	C 974	N 309	O 248	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	1	0

• Molecule 26 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	SM	118	Total 912	C 574	N 160	0 171	${ m S} 7$	0	0

• Molecule 27 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	SN	150	Total 1208	C 773	N 229	O 205	S 1	0	0

• Molecule 28 is a protein called 40S ribosomal protein S14.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	SO	137	Total 1024	C 627	N 200	0 191	S 6	0	0

• Molecule 29 is a protein called 40S ribosomal protein S15a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	SW	129	Total 1034	C 659	N 193	0 176	S 6	0	0

• Molecule 30 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	SY	131	Total 1073	C 678	N 212	0 178	${f S}{5}$	1	0

• Molecule 31 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	SZ	73	Total 579	C 372	N 106	O 100	S 1	0	0

• Molecule 32 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	Sb	82	Total 640	C 402	N 118	0 113	${f S}{7}$	0	0

• Molecule 33 is a protein called Ubiquitin-like domain-containing protein.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
22	So	57	Total	С	Ν	Ο	\mathbf{S}	0	0
- 55	be	57	452	281	99	71	1	0	0

• Molecule 34 is a protein called Ubiquitin-40S ribosomal protein S27a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	Sf	67	Total 547	C 345	N 102	O 93	${f S}{7}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	А	252	Total 1930	C 1209	N 395	O 320	S 6	0	0

• Molecule 36 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		At	AltConf	Trace			
36	В	397	Total 3204	C 2041	N 603	0 546	S 14	0	0

• Molecule 37 is a protein called 60S ribosomal protein L4.

Mol	Chain	Residues		At	AltConf	Trace			
37	С	363	Total 2889	C 1817	N 575	0 481	S 16	0	0

• Molecule 38 is a RNA chain called RNA (157-MER).

Mol	Chain	Residues		А		AltConf	Trace		
38	D	157	Total 3337	C 1489	N 587	0 1104	Р 157	0	0

• Molecule 39 is a RNA chain called RNA (121-MER).

Mol	Chain	Residues		A	AltConf	Trace			
39	Е	119	Total 2541	C 1132	N 454	0 836	P 119	0	0

• Molecule 40 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		At	AltConf	Trace			
40	F	294	Total 2399	C 1511	N 442	0 432	S 14	0	0

• Molecule 41 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		At	AltConf	Trace			
41	G	243	Total 1960	C 1251	N 375	O 330	${S \atop 4}$	0	0

• Molecule 42 is a protein called 60S ribosomal protein L7.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	Н	225	Total 1865	C 1199	N 357	0 301	S 8	0	0

• Molecule 43 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues		Ate	AltConf	Trace			
43	Ι	241	Total 1935	C 1232	N 372	O 327	$\frac{S}{4}$	0	0

• Molecule 44 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	J	191	Total 1528	C 961	N 285	0 276	S 6	0	0

• Molecule 45 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	K	208	Total 1692	C 1074	N 327	0 278	S 13	0	0

• Molecule 46 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	L	170	Total 1362	C 861	N 254	0 241	S 6	0	0

• Molecule 47 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	М	205	Total 1659	C 1036	N 342	0 276	${ m S}{ m 5}$	0	0

• Molecule 48 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
48	Ν	139	Total 1142	C 732	N 221	0 182	S 7	0	0

• Molecule 49 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	Ο	203	Total 1701	C 1072	N 359	O 266	$\frac{S}{4}$	0	0

• Molecule 50 is a protein called 60S ribosomal protein L13a.

Mol	Chain	Residues		Ate	AltConf	Trace			
50	Р	197	Total 1611	C 1038	N 316	0 252	${ m S}{ m 5}$	0	0

• Molecule 51 is a protein called 60S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
51	Q	158	Total 1282	C 804	N 248	0 221	S 9	0	0

• Molecule 52 is a protein called 60S ribosomal protein L18.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	R	187	Total 1516	C 949	N 314	0 249	${f S}$ 4	0	0

• Molecule 53 is a protein called Ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
53	S	188	Total 1572	C 974	N 337	0 252	S 9	0	0

• Molecule 54 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
54	Т	176	Total 1458	C 929	N 284	0 234	S 11	0	0

• Molecule 55 is a protein called 60S ribosomal protein L21.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	U	158	Total 1293	C 821	N 251	0 215	S 6	0	0

• Molecule 56 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues		At	oms			AltConf	Trace
56	V	99	Total 808	C 518	N 141	0 147	${ m S} { m 2}$	0	0

• Molecule 57 is a protein called 60S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
57	W	134	Total 993	C 625	N 187	0 176	${f S}{5}$	0	0

• Molecule 58 is a protein called 60S ribosomal protein L24.

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
58	Х	61	Total 511	C 327	N 100	O 82	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 59 is a protein called 60S ribosomal protein L23a.

Mol	Chain	Residues		At	oms			AltConf	Trace
59	Y	120	Total 984	C 630	N 185	0 168	S 1	0	0

• Molecule 60 is a protein called 60S ribosomal protein L26.

Mol	Chain	Residues		At	oms		AltConf	Trace	
60	Ζ	134	Total 1116	C 700	N 227	0 186	${ m S} { m 3}$	0	0

• Molecule 61 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms			AltConf	Trace
61	a	134	Total 1103	С 712	N 207	0 181	${ m S} { m 3}$	0	0

• Molecule 62 is a protein called 60S ribosomal protein L27a.

Mol	Chain	Residues		At	oms			AltConf	Trace
62	b	147	Total 1165	C 736	N 240	0 185	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 63 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		At	oms			AltConf	Trace
63	с	95	Total 781	C 487	N 171	O 120	${ m S} { m 3}$	0	0

• Molecule 64 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
64	d	101	Total 785	C 498	N 138	0 142	${ m S} 7$	0	0

• Molecule 65 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	oms			AltConf	Trace
65	е	106	Total 879	C 555	N 170	0 152	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 66 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms			AltConf	Trace
66	f	129	Total 1064	C 673	N 220	0 166	${ m S}{ m 5}$	0	0

• Molecule 67 is a protein called 60S ribosomal protein L35a.

Mol	Chain	Residues		At	AltConf	Trace			
67	g	109	Total 876	$\begin{array}{c} \mathrm{C} \\ 555 \end{array}$	N 174	0 143	$\frac{S}{4}$	0	0

• Molecule 68 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	oms	AltConf	Trace		
68	h	116	Total 920	C 575	N 190	0 149	S 6	0	0

• Molecule 69 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues		At	oms	AltConf	Trace		
69	i	122	Total 1015	C 643	N 204	0 167	S 1	0	0

• Molecule 70 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	j	104	Total 849	C 531	N 180	0 133	${f S}{5}$	0	0

• Molecule 71 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		At	oms	AltConf	Trace		
71	k	86	Total	С	N	0	S	0	0
		_	705	434	155	111	\mathbf{b}		

• Molecule 72 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
72	1	69	Total 569	C 366	N 103	O 99	S 1	0	0

• Molecule 73 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
72	m	50	Total	С	Ν	Ο	S	0	0
10	111	50	444	281	98	64	1	0	0

• Molecule 74 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
74	n	50	Total 411	С 254	N 87	O 64	S 6	0	0

• Molecule 75 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues	Atoms					AltConf	Trace
75	О	25	Total 240	C 145	N 64	O 28	${ m S} { m 3}$	0	0

• Molecule 76 is a protein called Ribosomal protein L36a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
76	р	105	Total 863	C 542	N 175	0 140	S 6	0	0

• Molecule 77 is a protein called 60S ribosomal protein L37a.

Mol	Chain	Residues		At	AltConf	Trace			
77	q	91	Total 708	C 444	N 135	O 122	${ m S} 7$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
q	87	GLU	LYS	$\operatorname{conflict}$	UNP A0A6J2LF66

• Molecule 78 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues	Atoms				AltConf	Trace	
78	r	131	Total 1059	C 655	N 224	0 175	${ m S}{ m 5}$	0	0

• Molecule 79 is a RNA chain called RNA (4803-MER).

Mol	Chain	Residues	Atoms					AltConf	Trace
79	t	3679	Total 78855	C 35119	N 14410	O 25647	Р 3679	0	0

• Molecule 80 is a RNA chain called RNA (76-MER).

Mol	Chain	Residues	Atoms				AltConf	Trace	
80	u	76	Total 1613	C 720	N 283	O 535	Р 75	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
u	34	С	G	conflict	GB 1851728667
u	35	С	А	conflict	GB 1851728667
u	36	G	А	conflict	GB 1851728667
u	37	U	А	conflict	GB 1851728667

• Molecule 81 is a RNA chain called RNA (76-MER).

Mol	Chain	Residues	Atoms				AltConf	Trace	
81	v	76	Total 1618	C 721	N 287	0 534	Р 76	0	0

There are 7 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
V	?	-	А	deletion	GB 1879656365
V	12	С	U	conflict	GB 1879656365
V	14	С	А	conflict	GB 1879656365
V	16	A	U	conflict	GB 1879656365
V	34	С	G	conflict	GB 1879656365
V	35	C	A	conflict	GB 1879656365
V	36	G	А	conflict	GB 1879656365

• Molecule 82 is a RNA chain called RNA (5'-D(P*()P*()P*())-R(P*UP*UP*AP*CP*G P*GP*CP*GP*UP*()P*()P*()P*()P*()P*())-3').

Mol	Chain	Residues	Atoms			AltConf	Trace		
82	W	20	Total 423	C 189	N 72	0 142	Р 20	0	0

 $\bullet\,$ Molecule 83 is a protein called 60S ribosomal protein L10a.

Mol	Chain	Residues	Atoms			AltConf	Trace		
83	Cz	217	Total 1741	C 1113	N 312	O 307	S 9	0	0

• Molecule 84 is a protein called ALA-ALA-LYS-ALA.

Mol	Chain	Residues	Atoms			AltConf	Trace	
84	У	4	Total 24	C 15	N 5	O 4	0	0

• Molecule 85 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
85	S2	3	Total Mg 3 3	0
85	В	1	Total Mg 1 1	0
85	D	6	Total Mg 6 6	0
85	Е	9	Total Mg 9 9	0
85	Ζ	1	Total Mg 1 1	0
85	t	13	TotalMg1313	0

• Molecule 86 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
86	S2	1	Total Zn 1 1	0
86	Sa	1	Total Zn 1 1	0
86	Sf	1	Total Zn 1 1	0
86	k	1	Total Zn 1 1	0
86	р	1	Total Zn 1 1	0
86	q	1	Total Zn 1 1	0

• Molecule 87 is water.

Mol	Chain	Residues	Atoms	AltConf
87	S2	5	Total O 5 5	0
87	\mathbf{SS}	1	Total O 1 1	0
87	Sf	1	Total O 1 1	0
87	u	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RNA (1872-MER)

• Molecule 5: 40S ribosomal protein S4, X isoform

 \bullet Molecule 6: 40S ribosomal protein S5

R198 R204

 \bullet Molecule 7: 40S ribosomal protein S7

• Molecule 8: 40S ribosomal protein S8

• Molecule 15: 40S ribosomal protein S19

• Molecule 22: Receptor of activated protein C kinase 1

			• ••	• • •	• •
MET PRO PRO LYS LYS ASP LYS LYS LYS LYS ALA ALA ALA ALA	LYS SER ALA LYS LYS LYS ASP PRO VAL ASN VAL	SER GLY CLYS CLYS LLYS LLYS LLYS LLYS LLYS LL	LTS GLY VAL VAL ASP ASP ASP ASP 1244 144 N45 N46	F50 D51 K52 K52 L67 V72	R76 L77 179 179 R80
893 K94 S101 S101 K111 T113 K114 K114 C115	GLY ASP ALA ALA ALA ALA GLU ASP ALA ALA				
• Molecule 32: 40	S ribosomal prot	ein S27			
Chain Sb:		89%		8% •	
MET MET P2 H9 K16 839 C40	Y41 Y57 G58 860 R80 R80 R80 R80 R83 R80 R83 R80 R83 R80 R83 R80 R83 R80 R83 R80 R83 R80 R83 R80 R83 R80 R83 R80 R80 R80 R80 R80 R80 R80 R80 R80 R80	7			
• Molecule 33: U	biquitin-like dom	ain-containing p	protein		
Chain Se:	2%	86%		10% •	
LYS V2 R8 R8 Q15 Q15 Q22 K24 K25 K25	R35 N44 V45 P47 T48 F49 G50 K51	K52 K53 N58 SER			
• Molecule 34: U	biquitin-40S ribos	somal protein S	27a		
Chain Sf:	38% 42%	• .	57%		
MET GLN CLN CLN TLE VAL LYS THR THR CLY CLY THR THR THR	THR LEU GLU VAL CLU PRO PRO SER ASP THR THR THR THR THR THC	VAL LYS LYS LYS GLN GLN GLV GLY TLE	PRO ASP GLN GLN GLN ILEU ILEU ALA ALA GLY	LLEU GLN GLU GLU GLY GLY ARG THR THR	SER ASP ASN ASN
	•	*******		** ****	••••
ILE GLN GLN CYS GLU GLU SER THR LEU VAL LEU VAL LEU LEU	ARG GLY GLY ALA LYS LYS LYS SER SER	T86 T87 P88 K90 K90 K92 H93	R95 R96 R97 V98 R99 L100 A101 V102	L103 K104 Y105 Y106 K107 V108 D109	E110 N111 G112 K113 L114 S115 R116 L117 L117 R118
C121 ← P122 ← S123 ← D124 ← E125 ← C126 ← C126 ← C128 ← C128 ← C128 ← C128 ←	F131 F131 F135 F136 F136 H135 H139 H139 H139	C144 C145 L146 T147 Y148 C149 F150 F150 M151	PRO GLU ASP LYS		
• Molecule 35: 60	S ribosomal prot	ein L8			
Chain A:		94%		• •	
MET 42 432 880 E80 1102 1135 815 815	S159 S160 S160 R194 V207 V207 T243 L245	R247 C248 C248 K250 K251 V252 GLU C1N	ASN		
• Molecule 36: 60	S ribosomal prot	ein L3			
Chain B:		95%			
MET 22 85 148 140 1140 1140	M181 H268 K294 K297 V344 S350	K356 R357 R358 R358 R358 L360 D364 R378 R378	Rage Rage Aggs LYS CLV GLU GLU GLU ALA		
		PROTEIN DA			

• Molecule 37: 60S riboso	mal protein L4		
Chain C:	80%	6% 14%	_
MET ALA CG CG A55 E555 E555 E555 C59 C59 C59 C59 C59 C59 C59 C59 C59	1122 1150 1150 1150 1266 1266 1266 1266 1266 1266 1269 1266 1269 1261 1266 1261 1266 1261 1266 1266	M336 R345 R345 R345 R351 K355 K355 K355 K355 K355 K355 K355 K	VAL PRO GLU LYS GLY ALA GLY ASP
LYS LYS PRO ALA VAL VAL LYS LYS LYS LYS LYS LYS LYS LYS LYS LY	LYS ALA ALA ALA ALA LYS LYS LYS LYS LYS LYS LYS LYS ALA ALA ALA ALA ALA ALA	IHR GLU GLU GLU GLU CYS SER ALA ALA	
• Molecule 38: RNA (157-	-MER)		
Chain D:	79%	21%	
C1 G16 G16 C2 C2 C2 C3 C3 C3 C3 C3 C3 C2 C3 C2 C3 C2 C3 C2 C3 C2 C3 C2 C3 C2 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	A77 G78 G78 G81 A82 A82 A82 A82 A82 A82 C83 G87 A95 G87 A103 A103	A104 C106 U110 U111 U123 C128 C128 C128 C128	A148 U157
• Molecule 39: RNA (121-	-MER)		
Chain E:	88%	10%	•••
G1 G7 G7 A22 A22 A54 A54 A54 A54 A54 A54 A54 A54 A54 A54	C78 U102 U 119 U U		
• Molecule 40: 60S ribosom	mal protein L5		
Chain F:	95%		•••
MET GLY PHE V4 V6 V6 M115 1118 S134 S134 S134 S134 T155 T155	8172 M239 Y253 Y253 R291 A295 E296		
• Molecule 41: 60S riboson	mal protein L6		
Chain G:	79%	• 18%	_
MET ALA ALA GLY GLV CTU CTS ALA ALA CTS CTU CTS CTU CTS CTU ALA ALA ALA	LYS GLY GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	LYS SER SER LYS LYS LYS LYS LYS LYS LAS A10 X48 X48 X48 X48 X48 X48 X48 X46 X46 X46 X46 X46 X46 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 X47 XX XX XX XX XX XX XX XXX XXX XXXX XXXX XXXX XXX XXX XXX XXX XXX XXXX XXXXXX XXXXXXXXXX XXXXXXXXXXXXX	R65 A84 A85 LYS LYS LYS
VAL GLU LYS LYS K94 K95 K95 K95 K95 K95 V98 V98 V102 V117 V117 V117	K220 R233 F235 F235 F235 R236 R236 R236 R235 R235 F241 T242 F241 T242 F243 F243	T245 E246 K247 I252 F298	
• Molecule 42: 60S ribosom	mal protein L7		
Chain H:	83%	• 13%	-
MET ALA ALA ALA ALA CLU CLYS CLYS CLYS LYS LYS ALA ALA ALA ALA ALA ALA ALA ALA CLV CLV CLY CLY	LYS LYS LYS LYS VAL PRO ALA ALA ALA CLU CLYS LYS LYS LYS ARG ARG ARG ARG	rr 2 475 7116 7116 7141 7189 7189 7201 7201 7201 7201	

 \bullet Molecule 49: Ribosomal protein L15

Chain O:	95%	5%
MET MET K5 K5 K5 K4 R4 R4 R4 R4 R4 R4 R4 R4 S125	R1 44 N1 45 R2 04 R2 04	
• Molecule 50: 60S rib	osomal protein L13a	
Chain P:	91%	6% ·
MET ALA GLU GLU GLU GLU GLU R11 R11 R117 R117 R117 R117	L141 141 133 133 133 133 133 133 133 133	
• Molecule 51: 60S rib	osomal protein L17	
Chain Q:	82%	• 14%
MET V2 16 N10 N28 N28 N28 N28 N28	D110 0115 0115 0155 0155 0115 0115 0115	LIS LYS GLN CLN CYS CLN MET ALA ALA ALA ALA CLU
• Molecule 52: 60S rib	osomal protein L18	
Chain R:	95%	5% •
MET MET K9 K9 E17 E17 N40 L103	K1 15 21 83 N1 88	
• Molecule 53: Riboso	mal protein L19	
Chain S:	89%	7% •
MET 82 812 837 837 663 663 7663 7663 7663 7663 766	D116 D116 C122 C122 C123 C123 C123 C123 C123 D175 D175 D177 D177 D177 D177 D177 C177 D177 C177 C	1185 K186 T187 L188 L188 L188 CLU CLU CLU CLU CLU CLU CLU
• Molecule 54: 60S rib	osomal protein L18a	
Chain T:	96%	·
M1 C16 K21 R31 L82 L82 R31 R36 R38 R38 R98 R38 R38 R38 R38 R38 R38 R38 R38 R38 R3		
• Molecule 55: 60S rib	osomal protein L21	
Chain U:	90%	8% ••
	PROTEIN DATA BANK	

MET 12 14 14 14 14 14 14 14 14 14 14 14 14 14	V48 V80 V80 V13 D113 D113 V125 V126 V126 V126 V126	ALA	
• Molecule 56: 6	60S ribosomal protein L	22	
Chain V:	66%	11%	23%
MET ALA PRO PRO LYS LYS LYS LEU VAL ALA ALA CYS GLY GLY	LYS LYS LYS LYS LYS LYS C25 C25 M34 M34 M35 M35 M35 M38 N38 N38 N38 N38 N38 N38 N38 N38 N38 N	T62 R65 S66 S66 S66 S66 S79 S79 S79 S79 D98 C116 T16 T116	ASN GLN GLU GLU GLU GLU ASP GLU ASP
• Molecule 57: 6	60S ribosomal protein L	23	
Chain W:	9	1%	5% •
MET SER LYS ARG GLY GT C7 C3 S9 S9 S10	K13 C28 D92 T118 K123 K123 K123 K123 K123		
• Molecule 58: 6	50S ribosomal protein L	24	
Chain X:	37% •	61%	
MET K12 K27 K27 K27 K27 K27 G4 C G4 C G4 C G4 C	CLU CLU TLE CLU CLU CLN CLN CLN ARC ARC ARC ARC ARC ARC ARC ARC ARC ARC	TLE THR GLY ALA ALA ALA SER ALA ALA ALA ALA ALA ALA ALA ASN GLN GLN	PRO GLU VAL VAL ALA ALA GLN GLU ALA ALA ALA ALA
LYS GLU GLU LYS LYS LYS LYS GLN ALA ALA ALA SER LYS LYS	THR ALA MALA MALA ALA ALA ALA ALA ALA ALA A	11.E VAL LYS PRO PRO VAL VAL SER ALA ALA ALA ALA ALA CLY GLY GLY ARG GLY	
• Molecule 59: 6	60S ribosomal protein L	23a	
Chain Y:	74%	·	23%
MET ALA PRO LYS LYS LYS GLU GLU ALA ALA PRO PRO	PRO LYS ALA ALA GLU GLU GLU GLU CYS LYS LYS LYS LYS VALA VALA VALA	LYS GLY VAL HIS SER HIS K35 K35 K35 K35 K35 K35 K35 K35 K35 K37 K47	R67 88 1156 1156
• Molecule 60: 6	0S ribosomal protein L	26	
Chain Z:	86%		7% 8%
M1 D10 K13 S32 Q40 V55	Y74 V95 N100 R100 R108 R132 K132 C133 C133 C133 C133 C133 C133 C133 C	CHU THR LIVS LIVS CLU CLN CLN CLN	
• Molecule 61: 6	00S ribosomal protein L	27	
Chain a:	90%	6	8% •
MET GLY V13 D30 M67 K67	Y75 184 199 199 199 199 199 192 192 136		
• Molecule 62: 6	60S ribosomal protein L	27a	

W O R L D W I D E PROTEIN DATA BANK

Chain b:	98%	
MET P2 R9 N93 V140 A148		
• Molecule 63:	60S ribosomal protein L29	
Chain c:	57% •	39%
MET A2 R14 R25 K51 K51 K52 C53	L54 K55 K55 A67 A67 A67 A69 A69 A69 CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU CLU CLYS CLU CLU CLYS CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	A117 LEU LEU CYS CVS CVS CLV PRO FRO FRO FRO CLV GLU ALA ALA ALA
PRO ALA LYS LYS GLN ALA ALA PRO ALA ALA GLN	ALA PRO GLY GLY ALA PRO PRO TVS ALA PRO	
• Molecule 64:	60S ribosomal protein L30	
Chain d:	81%	7% 12%
MET VAL ALA ALA LYS LYS LYS LYS K9 K9 S10	L11 E12 K23 K26 K26 K26 K26 K26 K26 K26 K26 K26 K26	
• Molecule 65:	60S ribosomal protein L31	
Chain e:	81%	• 15%
MET ALA PRO PRO LYS LYS GLY GLY GLU LYS LYS	LYS GLY ALA ALA ILE M57 M57 M57 M57 M93 B95 B95 B95 B97 B97 B97 B97 B97 B97 B97 B97 B97 B97	
• Molecule 66:	60S ribosomal protein L32	
Chain f:	91%	
MET A2 K9 K19 K76 L89		
• Molecule 67:	60S ribosomal protein L35a	
Chain g:	95%	•••
MET 82 846 R95 H99 R100 R100		
• Molecule 68:	60S ribosomal protein L34	
Chain h:	97%	•••

 \bullet Molecule 69: 60S ribosomal protein L35

Chain i:	93%		6%•
MET A2 K12 E15 Q20 K25 K25	Q30 K7 M12 M12 A12 A12 A12 A12 A12 A12 A12 A12 A12 A		
• Molecule 70:	60S ribosomal protein L36		
Chain j:	97%		
MET M2 M2 M2 M2 M2 M2 M2 M1 M1 M2 M1 M1 M2 M1 M2 M1 M1 M1 M1 M2 M1 M1 M1 M2 M1 M1 M2 M1			
• Molecule 71:	Ribosomal protein L37		
Chain k:	84% 5	;%	11%
MET T2 K25 K79 P84 K85	ARG ARG ALLA ALLA ALLA ALLA ALLA ALLA AL		
• Molecule 72:	60S ribosomal protein L38		
Chain l:	93%		6% •
MET P2 E7 K18 K18 K29			
• Molecule 73:	60S ribosomal protein L39		
Chain m:	92%		6% •
MET 82 R21 M29 R36 L51			
• Molecule 74:	Ubiquitin-60S ribosomal protein L40		
Chain n:	38% • 61%		
MET GLN TLE PHE VAL LYS THR LEU THR CLY	THR THR THR THR THR THR THR THR THR THR	GLU GLU	ASP GLY ARG THR LEU SER ASP TYR
ILE LYS LYS GLN GLV GLV GLV HRR HIEU HIEU VAL LEU LEU	ARG LEU ARG CLY CLY CLY CLY CLY CLYS		
	WORLDWIDE PROTEIN DATA BANK		

• Molecule 75: 60	S ribosomal protein L41		
Chain o:	96%		·
M1 K25			
• Molecule 76: Ri	ibosomal protein L36a		
Chain p:	94%		5%•
MET V2 K27 K27 878 878 878 878 878 879 879	F106		
• Molecule 77: 60	S ribosomal protein L37a		
Chain q:	89%		10% •
MET A 2 K 7 V 8 K 36 K 48 K 48 K 48 C 60 C 60 S 75	R85 K90 D91 Q92		
• Molecule 78: 60	S ribosomal protein L28		
Chain r:	91%		• •
MET 22 22 22 22 22 22 22 22 22 22 22 22 22	R119 V124 V125 V126 K127 K129 K129 R130 T131 T131 PR0 T131 PR0 T132 SER		
• Molecule 79: RI	NA (4803-MER)		
Chain t:	61%	15% • 23 ⁶	%
C1 C9 A25 A39 C40 C41 A42	048 049 049 049 045 046 046 041 05 0110 0112 0112 0112 0112	C128 C128 C133 C133 C133 C138 C138 C138 C138	G1 42 U1 52 G1 60 C1 66 G1 76
6179 6185 0183 0184 0187 0187 0199 0199 0199	C215 C215 C217 A218 C222 C222 C223 C223 C223 C223 C223 C22	G C264 C264 C266 C266 C266 C266 C266 C265 C265 C265	G310 G315 U316 A317 A347 C340
6373 A76 U31 U31 031 0387 6411 6412 6412 6412	0440 0440 6455 6455 6455 6455 6455 6455	6485 1486 1486 6489 6489 6489 6489 6489 6489 6489 6489 6489 6489 6489 6489 6489 6489 6489 6487 6487 6487 6487 6487 6487 6487 6487 6487 6489 64999 6499 6499 6499 6499 6499 6499 6499 6499 6499 649	
		00000000000000000000000000000000000000	
0 9 0 0 9 9 0 9 0 9 0 9 0		000000000000000000000000000000000000000	

50% Chain y: 100%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	62369	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	30	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	59000	Depositor
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.703	Depositor
Minimum map value	-0.357	Depositor
Average map value	0.002	Depositor
Map value standard deviation	0.024	Depositor
Recommended contour level	0.0475	Depositor
Map size (Å)	420.18, 420.18, 420.18	wwPDB
Map dimensions	298, 298, 298	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.41, 1.41, 1.41	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PSU, ZN, MMX, MG, 5MU, A2M, UR3, OMC, OMG, OMU, B8N, MA6, 4AC, 5MC, 6MZ, M7A

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	S2	0.24	2/39984~(0.0%)	0.91	101/62292~(0.2%)	
2	SA	0.28	0/1730	0.57	0/2350	
3	SB	0.31	0/1765	0.61	1/2362~(0.0%)	
4	SD	0.41	1/1784~(0.1%)	0.66	2/2402~(0.1%)	
5	SE	0.33	1/2101~(0.0%)	0.61	0/2828	
6	SF	0.30	0/1516	0.61	0/2037	
7	SH	0.32	0/1519	0.59	0/2033	
8	SI	0.30	0/1702	0.61	1/2271~(0.0%)	
9	SK	0.28	0/851	0.57	0/1147	
10	SL	0.32	0/1241	0.62	0/1662	
11	SP	0.38	0/1094	0.69	2/1460~(0.1%)	
12	SQ	0.38	0/1177	0.70	0/1575	
13	SR	0.39	0/1093	0.70	0/1469	
14	\mathbf{SS}	0.34	0/1216	0.70	1/1628~(0.1%)	
15	ST	0.28	0/1134	0.58	1/1519~(0.1%)	
16	SU	0.31	0/832	0.62	0/1117	
17	SV	0.32	0/632	0.75	2/845~(0.2%)	
18	SX	0.31	0/1116	0.66	0/1490	
19	Sa	0.28	0/841	0.62	0/1128	
20	Sc	0.27	0/508	0.75	1/680~(0.1%)	
21	Sd	0.26	0/470	0.58	0/623	
22	Sg	0.28	0/2486	0.62	0/3384	
23	SC	0.31	0/1795	0.59	1/2424~(0.0%)	
24	SG	0.27	0/1946	0.64	1/2590~(0.0%)	
25	SJ	0.28	0/1561	0.66	1/2083~(0.0%)	
26	SM	0.24	0/922	0.52	0/1237	
27	SN	0.24	0/1232	0.53	0/1656	
28	SO	0.25	0/1037	0.61	0/1391	
29	SW	0.28	0/1051	0.61	0/1406	
30	SY	0.27	0/1094	0.59	0/1452	
31	SZ	0.33	0/585	0.68	0/785	
32	Sb	0.29	$0/\overline{653}$	0.59	0/876	

N. T. 1		В	ond lengths	ngths Bond angles	
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	Se	0.29	0/458	0.61	0/604
34	Sf	0.27	0/559	0.54	0/743
35	А	0.28	0/1968	0.57	0/2639
36	В	0.26	0/3272	0.59	3/4380~(0.1%)
37	С	0.31	0/2943	0.60	$1/3951 \ (0.0\%)$
38	D	0.23	0/3726	0.87	$1/5804 \ (0.0\%)$
39	Е	0.24	0/2839	0.94	7/4425 (0.2%)
40	F	0.26	0/2444	0.53	0/3272
41	G	0.27	0/1998	0.58	0/2676
42	Н	0.26	0/1900	0.53	0/2534
43	Ι	0.26	0/1968	0.58	2/2649~(0.1%)
44	J	0.31	0/1547	0.61	1/2080 (0.0%)
45	K	0.26	0/1730	0.60	2/2311 (0.1%)
46	L	0.29	0/1385	0.63	0/1852
47	М	0.27	0/1690	0.64	1/2261~(0.0%)
48	Ν	0.29	0/1164	0.64	1/1556~(0.1%)
49	0	0.24	0/1746	0.59	0/2338
50	Р	0.29	0/1641	0.59	1/2195~(0.0%)
51	Q	0.24	0/1309	0.54	0/1756
52	R	0.26	0/1540	0.62	0/2054
53	S	0.28	0/1588	0.68	1/2099~(0.0%)
54	Т	0.26	0/1498	0.62	1/2010~(0.0%)
55	U	0.28	0/1321	0.59	0/1764
56	V	0.34	0/822	0.69	1/1103~(0.1%)
57	W	0.27	0/1007	0.61	1/1350~(0.1%)
58	Х	0.31	0/524	0.60	0/698
59	Y	0.26	0/1001	0.58	0/1345
60	Ζ	0.29	0/1132	0.63	1/1503~(0.1%)
61	a	0.29	0/1126	0.66	3/1502~(0.2%)
62	b	0.24	0/1194	0.55	0/1594
63	с	0.24	0/794	0.55	0/1045
64	d	0.25	0/796	0.54	0/1068
65	е	0.26	0/894	0.57	0/1204
66	f	0.26	0/1082	0.61	1/1443~(0.1%)
67	g	0.26	0/895	0.60	0/1198
68	h	0.25	0/930	0.59	0/1238
69	i	0.26	0/1023	0.56	0/1350
70	j	0.25	0/860	0.63	0/1137
71	k	0.25	0/720	0.60	0/952
72	1	0.30	0/575	0.60	0/761
73	m	0.24	0/454	0.59	0/599
74	n	0.26	0/417	0.58	0/553
75	0	0.27	0/241	0.79	$\overline{0/305}$

Mol	Chain	В	ond lengths	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
76	р	0.30	0/877	0.63	0/1156	
77	q	0.25	0/718	0.60	1/954~(0.1%)	
78	r	0.25	0/1074	0.65	1/1437~(0.1%)	
79	t	0.28	15/88201~(0.0%)	0.94	185/137564~(0.1%)	
80	u	0.26	0/1800	1.03	7/2804~(0.2%)	
81	V	0.26	0/1806	1.00	12/2813~(0.4%)	
82	W	0.19	0/471	0.88	1/731~(0.1%)	
83	Cz	0.27	0/1769	0.57	0/2371	
84	У	0.20	0/23	0.42	0/29	
All	All	0.27	19/234128~(0.0%)	0.83	351/343962~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
12	SQ	0	1

mi (15) bond length outliers are instea below	All	19) bond	ond lengt	n outliers	are listed	below
---	-----	----------	-----------	------------	------------	-------

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
79	t	479	G	O3'-P	-11.60	1.47	1.61
1	S2	1833	UR3	O3'-P	-10.51	1.48	1.61
4	SD	163	PRO	C-N	9.23	1.55	1.34
79	t	490	G	O3'-P	7.26	1.69	1.61
79	t	1990	G	O5'-C5'	-6.66	1.32	1.42
79	t	480	С	P-OP2	-6.64	1.37	1.49
79	t	478	G	O3'-P	-6.57	1.53	1.61
79	t	4471	С	O3'-P	6.23	1.68	1.61
79	\mathbf{t}	1990	G	C5'-C4'	-6.19	1.44	1.51
79	t	3795	U	O3'-P	6.18	1.68	1.61
79	t	489	G	O3'-P	-5.95	1.54	1.61
79	t	480	С	P-OP1	-5.90	1.39	1.49
5	SE	101	LEU	C-N	-5.77	1.20	1.34
79	t	479	G	P-OP1	-5.66	1.39	1.49
79	t	1987	G	O3'-P	-5.63	1.54	1.61
1	S2	1834	А	P-OP1	-5.59	1.39	1.49
79	t	2095	С	C1'-N1	5.51	1.57	1.48
79	t	477	С	03'-P	-5.47	1.54	1.61
79	t	490	G	C3'-O3'	5.10	1.49	1.42

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
79	t	4473	А	O5'-P-OP1	-59.17	39.70	110.70
79	t	3797	G	O5'-P-OP2	-45.67	55.89	110.70
79	t	3797	G	O5'-P-OP1	-34.01	69.89	110.70
79	t	4473	А	O5'-P-OP2	24.62	140.25	110.70
1	S2	115	U	C2-N3-C4	19.48	138.69	127.00
1	S2	1834	А	O5'-P-OP1	-13.84	93.25	105.70
79	t	4473	А	OP1-P-OP2	-12.70	100.55	119.60
79	t	860	С	N1-C2-O2	11.79	125.98	118.90
79	t	860	С	C2-N1-C1'	11.40	131.34	118.80
79	t	853	С	N1-C2-O2	11.36	125.71	118.90
79	t	853	С	C2-N1-C1'	10.88	130.77	118.80
79	t	632	С	N3-C2-O2	-10.75	114.38	121.90
79	t	3380	U	N1-C2-O2	10.54	130.18	122.80
79	t	479	G	C1'-C2'-O2'	-10.43	79.32	110.60
79	t	3380	U	C2-N1-C1'	10.23	129.97	117.70
11	SP	68	PRO	CA-N-CD	-10.12	97.33	111.50
54	Т	159	LEU	CA-CB-CG	9.98	138.26	115.30
79	t	4152	U	C2-N1-C1'	9.94	129.63	117.70
1	S2	1317	U	C2-N1-C1'	9.93	129.61	117.70
79	t	1200	С	N3-C2-O2	-9.90	114.97	121.90
79	t	3380	U	N3-C2-O2	-9.85	115.30	122.20
1	S2	1456	С	N1-C2-O2	9.64	124.68	118.90
1	S2	846	С	N3-C2-O2	-9.47	115.27	121.90
79	t	4152	U	N1-C2-O2	9.41	129.39	122.80
1	S2	115	U	N1-C2-N3	9.28	120.47	114.90
1	S2	1456	С	C2-N1-C1'	9.28	129.01	118.80
1	S2	115	U	N3-C4-C5	9.27	120.17	114.60
79	t	1674	С	N3-C2-O2	-9.20	115.46	121.90
79	t	2253	U	C2-N1-C1'	9.15	128.68	117.70
79	t	853	С	N3-C2-O2	-9.11	115.53	121.90
79	t	1990	G	O5'-P-OP2	9.06	121.58	110.70
79	t	860	С	N3-C2-O2	-8.85	115.71	121.90
79	t	863	С	N3-C2-O2	-8.57	115.90	121.90
36	В	360	LEU	CA-CB-CG	8.56	134.99	115.30
79	t	4152	U	N3-C2-O2	-8.53	116.23	122.20
1	S2	1142	С	N1-C2-O2	8.34	123.90	118.90
79	t	222	С	N1-C2-O2	8.34	123.90	118.90
79	t	1135	С	C2-N1-C1'	8.28	127.91	118.80
79	t	1135	С	N1-C2-O2	8.26	123.85	118.90
17	SV	66	ASP	CB-CG-OD1	8.22	125.70	118.30
79	t	4505	С	N3-C2-O2	-8.22	116.15	121.90
79	t	860	С	C6-N1-C1'	-8.17	110.99	120.80

All (351) bond angle outliers are listed below:

α \cdot \cdot \cdot	r	•	
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
79	\mathbf{t}	2253	U	N1-C2-O2	8.17	128.52	122.80
1	S2	1142	С	C2-N1-C1'	8.15	127.76	118.80
79	t	222	С	C2-N1-C1'	8.13	127.75	118.80
1	S2	118	С	C2-N1-C1'	8.09	127.70	118.80
79	t	632	С	C6-N1-C2	-8.04	117.08	120.30
79	t	2253	U	N3-C2-O2	-8.01	116.59	122.20
1	S2	118	С	N1-C2-O2	7.99	123.69	118.90
79	t	2592	С	C2-N1-C1'	7.95	127.55	118.80
79	t	450	G	O4'-C1'-N9	7.93	114.55	108.20
1	S2	1834	А	C5'-C4'-O4'	-7.91	99.61	109.10
36	В	364	ASP	CB-CG-OD1	7.90	125.41	118.30
4	SD	43	PRO	CA-N-CD	-7.90	100.44	111.50
79	t	2312	U	N3-C2-O2	-7.84	116.71	122.20
79	\mathbf{t}	2471	С	N1-C2-O2	7.73	123.54	118.90
56	V	35	ASP	CB-CG-OD1	7.63	125.17	118.30
1	S2	976	С	N1-C2-O2	7.57	123.44	118.90
1	S2	1264	С	N1-C2-O2	7.57	123.44	118.90
79	\mathbf{t}	1674	С	N1-C2-O2	7.51	123.41	118.90
79	${ m t}$	853	С	C6-N1-C1'	-7.51	111.79	120.80
8	SI	80	ASP	CB-CG-OD1	7.50	125.05	118.30
1	S2	1456	С	N3-C2-O2	-7.50	116.65	121.90
79	t	3828	С	C6-N1-C2	-7.48	117.31	120.30
23	\mathbf{SC}	132	ASP	CB-CG-OD1	7.46	125.01	118.30
79	t	3543	С	N3-C2-O2	-7.45	116.69	121.90
79	t	3828	С	C5-C6-N1	7.41	124.71	121.00
79	t	853	С	C6-N1-C2	-7.41	117.34	120.30
79	t	863	С	N1-C2-O2	7.35	123.31	118.90
1	S2	1719	С	C2-N1-C1'	7.35	126.88	118.80
39	Ε	29	С	N1-C2-O2	7.33	123.30	118.90
1	S2	1286	С	N1-C2-O2	7.26	123.26	118.90
79	t	2592	С	N1-C2-O2	7.24	123.25	118.90
1	S2	1274	С	N1-C2-O2	7.23	123.24	118.90
61	а	92	ASP	CB-CG-OD1	7.18	124.76	118.30
79	\mathbf{t}	2312	U	N1-C2-O2	7.17	127.82	122.80
79	t	480	С	C1'-C2'-O2'	-7.14	89.17	110.60
1	S2	359	С	C2-N1-C1'	7.10	126.61	118.80
79	t	501	G	C4-N9-C1'	7.05	135.67	126.50
1	S2	1523	G	C4-N9-C1'	7.05	135.66	126.50
1	S2	1317	U	C6-N1-C1'	-7.04	111.34	121.20
1	S2	1318	U	N1-C2-O2	7.00	127.70	122.80
79	t	2312	U	$\overline{\text{C2-N1-C1'}}$	6.96	126.05	117.70
79	t	1985	С	N1-C2-O2	6.93	123.06	118.90

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
• • • • • • • • • • • •	J	<i>r</i> · · · · · · · · · · · · · · · · · · ·	r - g - · · ·

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	S2	1317	U	N1-C2-O2	6.92	127.65	122.80
79	\mathbf{t}	1135	С	N3-C2-O2	-6.92	117.05	121.90
1	S2	306	С	N1-C2-O2	6.92	123.05	118.90
61	a	99	ASP	CB-CG-OD1	6.91	124.52	118.30
79	\mathbf{t}	3543	С	N1-C2-O2	6.89	123.04	118.90
1	S2	359	С	N1-C2-O2	6.86	123.02	118.90
79	${ m t}$	860	С	C6-N1-C2	-6.77	117.59	120.30
79	t	1896	С	N3-C2-O2	-6.76	117.17	121.90
79	t	1350	С	N3-C2-O2	-6.71	117.20	121.90
1	S2	1142	С	N3-C2-O2	-6.70	117.21	121.90
81	V	12	С	N3-C2-O2	-6.69	117.22	121.90
79	t	49	U	N1-C2-O2	6.68	127.48	122.80
80	u	56	С	N1-C2-O2	6.67	122.90	118.90
60	Ζ	10	ASP	CB-CG-OD1	6.65	124.28	118.30
1	S2	1523	G	N3-C4-N9	6.65	129.99	126.00
79	t	222	С	N3-C2-O2	-6.64	117.25	121.90
79	t	1851	U	C2-N1-C1'	6.63	125.66	117.70
1	S2	1318	U	C2-N1-C1'	6.60	125.62	117.70
79	t	2471	С	C2-N1-C1'	6.60	126.06	118.80
79	t	1388	G	C4-N9-C1'	6.56	135.02	126.50
79	t	137	G	C4-N9-C1'	6.55	135.01	126.50
79	t	4152	U	C6-N1-C1'	-6.55	112.03	121.20
53	S	116	ASP	CB-CG-OD1	6.55	124.19	118.30
79	t	3380	U	C6-N1-C1'	-6.55	112.03	121.20
37	С	59	GLY	N-CA-C	-6.54	96.75	113.10
1	S2	845	С	N1-C2-O2	6.53	122.82	118.90
79	\mathbf{t}	632	С	N1-C2-O2	6.53	122.81	118.90
1	S2	1264	С	C2-N1-C1'	6.52	125.98	118.80
81	V	61	С	C2-N1-C1'	6.52	125.97	118.80
4	SD	163	PRO	O-C-N	6.50	133.09	122.70
79	t	851	G	C4-N9-C1'	6.49	134.94	126.50
77	q	89	LEU	CA-CB-CG	6.46	130.16	115.30
79	\mathbf{t}	112	С	C2-N1-C1'	6.46	125.90	118.80
11	SP	70	MET	CA-CB-CG	6.45	124.26	113.30
79	${ m t}$	501	G	N3-C4-N9	6.44	129.86	126.00
78	r	106	LEU	CA-CB-CG	6.40	130.02	115.30
1	S2	1456	C	C6-N1-C1'	-6.38	113.14	120.80
1	S2	118	C	N3-C2-O2	-6.37	117.44	121.90
79	t	477	C	O4'-C4'-C3'	-6.37	97.63	104.00
79	\mathbf{t}	2592	C	N3-C2-O2	-6.37	117.44	121.90
79	t	1388	G	N3-C4-N9	6.36	129.81	126.00
1	S2	562	G	P-O3'-C3'	6.36	127.33	119.70

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	r J

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	S2	1523	G	N3-C4-C5	-6.34	125.43	128.60
1	S2	1818	А	P-O3'-C3'	6.34	127.30	119.70
1	S2	306	С	C2-N1-C1'	6.32	125.75	118.80
81	V	11	С	N1-C2-O2	6.32	122.69	118.90
1	S2	1318	U	N3-C2-O2	-6.31	117.78	122.20
79	\mathbf{t}	860	С	C5-C6-N1	6.31	124.16	121.00
1	S2	1541	С	N1-C2-O2	6.30	122.68	118.90
79	\mathbf{t}	137	G	N3-C4-C5	-6.29	125.45	128.60
79	\mathbf{t}	2238	G	C4-N9-C1'	6.29	134.67	126.50
79	\mathbf{t}	1851	U	N1-C2-O2	6.28	127.20	122.80
79	\mathbf{t}	4505	С	N1-C2-O2	6.27	122.66	118.90
81	V	17	А	P-O3'-C3'	6.26	127.21	119.70
1	S2	976	С	C2-N1-C1'	6.24	125.67	118.80
79	t	851	G	N3-C4-C5	-6.22	125.49	128.60
80	u	56	С	C6-N1-C2	-6.22	117.81	120.30
79	t	4441	U	N1-C2-O2	6.21	127.15	122.80
79	\mathbf{t}	501	G	N3-C4-C5	-6.21	125.50	128.60
39	Е	29	С	N3-C2-O2	-6.21	117.56	121.90
79	${ m t}$	4037	G	C4-N9-C1'	6.19	134.54	126.50
79	t	2471	С	N3-C2-O2	-6.18	117.57	121.90
25	SJ	50	LEU	CA-CB-CG	6.17	129.50	115.30
79	${ m t}$	3644	С	N1-C2-O2	6.17	122.60	118.90
79	\mathbf{t}	137	G	N3-C4-N9	6.14	129.69	126.00
1	S2	1456	С	C6-N1-C2	-6.13	117.85	120.30
1	S2	1286	С	N3-C2-O2	-6.13	117.61	121.90
1	S2	920	U	C2-N1-C1'	6.12	125.04	117.70
79	t	1486	U	N1-C2-O2	6.11	127.07	122.80
79	\mathbf{t}	853	C	C5-C6-N1	6.10	124.05	121.00
79	t	1388	G	N3-C4-C5	-6.10	125.55	128.60
79	t	1851	U	N3-C2-O2	-6.09	117.93	122.20
1	S2	1264	С	N3-C2-O2	-6.07	117.65	121.90
1	S2	875	A	P-O3'-C3'	6.07	126.98	119.70
79	t	2364	С	C2-N1-C1'	6.07	125.47	118.80
79	t	3694	U	P-O3'-C3'	6.03	126.94	119.70
81	V	68	C	C2-N1-C1'	6.03	125.44	118.80
1	S2	1523	G	C8-N9-C1'	-6.03	119.16	127.00
79	t	2253	U	C6-N1-C1'	-6.03	112.76	121.20
1	S2	846	C	N1-C2-O2	6.02	122.51	118.90
81	V	43	С	C2-N1-C1'	6.02	125.42	118.80
79	t	507	G	O4'-C1'-N9	6.02	113.02	108.20
1	S2	1025	U	$C2-\overline{N1}-\overline{C1'}$	6.01	$1\overline{24.92}$	117.70
36	В	140	ASP	CB-CG-OD1	6.00	$123.7\overline{0}$	118.30

α \cdot \cdot \cdot	C		
Continued	trom	nremous	naae
contentaca	<i>J</i> · <i>O</i> · · · <i>O</i>	proceed ac	$P^{\alpha g} \cdots$

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
81	V	50	U	P-O3'-C3'	6.00	126.89	119.70
79	t	501	G	C8-N9-C1'	-5.99	119.21	127.00
79	t	1486	U	C2-N1-C1'	5.99	124.88	117.70
1	S2	908	С	N3-C2-O2	-5.98	117.71	121.90
79	t	49	U	C2-N1-C1'	5.98	124.87	117.70
45	K	44	ASP	CB-CG-OD1	5.97	123.68	118.30
79	t	855	С	C2-N1-C1'	5.97	125.36	118.80
1	S2	976	С	N3-C2-O2	-5.95	117.74	121.90
79	t	4130	С	N1-C2-O2	5.95	122.47	118.90
79	t	4693	С	N3-C2-O2	-5.92	117.76	121.90
79	t	851	G	N3-C4-N9	5.92	129.55	126.00
79	t	496	С	N1-C2-O2	5.90	122.44	118.90
39	Е	29	С	C2-N1-C1'	5.89	125.28	118.80
79	t	2663	U	N1-C2-O2	5.89	126.92	122.80
81	V	61	С	N1-C2-O2	5.89	122.43	118.90
48	N	81	ASP	CB-CG-OD1	5.88	123.60	118.30
1	S2	1317	U	N3-C2-O2	-5.86	118.10	122.20
79	t	847	U	P-O3'-C3'	5.86	126.74	119.70
79	t	1990	G	O4'-C1'-C2'	-5.85	99.95	105.80
15	ST	110	LEU	CA-CB-CG	5.85	128.75	115.30
57	W	92	ASP	CB-CG-OD1	5.84	123.56	118.30
79	t	4717	U	P-O3'-C3'	5.84	126.71	119.70
79	t	2263	С	C2-N1-C1'	5.83	125.22	118.80
79	t	1985	С	N3-C2-O2	-5.83	117.82	121.90
79	t	2364	С	N1-C2-O2	5.82	122.39	118.90
80	u	62	С	C2-N1-C1'	5.82	125.20	118.80
79	t	480	С	O5'-P-OP1	5.81	117.67	110.70
1	S2	306	C	N3-C2-O2	-5.81	117.83	121.90
79	t	4037	G	N3-C4-C5	-5.80	125.70	128.60
80	u	55	U	C2-N1-C1'	5.79	124.65	117.70
80	u	56	С	C2-N1-C1'	5.79	125.17	118.80
79	t	1146	C	N1-C2-O2	5.79	122.37	118.90
80	u	43	С	C2-N1-C1'	5.78	125.16	118.80
79	t	222	С	C6-N1-C2	-5.78	117.99	120.30
17	SV	11	LEU	CA-CB-CG	5.73	128.47	115.30
79	t	49	U	N3-C2-O2	-5.72	118.19	122.20
44	J	48	LEU	CA-CB-CG	5.72	128.46	115.30
79	t	1135	С	C6-N1-C2	-5.72	118.01	120.30
79	t	1486	U	N3-C2-O2	-5.72	118.20	122.20
1	S2	635	C	C2-N1-C1'	5.71	125.08	118.80
14	SS	23	ARG	CA-CB-CG	5.71	125.95	113.40
1	S2	115	U	N3-C2-O2	-5.70	118.21	122.20

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	J	1	I J

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
79	t	3380	U	C5-C6-N1	5.70	125.55	122.70
79	t	2099	С	C2-N1-C1'	5.68	125.05	118.80
79	t	1896	С	N1-C2-O2	5.68	122.31	118.90
39	Е	102	U	N1-C2-O2	5.68	126.78	122.80
80	u	56	С	N3-C2-O2	-5.67	117.93	121.90
1	S2	1142	С	C6-N1-C2	-5.66	118.03	120.30
1	S2	1663	С	C2-N1-C1'	5.66	125.03	118.80
1	S2	1126	С	N1-C2-O2	5.66	122.30	118.90
1	S2	1286	С	C2-N1-C1'	5.65	125.02	118.80
1	S2	1126	С	N3-C2-O2	-5.65	117.94	121.90
79	t	128	С	N1-C2-O2	5.65	122.29	118.90
50	Р	141	LEU	CA-CB-CG	5.64	128.28	115.30
79	t	3513	U	N1-C2-O2	5.62	126.74	122.80
1	S2	359	С	N3-C2-O2	-5.62	117.97	121.90
79	t	4441	U	N3-C2-O2	-5.61	118.27	122.20
1	S2	561	G	P-O3'-C3'	5.61	126.43	119.70
79	t	682	С	N1-C2-O2	5.61	122.27	118.90
79	t	1135	С	C6-N1-C1'	-5.61	114.07	120.80
79	t	3947	С	N1-C2-O2	5.60	122.26	118.90
1	S2	118	С	C6-N1-C1'	-5.58	114.10	120.80
79	t	71	С	P-O3'-C3'	5.58	126.39	119.70
79	t	4152	U	C5-C6-N1	5.56	125.48	122.70
79	t	4234	С	N1-C2-O2	5.56	122.24	118.90
1	S2	573	С	N1-C2-O2	5.55	122.23	118.90
79	t	1388	G	C8-N9-C1'	-5.54	119.79	127.00
1	S2	1310	U	C2-N1-C1'	5.54	124.35	117.70
1	S2	1286	С	C6-N1-C2	-5.53	118.09	120.30
1	S2	1142	С	C6-N1-C1'	-5.52	114.18	120.80
66	f	89	LEU	CA-CB-CG	5.52	127.99	115.30
79	t	480	С	N1-C1'-C2'	5.52	121.17	114.00
1	S2	1499	U	C2-N1-C1'	5.51	124.32	117.70
79	t	4643	G	N1-C6-O6	-5.51	116.59	119.90
79	t	2663	U	C2-N1-C1'	5.51	124.31	117.70
79	t	866	С	C2-N1-C1'	5.51	124.86	118.80
24	SG	124	LEU	CA-CB-CG	5.50	127.95	115.30
1	S2	69	С	C2-N1-C1'	5.50	124.85	118.80
79	t	868	C	C2-N1-C1'	5.48	124.83	118.80
47	М	155	MET	CB-CG-SD	5.48	128.84	112.40
1	S2	1274	C	N3-C2-O2	-5.47	118.07	121.90
79	t	222	C	C6-N1-C1'	-5.46	114.25	120.80
1	S2	836	C	N1-C2-O2	$5.4\overline{6}$	$122.1\overline{7}$	118.90
79	t	2099	С	N1-C2-O2	5.45	122.17	118.90

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page
	5	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
79	t	1361	G	P-O5'-C5'	-5.45	112.19	120.90
79	t	863	С	C6-N1-C2	-5.44	118.12	120.30
39	Е	78	С	C2-N1-C1'	5.44	124.78	118.80
79	t	1923	С	N1-C2-O2	5.43	122.16	118.90
79	t	2592	С	C6-N1-C1'	-5.43	114.28	120.80
79	t	4441	U	C2-N1-C1'	5.43	124.22	117.70
79	t	1990	G	C5'-C4'-O4'	-5.43	102.58	109.10
79	t	2254	С	C2-N1-C1'	5.43	124.77	118.80
1	S2	1264	С	C6-N1-C2	-5.43	118.13	120.30
79	t	3644	С	N3-C2-O2	-5.42	118.11	121.90
3	SB	229	MET	CB-CG-SD	5.42	128.65	112.40
79	t	2121	С	C2-N1-C1'	5.41	124.75	118.80
81	V	68	С	N1-C2-O2	5.41	122.14	118.90
1	S2	1456	С	C5-C6-N1	5.40	123.70	121.00
79	t	137	G	C8-N9-C1'	-5.40	119.98	127.00
79	t	1200	С	N1-C2-O2	5.40	122.14	118.90
1	S2	1473	С	C2-N1-C1'	5.39	124.73	118.80
1	S2	871	G	P-O3'-C3'	5.38	126.16	119.70
79	t	128	С	N3-C2-O2	-5.38	118.14	121.90
79	t	3986	G	N3-C4-C5	-5.38	125.91	128.60
1	S2	118	С	C6-N1-C2	-5.36	118.16	120.30
1	S2	1541	С	C2-N1-C1'	5.36	124.69	118.80
79	t	3513	U	C2-N1-C1'	5.36	124.13	117.70
39	Е	29	С	C6-N1-C2	-5.35	118.16	120.30
79	t	1859	U	C2-N1-C1'	5.35	124.12	117.70
79	t	480	С	O4'-C4'-C3'	-5.35	98.65	104.00
79	t	238	C	N3-C2-O2	-5.34	118.16	121.90
43	Ι	95	LEU	CA-CB-CG	5.34	127.59	115.30
79	t	1923	C	N3-C2-O2	-5.34	118.16	121.90
1	S2	846	C	C6-N1-C2	-5.34	118.17	120.30
79	t	4103	G	P-O3'-C3'	5.33	126.10	119.70
1	S2	836	C	N3-C2-O2	-5.33	118.17	121.90
79	t	4632	C	N3-C2-O2	-5.33	118.17	121.90
1	S2	875	A	OP1-P-O3'	5.33	116.91	105.20
1	S2	1392	C	N1-C2-O2	5.32	122.09	118.90
1	S2	1834	A	C2'-C3'-O3'	-5.32	97.79	109.50
79	t	2592	С	C6-N1-C2	-5.32	118.17	120.30
79	t	4634	G	P-O3'-C3'	5.32	126.08	119.70
79	t	1674	C	C6-N1-C2	-5.32	118.17	120.30
61	a	88	ASP	CB-CG-OD1	5.31	123.08	118.30
79	t	4427	C	N1-C2-O2	5.31	$1\overline{22.09}$	118.90
79	t	851	G	C8-N9-C1'	-5.30	120.11	127.00

α \cdot \cdot \cdot	C	•	
Continued	trom	nromanic	naae
Continucu	110116	$p_{1}c_{0}a_{0}a_{0}$	page
	9	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
79	t	2663	U	N3-C2-O2	-5.30	118.49	122.20
1	S2	851	U	N3-C2-O2	-5.29	118.50	122.20
81	V	11	С	N3-C2-O2	-5.29	118.19	121.90
1	S2	860	U	N1-C2-O2	5.29	126.50	122.80
81	V	12	С	C6-N1-C2	-5.28	118.19	120.30
79	t	1909	U	C2-N1-C1'	5.28	124.03	117.70
79	t	1633	С	C2-N1-C1'	5.28	124.60	118.80
82	W	13	С	N1-C2-O2	5.27	122.06	118.90
1	S2	588	С	C2-N1-C1'	5.26	124.59	118.80
1	S2	860	U	C2-N1-C1'	5.26	124.01	117.70
79	t	2312	U	C6-N1-C2	-5.26	117.84	121.00
79	t	866	С	N1-C2-O2	5.25	122.05	118.90
79	t	449	С	C6-N1-C2	-5.25	118.20	120.30
79	t	1575	U	N3-C2-O2	-5.24	118.53	122.20
1	S2	1745	С	C2-N1-C1'	5.24	124.56	118.80
1	S2	976	С	C6-N1-C2	-5.24	118.20	120.30
79	t	520	С	C2-N1-C1'	5.23	124.56	118.80
79	t	1859	U	N1-C2-O2	5.23	126.46	122.80
1	S2	530	С	C2-N1-C1'	5.23	124.55	118.80
1	S2	1834	А	C1'-C2'-O2'	-5.22	94.94	110.60
79	t	4606	С	N1-C2-O2	5.21	122.03	118.90
79	t	3644	С	C2-N1-C1'	5.21	124.53	118.80
79	t	1567	С	C2-N1-C1'	5.20	124.51	118.80
38	D	96	С	N1-C2-O2	5.19	122.02	118.90
1	S2	1719	С	C6-N1-C1'	-5.18	114.58	120.80
1	S2	4	С	C2-N1-C1'	5.18	124.50	118.80
79	t	3497	U	N1-C2-O2	5.18	126.42	122.80
1	S2	430	U	C2-N1-C1'	5.17	123.90	117.70
20	Sc	58	LEU	CA-CB-CG	5.16	127.18	115.30
1	S2	635	С	N1-C2-O2	5.16	122.00	118.90
43	Ι	136	LEU	CA-CB-CG	5.15	127.16	115.30
79	t	1907	U	N1-C2-O2	5.15	126.41	122.80
1	S2	835	G	N1-C2-N2	-5.15	111.57	116.20
79	t	4632	С	N1-C2-O2	5.13	121.98	118.90
79	t	4037	G	N3-C4-N9	5.13	129.08	126.00
79	t	922	С	N1-C2-O2	5.12	121.97	118.90
1	S2	566	G	P-O3'-C3'	5.11	125.83	119.70
79	t	1197	U	N1-C2-O2	5.10	126.37	122.80
79	t	2664	С	N1-C2-O2	5.10	121.96	118.90
79	t	282	С	N1-C2-O2	5.09	121.95	118.90
1	S2	1022	С	N1-C2-O2	5.08	121.95	118.90
79	t	2238	G	C8-N9-C1'	-5.08	120.40	127.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
39	Е	102	U	N3-C2-O2	-5.07	118.65	122.20
1	S2	561	G	OP1-P-O3'	5.06	116.34	105.20
79	t	4472	G	O3'-P-O5'	-5.06	94.39	104.00
79	t	1180	С	N1-C2-O2	5.05	121.93	118.90
79	t	2514	С	C2-N1-C1'	5.05	124.36	118.80
1	S2	804	U	N3-C2-O2	-5.05	118.67	122.20
79	t	1350	С	N1-C2-O2	5.05	121.93	118.90
1	S2	1541	С	N3-C2-O2	-5.04	118.37	121.90
79	t	3380	U	C6-N1-C2	-5.04	117.98	121.00
79	t	4344	С	N1-C2-O2	5.03	121.92	118.90
45	K	83	ASP	CB-CG-OD1	5.02	122.82	118.30
1	S2	908	С	N1-C2-O2	5.02	121.91	118.90
1	S2	1274	С	C2-N1-C1'	5.00	124.30	118.80
79	t	4693	C	N1-C2-O2	5.00	121.90	118.90
81	V	61	С	C6-N1-C1'	-5.00	114.80	120.80

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
12	SQ	75	GLY	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	SA	212/295~(72%)	196 (92%)	16 (8%)	0	100	100
3	SB	212/264~(80%)	201 (95%)	9 (4%)	2(1%)	14	29

Continued	from	monique	maaa
Continuea	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
4	SD	224/243~(92%)	197 (88%)	23 (10%)	4 (2%)	7	16
5	SE	257/263~(98%)	238~(93%)	16 (6%)	3~(1%)	11	23
6	SF	187/204~(92%)	172 (92%)	15 (8%)	0	100	100
7	SH	182/194~(94%)	169 (93%)	12 (7%)	1 (0%)	25	43
8	SI	202/208~(97%)	183 (91%)	17 (8%)	2(1%)	13	26
9	SK	96/165~(58%)	87 (91%)	9 (9%)	0	100	100
10	SL	148/158~(94%)	140 (95%)	6 (4%)	2 (1%)	9	20
11	SP	128/145~(88%)	121 (94%)	7 (6%)	0	100	100
12	SQ	144/146~(99%)	133 (92%)	9 (6%)	2 (1%)	9	20
13	SR	132/135~(98%)	115 (87%)	16 (12%)	1 (1%)	16	32
14	SS	143/152~(94%)	127 (89%)	15 (10%)	1 (1%)	19	36
15	ST	141/145~(97%)	134 (95%)	7 (5%)	0	100	100
16	SU	102/119~(86%)	95 (93%)	6 (6%)	1 (1%)	13	26
17	SV	80/83~(96%)	75 (94%)	5 (6%)	0	100	100
18	SX	139/143~(97%)	123 (88%)	16 (12%)	0	100	100
19	Sa	101/115 (88%)	95 (94%)	6 (6%)	0	100	100
20	Sc	62/69~(90%)	51 (82%)	11 (18%)	0	100	100
21	Sd	53/56~(95%)	50 (94%)	3 (6%)	0	100	100
22	Sg	310/317~(98%)	273 (88%)	37 (12%)	0	100	100
23	SC	224/293~(76%)	208 (93%)	16 (7%)	0	100	100
24	SG	235/249~(94%)	217 (92%)	18 (8%)	0	100	100
25	SJ	184/194~(95%)	169 (92%)	14 (8%)	1 (0%)	25	43
26	SM	116/132~(88%)	101 (87%)	15 (13%)	0	100	100
27	SN	148/151~(98%)	145 (98%)	3 (2%)	0	100	100
28	SO	135/151~(89%)	120 (89%)	15 (11%)	0	100	100
29	SW	127/130~(98%)	123 (97%)	4 (3%)	0	100	100
30	SY	$\overline{130/133}~(98\%)$	118 (91%)	12 (9%)	0	100	100
31	SZ	71/125~(57%)	62 (87%)	9 (13%)	0	100	100
32	Sb	80/84~(95%)	75 (94%)	5 (6%)	0	100	100
33	Se	$55/\overline{59}~(93\%)$	48 (87%)	7 (13%)	0	100	100
34	Sf	$65/\overline{156}~(42\%)$	51 (78%)	14 (22%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
35	А	250/257~(97%)	231 (92%)	19 (8%)	0	100	100
36	В	395/403~(98%)	367~(93%)	28 (7%)	0	100	100
37	\mathbf{C}	361/421~(86%)	333~(92%)	21 (6%)	7 (2%)	6	15
40	F	292/297~(98%)	275 (94%)	15 (5%)	2(1%)	19	36
41	G	239/298~(80%)	209 (87%)	28 (12%)	2 (1%)	16	32
42	Н	223/260~(86%)	210 (94%)	13 (6%)	0	100	100
43	Ι	239/266~(90%)	222 (93%)	17 (7%)	0	100	100
44	J	189/192~(98%)	176 (93%)	12 (6%)	1 (0%)	25	43
45	K	204/214~(95%)	193 (95%)	11 (5%)	0	100	100
46	L	168/178~(94%)	159 (95%)	8 (5%)	1 (1%)	22	40
47	М	203/211~(96%)	175 (86%)	25 (12%)	3 (2%)	8	19
48	Ν	137/214~(64%)	132 (96%)	5 (4%)	0	100	100
49	Ο	201/204~(98%)	191 (95%)	9 (4%)	1 (0%)	25	43
50	Р	195/203~(96%)	189 (97%)	5 (3%)	1 (0%)	25	43
51	Q	156/184~(85%)	151 (97%)	5 (3%)	0	100	100
52	R	185/188~(98%)	172 (93%)	13 (7%)	0	100	100
53	S	186/196~(95%)	180 (97%)	6 (3%)	0	100	100
54	Т	174/176~(99%)	160 (92%)	14 (8%)	0	100	100
55	U	156/160~(98%)	149 (96%)	6 (4%)	1 (1%)	22	40
56	V	97/128~(76%)	94 (97%)	3 (3%)	0	100	100
57	W	132/140~(94%)	126 (96%)	6 (4%)	0	100	100
58	Х	59/157~(38%)	56 (95%)	3 (5%)	0	100	100
59	Y	118/156~(76%)	114 (97%)	4 (3%)	0	100	100
60	Z	132/145~(91%)	124 (94%)	8 (6%)	0	100	100
61	a	132/136~(97%)	122 (92%)	10 (8%)	0	100	100
62	b	145/148~(98%)	133 (92%)	12 (8%)	0	100	100
63	с	91/156~(58%)	86 (94%)	5 (6%)	0	100	100
64	d	99/115~(86%)	93 (94%)	6 (6%)	0	100	100
65	e	104/125~(83%)	99~(95%)	5 (5%)	0	100	100
66	f	127/135~(94%)	118 (93%)	8 (6%)	1 (1%)	16	32
67	g	107/110~(97%)	102 (95%)	5 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
68	h	114/117~(97%)	106 (93%)	8 (7%)	0	100	100
69	i	120/123~(98%)	113 (94%)	7 (6%)	0	100	100
70	j	102/105~(97%)	95~(93%)	7 (7%)	0	100	100
71	k	84/97~(87%)	79 (94%)	3 (4%)	2 (2%)	5	11
72	1	67/70~(96%)	66~(98%)	1 (2%)	0	100	100
73	m	48/51 (94%)	45 (94%)	3 (6%)	0	100	100
74	n	48/128 (38%)	46 (96%)	2 (4%)	0	100	100
75	0	23/25~(92%)	22 (96%)	1 (4%)	0	100	100
76	р	103/106~(97%)	93 (90%)	9 (9%)	1 (1%)	13	26
77	q	89/92~(97%)	83~(93%)	6 (7%)	0	100	100
78	r	129/137~(94%)	114 (88%)	15 (12%)	0	100	100
83	Cz	215/217~(99%)	183 (85%)	31 (14%)	1 (0%)	25	43
84	У	2/4~(50%)	2 (100%)	0	0	100	100
All	All	11465/12921 (89%)	10600 (92%)	821 (7%)	44 (0%)	32	49

All (44) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	SB	191	ASP
5	SE	165	GLU
10	SL	82	MET
37	С	55	SER
37	С	58	ALA
83	Cz	60	ARG
37	С	54	VAL
37	С	56	GLU
37	С	318	PRO
47	М	46	ILE
55	U	4	THR
71	k	86	PRO
76	р	76	ASN
4	SD	213	PRO
12	SQ	127	CYS
37	С	57	LEU
4	SD	202	LYS
8	SI	98	LYS
16	SU	107	GLU

Mol	Chain	Res	Type
25	SJ	67	ASP
37	С	319	LEU
41	G	117	VAL
49	0	145	ASN
3	SB	130	THR
4	SD	192	TRP
10	SL	23	VAL
40	F	6	VAL
46	L	111	GLU
47	М	157	ILE
4	SD	162	ASP
5	SE	98	ASN
7	SH	99	ARG
13	SR	129	LYS
14	SS	49	ASP
40	F	253	TYR
44	J	2	LYS
47	М	164	GLU
66	f	19	LYS
8	SI	97	VAL
71	k	85	LYS
5	SE	30	ARG
12	SQ	100	VAL
41	G	116	VAL
50	Р	146	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percenti	iles
2	SA	179/242~(74%)	170~(95%)	9~(5%)	20 4	0
3	SB	195/231~(84%)	189~(97%)	6 (3%)	35 6	1
4	SD	189/202~(94%)	179~(95%)	10 (5%)	19 3	8
5	SE	222/225~(99%)	210~(95%)	12 (5%)	18 3'	7
6	\mathbf{SF}	159/171~(93%)	152 (96%)	7 (4%)	24 4	6

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
7	\mathbf{SH}	166/174~(95%)	157~(95%)	9~(5%)	18	37
8	SI	177/180~(98%)	165 (93%)	12 (7%)	13	27
9	SK	89/136~(65%)	80 (90%)	9 (10%)	6	12
10	SL	134/142~(94%)	123 (92%)	11 (8%)	9	20
11	SP	116/130~(89%)	109 (94%)	7 (6%)	16	32
12	SQ	121/121~(100%)	112 (93%)	9~(7%)	11	24
13	SR	120/121~(99%)	114 (95%)	6(5%)	20	40
14	SS	126/132~(96%)	115 (91%)	11 (9%)	8	17
15	ST	113/115~(98%)	106 (94%)	7 (6%)	15	30
16	SU	94/107~(88%)	90 (96%)	4 (4%)	25	47
17	SV	66/67~(98%)	57 (86%)	9 (14%)	3	5
18	SX	113/115~(98%)	108 (96%)	5 (4%)	24	46
19	Sa	89/98~(91%)	83 (93%)	6 (7%)	13	27
20	Sc	57/62~(92%)	51 (90%)	6 (10%)	5	11
21	Sd	48/49~(98%)	45 (94%)	3 (6%)	15	30
22	Sg	271/275~(98%)	241 (89%)	30 (11%)	5	9
23	\mathbf{SC}	191/224~(85%)	176 (92%)	15 (8%)	10	21
24	SG	207/218~(95%)	194 (94%)	13~(6%)	15	30
25	SJ	162/168~(96%)	144 (89%)	18 (11%)	5	9
26	SM	98/108~(91%)	88 (90%)	10 (10%)	6	11
27	SN	130/131~(99%)	125 (96%)	5 (4%)	28	54
28	SO	107/119~(90%)	96 (90%)	11 (10%)	6	11
29	SW	112/113~(99%)	102 (91%)	10 (9%)	8	16
30	SY	114/115~(99%)	105 (92%)	9~(8%)	10	21
31	SZ	64/103~(62%)	58 (91%)	6 (9%)	7	14
32	Sb	74/76~(97%)	67 (90%)	7 (10%)	7	14
33	Se	46/48~(96%)	40 (87%)	6 (13%)	3	6
34	Sf	60/140 (43%)	59 (98%)	1 (2%)	56	78
35	А	194/199~(98%)	183 (94%)	11 (6%)	17	34
36	В	345/349~(99%)	332 (96%)	13 (4%)	28	54
37	С	304/349~(87%)	286 (94%)	18 (6%)	16	33

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
40	F	248/250~(99%)	238 (96%)	10 (4%)	27	51
41	G	216/256~(84%)	210 (97%)	6(3%)	38	64
42	Н	195/224~(87%)	187~(96%)	8 (4%)	26	50
43	Ι	205/223~(92%)	191 (93%)	14 (7%)	13	27
44	J	171/172~(99%)	159 (93%)	12 (7%)	12	26
45	K	178/181~(98%)	166 (93%)	12 (7%)	13	27
46	L	143/149~(96%)	129 (90%)	14 (10%)	6	13
47	М	171/177~(97%)	158 (92%)	13 (8%)	11	23
48	Ν	118/157~(75%)	114 (97%)	4 (3%)	32	57
49	О	171/172~(99%)	162 (95%)	9(5%)	19	38
50	Р	169/173~(98%)	159 (94%)	10 (6%)	16	33
51	Q	139/163~(85%)	131 (94%)	8 (6%)	17	34
52	R	164/165~(99%)	155 (94%)	9 (6%)	18	37
53	S	167/175~(95%)	154 (92%)	13 (8%)	10	22
54	Т	156/156~(100%)	150 (96%)	6 (4%)	28	54
55	U	139/140~(99%)	125 (90%)	14 (10%)	6	12
56	V	89/114 (78%)	76 (85%)	13 (15%)	2	4
57	W	102/107~(95%)	96 (94%)	6 (6%)	16	33
58	Х	53/126~(42%)	50 (94%)	3~(6%)	17	34
59	Υ	108/133~(81%)	103 (95%)	5(5%)	23	44
60	Ζ	124/135~(92%)	115 (93%)	9(7%)	11	24
61	a	117/118~(99%)	109 (93%)	8 (7%)	13	27
62	b	120/121~(99%)	118 (98%)	2 (2%)	56	78
63	с	80/124~(64%)	74 (92%)	6 (8%)	11	24
64	d	86/97~(89%)	78 (91%)	8 (9%)	7	14
65	е	97/110 (88%)	92 (95%)	5 (5%)	19	38
66	f	115/121~(95%)	111 (96%)	4 (4%)	31	57
67	g	88/89~(99%)	84 (96%)	4 (4%)	23	45
68	h	99/100~(99%)	96 (97%)	3 (3%)	36	62
69	i	109/110~(99%)	102 (94%)	7 (6%)	14	29
70	j	88/89~(99%)	86 (98%)	2 (2%)	45	70

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
71	k	73/80~(91%)	70~(96%)	3~(4%)	26	50
72	1	64/65~(98%)	60 (94%)	4 (6%)	15	30
73	m	47/48~(98%)	44 (94%)	3~(6%)	14	29
74	n	46/116~(40%)	45 (98%)	1 (2%)	47	71
75	О	24/24~(100%)	23~(96%)	1 (4%)	25	48
76	р	93/94~(99%)	89~(96%)	4 (4%)	25	47
77	q	74/75~(99%)	66~(89%)	8 (11%)	5	10
78	r	115/121~(95%)	110 (96%)	5 (4%)	25	47
83	Cz	195/196~(100%)	170 (87%)	25~(13%)	3	6
84	у	1/1~(100%)	1 (100%)	0	100	100
All	All	10009/11002~(91%)	9367~(94%)	642 (6%)	17	29

All (642) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
2	SA	9	GLN
2	SA	36	GLN
2	SA	42	LYS
2	SA	75	SER
2	SA	76	VAL
2	SA	88	LEU
2	SA	131	HIS
2	SA	193	HIS
2	SA	205	ARG
3	SB	32	ASP
3	SB	38	MET
3	SB	85	LYS
3	SB	167	LYS
3	SB	203	SER
3	SB	227	LYS
4	SD	28	GLU
4	SD	34	TYR
4	SD	76	ARG
4	SD	84	VAL
4	SD	119	CYS
4	SD	169	ASP
4	SD	176	LEU
4	SD	178	ARG

Mol	Chain	Res	Type
4	SD	204	LEU
4	SD	207	HIS
5	SE	48	LEU
5	SE	50	ASN
5	SE	53	LYS
5	SE	66	MET
5	SE	79	ASP
5	SE	87	MET
5	SE	103	TYR
5	SE	109	PHE
5	SE	120	LYS
5	SE	125	LYS
5	SE	183	VAL
5	SE	233	LYS
6	SF	23	TRP
6	\mathbf{SF}	37	ASP
6	SF	97	PHE
6	\mathbf{SF}	125	SER
6	\mathbf{SF}	163	PHE
6	SF	194	ASP
6	SF	198	ARG
7	SH	39	GLN
7	SH	52	GLU
7	SH	72	PHE
7	SH	111	LYS
7	SH	130	LEU
7	SH	164	ASN
7	SH	165	ASN
7	SH	179	LYS
7	SH	192	PHE
8	SI	23	LYS
8	SI	37	LYS
8	SI	56	ARG
8	SI	96	LEU
8	SI	111	GLN
8	SI	113	TYR
8	SI	115	SER
8	SI	123	ARG
8	SI	128	LYS
8	SI	148	LYS
8	SI	166	PHE
8	SI	167	GLN

Mol	Chain	Res	Type
9	SK	2	LEU
9	SK	3	MET
9	SK	12	TYR
9	SK	26	ASP
9	SK	29	MET
9	SK	31	LYS
9	SK	43	LEU
9	SK	62	PHE
9	SK	74	GLU
10	SL	17	PHE
10	SL	23	VAL
10	SL	32	LYS
10	SL	48	LYS
10	SL	52	GLU
10	SL	65	ASN
10	SL	69	ARG
10	SL	84	ARG
10	SL	103	GLU
10	SL	104	LYS
10	SL	110	SER
11	SP	9	LYS
11	SP	21	ASP
11	SP	27	ASP
11	SP	50	ARG
11	SP	70	MET
11	SP	89	MET
11	SP	96	VAL
12	SQ	22	VAL
12	SQ	29	ASN
12	SQ	31	LEU
12	SQ	51	LEU
12	SQ	97	GLN
12	SQ	105	LYS
12	SQ	114	GLN
12	SQ	127	CYS
12	SQ	129	SER
13	SR	11	LYS
13	SR	47	ARG
13	SR	70	SER
13	SR	76	GLU
13	SR	78	ARG
13	SR	104	GLU

Mol	Chain	Res	Type
14	SS	8	LYS
14	SS	10	GLN
14	SS	11	HIS
14	SS	14	ARG
14	SS	23	ARG
14	SS	34	LYS
14	SS	61	GLU
14	SS	73	ASN
14	SS	110	ASP
14	SS	116	LYS
14	SS	144	ARG
15	ST	24	LYS
15	ST	27	LYS
15	ST	35	ASP
15	ST	75	MET
15	ST	79	TYR
15	ST	88	ARG
15	ST	143	LYS
16	SU	49	LYS
16	SU	67	LYS
16	SU	79	ARG
16	SU	92	HIS
17	SV	1	MET
17	SV	10	ASP
17	SV	41	ARG
17	SV	45	ARG
17	SV	50	PHE
17	SV	51	LYS
17	SV	62	MET
17	SV	66	ASP
17	SV	81	LYS
18	SX	8	ARG
18	SX	92	ASN
18	SX	98	ASP
18	SX	105	PHE
18	SX	139	GLU
19	Sa	2	THR
19	Sa	25	ASN
19	Sa	42	ARG
19	Sa	45	VAL
19	Sa	55	GLU
19	Sa	63	VAL

Mol	Chain	Res	Type
20	Sc	17	VAL
20	Sc	29	GLN
20	Sc	33	GLU
20	Sc	56	LEU
20	Sc	57	THR
20	Sc	64	GLU
21	Sd	19	ARG
21	Sd	39	CYS
21	Sd	41	GLN
22	Sg	3	GLU
22	Sg	14	HIS
22	Sg	30	MET
22	Sg	36	ARG
22	Sg	38	LYS
22	Sg	42	MET
22	Sg	63	SER
22	Sg	64	HIS
22	Sg	71	ILE
22	Sg	87	LEU
22	Sg	96	THR
22	Sg	105	THR
22	Sg	113	PHE
22	Sg	116	ASP
22	Sg	118	ARG
22	Sg	131	LEU
22	Sg	140	TYR
22	Sg	156	PHE
22	Sg	179	LEU
22	Sg	195	LEU
22	Sg	215	GLN
22	Sg	228	TYR
22	Sg	231	ASP
22	Sg	246	TYR
22	Sg	259	TRP
22	Sg	264	LYS
22	Sg	268	ASP
22	Sg	302	TYR
22	Sg	306	LEU
22	Sg	314	ILE
23	SC	66	LEU
23	SC	68	ARG
23	SC	72	ASP

Mol	Chain	Res	Type
23	SC	74	LYS
23	SC	97	PHE
23	SC	103	LYS
23	SC	121	ARG
23	SC	145	LYS
23	SC	163	VAL
23	SC	167	ARG
23	SC	172	ASN
23	SC	214	LEU
23	SC	236	PHE
23	SC	263	LYS
23	SC	271	ASP
24	SG	1	MET
24	SG	7	PHE
24	SG	12	CYS
24	SG	14	LYS
24	SG	25	ARG
24	SG	31	ARG
24	SG	41	LEU
24	SG	89	THR
24	SG	119	LYS
24	SG	126	ASP
24	SG	201	LYS
24	SG	211	LYS
24	SG	225	GLN
25	SJ	5	ARG
25	SJ	13	TYR
25	SJ	22	LYS
25	SJ	27	GLN
25	SJ	34	GLU
25	SJ	52	LYS
25	SJ	55	LYS
25	SJ	63	LEU
25	SJ	66	LYS
25	SJ	67	ASP
25	SJ	69	ARG
25	SJ	79	ARG
25	SJ	86	VAL
25	SJ	88	ASP
25	SJ	101	LYS
25	SJ	103	GLU
25	SJ	107	GLU

Mol	Chain	Res	Type
25	SJ	158	ASP
26	SM	33	ARG
26	SM	42	LEU
26	SM	45	ARG
26	SM	46	GLN
26	SM	51	VAL
26	SM	76	LEU
26	SM	93	LYS
26	SM	103	VAL
26	SM	112	LYS
26	SM	116	LYS
27	SN	32	ASP
27	SN	87	ASP
27	SN	89	TYR
27	SN	112	LYS
27	SN	133	ARG
28	SO	27	VAL
28	SO	40	THR
28	SO	60	MET
28	SO	61	LYS
28	SO	75	MET
28	SO	80	ASP
28	SO	104	ARG
28	SO	119	LEU
28	SO	124	MET
28	SO	128	ARG
28	SO	151	LEU
29	SW	13	SER
29	SW	22	LYS
29	SW	23	ARG
29	SW	36	ARG
29	SW	54	ASP
29	SW	68	ARG
29	SW	80	ASP
29	SW	82	GLN
29	SW	118	ARG
29	SW	120	HIS
30	SY	13	MET
30	SY	21	LYS
30	SY	23	MET
30	SY	42	GLU
30	SY	47	MET

Mol	Chain	Res	Type
30	SY	48	TYR
30	SY	51	THR
30	SY	118	ARG
30	SY	120	THR
31	SZ	44	LEU
31	SZ	46	ASN
31	SZ	50	PHE
31	SZ	78	LYS
31	SZ	111	ARG
31	SZ	113	THR
32	Sb	6	ASP
32	Sb	9	HIS
32	Sb	15	GLU
32	Sb	16	LYS
32	Sb	60	SER
32	Sb	79	PHE
32	Sb	80	ARG
33	Se	8	ARG
33	Se	15	GLN
33	Se	22	GLN
33	Se	24	LYS
33	Se	35	ARG
33	Se	46	VAL
34	Sf	125	GLU
35	А	32	VAL
35	А	80	GLU
35	А	102	LEU
35	А	135	THR
35	А	154	SER
35	А	159	SER
35	А	160	SER
35	А	194	ASN
35	А	198	ARG
35	А	207	VAL
35	А	243	THR
36	В	85	VAL
36	В	90	VAL
36	В	94	GLU
36	В	147	GLU
36	В	181	MET
36	В	344	VAL
36	В	350	SER

36 B 357 ARG 36 B 358 ARG 36 B 378 ARG 36 B 395 ASP 36 B 395 ASP 36 B 396 ARG 37 C 14 LYS 37 C 52 TYR 37 C 94 ASN 37 C 95 MET 37 C 122 TYR 37 C 150 LEU 37 C 266 THR 37 C 290 SER 37 C 291 ARG 37 C 336 ARG 37 C 313 VAL 37 C 350 ARG 37 C 350 ARG 37 C 352 LYS 37 C	Mol	Chain	Res	Type
36 B 358 ARG 36 B 360 LEU 36 B 378 ARG 36 B 395 ASP 36 B 395 ASP 36 B 396 ARG 37 C 14 LYS 37 C 69 THR 37 C 94 ASN 37 C 95 MET 37 C 122 TYR 37 C 150 LEU 37 C 266 THR 37 C 290 SER 37 C 291 ARG 37 C 336 ARG 37 C 313 VAL 37 C 350 ARG 37 C 350 ARG 37 C 353 LYS 40 F	36	В	357	ARG
36 B 360 LEU 36 B 378 ARG 36 B 395 ASP 36 B 396 ARG 37 C 14 LYS 37 C 52 TYR 37 C 99 HR 37 C 94 ASN 37 C 95 MET 37 C 122 TYR 37 C 150 LEU 37 C 166 THR 37 C 266 THR 37 C 266 THR 37 C 290 SER 37 C 291 ARG 37 C 313 VAL 37 C 350 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 40	36	В	358	ARG
36 B 378 ARG 36 B 395 ASP 36 B 396 ARG 37 C 14 LYS 37 C 52 TYR 37 C 94 ASN 37 C 95 MET 37 C 122 TYR 37 C 122 TYR 37 C 150 LEU 37 C 266 THR 37 C 266 THR 37 C 290 SER 37 C 290 SER 37 C 291 ARG 37 C 336 ARG 37 C 335 ARG 37 C 350 ARG 37 C 353 LYS 37 C 353 LYS 40 F	36	В	360	LEU
36 B 395 ASP 36 B 396 ARG 37 C 14 LYS 37 C 52 TYR 37 C 94 ASN 37 C 95 MET 37 C 95 MET 37 C 122 TYR 37 C 150 LEU 37 C 266 THR 37 C 267 TRP 37 C 290 SER 37 C 291 ARG 37 C 290 SER 37 C 336 ARG 37 C 335 ARG 37 C 350 ARG 37 C 353 LYS 37 C 353 LYS 40 F 134 SER 40 F	36	В	378	ARG
36 B 396 ARG 37 C 14 LYS 37 C 52 TYR 37 C 69 THR 37 C 94 ASN 37 C 95 MET 37 C 122 TYR 37 C 150 LEU 37 C 266 THR 37 C 266 THR 37 C 200 SER 37 C 290 SER 37 C 290 SER 37 C 290 SER 37 C 336 ARG 37 C 335 ARG 37 C 352 LYS 37 C 353 LYS 40 F 134 SER 40 F 136 ASP 40 F	36	В	395	ASP
37 C 14 LYS 37 C 52 TYR 37 C 69 THR 37 C 94 ASN 37 C 95 MET 37 C 122 TYR 37 C 122 TYR 37 C 150 LEU 37 C 266 THR 37 C 266 THR 37 C 290 SER 37 C 290 SER 37 C 291 ARG 37 C 336 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 40 F 134 SER 40 F 136 ASP 40 F 136 ASP 40 F 1239 MET 40	36	В	396	ARG
37C 52 TYR 37 C 69 THR 37 C 94 ASN 37 C 95 MET 37 C 122 TYR 37 C 150 LEU 37 C 188 ARG 37 C 266 THR 37 C 290 SER 37 C 290 SER 37 C 291 ARG 37 C 313 VAL 37 C 336 ARG 37 C 350 ARG 37 C 350 ARG 37 C 353 LYS 40 F 115 MET 40 F 118 ILE 40 F 136 ASP 40 F 136 ASP 40 F 1239 MET 40 F 239 MET 40 F 239 MET 40 F 239 MET 40 F 239 MET 40 F 291 GLN 41 G 53 CYS 41 G 53 CYS 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 72 GLU 42 H 75 GLN	37	С	14	LYS
37C 69 THR 37 C 94 ASN 37 C 95 MET 37 C 122 TYR 37 C 150 LEU 37 C 188 ARG 37 C 266 THR 37 C 266 THR 37 C 290 SER 37 C 290 SER 37 C 291 ARG 37 C 313 VAL 37 C 336 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 40 F 115 MET 40 F 134 SER 40 F 136 ASP 40 F 136 ASP 40 F 136 ASP 40 F 239 MET 40 F 239 MET 40 F 262 LYS 40 F 262 LYS 40 F 291 GLN 41 G 53 CYS 41 G 53 CYS 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 72 GLU 42 H 75 GLN	37	С	52	TYR
37C94ASN 37 C95MET 37 C122TYR 37 C150LEU 37 C266THR 37 C267TRP 37 C290SER 37 C291ARG 37 C291ARG 37 C313VAL 37 C336ARG 37 C350ARG 37 C350ARG 37 C350ARG 37 C353LYS 40 F115MET 40 F134SER 40 F136ASP 40 F136ASP 40 F155THR 40 F239MET 40 F291GLN 41 G50LYS 41 G53CYS 41 G233ARG 42 H72GLU 42 H75GLN	37	С	69	THR
37 C 95 MET 37 C 122 TYR 37 C 150 LEU 37 C 266 THR 37 C 266 THR 37 C 267 TRP 37 C 290 SER 37 C 291 ARG 37 C 313 VAL 37 C 336 ARG 37 C 336 ARG 37 C 350 ARG 37 C 350 ARG 37 C 350 ARG 37 C 350 ARG 37 C 353 LYS 37 C 353 LYS 40 F 118 ILE 40 F 136 ASP 40 F 136 ASP 40 F 136 ASP 40 F 239 MET	37	С	94	ASN
37C 122 TYR 37 C 150 LEU 37 C 188 ARG 37 C 266 THR 37 C 290 SER 37 C 290 SER 37 C 291 ARG 37 C 313 VAL 37 C 313 VAL 37 C 336 ARG 37 C 350 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 40 F 115 MET 40 F 118 ILE 40 F 134 SER 40 F 136 ASP 40 F 136 ASP 40 F 239 MET 40 F 262 LYS 40 F 262 LYS 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 53 CYS 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	37	С	95	MET
37C 150 LEU 37 C 188 ARG 37 C 266 THR 37 C 290 SER 37 C 291 ARG 37 C 313 VAL 37 C 336 ARG 37 C 345 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 40 F 68 ARG 40 F 115 MET 40 F 134 SER 40 F 136 ASP 40 F 136 ASP 40 F 136 ASP 40 F 239 MET 40 F 239 MET 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 72 GLU	37	С	122	TYR
37C188ARG 37 C266THR 37 C290SER 37 C291ARG 37 C313VAL 37 C336ARG 37 C345ARG 37 C350ARG 37 C352LYS 37 C353LYS 40 F115MET 40 F118ILE 40 F136ASP 40 F136ASP 40 F155THR 40 F239MET 40 F239MET 40 F262LYS 40 F201GLN 41 G53CYS 41 G53ARG 41 G233ARG 42 H72GLU 42 H75GLN	37	С	150	LEU
37C 266 THR 37 C 267 TRP 37 C 290 SER 37 C 291 ARG 37 C 313 VAL 37 C 336 ARG 37 C 345 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 40 F 68 ARG 40 F 115 MET 40 F 134 SER 40 F 136 ASP 40 F 136 ASP 40 F 125 THR 40 F 239 MET 40 F 262 LYS 40 F 262 LYS 40 F 262 LYS 41 G 53 CYS 41 G 53 CYS 41 G 233 ARG 42 H 72 GLU 42 H 72 GLU	37	С	188	ARG
37C 267 TRP 37 C 290 SER 37 C 291 ARG 37 C 313 VAL 37 C 336 ARG 37 C 345 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 40 F 68 ARG 40 F 115 MET 40 F 134 SER 40 F 136 ASP 40 F 155 THR 40 F 155 THR 40 F 239 MET 40 F 262 LYS 40 F 262 LYS 40 F 291 GLN 41 G 53 CYS 41 G 53 CYS 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 72 GLU	37	С	266	THR
37C 290 SER 37 C 291 ARG 37 C 313 VAL 37 C 336 ARG 37 C 345 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 40 F 68 ARG 40 F 115 MET 40 F 134 SER 40 F 136 ASP 40 F 136 ASP 40 F 155 THR 40 F 239 MET 40 F 262 LYS 40 F 262 LYS 40 F 262 LYS 40 F 262 LYS 41 G 53 CYS 41 G 53 CYS 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 72 GLU	37	С	267	TRP
37C 291 ARG 37 C 313 VAL 37 C 336 ARG 37 C 345 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 40 F 68 ARG 40 F115MET 40 F134SER 40 F136ASP 40 F136ASP 40 F155THR 40 F239MET 40 F262LYS 40 F262LYS 40 F262LYS 40 F262LYS 41 G53CYS 41 G53CYS 41 G117VAL 41 G233ARG 42 H72GLU 42 H75GLN	37	С	290	SER
37 C 313 VAL 37 C 336 ARG 37 C 345 ARG 37 C 350 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 37 C 353 LYS 40 F 68 ARG 40 F 115 MET 40 F 134 SER 40 F 136 ASP 40 F 136 ASP 40 F 136 ASP 40 F 155 THR 40 F 239 MET 40 F 262 LYS 40 F 262 LYS 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 117 VAL	37	С	291	ARG
37 C 336 ARG 37 C 345 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 37 C 353 LYS 37 C 353 LYS 37 C 353 LYS 40 F 68 ARG 40 F 115 MET 40 F 134 SER 40 F 136 ASP 40 F 136 ASP 40 F 155 THR 40 F 172 SER 40 F 239 MET 40 F 262 LYS 40 F 262 LYS 40 F 262 LYS 40 F 262 LYS 41 G 50 LYS 41 G 53 CYS	37	С	313	VAL
37 C 345 ARG 37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 37 C 353 LYS 40 F 68 ARG 40 F 115 MET 40 F 134 SER 40 F 134 SER 40 F 136 ASP 40 F 136 ASP 40 F 155 THR 40 F 172 SER 40 F 239 MET 40 F 262 LYS 40 F 262 LYS 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 117 VAL 41 G 233 ARG 41 G 233 ARG	37	С	336	ARG
37 C 350 ARG 37 C 352 LYS 37 C 353 LYS 40 F 68 ARG 40 F 115 MET 40 F 118 ILE 40 F 134 SER 40 F 136 ASP 40 F 155 THR 40 F 239 MET 40 F 262 LYS 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 117 VAL 41 G 233 ARG 42 H	37	С	345	ARG
37 C 352 LYS 37 C 353 LYS 40 F 68 ARG 40 F 115 MET 40 F 118 ILE 40 F 134 SER 40 F 136 ASP 40 F 136 ASP 40 F 136 ASP 40 F 155 THR 40 F 172 SER 40 F 239 MET 40 F 262 LYS 40 F 262 LYS 40 F 262 LYS 41 G 50 LYS 41 G 53 CYS 41 G 53 CYS 41 G 220 LYS 41 G 233 ARG 42 H	37	С	350	ARG
37 C 353 LYS 40 F 68 ARG 40 F 115 MET 40 F 118 ILE 40 F 134 SER 40 F 136 ASP 40 F 136 ASP 40 F 155 THR 40 F 1239 MET 40 F 239 MET 40 F 262 LYS 40 F 262 LYS 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 117 VAL 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	37	С	352	LYS
40 F 68 ARG 40 F 115 MET 40 F 118 ILE 40 F 134 SER 40 F 136 ASP 40 F 155 THR 40 F 172 SER 40 F 239 MET 40 F 262 LYS 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 117 VAL 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	37	С	353	LYS
40 F 115 MET 40 F 118 ILE 40 F 134 SER 40 F 136 ASP 40 F 155 THR 40 F 172 SER 40 F 239 MET 40 F 262 LYS 40 F 291 GLN 40 F 291 GLN 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 220 LYS 41 G 233 ARG 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	40	F	68	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	F	115	MET
40 F 134 SER 40 F 136 ASP 40 F 155 THR 40 F 172 SER 40 F 239 MET 40 F 262 LYS 40 F 291 GLN 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 117 VAL 41 G 220 LYS 41 G 233 ARG 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	40	F	118	ILE
40 F 136 ASP 40 F 155 THR 40 F 172 SER 40 F 239 MET 40 F 262 LYS 40 F 262 LYS 40 F 262 LYS 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 117 VAL 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	40	F	134	SER
40 F 155 THR 40 F 172 SER 40 F 239 MET 40 F 262 LYS 40 F 291 GLN 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 117 VAL 41 G 220 LYS 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	40	F	136	ASP
40 F 172 SER 40 F 239 MET 40 F 262 LYS 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 65 ARG 41 G 220 LYS 41 G 220 LYS 41 G 233 ARG 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	40	F	155	THR
40 F 239 MET 40 F 262 LYS 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 65 ARG 41 G 220 LYS 41 G 220 LYS 41 G 233 ARG 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	40	F	172	SER
40 F 262 LYS 40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 65 ARG 41 G 117 VAL 41 G 233 ARG 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	40	F	239	MET
40 F 291 GLN 41 G 50 LYS 41 G 53 CYS 41 G 65 ARG 41 G 117 VAL 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	40	F	262	LYS
41 G 50 LYS 41 G 53 CYS 41 G 65 ARG 41 G 117 VAL 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	40	F	291	GLN
41 G 53 CYS 41 G 65 ARG 41 G 117 VAL 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	41	G	50	LYS
41 G 65 ARG 41 G 117 VAL 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	41	G	53	CYS
41 G 117 VAL 41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	41	G	65	ARG
41 G 220 LYS 41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	41	G	117	VAL
41 G 233 ARG 42 H 72 GLU 42 H 75 GLN	41	G	220	LYS
42 H 72 GLU 42 H 75 GLN	41	G	233	ARG
42 H 75 GLN	42	Н	72	GLU
	42	Н	75	GLN

Mol	Chain	Res	Type
42	Н	116	LYS
42	Н	141	SER
42	Н	189	ARG
42	Н	201	ASP
42	Н	205	GLU
42	Н	260	ASN
43	Ι	22	GLN
43	Ι	29	ASN
43	Ι	38	ASN
43	Ι	71	TYR
43	Ι	90	GLN
43	Ι	128	VAL
43	Ι	136	LEU
43	Ι	167	VAL
43	Ι	192	ARG
43	Ι	215	LEU
43	Ι	217	LYS
43	Ι	223	ARG
43	Ι	230	TYR
43	Ι	260	GLU
44	J	6	SER
44	J	24	THR
44	J	36	ARG
44	J	48	LEU
44	J	50	LYS
44	J	54	ARG
44	J	66	GLU
44	J	84	VAL
44	J	141	LYS
44	J	163	GLN
44	J	169	ASN
44	J	189	GLN
45	K	21	ARG
45	K	26	VAL
45	K	32	ARG
45	K	52	MET
45	K	102	MET
45	K	109	ASP
45	K	115	MET
45	K	121	LYS
45	K	141	LYS
45	K	146	GLU

Mol	Chain	Res	Type
45	K	188	LYS
45	K	197	VAL
46	L	28	GLU
46	L	42	GLN
46	L	47	THR
46	L	54	ARG
46	L	63	ARG
46	L	64	ARG
46	L	70	VAL
46	L	84	GLU
46	L	96	LYS
46	L	110	GLN
46	L	118	LYS
46	L	150	CYS
46	L	164	ARG
46	L	168	GLN
47	М	8	MET
47	М	22	VAL
47	М	37	LYS
47	М	59	VAL
47	М	69	LYS
47	М	105	LYS
47	М	121	ARG
47	М	128	PRO
47	М	129	ARG
47	М	144	LEU
47	М	158	ARG
47	М	164	GLU
47	М	200	LYS
48	N	35	ARG
48	N	44	ARG
48	N	113	MET
48	N	121	ARG
49	0	5	LYS
49	0	20	ARG
49	0	24	ARG
49	0	44	ARG
49	0	47	LYS
49	0	75	VAL
49	0	125	SER
49	0	144	ARG
49	0	189	ARG

Mol	Chain	Res	Type
50	Р	31	ARG
50	Р	65	ASN
50	Р	103	LYS
50	Р	117	ARG
50	Р	135	PHE
50	Р	173	GLN
50	Р	183	LYS
50	Р	184	ASN
50	Р	185	VAL
50	Р	187	LYS
51	Q	6	LEU
51	Q	10	ASN
51	Q	20	SER
51	Q	24	VAL
51	Q	28	ASN
51	Q	87	SER
51	Q	110	ASP
51	Q	111	SER
52	R	9	LYS
52	R	14	ARG
52	R	17	GLU
52	R	20	SER
52	R	40	ASN
52	R	98	LEU
52	R	103	LEU
52	R	115	LYS
52	R	183	SER
53	S	12	SER
53	S	23	TRP
53	S	30	ASN
53	S	37	SER
53	S	63	CYS
53	S	96	MET
53	S	108	ARG
53	S	122	SER
53	S	133	LYS
53	S	152	LYS
53	S	153	LYS
53	S	155	LEU
53	S	158	GLN
54	Т	16	CYS
54	Т	21	LYS

Mol	Chain	Res	Type
54	Т	31	ARG
54	Т	82	LEU
54	Т	85	ASP
54	Т	98	ARG
55	U	4	THR
55	U	14	MET
55	U	38	ASP
55	U	41	ASP
55	U	45	MET
55	U	48	VAL
55	U	80	VAL
55	U	107	LYS
55	U	113	ASP
55	U	117	LYS
55	U	125	TRP
55	U	126	VAL
55	U	129	LYS
55	U	159	MET
56	V	25	CYS
56	V	34	MET
56	V	38	ASN
56	V	43	LEU
56	V	50	ASN
56	V	62	THR
56	V	65	ARG
56	V	67	LYS
56	V	78	PHE
56	V	79	SER
56	V	97	ARG
56	V	98	ASP
56	V	115	PHE
57	W	13	LYS
57	W	28	CYS
57	W	112	MET
57	W	118	THR
57	W	123	LYS
57	W	128	LEU
58	X	12	LYS
58	X	27	LYS
58	Х	38	SER
59	Y	43	SER
59	Y	47	ARG

Mol	Chain	Res	Type
59	Y	67	ARG
59	Y	85	SER
59	Y	88	LYS
60	Z	13	LYS
60	Z	32	SER
60	Z	40	GLN
60	Z	55	VAL
60	Z	74	TYR
60	Z	95	VAL
60	Z	100	ARG
60	Z	108	ARG
60	Z	114	ASP
61	a	13	VAL
61	a	30	ASP
61	a	57	MET
61	a	67	LYS
61	a	75	TYR
61	a	84	ARG
61	a	112	ARG
61	a	120	GLU
62	b	9	ARG
62	b	140	VAL
63	с	14	ARG
63	с	54	LEU
63	с	55	LYS
63	с	91	ARG
63	с	95	ARG
63	с	114	LYS
64	d	23	LYS
64	d	26	LYS
64	d	51	ASN
64	d	68	LYS
64	d	78	ASN
64	d	90	ARG
64	d	98	ASP
64	d	108	MET
65	e	57	MET
65	e	91	LYS
65	е	93	ASN
65	е	98	SER
65	е	122	VAL
66	f	9	LYS

Mol	Chain	Res	Type
66	f	76	LYS
66	f	109	LYS
66	f	130	ARG
67	g	46	ARG
67	g	95	LYS
67	g	99	HIS
67	g	100	ARG
68	h	5	LEU
68	h	23	SER
68	h	28	ASN
69	i	12	LYS
69	i	15	GLU
69	i	20	GLN
69	i	25	LYS
69	i	30	GLN
69	i	71	LYS
69	i	82	ASP
70	j	29	ARG
70	j	56	ARG
71	k	25	LYS
71	k	79	ARG
71	k	83	THR
72	1	7	GLU
72	1	9	LYS
72	1	18	LYS
72	1	29	LYS
73	m	21	ARG
73	m	29	MET
73	m	36	ARG
74	n	111	ARG
75	0	15	ARG
76	р	27	LYS
76	р	77	CYS
$\overline{76}$	р	79	SER
76	р	96	ASP
77	q	7	LYS
77	q	8	VAL
77	q	36	LYS
77	q	48	LYS
77	q	60	CYS
77	q	75	SER
77	q	90	LYS

Mol	Chain	Res	Type
77	q	91	ASP
78	r	27	THR
78	r	58	LYS
78	r	61	VAL
78	r	80	THR
78	r	119	ARG
83	Cz	1	MET
83	Cz	7	ARG
83	Cz	15	ARG
83	Cz	16	GLU
83	Cz	19	HIS
83	Cz	27	LYS
83	Cz	34	LEU
83	Cz	40	ASN
83	Cz	45	LYS
83	Cz	47	LYS
83	Cz	56	LYS
83	Cz	60	ARG
83	Cz	62	LYS
83	Cz	78	LYS
83	Cz	85	MET
83	Cz	86	ASP
83	Cz	97	LYS
83	Cz	105	LYS
83	Cz	118	LYS
83	Cz	144	MET
83	Cz	162	VAL
83	Cz	174	MET
83	Cz	176	ASP
83	Cz	189	PHE
83	Cz	190	LEU

Continued	farear		
Continuea	from	previous	page

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (76) such sidechains are listed below:

Mol	Chain	Res	Type
2	SA	141	ASN
5	SE	188	ASN
9	SK	50	GLN
10	SL	65	ASN
12	SQ	80	GLN
12	SQ	86	GLN
13	SR	118	GLN

Mol	Chain	Res	Type
14	SS	19	ASN
14	SS	72	GLN
14	SS	101	ASN
16	SU	92	HIS
17	SV	33	GLN
18	SX	20	GLN
19	Sa	25	ASN
20	Sc	29	GLN
21	Sd	16	GLN
21	Sd	45	GLN
22	Sg	15	ASN
23	SC	134	ASN
24	SG	56	ASN
26	SM	119	GLN
27	SN	62	GLN
28	SO	103	ASN
29	SW	91	ASN
30	SY	112	ASN
31	SZ	46	ASN
31	SZ	64	ASN
33	Se	44	ASN
35	А	194	ASN
36	В	208	ASN
36	В	258	HIS
40	F	138	GLN
41	G	138	HIS
42	Н	138	ASN
42	Н	175	ASN
42	Н	260	ASN
44	J	63	ASN
45	K	144	ASN
46	L	65	ASN
46	L	71	HIS
46	L	97	ASN
47	М	111	GLN
47	М	115	GLN
47	М	149	GLN
49	0	99	GLN
49	0	196	ASN
50	Р	65	ASN
50	Р	173	GLN
51	Q	28	ASN

Mol	Chain	Res	Type
51	Q	116	HIS
52	R	44	ASN
52	R	45	GLN
53	S	40	GLN
54	Т	108	GLN
57	W	31	ASN
57	W	135	ASN
59	Y	73	HIS
59	Y	93	ASN
60	Ζ	56	GLN
61	a	132	GLN
63	с	27	GLN
63	с	58	GLN
64	d	33	GLN
64	d	40	GLN
64	d	51	ASN
66	f	107	ASN
67	g	20	ASN
70	j	80	HIS
74	n	87	GLN
76	р	36	GLN
76	р	102	GLN
78	r	23	GLN
78	r	83	ASN
78	r	100	ASN
83	Cz	19	HIS
83	Cz	158	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	S2	1690/1872~(90%)	391~(23%)	19 (1%)
38	D	156/157~(99%)	32~(20%)	1 (0%)
39	Е	118/121~(97%)	11 (9%)	0
79	t	3659/4803~(76%)	687~(18%)	0
80	u	75/76~(98%)	20 (26%)	0
81	V	75/76~(98%)	26 (34%)	0
82	W	19/20~(95%)	8 (42%)	0
All	All	5792/7125~(81%)	1175 (20%)	20 (0%)

All (1175) RNA backbone outliers are listed below:

1 S2 2 A 1 S2 25 A 1 S2 33 G 1 S2 41 G 1 S2 42 A 1 S2 43 U 1 S2 44 U 1 S2 46 A 1 S2 55 U 1 S2 60 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 68 A 1 S2 76 U 1 S2 76 U 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 116 OMU 1 S2 113 G 1 S2 114 G 1 S2 125	Mol	Chain	Res	Type
1 S2 9 U 1 S2 25 A 1 S2 33 G 1 S2 41 G 1 S2 42 A 1 S2 42 A 1 S2 44 U 1 S2 44 U 1 S2 46 A 1 S2 55 U 1 S2 60 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 76 U 1 S2 76 U 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 116 OMU 1 S2 113 G 1 S2 114 G 1 S2 125	1	S2	2	А
1 S2 25 A 1 S2 33 G 1 S2 41 G 1 S2 42 A 1 S2 43 U 1 S2 44 U 1 S2 46 A 1 S2 55 U 1 S2 60 A 1 S2 61 A 1 S2 67 C 1 S2 68 A 1 S2 73 C 1 S2 76 U 1 S2 113 G 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 116 OMU 1 S2 125 C 1 S2 126 G 1 S2 159 A2M 1 S2 159	1	S2	9	U
1 S2 33 G 1 S2 41 G 1 S2 42 A 1 S2 43 U 1 S2 44 U 1 S2 46 A 1 S2 55 U 1 S2 56 G 1 S2 60 A 1 S2 64 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 73 C 1 S2 76 U 1 S2 76 U 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 116 OMU 1 S2 126 G 1 S2 139 C 1 S2 155	1	S2	25	А
1 S2 41 G 1 S2 42 A 1 S2 43 U 1 S2 44 U 1 S2 46 A 1 S2 55 U 1 S2 56 G 1 S2 60 A 1 S2 64 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 70 G 1 S2 76 U 1 S2 76 U 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 116 OMU 1 S2 126 G 1 S2 139 C 1 S2 155 G 1 S2 159	1	S2	33	G
1 S2 42 A 1 S2 43 U 1 S2 44 U 1 S2 46 A 1 S2 55 U 1 S2 56 G 1 S2 60 A 1 S2 61 A 1 S2 64 A 1 S2 66 G 1 S2 67 C 1 S2 70 G 1 S2 73 C 1 S2 76 U 1 S2 76 U 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 116 OMU 1 S2 125 C 1 S2 139 C 1 S2 143 U 1 S2 155	1	S2	41	G
1 S2 43 U 1 S2 44 U 1 S2 46 A 1 S2 55 U 1 S2 56 G 1 S2 60 A 1 S2 61 A 1 S2 64 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 70 G 1 S2 76 U 1 S2 76 U 1 S2 76 U 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 116 OMU 1 S2 125 C 1 S2 139 C 1 S2 155 G 1 S2 160	1	S2	42	А
1 S2 44 U 1 S2 55 U 1 S2 55 U 1 S2 56 G 1 S2 60 A 1 S2 61 A 1 S2 64 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 70 G 1 S2 73 C 1 S2 76 U 1 S2 76 U 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 116 OMU 1 S2 126 G 1 S2 126 G 1 S2 139 C 1 S2 155 G 1 S2 160	1	S2	43	U
1 S2 46 A 1 S2 55 U 1 S2 56 G 1 S2 60 A 1 S2 61 A 1 S2 64 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 70 G 1 S2 73 C 1 S2 74 G 1 S2 76 U 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 114 G 1 S2 126 G 1 S2 126 G 1 S2 139 C 1 S2 143 U 1 S2 155 G 1 S2 159	1	S2	44	U
1 S2 55 U 1 S2 56 G 1 S2 60 A 1 S2 61 A 1 S2 64 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 73 C 1 S2 74 G 1 S2 76 U 1 S2 76 U 1 S2 76 U 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 115 U 1 S2 126 G 1 S2 126 G 1 S2 143 U 1 S2 155 G 1 S2 159 A2M 1 S2 160	1	S2	46	А
1 S2 56 G 1 S2 60 A 1 S2 61 A 1 S2 64 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 70 G 1 S2 73 C 1 S2 74 G 1 S2 76 U 1 S2 13 G 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 116 OMU 1 S2 125 C 1 S2 126 G 1 S2 143 U 1 S2 159 A2M 1 S2 159 A2M 1 S2 160 U 1 S2 168 </th <td>1</td> <td>S2</td> <td>55</td> <td>U</td>	1	S2	55	U
1 S2 60 A 1 S2 61 A 1 S2 64 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 70 G 1 S2 73 C 1 S2 74 G 1 S2 76 U 1 S2 76 U 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 115 U 1 S2 125 C 1 S2 126 G 1 S2 139 C 1 S2 142 C 1 S2 155 G 1 S2 159 A2M 1 S2 160 U 1 S2 161	1	S2	56	G
1 S2 61 A 1 S2 64 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 70 G 1 S2 73 C 1 S2 74 G 1 S2 76 U 1 S2 76 U 1 S2 13 G 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 125 C 1 S2 126 G 1 S2 139 C 1 S2 143 U 1 S2 155 G 1 S2 159 A2M 1 S2 160 U 1 S2 168 C 1 S2 168	1	S2	60	А
1 S2 64 A 1 S2 66 G 1 S2 67 C 1 S2 68 A 1 S2 70 G 1 S2 73 C 1 S2 74 G 1 S2 74 G 1 S2 76 U 1 S2 76 U 1 S2 113 G 1 S2 114 G 1 S2 115 U 1 S2 115 U 1 S2 125 C 1 S2 126 G 1 S2 143 U 1 S2 143 U 1 S2 159 A2M 1 S2 159 A2M 1 S2 160 U 1 S2 168 C	1	S2	61	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	64	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	66	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	67	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	68	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	70	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	73	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	74	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	76	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	80	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	113	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	114	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	115	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	116	OMU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	125	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	126	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	139	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	142	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	143	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	155	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	159	A2M
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	160	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	161	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	168	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	173	A
1 S2 189 U 1 S2 190 G 1 S2 191 A 1 S2 193 C	1	S2	176	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	189	U
1 S2 191 A 1 S2 193 C	1	S2	190	G
1 S2 193 C	1	S2	191	A
	1	S2	193	С
1 S2 194 C	1	S2	194	С

Mol	Chain	Res	Type
1	S2	195	С
1	S2	196	С
1	S2	197	С
1	S2	198	U
1	S2	206	G
1	S2	207	G
1	S2	209	G
1	S2	211	G
1	S2	212	А
1	S2	213	U
1	S2	218	G
1	S2	297	U
1	S2	298	С
1	S2	308	U
1	S2	311	G
1	S2	315	G
1	S2	316	A
1	S2	321	A
1	S2	322	С
1	S2	326	С
1	S2	327	U
1	S2	328	С
1	S2	329	С
1	S2	330	G
1	S2	331	U
1	S2	332	G
1	S2	335	G
1	S2	338	G
1	S2	343	С
1	S2	350	G
1	S2	363	A
1	S2	367	А
1	S2	371	U
1	S2	372	С
1	S2	388	G
1	S2	389	С
1	S2	390	С
1	S2	411	A
1	S2	412	С
1	S2	419	U
1	S2	420	С
1	S2	432	С

1 S2 439 G 1 S2 451 A 1 S2 452 A 1 S2 453 C 1 S2 455 G 1 S2 467 A 1 S2 473 G 1 S2 475 C 1 S2 476 A 1 S2 490 U 1 S2 490 U 1 S2 505 C 1 S2 506 C 1 S2 506 C 1 S2 520 OMC 1 S2 528 A 1 S2 537 G 1 S2 537 G 1 S2 556 U 1 S2 557 A 1 S2 557 A 1 S2 561 G 1 S2 <	Mol	Chain	Res	Type
1 S2 449 G 1 S2 451 A 1 S2 452 A 1 S2 453 C 1 S2 455 G 1 S2 473 G 1 S2 475 C 1 S2 476 A 1 S2 490 U 1 S2 490 U 1 S2 505 C 1 S2 506 C 1 S2 506 C 1 S2 528 A 1 S2 528 A 1 S2 534 A 1 S2 557 G 1 S2 556 U 1 S2 557 A 1 S2 557 A 1 S2 561 G 1 S2 563 A 1 S2 <td< td=""><td>1</td><td>S2</td><td>439</td><td>G</td></td<>	1	S2	439	G
1 S2 451 A 1 S2 452 A 1 S2 453 C 1 S2 455 G 1 S2 467 A 1 S2 473 G 1 S2 475 C 1 S2 476 A 1 S2 490 U 1 S2 490 U 1 S2 490 U 1 S2 505 C 1 S2 506 C 1 S2 506 C 1 S2 520 OMC 1 S2 528 A 1 S2 534 A 1 S2 550 G 1 S2 557 A 1 S2 556 U 1 S2 557 A 1 S2 561 G 1 S2 <	1	S2	449	G
1 S2 452 A 1 S2 453 C 1 S2 455 G 1 S2 467 A 1 S2 473 G 1 S2 475 C 1 S2 476 A 1 S2 476 A 1 S2 490 U 1 S2 490 U 1 S2 505 C 1 S2 506 C 1 S2 506 C 1 S2 520 OMC 1 S2 528 A 1 S2 534 A 1 S2 550 G 1 S2 550 G 1 S2 557 A 1 S2 557 A 1 S2 557 A 1 S2 561 G 1 S2 <	1	S2	451	А
1 S2 453 C 1 S2 455 G 1 S2 467 A 1 S2 473 G 1 S2 475 C 1 S2 476 A 1 S2 476 A 1 S2 490 U 1 S2 490 U 1 S2 505 C 1 S2 506 C 1 S2 506 C 1 S2 506 C 1 S2 520 OMC 1 S2 528 A 1 S2 534 A 1 S2 557 G 1 S2 556 U 1 S2 557 A 1 S2 557 A 1 S2 558 A 1 S2 563 A 1 S2 <	1	S2	452	А
1 S2 455 G 1 S2 467 A 1 S2 473 G 1 S2 475 C 1 S2 476 A 1 S2 476 A 1 S2 490 U 1 S2 490 U 1 S2 505 C 1 S2 506 C 1 S2 506 C 1 S2 506 C 1 S2 520 OMC 1 S2 528 A 1 S2 537 G 1 S2 557 A 1 S2 556 U 1 S2 557 A 1 S2 557 A 1 S2 561 G 1 S2 563 A 1 S2 567 A <tr< td=""><td>1</td><td>S2</td><td>453</td><td>С</td></tr<>	1	S2	453	С
1 S2 467 A 1 S2 473 G 1 S2 475 C 1 S2 476 A 1 S2 488 A 1 S2 490 U 1 S2 490 U 1 S2 505 C 1 S2 506 C 1 S2 506 C 1 S2 520 OMC 1 S2 528 A 1 S2 528 A 1 S2 534 A 1 S2 537 G 1 S2 550 G 1 S2 557 A 1 S2 557 A 1 S2 557 A 1 S2 561 G 1 S2 563 A 1 S2 563 A 1 S2 <	1	S2	455	G
1 S2 473 G 1 S2 475 C 1 S2 476 A 1 S2 488 A 1 S2 490 U 1 S2 491 U 1 S2 505 C 1 S2 506 C 1 S2 520 OMC 1 S2 528 A 1 S2 528 A 1 S2 528 A 1 S2 528 A 1 S2 534 A 1 S2 557 G 1 S2 556 U 1 S2 557 A 1 S2 557 A 1 S2 557 A 1 S2 561 G 1 S2 562 G 1 S2 563 A 1 S2 <	1	S2	467	А
1S2475C1S2476A1S2488A1S2490U1S2505C1S2506C1S2520OMC1S2528A1S2534A1S2537G1S2550G1S2557A1S2556U1S2557A1S2558A1S2557A1S2558A1S2561G1S2563A1S2563A1S2564A1S2579A1S2579A1S2579A1S2581C1S2586A1S2591G1S2592G1S2593A1S2593A1S2593A1S2593A1S2593A1S2607A1S2607A1S2607A1S2607A	1	S2	473	G
1S2476A1S2488A1S2490U1S2505C1S2506C1S2520OMC1S2528A1S2534A1S2537G1S2550G1S2557G1S2556U1S2557A1S2557A1S2557A1S2557A1S2561G1S2562G1S2563A1S2564A1S2573C1S2579A1S2579A1S2581C1S2586A1S2591G1S2593A1S2593A1S2593A1S2593A1S2593A1S2593A1S2593A1S2603G1S2603G1S2603G1S2603G1S2603G1S2603G <td>1</td> <td>S2</td> <td>475</td> <td>С</td>	1	S2	475	С
1 S2 488 A 1 S2 490 U 1 S2 491 U 1 S2 505 C 1 S2 506 C 1 S2 520 OMC 1 S2 528 A 1 S2 534 A 1 S2 537 G 1 S2 550 G 1 S2 557 A 1 S2 561 G 1 S2 562 G 1 S2 563 A 1 S2 567 A 1 S2 567 A 1 S2 579 A 1 S2 <	1	S2	476	А
1S2490U1S2491U1S2505C1S2506C1S2520OMC1S2528A1S2534A1S2537G1S2550G1S2555C1S2556U1S2557A1S2558A1S2559U1S2561G1S2562G1S2563A1S2564A1S2573C1S2579A1S2581C1S2582C1S2591G1S2593A1S2593A1S2593A1S2593A1S2593A1S2593A1S2593A1S2603G1S2603G1S2603G1S2603G1S2607A	1	S2	488	А
1S2491U1S2505C1S2506C1S2520OMC1S2528A1S2534A1S2537G1S2550G1S2552C1S2556U1S2557A1S2558A1S2559U1S2561G1S2563A1S2563A1S2564A1S2567A1S2579A1S2579A1S2581C1S2586A1S2591G1S2593A1S2593A1S2593A1S2594U1S2607A1S2607A	1	S2	490	U
1S2 505 C1S2 506 C1S2 520 OMC1S2 528 A1S2 534 A1S2 537 G1S2 550 G1S2 556 U1S2 556 U1S2 557 A1S2 557 A1S2 558 A1S2 559 U1S2 561 G1S2 562 G1S2 563 A1S2 564 A1S2 567 A1S2 573 C1S2 579 A1S2 581 C1S2 586 A1S2 591 G1S2 593 A1S2 593 A1S2 593 A1S2 594 U1S2 607 A1S2 607 A	1	S2	491	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	505	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	506	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	520	OMC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	528	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	534	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	537	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	550	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	552	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	556	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	557	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	558	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	559	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	561	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	562	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	563	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	564	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	567	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	573	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	579	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	581	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	582	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	586	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	591	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	592	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	593	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	S2	594	U
1 S2 607 A	1	S2	603	G
1 00 010 II	1	S2	607	А
$1 \qquad S2 \qquad 610 \qquad U \qquad 1$	1	S2	610	U

Mol	Chain	Res	Type
1	S2	611	С
1	S2	617	С
1	S2	620	G
1	S2	629	G
1	S2	630	U
1	S2	631	A
1	S2	632	А
1	S2	646	A
1	S2	658	A
1	S2	663	С
1	S2	666	С
1	S2	671	A2M
1	S2	672	А
1	S2	674	A
1	S2	675	A
1	S2	676	G
1	S2	686	OMG
1	S2	693	G
1	S2	694	G
1	S2	695	G
1	S2	696	А
1	S2	697	G
1	S2	698	С
1	S2	700	G
1	S2	734	G
1	S2	736	С
1	S2	737	С
1	S2	738	С
1	S2	740	G
1	S2	741	С
1	S2	742	C
1	S2	751	С
1	S2	754	G
1	S2	755	G
1	S2	756	C
1	S2	792	G
1	S2	793	С
1	S2	794	C
1	S2	795	С
1	S2	800	C
1	S2	801	G
1	S2	802	U

Mol	Chain	Res	Type
1	S2	804	U
1	S2	818	U
1	S2	820	G
1	S2	824	G
1	S2	825	PSU
1	S2	833	А
1	S2	834	G
1	S2	838	С
1	S2	839	G
1	S2	840	А
1	S2	841	G
1	S2	842	C
1	S2	844	G
1	S2	845	C
1	S2	850	А
1	S2	861	А
1	S2	862	G
1	S2	872	А
1	S2	873	А
1	S2	875	А
1	S2	876	G
1	S2	890	U
1	S2	891	U
1	S2	893	U
1	S2	894	G
1	S2	897	G
1	S2	898	G
1	S2	900	U
1	S2	906	A
1	S2	908	С
1	S2	910	G
1	S2	916	A
1	S2	917	U
1	S2	920	U
1	S2	923	A
1	S2	936	G
1	S2	958	A
1	S2	972	U
1	S2	973	G
1	S2	974	G
1	S2	976	С
1	S2	993	A

Mol	Chain	Res	Type
1	S2	995	А
1	S2	1002	G
1	S2	1004	А
1	S2	1005	U
1	S2	1019	U
1	S2	1020	U
1	S2	1024	U
1	S2	1026	А
1	S2	1048	U
1	S2	1052	А
1	S2	1064	U
1	S2	1065	А
1	S2	1086	A
1	S2	1087	A
1	S2	1088	С
1	S2	1091	U
1	S2	1112	С
1	S2	1117	U
1	S2	1118	U
1	S2	1119	С
1	S2	1120	С
1	S2	1122	А
1	S2	1124	G
1	S2	1136	А
1	S2	1141	С
1	S2	1152	А
1	S2	1153	А
1	S2	1157	U
1	S2	1173	А
1	S2	1198	A
1	S2	1210	G
1	S2	1211	A
1	S2	1218	С
1	S2	1220	A
1	S2	1222	С
1	S2	1223	А
1	S2	1227	G
1	S2	1236	G
1	S2	1245	U
1	S2	1246	PSU
1	S2	1254	A
1	S2	1256	A

Mol	Chain	Res	Type
1	S2	1259	G
1	S2	1260	G
1	S2	1262	А
1	S2	1263	А
1	S2	1268	А
1	S2	1277	G
1	S2	1278	G
1	S2	1286	С
1	S2	1287	А
1	S2	1288	G
1	S2	1289	G
1	S2	1290	А
1	S2	1292	U
1	S2	1298	А
1	S2	1299	U
1	S2	1303	U
1	S2	1304	А
1	S2	1305	G
1	S2	1306	С
1	S2	1312	С
1	S2	1315	G
1	S2	1316	А
1	S2	1325	G
1	S2	1330	G
1	S2	1333	G
1	S2	1336	U
1	S2	1344	С
1	S2	1345	U
1	S2	1374	U
1	S2	1379	А
1	S2	1381	A
1	S2	1400	U
1	S2	1401	G
1	S2	1406	С
1	S2	1407	U
1	S2	1421	С
1	S2	1423	G
1	S2	1424	A
1	S2	1436	С
1	S2	1437	С
1	S2	1439	С
1	S2	1440	С

Mol	Chain	Res	Type
1	S2	1441	А
1	S2	1442	А
1	S2	1445	U
1	S2	1449	А
1	S2	1450	G
1	S2	1457	А
1	S2	1461	G
1	S2	1465	U
1	S2	1466	U
1	S2	1469	G
1	S2	1473	С
1	S2	1480	U
1	S2	1492	A
1	S2	1493	G
1	S2	1497	U
1	S2	1498	G
1	S2	1500	G
1	S2	1501	A
1	S2	1510	G
1	S2	1511	А
1	S2	1522	U
1	S2	1523	G
1	S2	1524	С
1	S2	1536	А
1	S2	1537	С
1	S2	1539	G
1	S2	1540	A
1	S2	1547	С
1	S2	1548	A
1	S2	1555	G
1	S2	1559	A
1	S2	1560	С
1	S2	1561	С
1	S2	1563	U
1	S2	1571	С
1	S2	1573	G
1	S2	1576	G
1	S2	1583	A
1	S2	1584	С
1	S2	1588	U
1	S2	1589	U
1	S2	1591	A

Mol	Chain	Res	Type
1	S2	1601	G
1	S2	1602	U
1	S2	1603	G
1	S2	1609	G
1	S2	1624	U
1	S2	1626	А
1	S2	1650	А
1	S2	1651	G
1	S2	1657	G
1	S2	1665	U
1	S2	1668	G
1	S2	1674	G
1	S2	1678	А
1	S2	1679	U
1	S2	1680	U
1	S2	1685	С
1	S2	1689	G
1	S2	1698	А
1	S2	1702	А
1	S2	1725	G
1	S2	1731	U
1	S2	1732	U
1	S2	1752	G
1	S2	1754	С
1	S2	1783	G
1	S2	1784	А
1	S2	1785	G
1	S2	1786	С
1	S2	1787	G
1	S2	1788	С
1	S2	1789	U
1	S2	1794	А
1	S2	1806	U
1	S2	1808	G
1	S2	1817	G
1	S2	1818	A
1	S2	1819	G
1	S2	1827	А
1	S2	1828	А
1	S2	1829	G
1	S2	1832	G
1	S2	1834	A

Mol	Chain	Res	Type
1	S2	1836	С
1	S2	1838	А
1	S2	1839	G
1	S2	1841	U
1	S2	1843	U
1	S2	1852	G
1	S2	1855	С
1	S2	1864	G
1	S2	1865	G
1	S2	1866	А
1	S2	1868	С
1	S2	1872	А
38	D	16	G
38	D	23	С
38	D	34	U
38	D	35	C
38	D	38	U
38	D	39	G
38	D	59	А
38	D	63	U
38	D	71	А
38	D	72	А
38	D	77	А
38	D	78	G
38	D	79	G
38	D	81	С
38	D	83	С
38	D	84	A
38	D	85	U
38	D	86	U
$\overline{38}$	D	87	G
38	D	94	G
38	D	103	A
38	D	105	C
38	D	109	C
38	D	110	U
38	D	111	U
38	D	122	G
$\overline{38}$	D	124	U
38	D	125	С
$\overline{38}$	D	126	C
38	D	128	С

Mol	Chain	Res	Type
38	D	129	С
38	D	148	А
39	Е	7	G
39	Е	22	А
39	Е	33	U
39	Е	50	А
39	Е	51	G
39	Е	53	U
39	Е	54	А
39	Е	63	С
39	Е	64	G
39	Е	102	U
39	Е	110	G
79	t	9	С
79	t	25	А
79	t	32	G
79	t	39	А
79	t	40	G
79	t	42	А
79	t	48	G
79	t	49	U
79	t	59	А
79	t	64	А
79	t	65	А
79	t	66	А
79	t	71	С
79	t	72	С
79	t	76	А
79	t	91	G
79	t	108	A
79	t	110	C
79	t	119	G
79	t	129	C
79	t	130	G
79	t	131	C
79	t	132	G
79	t	137	G
79	t	138	C
79	t	139	G
79	t	142	G
79	t	152	U
79	t	160	G

Mol	Chain	Res	Type
79	t	166	С
79	t	176	G
79	t	179	G
79	t	182	G
79	t	183	С
79	t	184	U
79	t	185	С
79	t	186	G
79	t	187	U
79	t	199	G
79	t	208	А
79	t	215	С
79	t	216	С
79	t	217	С
79	t	218	A
79	t	232	G
79	t	233	U
79	t	236	G
79	t	247	G
79	t	255	С
79	t	256	G
79	t	257	С
79	t	258	G
79	t	264	C
79	t	266	С
79	t	295	A
79	t	297	U
79	t	306	А
79	t	310	G
79	t	315	G
79	t	316	U
79	t	317	A
79	t	340	С
79	t	349	A
79	t	373	G
79	t	376	A
79	t	381	U
79	t	387	G
79	t	410	A
79	t	411	G
79	t	412	G
79	t	431	G

Mol	Chain	Res	Type
79	t	440	U
79	t	451	С
79	t	452	А
79	t	453	G
79	t	454	U
79	t	455	С
79	t	464	G
79	t	469	С
79	t	480	С
79	t	482	С
79	t	483	G
79	t	484	С
79	t	485	G
79	t	487	C
79	t	488	С
79	t	489	G
79	t	497	С
79	t	500	U
79	t	501	G
79	t	502	G
79	t	507	G
79	t	508	G
79	t	513	U
79	t	516	U
79	t	517	U
79	t	518	С
79	t	520	С
79	t	524	С
79	t	616	U
79	t	617	С
79	t	626	А
79	t	632	С
79	t	644	G
79	t	646	С
79	t	657	С
79	t	661	С
79	t	662	G
79	t	677	С
79	t	680	U
79	t	682	С
79	t	685	С
79	t	706	U

Mol	Chain	Res	Type
79	t	707	G
79	t	708	G
79	t	713	G
79	t	714	С
79	t	715	С
79	t	717	G
79	t	724	А
79	t	725	А
79	t	726	G
79	t	727	G
79	t	728	U
79	t	730	G
79	t	838	С
79	t	845	G
79	t	848	А
79	t	850	A
79	t	851	G
79	t	853	С
79	t	859	G
79	t	860	С
79	t	862	G
79	t	864	А
79	t	867	G
79	t	869	U
79	t	877	U
79	t	878	С
79	t	879	С
79	t	889	G
79	t	890	G
79	t	891	G
79	t	892	А
79	t	893	G
79	t	895	С
79	t	898	А
79	t	899	U
$\overline{79}$	t	902	С
79	t	904	G
79	t	982	С
79	t	987	С
79	t	988	G
79	t	990	С
$\overline{79}$	t	992	C

Mol	Chain	Res	Type
79	t	1010	U
79	t	1013	С
79	t	1014	С
79	t	1065	G
79	t	1066	С
79	t	1067	G
79	t	1068	G
79	t	1072	G
79	t	1078	U
79	t	1079	С
79	\mathbf{t}	1080	С
79	t	1090	С
79	t	1096	С
79	t	1097	G
79	t	1098	U
79	t	1099	С
79	t	1100	G
79	t	1102	С
79	t	1109	U
79	t	1110	С
79	t	1113	G
79	t	1114	С
79	t	1118	G
79	t	1137	С
79	t	1138	U
79	t	1139	С
79	t	1140	U
79	t	1141	С
79	t	1142	С
79	t	1143	С
79	t	1144	U
79	t	1146	C
79	t	1147	C
79	t	1150	U
79	t	1154	G
79	t	1155	G
79	t	1156	G
79	t	1158	U
79	t	1167	G
79	t	1169	G
79	t	1176	A
79	t	1178	С

Mol	Chain	Res	Type
79	t	1183	G
79	t	1187	U
79	t	1188	С
79	t	1190	G
79	t	1196	А
79	t	1197	U
79	t	1198	G
79	t	1204	U
79	t	1205	А
79	t	1206	С
79	t	1228	А
79	t	1256	А
79	t	1260	А
79	t	$1\overline{261}$	G
79	t	1267	С
79	t	1268	G
79	t	1269	U
79	t	1279	G
79	t	1289	А
79	t	1299	А
79	t	1300	А
79	t	1310	U
79	\mathbf{t}	1311	С
79	t	1312	С
79	\mathbf{t}	1313	С
79	\mathbf{t}	1324	А
79	t	1341	С
79	\mathbf{t}	1343	С
79	t	1345	С
79	t	1346	С
79	t	1347	А
79	t	1348	G
79	t	1379	G
79	t	1385	С
79	t	1386	G
79	t	1387	С
79	t	1388	G
79	t	1390	С
79	t	1401	А
79	t	1402	G
79	t	1406	G
79	t	1427	А

Mol	Chain	Res	Type
79	t	1429	А
79	t	1438	А
79	t	1451	А
79	t	1467	А
79	t	1470	С
79	t	1478	G
79	t	1482	U
79	t	1495	U
79	t	1500	U
79	t	1505	А
79	t	1511	С
79	t	1516	G
79	t	1517	А
79	t	1528	G
79	t	1529	G
79	t	1535	A
79	t	1537	G
79	t	1538	А
79	t	1542	А
79	t	1545	G
79	t	1558	G
79	t	1565	С
79	t	1574	G
79	t	1595	G
79	t	1598	С
79	t	1603	А
79	t	1606	G
79	t	1607	С
79	t	1608	G
79	\mathbf{t}	1609	G
79	t	1633	C
79	t	1643	G
79	t	1666	G
79	t	1667	A
79	t	1668	A
79	t	1674	C
79	t	1675	U
79	t	1683	U
79	t	1689	A
79	t	1696	A
79	t	1705	G
79	t	1706	А

Mol	Chain	Res	Type
79	t	1723	G
79	t	1735	G
79	t	1736	U
79	t	1737	G
79	t	1738	G
79	t	1739	А
79	t	1744	G
79	t	1757	G
79	t	1771	G
79	t	1791	U
79	t	1793	А
79	t	1794	А
79	t	1800	С
79	t	1817	С
79	t	1820	U
79	t	1823	С
79	t	1824	G
79	t	1833	С
79	t	1842	G
79	t	1849	U
79	t	1850	G
79	t	1859	U
79	t	1860	А
79	t	1862	А
79	t	1863	G
79	t	1864	А
79	t	1878	G
79	t	1881	А
79	t	1882	U
79	t	1884	G
79	t	1885	A
79	t	1887	G
79	t	1889	С
79	t	1895	С
79	t	1900	A
79	t	1904	G
79	t	1905	U
79	t	1909	U
79	t	1914	A
79	t	1927	A
79	t	1932	С
79	t	1935	G

Mol	Chain	Res	Type
79	t	1947	G
79	t	1949	U
79	t	1956	G
79	t	1957	G
79	t	1970	А
79	t	1971	U
79	t	1985	С
79	t	1992	С
79	t	1993	G
79	t	1994	G
79	t	1995	А
79	t	1996	А
79	t	1997	С
79	t	1998	G
79	t	1999	G
79	t	2002	С
79	t	2003	G
79	t	2005	G
79	t	2008	С
79	t	2009	G
79	t	2011	С
79	t	2012	С
79	t	2013	G
79	t	2096	G
79	t	2098	G
79	t	2099	С
79	t	2100	С
79	t	2102	С
79	t	$2\overline{106}$	G
79	t	2112	А
79	t	2133	C
79	t	2143	G
79	t	2144	A
$\overline{79}$	t	$21\overline{45}$	G
79	t	2150	G
79	t	2157	A
79	t	2173	U
79	t	2175	G
$\overline{79}$	t	2176	A
79	t	2192	G
79	t	2194	U
79	t	2195	С

Mol	Chain	Res	Type
79	t	2204	А
79	t	2205	G
79	t	2239	А
79	t	2240	А
79	t	2246	G
79	t	2254	С
79	t	2261	А
79	t	2262	А
79	t	2265	G
79	t	2266	С
79	t	2269	U
79	t	2291	U
79	t	2294	G
79	t	2307	G
79	t	2314	C
79	t	2315	G
79	t	2323	G
79	t	2332	С
79	t	2333	С
79	t	2334	U
79	t	2337	G
79	t	2338	U
79	t	2347	G
79	t	2348	С
79	t	2349	С
79	t	2350	G
79	t	2357	А
79	t	2388	G
79	t	2389	U
79	t	2390	G
79	t	2391	G
79	t	2397	А
79	t	2398	U
79	t	2410	G
79	t	2425	A
79	t	2430	G
79	t	2431	А
79	t	2433	C
79	t	2435	А
79	t	2445	A
79	t	2450	G
79	t	2462	G

Mol	Chain	Res	Type
79	\mathbf{t}	2471	С
79	\mathbf{t}	2482	G
79	t	2484	G
79	t	2504	А
79	t	2513	С
79	t	2517	G
79	\mathbf{t}	2531	U
79	t	2538	G
79	t	2539	А
79	t	2540	А
79	t	2552	U
79	\mathbf{t}	2554	С
79	t	2555	G
79	t	2556	G
79	t	2565	G
79	t	2570	G
79	t	2584	U
79	t	2587	А
79	t	2591	U
79	t	2603	G
79	t	2604	G
79	t	2605	U
79	t	2606	G
79	t	2608	А
79	t	2610	А
79	t	2613	U
79	t	2631	А
79	t	2632	U
79	t	2634	U
79	t	2640	G
79	t	2641	С
79	t	2643	G
79	t	$2\overline{650}$	A
79	t	2658	С
79	t	2670	U
79	t	2671	G
79	t	2687	U
79	t	2699	G
79	t	2725	A
79	t	2741	G
79	t	2746	G
79	t	3334	А

Mol	Chain	Res	Type
79	t	3336	С
79	t	3340	С
79	t	3341	U
79	t	3353	С
79	t	3360	G
79	t	3361	G
79	t	3370	А
79	t	3376	U
79	t	3397	А
79	t	3399	G
79	t	3407	G
79	t	3408	С
79	t	3433	G
79	t	3445	G
79	t	3446	A
79	t	3447	A
79	t	3464	U
79	t	3471	А
79	t	3483	А
79	t	3492	G
79	t	3494	А
79	t	3495	А
79	t	3508	U
79	t	3509	А
79	t	3511	G
79	t	3512	G
79	t	3513	U
79	t	3515	G
79	t	3519	А
79	t	3545	С
79	t	3546	G
$\overline{79}$	t	3547	C
79	t	3549	U
$\overline{79}$	t	3552	A
79	t	3553	U
79	t	3554	G
79	t	3559	A
79	t	3564	G
79	t	$357\overline{3}$	U
79	t	3574	G
79	t	3575	U
79	t	3612	А

Mol	Chain	Res	Type
79	t	3614	G
79	t	3627	U
79	t	3632	G
79	t	3636	А
79	t	3641	А
79	t	3642	G
79	t	3644	С
79	t	3650	U
79	t	3658	А
79	t	3674	G
79	t	3685	U
79	t	3690	G
79	t	3695	А
79	t	3696	G
79	t	3697	А
79	t	3698	A
79	t	3699	U
79	t	3701	А
79	t	3708	G
79	t	3769	С
79	t	3773	С
79	t	3775	G
79	t	3779	А
79	t	3780	А
79	t	3781	U
79	t	3794	А
79	t	3796	С
79	t	3797	G
79	t	3808	G
79	t	3825	G
79	t	3826	G
79	t	3827	G
79	t	3828	С
$\overline{79}$	t	3829	G
79	t	3833	C
79	t	3834	C
79	t	3835	С
79	t	3836	G
79	t	3837	A
79	t	3842	С
79	t	3844	C
79	t	3846	С

Mol	Chain	Res	Type
79	t	3847	G
79	t	3851	С
79	t	3869	С
79	t	3894	С
79	t	3895	U
79	t	3896	С
79	t	3902	А
79	t	3915	G
79	t	3916	G
79	t	3923	G
79	t	3928	G
79	t	3935	А
79	t	3944	А
79	t	3946	A
79	t	3957	G
79	t	$3\overline{961}$	U
79	t	3965	А
79	t	3966	А
79	t	3981	G
79	t	3983	А
79	t	3986	G
79	t	3987	А
79	t	3998	G
79	t	4000	А
79	t	4004	G
79	t	4006	А
79	t	4013	А
79	t	4036	А
79	t	4037	G
79	t	4038	U
79	t	4046	С
79	t	4062	G
79	t	4064	С
79	t	4081	C
79	t	4086	U
$\overline{79}$	t	4100	G
79	t	4103	G
79	t	4104	U
79	t	4108	A
79	t	4109	G
$\overline{79}$	t	4110	A
79	t	4111	А

Mol	Chain	Res	Type
79	t	4119	С
79	t	4125	G
79	t	4126	А
79	t	4128	А
79	t	4137	G
79	t	4153	С
79	t	4154	А
79	t	4169	U
79	t	4176	C
79	t	4185	С
79	t	4196	А
79	t	4198	С
79	t	4207	G
79	t	4225	U
79	t	4226	G
79	t	4244	U
79	t	4245	А
79	t	4250	А
79	t	4251	С
79	t	4256	G
79	t	4280	А
79	t	4287	U
79	t	4289	U
79	t	4292	С
79	t	4299	G
79	t	4321	А
79	t	4322	А
79	\mathbf{t}	4349	G
79	t	4356	A
79	t	4368	U
79	t	4369	G
79	t	4371	G
79	t	4388	А
79	t	4402	С
79	t	4410	G
79	t	4427	С
79	t	4432	А
79	t	4441	U
79	t	4452	С
79	t	4462	С
79	t	4463	G
79	t	4464	G

Mol	Chain	Res	Type
79	t	4466	А
79	t	4467	G
79	t	4472	G
79	t	4473	А
79	t	4474	А
79	t	4475	G
79	t	4483	G
79	t	4486	U
79	t	4489	С
79	t	4491	С
79	t	4493	G
79	t	4497	А
79	t	4502	G
79	t	4507	С
79	t	4591	U
79	t	4593	С
79	t	4596	U
79	t	4597	G
79	t	4600	G
79	t	4601	А
79	t	4602	G
79	t	4603	А
79	t	4609	U
79	t	4610	С
79	t	4623	G
79	t	4624	G
79	t	4627	U
79	t	4628	G
79	t	4633	С
79	t	4634	G
79	t	4635	G
79	t	4637	A
79	t	4639	G
79	t	4640	G
79	t	4641	G
79	t	4647	С
79	t	4652	U
79	t	4655	С
79	t	4664	С
79	t	4665	U
79	t	4666	U
79	t	4667	А

Mol	Chain	Res	Type
79	t	4669	С
79	t	4672	А
79	t	4673	С
79	t	4680	G
79	t	4688	U
79	t	4692	G
79	t	4693	С
79	t	4695	А
79	t	4705	U
79	t	4714	U
79	t	4717	U
79	t	4718	U
79	t	4719	С
79	t	4720	U
79	t	4721	G
79	t	4735	U
79	t	4742	С
79	t	4746	G
79	t	4753	С
79	t	4755	U
79	t	4756	С
79	t	4770	G
79	t	4778	G
79	t	4779	С
79	t	4783	С
79	t	4784	G
79	t	4787	А
79	t	4790	А
80	u	4	С
80	u	6	G
80	u	7	A
80	u	8	U
80	u	14	A
80	u	16	U
80	u	17	C
80	u	18	G
80	u	19	G
80	u	20	U
80	u	21	A
80	u	23	А
80	u	46	G
80	u	47	U

Mol	Chain	Res	Type
80	u	52	G
80	u	56	С
80	u	57	G
80	u	59	U
80	u	74	С
80	u	76	А
81	V	8	U
81	V	9	А
81	V	11	С
81	V	12	С
81	V	13	С
81	V	14	С
81	V	16	А
81	V	18	G
81	V	19	G
81	V	20	U
81	V	21	A
81	v	22	G
81	v	23	A
81	v	47	U
81	V	48	С
81	V	49	С
81	V	51	U
81	V	55	U
81	V	56	С
81	V	57	G
81	V	61	С
81	V	62	C
81	V	67	C
81	V	69	G
81	V	73	A
81	V	76	A
82	W	10	C
82	W	11	A
82	W	12	U
82	W	21	G
82	W	24	G
82	W	25	A
82	W	27	С
82	W	28	U

All (20) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	S2	42	А
1	S2	60	А
1	S2	196	С
1	S2	307	С
1	S2	320	С
1	S2	448	А
1	S2	561	G
1	S2	562	G
1	S2	566	G
1	S2	673	А
1	S2	871	G
1	S2	875	А
1	S2	1399	А
1	S2	1570	G
1	S2	1575	С
1	S2	1684	U
1	S2	1805	С
1	S2	1818	А
1	S2	1827	А
38	D	86	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

33 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	B	ond leng	gths	Bond angles		
MOI	туре	Ullaili	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
1	A2M	S2	27	1	18,25,26	<mark>3.58</mark>	7 (38%)	20,36,39	3.25	5 (25%)
1	A2M	S2	166	1	18,25,26	<mark>3.57</mark>	7 (38%)	20,36,39	3.41	4 (20%)
1	OMC	S2	1713	1	19,22,23	0.49	0	25,31,34	0.67	0
1	PSU	S2	119	1	18,21,22	1.15	1 (5%)	21,30,33	1.85	4 (19%)
1	5MU	S2	817	1	19,22,23	0.37	0	27,32,35	0.92	2 (7%)
1	6MZ	S2	1835	1	17,25,26	<mark>5.83</mark>	12 (70%)	15,36,39	4.52	10 (66%)
1	OMG	S2	647	1	19,26,27	1.12	2 (10%)	21,38,41	0.82	1 (4%)

Mal	Mol Turno (Dog	Link	Bond lengths			Bond angles		
MOI	туре	Unain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	PSU	S2	615	1	18,21,22	1.06	1 (5%)	21,30,33	1.79	4 (19%)
1	PSU	S2	825	1	18,21,22	1.14	1 (5%)	21,30,33	1.84	4 (19%)
1	UR3	S2	1833	1	19,22,23	3.05	7 (36%)	26,32,35	1.88	5 (19%)
1	OMU	S2	121	1	19,22,23	1.43	3 (15%)	25,31,34	2.07	7 (28%)
1	OMC	S2	174	1	19,22,23	0.49	0	25,31,34	0.67	0
1	MA6	S2	1854	1	19,26,27	1.61	3 (15%)	18,38,41	<mark>3.35</mark>	3 (16%)
1	OMG	S2	686	1	19,26,27	1.11	2 (10%)	21,38,41	0.82	1 (4%)
1	OMU	S2	116	1	19,22,23	3.16	8 (42%)	25,31,34	1.79	5 (20%)
1	A2M	S2	1034	1	18,25,26	3.57	7 (38%)	20,36,39	<mark>3.31</mark>	5 (25%)
1	B8N	S2	1251	1	25,29,30	3.40	6 (24%)	28,42,45	2.03	8 (28%)
1	A2M	S2	671	1	18,25,26	<mark>3.61</mark>	7 (38%)	20,36,39	<mark>3.35</mark>	6 (30%)
1	PSU	S2	1246	1	18,21,22	1.12	1 (5%)	21,30,33	1.85	4 (19%)
1	M7A	S2	1809	1	19,25,26	1.61	2 (10%)	25,37,40	4.32	8 (32%)
1	MMX	S2	571	1	20,23,24	<mark>3.88</mark>	4 (20%)	21,33,36	2.92	6 (28%)
1	MA6	S2	1853	1	19,26,27	1.64	3 (15%)	18,38,41	<mark>3.29</mark>	3 (16%)
1	A2M	S2	159	1	18,25,26	<mark>3.61</mark>	7 (38%)	20,36,39	3.32	5 (25%)
1	PSU	S2	826	1	18,21,22	1.12	1 (5%)	21,30,33	1.79	5 (23%)
1	A2M	S2	1681	1	18,25,26	3.55	7 (38%)	20,36,39	<mark>3.38</mark>	5 (25%)
1	4AC	S2	1340	1	21,24,25	3.54	10 (47%)	28,34,37	1.16	4 (14%)
1	OMC	S2	520	1	19,22,23	0.50	0	25,31,34	0.77	0
1	OMG	S2	512	1	19,26,27	1.12	2 (10%)	21,38,41	0.81	1 (4%)
1	5MC	S2	1377	1	19,22,23	0.49	0	26,32,35	0.79	0
1	OMC	S2	1706	1	19,22,23	0.48	0	25,31,34	0.66	0
1	PSU	S2	1084	1	18,21,22	1.10	1 (5%)	21,30,33	1.85	4 (19%)
1	4AC	S2	1845	1	21,24,25	3.54	10 (47%)	28,34,37	1.17	4 (14%)
1	A2M	S2	487	1	18,25,26	3.62	7 (38%)	20,36,39	3.32	3 (15%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	A2M	S2	27	1	-	2/5/27/28	0/3/3/3
1	A2M	S2	166	1	-	0/5/27/28	0/3/3/3
1	OMC	S2	1713	1	-	0/9/27/28	0/2/2/2
1	PSU	S2	119	1	-	0/7/25/26	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	5MU	S2	817	1	-	0/7/25/26	0/2/2/2
1	6MZ	S2	1835	1	_	1/5/27/28	0/3/3/3
1	OMG	S2	647	1	_	2/5/27/28	0/3/3/3
1	PSU	S2	615	1	-	0/7/25/26	0/2/2/2
1	PSU	S2	825	1	-	0/7/25/26	0/2/2/2
1	UR3	S2	1833	1	-	2/7/25/26	0/2/2/2
1	OMU	S2	121	1	-	1/9/27/28	0/2/2/2
1	OMC	S2	174	1	-	0/9/27/28	0/2/2/2
1	MA6	S2	1854	1	-	4/7/29/30	0/3/3/3
1	OMG	S2	686	1	-	2/5/27/28	0/3/3/3
1	OMU	S2	116	1	-	2/9/27/28	0/2/2/2
1	A2M	S2	1034	1	-	0/5/27/28	0/3/3/3
1	B8N	S2	1251	1	-	2/16/34/35	0/2/2/2
1	A2M	S2	671	1	-	1/5/27/28	0/3/3/3
1	PSU	S2	1246	1	-	2/7/25/26	0/2/2/2
1	M7A	S2	1809	1	-	1/7/37/38	0/3/3/3
1	MMX	S2	571	1	-	4/9/44/45	0/2/2/2
1	MA6	S2	1853	1	-	4/7/29/30	0/3/3/3
1	A2M	S2	159	1	-	1/5/27/28	0/3/3/3
1	PSU	S2	826	1	-	2/7/25/26	0/2/2/2
1	A2M	S2	1681	1	-	2/5/27/28	0/3/3/3
1	4AC	S2	1340	1	_	0/11/29/30	0/2/2/2
1	OMC	S2	520	1	-	2/9/27/28	0/2/2/2
1	OMG	S2	512	1	-	0/5/27/28	0/3/3/3
1	5MC	S2	1377	1	-	0/7/25/26	0/2/2/2
1	OMC	S2	1706	1	-	0/9/27/28	0/2/2/2
1	PSU	S2	1084	1	-	0/7/25/26	0/2/2/2
1	4AC	S2	1845	1	-	0/11/29/30	0/2/2/2
1	A2M	S2	487	1	-	0/5/27/28	0/3/3/3

All (129) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	Ideal(Å)
1	S2	1835	6MZ	O4'-C1'	-12.15	1.24	1.40
1	S2	1835	6MZ	O3'-C3'	11.36	1.71	1.43
1	S2	571	MMX	C2-N1	10.11	1.50	1.37
1	S2	571	MMX	C4-N3	9.92	1.53	1.45
1	S2	1835	6MZ	C3'-C4'	-8.92	1.30	1.53
1	S2	166	A2M	C3'-C4'	-8.89	1.30	1.53
1	S2	27	A2M	C3'-C4'	-8.83	1.30	1.53

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	S2	1034	A2M	C3'-C4'	-8.81	1.30	1.53
1	S2	1681	A2M	C3'-C4'	-8.80	1.30	1.53
1	S2	487	A2M	C3'-C4'	-8.76	1.30	1.53
1	S2	159	A2M	C3'-C4'	-8.69	1.31	1.53
1	S2	671	A2M	C3'-C4'	-8.62	1.31	1.53
1	S2	571	MMX	C2-N3	8.51	1.48	1.37
1	S2	1251	B8N	C6-N1	8.08	1.56	1.36
1	S2	1833	UR3	C2-N1	7.92	1.49	1.38
1	S2	487	A2M	O4'-C1'	-7.78	1.30	1.40
1	S2	159	A2M	O4'-C4'	7.76	1.62	1.45
1	S2	1845	4AC	C4-N3	7.76	1.45	1.32
1	S2	671	A2M	O4'-C1'	-7.74	1.30	1.40
1	S2	1251	B8N	C4-N3	-7.74	1.26	1.40
1	S2	1340	4AC	C4-N3	7.74	1.45	1.32
1	S2	27	A2M	O4'-C4'	7.73	1.62	1.45
1	S2	1034	A2M	O4'-C4'	7.70	1.62	1.45
1	S2	1251	B8N	C4-C5	7.70	1.65	1.47
1	S2	671	A2M	O4'-C4'	7.69	1.62	1.45
1	S2	487	A2M	O4'-C4'	7.68	1.62	1.45
1	S2	166	A2M	O4'-C4'	7.66	1.62	1.45
1	S2	159	A2M	O4'-C1'	-7.66	1.30	1.40
1	S2	1835	6MZ	C6-C5	-7.62	1.33	1.44
1	S2	116	OMU	C2-N1	7.53	1.50	1.38
1	S2	1681	A2M	O4'-C4'	7.49	1.61	1.45
1	S2	1681	A2M	O4'-C1'	-7.33	1.31	1.40
1	S2	27	A2M	O4'-C1'	-7.26	1.31	1.40
1	S2	1034	A2M	O4'-C1'	-7.24	1.31	1.40
1	S2	166	A2M	O4'-C1'	-7.20	1.31	1.40
1	S2	116	OMU	C2-N3	7.15	1.50	1.38
1	S2	1340	4AC	C6-C5	6.85	1.50	1.35
1	S2	1833	UR3	C6-C5	6.83	1.50	1.35
1	S2	1845	4AC	C6-C5	6.79	1.50	1.35
1	S2	1251	B8N	C2-N1	5.99	1.56	1.39
1	S2	1835	6MZ	O4'-C4'	5.86	1.58	1.45
1	S2	1833	UR3	C2-N3	5.79	1.50	1.39
1	S2	116	OMU	C6-C5	5.70	1.48	1.35
1	S2	1845	4AC	C2-N1	5.42	1.51	1.40
1	S2	1340	4AC	C2-N1	5.41	1.51	1.40
1	S2	1845	4AC	C2-N3	5.41	1.47	1.36
1	S2	1251	B8N	C6-C5	5.37	1.42	1.35
1	S2	1340	4AC	C2-N3	5.35	1.47	1.36
1	S2	1835	6MZ	C6-N1	-5.23	1.27	1.34

001000	naca jion	" proote	a page.	••			
Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
1	S2	1845	4AC	C7-N4	5.14	1.47	1.37
1	S2	1340	4AC	C7-N4	5.14	1.47	1.37
1	S2	1340	4AC	C4-N4	5.05	1.47	1.39
1	S2	1845	4AC	C4-N4	4.99	1.47	1.39
1	S2	1835	6MZ	O2'-C2'	-4.91	1.30	1.43
1	S2	1835	6MZ	C4-N3	-4.82	1.29	1.35
1	S2	1835	6MZ	C8-N7	-4.64	1.26	1.34
1	S2	1853	MA6	C6-N6	4.56	1.48	1.37
1	S2	1854	MA6	C6-N6	4.55	1.47	1.37
1	S2	116	OMU	C4-N3	4.52	1.46	1.38
1	S2	1809	M7A	C6-N6	4.31	1.45	1.34
1	S2	1809	M7A	C5-N7	4.21	1.49	1.39
1	S2	571	MMX	C5-C4	-4.15	1.48	1.52
1	S2	1340	4AC	CM7-C7	4.11	1.59	1.50
1	S2	1845	4AC	CM7-C7	4.09	1.59	1.50
1	S2	1853	MA6	C6-C5	-4.01	1.38	1.44
1	S2	1251	B8N	C1'-C5	4.00	1.59	1.50
1	S2	1845	4AC	C5-C4	3.97	1.49	1.41
1	S2	119	PSU	C6-C5	3.91	1.39	1.35
1	S2	1340	4AC	C5-C4	3.90	1.49	1.41
1	S2	1854	MA6	C6-C5	-3.87	1.38	1.44
1	S2	825	PSU	C6-C5	3.87	1.39	1.35
1	S2	1246	PSU	C6-C5	3.84	1.39	1.35
1	S2	826	PSU	C6-C5	3.79	1.39	1.35
1	S2	1084	PSU	C6-C5	3.65	1.39	1.35
1	S2	615	PSU	C6-C5	3.60	1.39	1.35
1	S2	121	OMU	C4-N3	-3.50	1.32	1.38
1	S2	1833	UR3	C6-N1	3.50	1.46	1.38
1	S2	166	A2M	C6-N6	3.23	1.45	1.34
1	S2	159	A2M	C6-N6	3.23	1.45	1.34
1	S2	1681	A2M	C6-N6	3.23	1.45	1.34
1	S2	487	A2M	C6-N6	3.23	1.45	1.34
1	S2	671	A2M	C6-N6	3.22	1.45	1.34
1	S2	1835	6MZ	C5-N7	-3.22	1.28	1.39
1	S2	27	A2M	C6-N6	3.21	1.45	1.34
1	S2	1034	A2M	C6-N6	3.19	1.45	1.34
1	S2	121	OMU	C2-N3	-3.14	1.32	1.38
1	S2	1835	6MZ	C2-N1	-3.12	1.28	1.33
1	S2	671	A2M	O3'-C3'	2.92	1.50	1.43
1	S2	686	OMG	C8-N7	-2.90	1.30	1.34
1	S2	647	OMG	C8-N7	-2.89	1.30	1.34
1	S2	512	OMG	C8-N7	-2.89	1.30	1.34

Continued from previous page...

001000	nucu jion	i precie	as page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	S2	116	OMU	O4-C4	-2.87	1.18	1.24
1	S2	116	OMU	C6-N1	2.86	1.44	1.38
1	S2	1034	A2M	O3'-C3'	2.78	1.49	1.43
1	S2	1853	MA6	C2-N3	2.77	1.36	1.32
1	S2	159	A2M	O3'-C3'	2.77	1.49	1.43
1	S2	27	A2M	O3'-C3'	2.77	1.49	1.43
1	S2	487	A2M	O3'-C3'	2.76	1.49	1.43
1	S2	1681	A2M	O3'-C3'	2.71	1.49	1.43
1	S2	166	A2M	O3'-C3'	2.71	1.49	1.43
1	S2	166	A2M	O2'-C2'	-2.69	1.36	1.42
1	S2	27	A2M	O2'-C2'	-2.68	1.36	1.42
1	S2	1034	A2M	O2'-C2'	-2.68	1.36	1.42
1	S2	1854	MA6	C2-N3	2.67	1.36	1.32
1	S2	1833	UR3	C4-N3	2.64	1.45	1.40
1	S2	121	OMU	C5-C4	-2.64	1.38	1.43
1	S2	671	A2M	O2'-C2'	-2.63	1.36	1.42
1	S2	1681	A2M	O2'-C2'	-2.63	1.36	1.42
1	S2	487	A2M	O2'-C2'	-2.62	1.36	1.42
1	S2	159	A2M	O2'-C2'	-2.61	1.36	1.42
1	S2	1340	4AC	C6-N1	2.57	1.44	1.38
1	S2	1845	4AC	C6-N1	2.54	1.44	1.38
1	S2	27	A2M	C2-N3	2.42	1.35	1.32
1	S2	512	OMG	C5-C6	-2.39	1.42	1.47
1	S2	1034	A2M	C2-N3	2.38	1.35	1.32
1	S2	116	OMU	C5-C4	2.37	1.48	1.43
1	S2	1681	A2M	C2-N3	2.37	1.35	1.32
1	S2	647	OMG	C5-C6	-2.36	1.42	1.47
1	S2	487	A2M	C2-N3	2.34	1.35	1.32
1	S2	116	OMU	O2-C2	-2.33	1.18	1.23
1	S2	166	A2M	C2-N3	2.32	1.35	1.32
1	S2	159	A2M	C2-N3	2.32	1.35	1.32
1	S2	686	OMG	C5-C6	-2.31	1.42	1.47
1	S2	1833	UR3	C5-C4	2.24	1.49	1.43
1	S2	1845	4AC	O7-C7	-2.24	1.18	1.23
1	S2	671	A2M	C2-N3	2.24	1.35	1.32
1	S2	1340	4AC	O7-C7	-2.23	1.18	1.23
1	S2	1833	UR3	O2-C2	-2.10	1.18	1.22
1	S2	1835	6MZ	C1'-N9	-2.00	1.45	1.49

Continued from previous page...

All (126) bond angle outliers are listed below:

Continued from previous page							
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
				T.	1		
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	S2	1809	M7A	C5-C6-N6	13.93	147.41	123.75
1	S2	1854	MA6	N1-C6-N6	-11.89	103.09	116.83
1	S2	1853	MA6	N1-C6-N6	-11.79	103.21	116.83
1	S2	1809	M7A	N6-C6-N1	-11.60	92.55	118.38
1	S2	671	A2M	C5-C6-N6	10.59	136.44	120.31
1	S2	1034	A2M	C5-C6-N6	10.57	136.41	120.31
1	S2	159	A2M	C5-C6-N6	10.52	136.33	120.31
1	S2	166	A2M	C5-C6-N6	10.49	136.29	120.31
1	S2	487	A2M	C5-C6-N6	10.49	136.28	120.31
1	S2	27	A2M	C5-C6-N6	10.35	136.08	120.31
1	S2	1681	A2M	C5-C6-N6	10.28	135.97	120.31
1	S2	1835	6MZ	C4'-O4'-C1'	9.24	118.39	109.92
1	S2	571	MMX	N3-C2-N1	8.58	122.47	116.83
1	S2	1835	6MZ	C1'-N9-C4	-8.43	111.83	126.64
1	S2	671	A2M	N6-C6-N1	-6.92	103.56	118.33
1	S2	1034	A2M	N6-C6-N1	-6.90	103.59	118.33
1	S2	487	A2M	N6-C6-N1	-6.85	103.70	118.33
1	S2	166	A2M	N6-C6-N1	-6.84	103.72	118.33
1	S2	159	A2M	N6-C6-N1	-6.82	103.76	118.33
1	S2	166	A2M	N3-C2-N1	-6.73	119.54	128.67
1	S2	1681	A2M	N6-C6-N1	-6.70	104.01	118.33
1	S2	27	A2M	N6-C6-N1	-6.70	104.03	118.33
1	S2	1809	M7A	C4-N9-C1'	-6.69	111.05	126.63
1	S2	1681	A2M	N3-C2-N1	-6.53	119.81	128.67
1	S2	1034	A2M	N3-C2-N1	-6.42	119.95	128.67
1	S2	487	A2M	N3-C2-N1	-6.42	119.95	128.67
1	S2	1854	MA6	N3-C2-N1	-6.42	119.96	128.67
1	S2	27	A2M	N3-C2-N1	-6.40	119.99	128.67
1	S2	671	A2M	N3-C2-N1	-6.37	120.02	128.67
1	S2	159	A2M	N3-C2-N1	-6.35	120.05	128.67
1	S2	1853	MA6	N3-C2-N1	-6.28	120.14	128.67
1	S2	1835	6MZ	O3'-C3'-C4'	6.04	128.43	111.08
1	S2	1809	M7A	N3-C2-N1	-5.74	119.89	128.58
1	S2	571	MMX	C4-N3-C2	-5.49	116.49	121.62
1	S2	571	MMX	O2-C2-N3	-5.44	115.14	122.10
1	S2	116	OMU	C4-N3-C2	-5.37	119.95	126.61
1	S2	121	OMU	C2'-C1'-N1	-5.37	104.05	114.24
1	S2	1251	B8N	C5-C4-N3	5.26	125.71	116.15
1	S2	1835	6MZ	O4'-C4'-C5'	-5.00	93.31	109.33
1	S2	1833	UR3	C4-N3-C2	-4.93	120.61	124.58
1	S2	1246	PSU	N1-C2-N3	4.74	120.16	115.17

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	S2	1835	6MZ	N3-C2-N1	-4.72	122.27	128.67
1	S2	1084	PSU	C4-N3-C2	-4.71	119.88	126.37
1	S2	1251	B8N	C4-N3-C2	-4.70	119.83	125.62
1	S2	571	MMX	C5-C6-N1	4.70	117.94	110.64
1	S2	119	PSU	N1-C2-N3	4.67	120.09	115.17
1	S2	1809	M7A	N3-C4-N9	4.67	132.72	126.88
1	S2	119	PSU	C4-N3-C2	-4.66	119.95	126.37
1	S2	825	PSU	N1-C2-N3	4.65	120.08	115.17
1	S2	825	PSU	C4-N3-C2	-4.64	119.99	126.37
1	S2	615	PSU	N1-C2-N3	4.58	120.00	115.17
1	S2	1084	PSU	N1-C2-N3	4.58	120.00	115.17
1	S2	1246	PSU	C4-N3-C2	-4.55	120.10	126.37
1	S2	826	PSU	C4-N3-C2	-4.53	120.13	126.37
1	S2	826	PSU	N1-C2-N3	4.49	119.91	115.17
1	S2	1833	UR3	C1'-N1-C2	4.43	124.30	117.04
1	S2	615	PSU	C4-N3-C2	-4.40	120.31	126.37
1	S2	1835	6MZ	C6-C5-C4	4.40	122.34	117.68
1	S2	1681	A2M	C4'-O4'-C1'	-4.39	105.90	109.92
1	S2	1251	B8N	C1'-C5-C4	4.25	124.06	117.61
1	S2	166	A2M	C4'-O4'-C1'	-4.22	106.06	109.92
1	S2	121	OMU	N3-C2-N1	4.10	120.22	114.89
1	S2	1833	UR3	C6-N1-C2	-4.04	118.50	121.80
1	S2	121	OMU	C4-N3-C2	-3.86	121.82	126.61
1	S2	1835	6MZ	O4'-C1'-N9	-3.71	103.83	108.75
1	S2	116	OMU	N3-C2-N1	3.69	119.70	114.89
1	S2	1854	MA6	C2-N1-C6	3.65	120.42	116.84
1	S2	121	OMU	C5-C4-N3	3.60	119.84	114.80
1	S2	116	OMU	C5-C4-N3	3.49	119.69	114.80
1	S2	1853	MA6	C2-N1-C6	3.44	120.22	116.84
1	S2	1251	B8N	N3-C2-N1	3.44	120.92	116.72
1	S2	1809	M7A	C71-N7-C5	-3.43	109.15	123.44
1	S2	1809	M7A	C2-N3-C4	3.37	120.06	111.83
1	S2	1833	UR3	C5-C4-N3	3.33	119.42	115.04
1	S2	571	MMX	C6-C5-C4	3.12	117.32	110.88
1	S2	116	OMU	O4-C4-C5	-3.11	119.79	125.16
1	S2	1835	6MZ	C2-N1-C6	-3.06	114.22	116.60
1	S2	1681	A2M	C1'-N9-C4	2.98	131.88	126.64
1	S2	1835	6MZ	C2'-C3'-C4'	-2.98	96.84	102.61
1	S2	1034	A2M	C4'-O4'-C1'	-2.97	107.20	109.92
1	S2	571	MMX	C31-N3-C2	2.97	121.21	117.49
1	S2	1835	6MZ	O3'-C3'-C2'	2.96	121.29	111.82
1	S2	1833	UR3	O2-C2-N3	-2.85	117.39	121.33

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
0 0100010 0000	J. 00	proceed as	P~90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	S2	1845	4AC	C6-C5-C4	2.83	120.42	117.00
1	S2	1246	PSU	O2-C2-N1	-2.81	119.89	122.79
1	S2	119	PSU	O2-C2-N1	-2.79	119.91	122.79
1	S2	1340	4AC	C6-C5-C4	2.76	120.33	117.00
1	S2	1809	M7A	C5-C4-N3	-2.75	120.21	126.56
1	S2	615	PSU	O2-C2-N1	-2.74	119.96	122.79
1	S2	825	PSU	O2-C2-N1	-2.74	119.96	122.79
1	S2	1084	PSU	O2-C2-N1	-2.67	120.04	122.79
1	S2	121	OMU	O2'-C2'-C1'	2.65	114.03	108.99
1	S2	1246	PSU	C6-N1-C2	-2.64	120.24	122.69
1	S2	121	OMU	O4-C4-C5	-2.63	120.62	125.16
1	S2	826	PSU	O2-C2-N1	-2.63	120.08	122.79
1	S2	817	5MU	C1'-N1-C2	2.62	122.29	117.59
1	S2	1845	4AC	C5-C4-N3	-2.60	118.53	122.60
1	S2	1340	4AC	C5-C4-N3	-2.60	118.53	122.60
1	S2	615	PSU	C6-N1-C2	-2.58	120.30	122.69
1	S2	1251	B8N	O4-C4-N3	-2.58	115.81	119.99
1	S2	119	PSU	C6-N1-C2	-2.50	120.37	122.69
1	S2	27	A2M	C1'-N9-C4	2.43	130.91	126.64
1	S2	825	PSU	C6-N1-C2	-2.42	120.44	122.69
1	S2	826	PSU	C6-N1-C2	-2.41	120.46	122.69
1	S2	1251	B8N	O4-C4-C5	-2.37	118.48	122.58
1	S2	512	OMG	O6-C6-C5	2.35	128.98	124.32
1	S2	27	A2M	C4'-O4'-C1'	-2.34	107.78	109.92
1	S2	1251	B8N	O4'-C1'-C2'	2.33	108.38	105.15
1	S2	647	OMG	O6-C6-C5	2.32	128.93	124.32
1	S2	159	A2M	C2'-C3'-C4'	2.31	106.96	101.99
1	S2	1084	PSU	C6-N1-C2	-2.30	120.56	122.69
1	S2	686	OMG	O6-C6-C5	2.28	128.83	124.32
1	S2	817	5MU	C1'-N1-C6	-2.19	117.54	121.15
1	S2	159	A2M	C1'-N9-C4	2.19	130.49	126.64
1	S2	671	A2M	C3'-C2'-C1'	2.17	106.96	102.81
1	S2	1251	B8N	C31-N3-C4	2.16	120.24	117.18
1	S2	1340	4AC	N4-C4-N3	2.15	117.36	113.87
1	S2	116	OMU	C1'-N1-C2	2.15	121.45	117.59
1	S2	671	A2M	C2'-C3'-C4'	2.14	106.59	101.99
1	S2	1845	4AC	N4-C4-N3	2.12	117.31	113.87
1	S2	826	PSU	O4'-C1'-C2'	2.09	108.04	105.15
1	S2	671	A2M	O4'-C4'-C3'	2.09	109.29	105.15
1	S2	1340	4AC	07-C7-CM7	-2.07	118.37	122.05
1	S2	1845	4AC	07-C7-CM7	-2.05	118.41	122.05
1	S2	1034	A2M	C1'-N9-C4	2.04	130.22	126.64

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	S2	121	OMU	O4'-C1'-N1	2.03	112.95	108.36

There are no chirality outliers.

All (37) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	S2	116	OMU	O4'-C4'-C5'-O5'
1	S2	121	OMU	C1'-C2'-O2'-CM2
1	S2	520	OMC	O4'-C4'-C5'-O5'
1	S2	571	MMX	O4'-C1'-N1-C2
1	S2	571	MMX	O4'-C1'-N1-C6
1	S2	826	PSU	O4'-C1'-C5-C4
1	S2	826	PSU	O4'-C1'-C5-C6
1	S2	1833	UR3	O4'-C1'-N1-C6
1	S2	1833	UR3	O4'-C1'-N1-C2
1	S2	1853	MA6	O4'-C4'-C5'-O5'
1	S2	1853	MA6	C5-C6-N6-C9
1	S2	27	A2M	O4'-C4'-C5'-O5'
1	S2	27	A2M	C3'-C4'-C5'-O5'
1	S2	116	OMU	C3'-C4'-C5'-O5'
1	S2	520	OMC	C3'-C4'-C5'-O5'
1	S2	571	MMX	O4'-C4'-C5'-O5'
1	S2	686	OMG	C3'-C4'-C5'-O5'
1	S2	1246	PSU	C3'-C4'-C5'-O5'
1	S2	1853	MA6	C3'-C4'-C5'-O5'
1	S2	1854	MA6	O4'-C4'-C5'-O5'
1	S2	571	MMX	C3'-C4'-C5'-O5'
1	S2	1246	PSU	O4'-C4'-C5'-O5'
1	S2	1853	MA6	N1-C6-N6-C9
1	S2	1854	MA6	N1-C6-N6-C10
1	S2	1835	6MZ	O4'-C4'-C5'-O5'
1	S2	686	OMG	O4'-C4'-C5'-O5'
1	S2	1681	A2M	O4'-C4'-C5'-O5'
1	S2	1854	MA6	C3'-C4'-C5'-O5'
1	S2	1251	B8N	N3-C31-C32-C33
1	S2	159	A2M	C4'-C5'-O5'-P
1	S2	671	A2M	C4'-C5'-O5'-P
1	S2	1809	M7A	C2'-C1'-N9-C8
1	S2	1251	B8N	N34-C33-C34-O35
1	S2	1854	MA6	C4'-C5'-O5'-P
1	S2	647	OMG	C3'-C4'-C5'-O5'
1	S2	647	OMG	C4'-C5'-O5'-P

Continued on next page...

D W I D E DATA BANK

Continued from previous page...

Mol	Chain	Res	Type	Atoms
1	S2	1681	A2M	C3'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 39 ligands modelled in this entry, 39 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-13954. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 149

Y Index: 149

Z Index: 149

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 162

Y Index: 141

Z Index: 183

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0475. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{13954}_{msk_{1.map}}$ 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1728 nm^3 ; this corresponds to an approximate mass of 1561 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.350 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.350 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	ation	criterion (FSC cut-off)
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.86	-	-
Author-provided FSC curve	2.84	3.09	2.85
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13954 and PDB model 7QGG. Per-residue inclusion information can be found in section 3 on page 21.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0475 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0475).

9.4 Atom inclusion (i)

At the recommended contour level, 82% of all backbone atoms, 84% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0475) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} ext{-score}$
All	0.8420	0.5000
А	0.9150	0.6060
В	0.9330	0.5960
С	0.9360	0.5990
Cz	0.1280	0.1170
D	0.9130	0.5300
Е	0.9860	0.5870
F	0.9260	0.5610
G	0.8330	0.5180
Н	0.9470	0.6150
Ι	0.8110	0.5150
J	0.9190	0.5800
Κ	0.8980	0.5820
L	0.8630	0.5240
М	0.8610	0.5390
Ν	0.9340	0.5880
Ο	0.9640	0.6240
Р	0.9300	0.5940
Q	0.9250	0.5960
R	0.9300	0.6150
S	0.8290	0.5400
S2	0.8380	0.4570
SA	0.7690	0.4890
SB	0.7510	0.4850
SC	0.7840	0.5210
SD	0.6230	0.4060
SE	0.7740	0.4790
SF	0.6770	0.4500
SG	0.6170	0.3890
SH	0.6220	0.3970
SI	0.7000	0.4390
SJ	0.7850	0.4560
SK	0.6840	0.3910
SL	0.7170	0.4950
SM	0.1180	0.1860

Continued from previous page...

Chain	Atom inclusion	Q-score
SN	0.7680	0.5080
SO	0.7890	0.5040
SP	0.7560	0.4500
SQ	0.7110	0.4330
SR	0.6250	0.4020
SS	0.7270	0.4630
ST	0.7430	0.4590
SU	0.5020	0.3760
SV	0.7870	0.4980
SW	0.8580	0.5550
SX	0.8030	0.5330
SY	0.7040	0.4200
SZ	0.5950	0.3790
Sa	0.8220	0.5210
Sb	0.7370	0.4730
Sc	0.6280	0.4060
Sd	0.8120	0.4640
Se	0.6220	0.4270
Sf	0.1460	0.2010
Sg	0.5340	0.3160
Т	0.9330	0.5910
U	0.9170	0.5790
V	0.8730	0.5120
W	0.8990	0.5960
X	0.9230	0.5950
Y	0.9100	0.5880
Z	0.9230	0.5890
a	0.9200	0.5730
b	0.9520	0.6140
с	0.8700	0.5450
d	0.8700	0.5460
e	0.9200	0.5860
f	0.9280	0.6010
g	0.9550	0.6230
h	0.8750	0.5660
i	0.9090	0.5820
j	0.8920	0.5700
k	0.9390	0.5960
1	0.8280	0.5250
m	0.9170	0.6110
n	0.9600	0.5870
0	0.8080	0.5540

α \cdot 1	C		
Continued	trom	previous	paae
• • • • • • • • • • • •	J	r · · · · · · · · · · ·	r - g - · · ·

Chain	Atom inclusion	Q-score
р	0.8900	0.5700
q	0.8870	0.5890
r	0.8950	0.5690
t	0.9050	0.5110
u	0.5060	0.3080
V	0.6020	0.3140
W	0.5650	0.3760
У	0.4580	0.3900

