

Oct 27, 2024 – 10:43 AM EDT

PDB ID 7LO6 : EMDB ID : EMD-23462 Title : Structure of CD4 mimetic BNM-III-170 in complex with BG505 SOSIP.664 HIV-1 Env trimer and 17b Fab Jette, C.A.; Bjorkman, P.J. Authors : 2021-02-09 Deposited on : 3.90 Å(reported) Resolution : Based on initial models 2NXY, 6U0L, 5F4P :

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\# Entries)$	${f EM} {f structures} {(\#Entries)}$		
Clashscore	210492	15764		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality	of chain			
1	А	479	49%		27%		24%	
1	С	479	51%)	25%	25%		
1	Е	479	52%	6	24%	24% 24%		
2	В	153	—	62%		24%	• 14%	
2	D	153		65%		22%	12%	
2	F	153	53°	%	25%	•	22%	
3	G	214	32%	20%		48%		
3	Ι	214	28%	24%		48%		

Mol	Chain	Length		Quality of a	chain						
			41%								
3	K	214	20%	32%	48%	1					
4	Н	239	36%	18%	46%	1					
4	J	239	31%	23%	46%	1					
4	L	239	21% 26%	27%	46%						
5	М	2		100%							
5	Ο	2	50% 50%		50%	I					
5	Q	2	50%	2	50%	i -					
5	R	2	50%	2	50%	I.					
5	Т	2	50%	2	50%	I					
5	U	2	50% 50%		50%	I					
5	V	2	50%	2	50%	I					
6	Ν	5	20% 40%		60%	1					
7	Р	6		83%	17%						
8	S	7	14% 	29%	43%	-					

2 Entry composition (i)

There are 10 unique types of molecules in this entry. The entry contains 18006 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms		AltConf	Trace	
1	1 Δ	363	Total	С	Ν	Ο	\mathbf{S}	0	0
	11	000	2840	1790	497	529	24	0	0
1	С	364	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
1	U	504	2848	1794	499	531	24	0	0
1	1 E	365	Total	С	Ν	Ο	\mathbf{S}	0	0
			2862	1803	503	532	24	0	0

• Molecule 1 is a protein called Envelope glycoprotein BG505 SOSIP.664 gp120.

Chain	Residue	Modelled	Actual	Comment	Reference
А	332	ASN	THR	engineered mutation	UNP Q2N0S6
А	501	CYS	ALA	engineered mutation	UNP Q2N0S6
А	509	ARG	GLU	engineered mutation	UNP Q2N0S6
A	510	ARG	LYS	engineered mutation	UNP Q2N0S6
А	511	ARG	-	insertion	UNP Q2N0S6
А	512	ARG	-	insertion	UNP Q2N0S6
С	332	ASN	THR	engineered mutation	UNP Q2N0S6
С	501	CYS	ALA	engineered mutation	UNP Q2N0S6
С	509	ARG	GLU	engineered mutation	UNP Q2N0S6
С	510	ARG	LYS	engineered mutation	UNP Q2N0S6
С	511	ARG	-	insertion	UNP Q2N0S6
С	512	ARG	-	insertion	UNP Q2N0S6
Е	332	ASN	THR	engineered mutation	UNP Q2N0S6
E	501	CYS	ALA	engineered mutation	UNP Q2N0S6
Е	509	ARG	GLU	engineered mutation	UNP Q2N0S6
Е	510	ARG	LYS	engineered mutation	UNP Q2N0S6
Е	511	ARG	-	insertion	UNP Q2N0S6
E	512	ARG	-	insertion	UNP Q2N0S6

There are 18 discrepancies between the modelled and reference sequences:

• Molecule 2 is a protein called HIV-1 Envelope Glycoprotein BG505 SOSIP.664 gp41.

Mol	Chain	Residues		At	oms		AltConf	Trace	
9	В	139	Total	С	Ν	Ο	\mathbf{S}	0	0
	D	152	1026	653	180	187	6	0	0
0	Л	124	Total	С	Ν	0	S	0	0
	D	104	1049	666	185	192	6		
0	Б	120	Total	С	Ν	0	S	0	0
	Г	120	960	609	165	180	6		U

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	559	PRO	ILE	engineered mutation	UNP Q2N0S6
В	605	CYS	THR	engineered mutation	UNP Q2N0S6
D	559	PRO	ILE	engineered mutation	UNP Q2N0S6
D	605	CYS	THR	engineered mutation	UNP Q2N0S6
F	559	PRO	ILE	engineered mutation	UNP Q2N0S6
F	605	CYS	THR	engineered mutation	UNP Q2N0S6

• Molecule 3 is a protein called 17b Fab Light Chain.

Mol	Chain	Residues		At	oms		AltConf	Trace	
9	С	111	Total	С	Ν	0	\mathbf{S}	0	0
5	G		853	533	149	168	3		0
2	т	111	Total	С	Ν	0	\mathbf{S}	0	0
5	1		850	532	149	166	3	0	0
2	K	111	Total	С	Ν	0	\mathbf{S}	0	0
0	r	K 111	847	530	146	168	3	0	0

• Molecule 4 is a protein called 17b Fab Heavy Chain.

Mol	Chain	Residues		At	oms		AltConf	Trace	
4	4 H	120	Total	С	Ν	0	S	0	0
4		129	996	627	170	196	3	0	0
4	Т	120	Total	С	Ν	Ο	\mathbf{S}	0	0
4	J	129	996	627	170	196	3		
4 L	190	Total	С	Ν	0	S	0	0	
	L	L 129	996	627	170	196	3	0	0

• Molecule 5 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
5	М	2	Total C N O	0	0
0			28 16 2 10	0	0
5	0	2	Total C N O	0	0
0	U		28 16 2 10	0	0
5	0	2	Total C N O	0	0
0	5 Q	-	28 16 2 10	0	0
5	B	2	Total C N O	0	0
0	10		28 16 2 10	0	0
5	Т	2	Total C N O	0	0
0	1		28 16 2 10	0	0
5	TT	2	Total C N O	0	0
0	U		28 16 2 10	0	0
5	V	2	Total C N O	0	0
	v	2	28 16 2 10	0	

• Molecule 6 is an oligosaccharide called alpha-D-mannopyranose-(1-6)-alpha-D-mannopyran ose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	I	Aton	ns	AltConf	Trace	
6	Ν	5	Total 61	С 34	N 2	O 25	0	0

• Molecule 7 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
7	Р	6	Total 72	C 40	N 2	O 30	0	0

• Molecule 8 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-[alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyran ose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms			AltConf	Trace	
8	S	7	Total 83	C 46	N 2	O 35	0	0

• Molecule 9 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	A	AltConf				
0	Λ	1	Total	С	Ν	Ο	0	
9	A	1	14	8	1	5	0	
0	Λ	1	Total	С	Ν	Ο	0	
9	A	1	14	8	1	5	0	
0	Λ	1	Total	С	Ν	Ο	0	
9	А	1	14	8	1	5	0	
0	Λ	1	Total	С	Ν	0	0	
9	Π	Π	1	14	8	1	5	0
0	Λ	1	Total	С	Ν	Ο	0	
9	Л	1	14	8	1	5	0	
0	Λ	1	Total	С	Ν	Ο	0	
9	Л	1	14	8	1	5	0	
Q	Δ	1	Total	С	Ν	0	0	
9	Л	I	14	8	1	5	0	
Q	Δ	1	Total	С	Ν	Ο	0	
9	Л	1	14	8	1	5	0	

Continued from previous page...

Mol	Chain	Residues	A	ton	ns		AltConf
0	C	1	Total	С	Ν	0	0
9	C	L	14	8	1	5	0
0	C	1	Total	С	Ν	0	0
9	C	L	14	8	1	5	0
0	C	1	Total	С	Ν	0	0
9	U	L	14	8	1	5	0
0	С	1	Total	С	Ν	Ο	0
3	U	T	14	8	1	5	0
0	С	1	Total	С	Ν	Ο	0
9	U	T	14	8	1	5	0
Q	С	1	Total	С	Ν	Ο	0
3	U	T	14	8	1	5	0
Q	С	1	Total	С	Ν	Ο	0
3	U	1	14	8	1	5	0
Q	С	1	Total	С	Ν	Ο	0
3	U	T	14	8	1	5	0
Q	л	1	Total	С	Ν	Ο	0
3	D	T	14	8	1	5	0
0	F	1	Total	С	Ν	Ο	0
9	Ľ	T	14	8	1	5	0
Q	F	1	Total	С	Ν	Ο	0
9	Ľ	T	14	8	1	5	0
0	F	1	Total	С	Ν	Ο	0
3	Ľ	T	14	8	1	5	0
Q	F	1	Total	С	Ν	Ο	0
3	Ľ	T	14	8	1	5	0
Q	E	1	Total	С	Ν	Ο	0
5	Ľ	I	14	8	1	5	0
Q	E	1	Total	С	Ν	Ο	0
5	Ľ	I	14	8	1	5	0
Q	E	1	Total	С	Ν	Ο	0
5	Ľ	I	14	8	1	5	0
0	F	1	Total	С	Ν	0	0
5	Ľ	I	14	8	1	5	0
0	F	1	Total	С	Ν	Ο	0
3	T.	1	14	8	1	5	0
0	F	1	Total	С	Ν	0	0
	L L	L	14	8	1	5	

• Molecule 10 is {N}'-[(1 {R},2 {R})-2-(carbamimidamidomethyl)-5-(methylaminomethyl)-2,3-dihydro-1 {H}-inden-1-yl]- {N}-(4-chloranyl-3-fluoranyl-phenyl)ethanediamid e (three-letter code: 5VG) (formula: $C_{21}H_{24}ClFN_6O_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms					AltConf	
10	Λ	1	Total	С	Cl	F	Ν	Ο	0
10	A	1	31	21	1	1	6	2	0
10	C	1	Total	С	Cl	F	Ν	Ο	0
10	U	1	31	21	1	1	6	2	0
10	F	1	Total	С	Cl	F	Ν	Ο	0
10	Ľ	1	31	21	1	1	6	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 2: HIV-1 Envelope Glycoprotein BG505 SOSIP.664 gp41

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain R:	50%	50%	
NAG1 NAG2			
• Molecule & opyranose	5: 2-acetamido-2-deoxy-beta-	D-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc

α · π		
Chain T:	50%	50%

NAG1 NAG2

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 5: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain V:	50%	50%
NAG1 NAG2		

• Molecule 6: alpha-D-mannopyranose-(1-6)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	20%	
Chain N:	40%	60%
•		
AG1 AG2 MA3 AN4 AN5 AN5		
N N M N N		

• Molecule 7: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain P:	83%	17%
NAG1 NAG2 BMA3 MAN4 MAN5 MAN6 MAN6		

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose [1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose [1-4]-2-acetamido-2-deoxy-beta-D-glucopyranose [1-4]-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-$

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	662861	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.079	Depositor
Minimum map value	-0.041	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.002	Depositor
Recommended contour level	0.013	Depositor
Map size (Å)	282.624, 282.624, 282.624	wwPDB
Map dimensions	256, 256, 256	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.104, 1.104, 1.104	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, BMA, 5VG, MAN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bo	ond angles
MOI Chain		RMSZ	RMSZ $\# Z > 5$		# Z > 5
1	А	0.41	0/2904	0.52	0/3946
1	С	0.60	0/2912	0.58	1/3957~(0.0%)
1	Е	0.74	1/2926~(0.0%)	0.62	1/3976~(0.0%)
2	В	0.45	0/1046	0.50	0/1420
2	D	0.54	0/1069	0.57	0/1450
2	F	0.59	0/979	0.56	0/1327
3	G	0.50	0/873	0.55	0/1187
3	Ι	0.42	0/870	0.52	0/1183
3	Κ	0.31	0/867	0.55	0/1180
4	Н	0.51	0/1017	0.52	0/1380
4	J	0.48	0/1017	0.53	0/1380
4	L	0.31	0/1017	0.50	0/1380
All	All	0.54	1/17497~(0.0%)	0.56	2/23766~(0.0%)

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	Е	54	CYS	CB-SG	-5.21	1.73	1.81

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	С	116	LEU	C-N-CA	-5.73	107.37	121.70
1	Е	54	CYS	CA-CB-SG	5.67	124.22	114.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2840	0	2771	112	0
1	С	2848	0	2776	102	0
1	Е	2862	0	2799	94	0
2	В	1026	0	1009	31	0
2	D	1049	0	1034	33	0
2	F	960	0	931	32	0
3	G	853	0	825	34	0
3	Ι	850	0	823	34	0
3	К	847	0	814	62	0
4	Н	996	0	962	35	0
4	J	996	0	962	44	0
4	L	996	0	962	67	0
5	М	28	0	25	0	0
5	0	28	0	25	1	0
5	Q	28	0	25	2	0
5	R	28	0	25	2	0
5	Т	28	0	25	1	0
5	U	28	0	25	1	0
5	V	28	0	25	2	0
6	N	61	0	52	3	0
7	Р	72	0	61	3	0
8	S	83	0	70	4	0
9	А	112	0	104	7	0
9	С	112	0	104	5	0
9	D	14	0	13	0	0
9	Ε	112	0	104	4	0
9	F	28	0	26	0	0
10	A	31	0	0	2	0
10	С	31	0	0	1	0
10	Е	31	0	0	1	0
All	All	18006	0	17377	662	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 19.

All (662) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom_2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:259:LEU:HD13	1:C:449:ILE:HD13	1.20	1.10	
1:C:259:LEU:HD13	1:C:449:ILE:CD1	1.84	1.08	
1:C:259:LEU:HD22	1:C:449:ILE:HG21	1.39	1.00	
1:C:218:CYS:HA	1:C:247:CYS:HB3	1.45	0.96	
4:J:94:TYR:O	4:J:121:GLY:HA2	1.70	0.92	
1:A:259:LEU:HB3	1:A:261:LEU:HD11	1.58	0.85	
1:A:426:MET:HG3	1:A:428:GLN:H	1.42	0.85	
1:E:278:THR:O	5:T:1:NAG:O6	1.95	0.83	
4:H:88:SER:HA	4:H:126:VAL:HG13	1.58	0.83	
1:C:259:LEU:CD1	1:C:449:ILE:HD13	2.06	0.82	
3:I:90:GLN:HE21	3:I:99:THR:HG22	1.44	0.82	
3:I:4:MET:HA	3:I:24:ARG:O	1.79	0.81	
4:J:91:THR:HG23	4:J:125:THR:HA	1.63	0.81	
1:A:360:ARG:HB3	1:A:467:THR:HG22	1.61	0.81	
4:J:38:ARG:HH12	4:J:90:ASP:HB3	1.45	0.80	
3:G:29:VAL:HG13	3:G:92:ASN:HB2	1.64	0.80	
3:I:107:GLU:OE2	3:I:110:ARG:NH1	2.14	0.80	
4:L:94:TYR:HB2	4:L:122:THR:HB	1.62	0.79	
4:L:38:ARG:NH1	4:L:94:TYR:OH	2.16	0.79	
1:A:259:LEU:HB3	1:A:261:LEU:CD1	2.15	0.76	
1:C:64:GLU:OE1	1:C:66:HIS:N	2.13	0.76	
2:B:540:GLN:O	2:B:544:LEU:N	2.18	0.75	
1:E:268:GLU:HG3	1:E:269:GLU:HG2	1.68	0.75	
3:K:38:GLN:NE2	3:K:42:GLN:O	2.19	0.74	
4:L:73:ASP:O	4:L:77:SER:N	2.22	0.73	
1:A:327:ARG:O	1:A:419:ARG:NH1	2.21	0.73	
3:G:77:SER:O	3:G:79:GLN:NE2	2.18	0.73	
3:K:79:GLN:HG2	3:K:81:GLU:H	1.54	0.73	
1:A:491:ILE:HG22	1:A:493:PRO:HD3	1.72	0.71	
1:A:256:SER:OG	1:A:259:LEU:O	2.09	0.71	
3:K:54:ARG:HD3	3:K:60:ALA:HB1	1.71	0.71	
1:E:452:LEU:HD23	1:E:454:LEU:HD21	1.73	0.71	
1:E:274:SER:OG	1:E:275:GLU:N	2.24	0.70	
1:C:368:ASP:OD2	1:C:425:ASN:ND2	2.22	0.70	
1:C:64:GLU:OE2	1:C:211:GLU:N	2.24	0.70	
2:F:539:VAL:HG12	2:F:540:GLN:HG2	1.73	0.70	
1:A:261:LEU:HD12	1:A:261:LEU:N	2.06	0.70	
3:G:90:GLN:HE21	3:G:99:THR:HG22	1.56	0.70	
4:L:17:SER:HA	4:L:83:LEU:O	1.91	0.69	
1:C:327:ARG:NH1	1:C:422:GLN:OE1	2.25	0.69	
3:G:6:GLN:HE22	3:G:87:TYR:HA	1.57	0.69	
3:I:18:ARG:HA	3:I:75:ILE:O	1.93	0.69	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:331:CYS:HB2	1:C:416:LEU:HB2	1.73	0.69	
3:I:6:GLN:HE22	3:I:87:TYR:HA	1.57	0.69	
4:H:87:ARG:NH2	4:H:89:ASP:OD2	2.25	0.69	
3:K:37:GLN:HB2	3:K:47:LEU:HD11	1.75	0.69	
3:I:14:SER:OG	3:I:109:LYS:O	2.10	0.69	
1:C:369:LEU:HA	1:C:372:THR:HG22	1.75	0.68	
1:A:363:ASN:O	1:A:469:ARG:NH1	2.27	0.68	
1:A:34:LEU:O	2:B:610:TRP:N	2.18	0.68	
1:C:298:ARG:HD2	1:C:299:PRO:O	1.93	0.68	
1:E:230:ASP:OD1	1:E:231:LYS:N	2.27	0.68	
4:J:87:ARG:NH2	4:J:89:ASP:OD2	2.27	0.68	
2:B:639:THR:OG1	2:B:640:GLN:NE2	2.25	0.67	
4:L:39:GLN:HB2	4:L:45:LEU:HG	1.76	0.67	
1:A:45:TRP:NE1	1:A:91:GLU:OE1	2.28	0.67	
4:H:56:ASP:OD2	4:H:74:LYS:NZ	2.28	0.67	
1:C:278:THR:O	5:Q:1:NAG:O6	2.09	0.67	
1:E:264:SER:O	1:E:287:GLN:NE2	2.28	0.67	
3:G:93:ASN:ND2	3:G:97:ARG:O	2.26	0.66	
1:A:203:GLN:O	3:K:94:TRP:NE1	2.28	0.66	
4:L:55:LEU:HB2	4:L:57:VAL:HG22	1.78	0.66	
1:A:261:LEU:HD12	1:A:261:LEU:H	1.60	0.65	
4:J:18:VAL:HG12	4:J:86:LEU:HD21	1.78	0.65	
1:A:45:TRP:HE3	2:B:523:LEU:HD13	1.62	0.65	
4:J:38:ARG:NE	4:J:46:GLU:OE1	2.21	0.65	
1:E:362:ALA:HB3	1:E:469:ARG:HG2	1.78	0.64	
1:A:270:VAL:HG22	1:A:288:PHE:HA	1.79	0.64	
1:A:94:ASN:HA	1:A:236:THR:HG22	1.77	0.64	
1:C:370:GLU:OE1	1:C:425:ASN:ND2	2.31	0.64	
1:C:503:ARG:HE	2:D:606:THR:HA	1.62	0.64	
1:A:258:GLN:NE2	1:A:371:VAL:O	2.31	0.64	
3:G:59:PRO:HG2	3:G:62:PHE:HE2	1.62	0.64	
1:A:35:TRP:HA	2:B:609:PRO:HA	1.79	0.64	
3:K:79:GLN:N	3:K:82:ASP:OD2	2.23	0.64	
3:G:20:THR:HG22	3:G:74:THR:HG22	1.78	0.63	
1:A:378:CYS:HB3	1:A:383:PHE:HE2	1.63	0.63	
4:H:91:THR:HG23	4:H:125:THR:HA	1.79	0.63	
3:G:19:ALA:O	3:G:74:THR:HA	1.99	0.63	
4:L:15:GLY:HA2	4:L:85:ASN:HA	1.79	0.63	
1:C:284:ILE:HD11	1:C:454:LEU:HD12	1.81	0.63	
1:A:258:GLN:NE2	1:A:373:THR:O	2.32	0.62	
1:A:327:ARG:HH22	4:L:110:ASP:HA	1.63	0.62	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:J:60:TYR:HE2	4:J:70:ILE:HG13	1.64	0.62
3:G:77:SER:OG	3:G:79:GLN:NE2	2.33	0.62
6:N:1:NAG:O7	6:N:1:NAG:O3	2.17	0.62
1:E:85:HIS:ND1	1:E:86:LEU:O	2.31	0.62
1:E:230:ASP:OD1	1:E:232:LYS:N	2.23	0.62
1:E:52:LEU:H	1:E:52:LEU:HD12	1.65	0.62
4:J:41:PRO:O	4:J:43:GLN:NE2	2.32	0.62
1:A:363:ASN:OD1	1:A:364:SER:N	2.32	0.62
1:C:298:ARG:NH1	1:C:326:ILE:O	2.32	0.62
1:A:492:GLU:O	1:A:494:LEU:N	2.31	0.62
1:C:37:THR:HG21	1:C:499:THR:HB	1.82	0.62
1:A:234:ASN:OD1	1:A:235:GLY:N	2.33	0.62
1:E:327:ARG:HH21	1:E:422:GLN:HE22	1.47	0.62
4:H:67:ARG:HH21	4:H:83:LEU:HD21	1.65	0.62
3:K:94:TRP:CE2	3:K:96:PRO:HD3	2.35	0.61
1:A:259:LEU:CB	1:A:261:LEU:HD11	2.29	0.61
4:L:9:ALA:HB2	4:L:123:LEU:HB2	1.80	0.61
3:I:14:SER:HA	3:I:108:ILE:HG23	1.81	0.61
4:J:31:ARG:NH1	4:J:103:GLU:OE2	2.33	0.61
4:L:38:ARG:HG2	4:L:46:GLU:HB2	1.82	0.61
1:C:212:PRO:O	1:C:252:LYS:NZ	2.33	0.61
1:C:363:ASN:O	1:C:469:ARG:NH1	2.31	0.61
4:H:60:TYR:CE2	4:H:70:ILE:HG13	2.36	0.61
3:I:24:ARG:NH2	3:I:70:GLU:OE2	2.33	0.61
4:H:30:ILE:HA	4:H:53:THR:HG21	1.83	0.61
9:E:604:NAG:H83	9:E:604:NAG:H3	1.82	0.61
3:K:10:THR:OG1	3:K:107:GLU:OE1	2.18	0.61
2:D:625:ASN:OD1	2:D:625:ASN:N	2.33	0.61
3:G:54:ARG:NH1	3:G:62:PHE:O	2.27	0.61
3:G:93:ASN:OD1	3:G:97:ARG:N	2.26	0.61
1:C:359:ILE:HG22	1:C:466:GLU:HB2	1.83	0.60
1:A:327:ARG:NH1	1:A:422:GLN:OE1	2.34	0.60
1:E:374:HIS:O	1:E:374:HIS:ND1	2.34	0.60
4:L:22:CYS:HB2	4:L:36:TRP:HZ2	1.66	0.60
2:F:611:ASN:OD1	2:F:612:SER:N	2.34	0.60
4:L:47:TRP:CZ2	4:L:49:GLY:HA2	2.36	0.60
1:E:64:GLU:HG2	1:E:65:LYS:H	1.67	0.60
1:E:298:ARG:NH2	1:E:441:GLY:O	2.29	0.60
1:A:457:ASP:HB2	1:A:466:GLU:HB3	1.83	0.60
3:I:7:SER:OG	3:I:22:SER:OG	2.09	0.60
4:J:65:GLN:OE1	4:J:66:GLY:N	2.35	0.59

	ti a	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
4:L:36:TRP:CE2	4:L:96:CYS:HB3	2.36	0.59	
1:C:421:LYS:NZ	4:J:106:GLU:O	2.27	0.59	
2:B:531:GLY:O	2:B:535:MET:HG2	2.01	0.59	
1:C:218:CYS:CA	1:C:247:CYS:HB3	2.26	0.59	
1:A:331:CYS:HB2	1:A:416:LEU:HB2	1.85	0.59	
1:A:259:LEU:HB2	1:A:374:HIS:CD2	2.38	0.59	
4:J:39:GLN:NE2	4:J:43:GLN:O	2.29	0.59	
4:L:73:ASP:O	4:L:77:SER:CA	2.50	0.59	
1:C:230:ASP:OD2	1:C:232:LYS:N	2.24	0.59	
1:C:259:LEU:HD13	1:C:449:ILE:HD11	1.82	0.59	
1:A:413:SER:OG	1:A:414:ILE:N	2.34	0.59	
3:K:25:ALA:H	3:K:69:ALA:HB1	1.66	0.58	
2:D:568:LEU:HD11	2:F:570:VAL:HG23	1.84	0.58	
1:A:261:LEU:CD1	1:A:261:LEU:H	2.17	0.58	
4:H:11:VAL:HA	4:H:125:THR:O	2.03	0.58	
3:I:35:TRP:HD1	3:I:48:ILE:HB	1.67	0.58	
3:K:9:ALA:O	3:K:104:THR:OG1	2.19	0.58	
1:E:215:ILE:O	1:E:251:ILE:N	2.31	0.58	
4:L:23:LYS:HE3	4:L:78:THR:HG22	1.85	0.58	
1:A:476:ARG:HA	1:A:479:TRP:HD1	1.67	0.58	
1:E:96:TRP:CG	1:E:275:GLU:HG2	2.39	0.58	
4:L:38:ARG:NE	4:L:46:GLU:OE2	2.30	0.58	
1:E:294:ILE:HD12	1:E:449:ILE:HD11	1.85	0.58	
1:E:357:THR:OG1	1:E:464:THR:O	2.21	0.58	
4:J:13:LYS:NZ	4:J:128:SER:O	2.27	0.58	
4:L:40:ALA:HB3	4:L:43:GLN:HG3	1.86	0.58	
1:E:259:LEU:HB2	1:E:374:HIS:CD2	2.39	0.57	
1:E:98:ASN:OD1	1:E:99:ASN:N	2.36	0.57	
1:E:277:ILE:HG22	1:E:278:THR:HG23	1.85	0.57	
9:A:602:NAG:H3	9:A:602:NAG:H83	1.86	0.57	
3:K:18:ARG:NH2	3:K:19:ALA:O	2.37	0.57	
4:L:22:CYS:HB2	4:L:36:TRP:CZ2	2.39	0.57	
9:A:605:NAG:H83	9:A:605:NAG:H3	1.87	0.57	
2:F:658:GLN:OE1	2:F:658:GLN:HA	2.04	0.57	
4:J:60:TYR:OH	4:J:70:ILE:N	2.26	0.57	
1:A:255:VAL:HG23	1:A:475:MET:SD	2.45	0.57	
1:C:384:TYR:O	1:C:418:CYS:HA	2.05	0.57	
1:E:424:ILE:HD11	1:E:435:TYR:HE2	1.69	0.57	
1:A:65:LYS:HE3	1:A:208:VAL:HG21	1.87	0.56	
3:K:98:TYR:HB2	4:L:47:TRP:CZ2	2.40	0.56	
1:C:464:THR:OG1	1:C:465:THR:N	2.38	0.56	

	ti a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:K:46:LEU:HD11	3:K:49:TYR:HD1	1.70	0.56
1:A:264:SER:O	1:A:287:GLN:NE2	2.37	0.56
1:C:359:ILE:HA	1:C:466:GLU:O	2.05	0.56
3:I:45:ARG:NH2	3:I:57:GLY:O	2.38	0.56
4:J:36:TRP:CG	4:J:81:LEU:HD12	2.40	0.56
4:J:81:LEU:HD23	4:J:82:GLU:N	2.20	0.56
4:L:38:ARG:HD3	4:L:94:TYR:CZ	2.40	0.56
2:B:649:SER:O	2:B:653:GLN:NE2	2.38	0.56
2:F:618:ASN:HB2	2:F:621:GLU:HB2	1.86	0.56
1:A:295:ASN:HD21	9:A:603:NAG:C7	2.19	0.56
1:C:50:THR:O	1:C:103:GLN:NE2	2.37	0.56
4:L:67:ARG:NH1	4:L:85:ASN:O	2.39	0.56
1:C:378:CYS:SG	7:P:2:NAG:O6	2.63	0.56
1:E:430:ILE:HA	10:E:609:5VG:N28	2.21	0.56
3:G:49:TYR:O	3:G:53:THR:OG1	2.23	0.56
4:J:16:SER:OG	4:J:17:SER:N	2.39	0.56
5:Q:1:NAG:H3	5:Q:1:NAG:H83	1.87	0.56
1:A:349:LEU:O	1:A:353:PHE:N	2.36	0.56
1:C:270:VAL:HG22	1:C:288:PHE:HA	1.86	0.55
1:A:448:ASN:OD1	9:A:608:NAG:N2	2.39	0.55
1:E:297:THR:O	1:E:329:ALA:HB1	2.05	0.55
4:J:40:ALA:HB3	4:J:43:GLN:HG3	1.87	0.55
1:A:455:THR:HG22	1:A:456:ARG:H	1.72	0.55
2:B:638:TYR:O	2:B:642:ILE:HG12	2.06	0.55
3:G:73:LEU:HD12	3:G:74:THR:H	1.71	0.55
3:I:35:TRP:CZ3	3:I:88:CYS:HB3	2.41	0.55
1:C:236:THR:HG22	1:C:237:GLY:H	1.70	0.55
3:G:37:GLN:HG3	3:G:86:TYR:HE1	1.70	0.55
3:K:24:ARG:HB2	3:K:69:ALA:HB1	1.89	0.55
3:I:19:ALA:O	3:I:74:THR:HA	2.07	0.55
3:K:86:TYR:O	3:K:104:THR:N	2.33	0.55
4:L:17:SER:HB2	4:L:84:ARG:HG2	1.89	0.55
1:E:259:LEU:HB2	1:E:374:HIS:HD2	1.72	0.55
1:C:68:VAL:O	1:C:71:THR:HG22	2.07	0.54
3:G:3:VAL:HG22	3:G:26:SER:HB3	1.89	0.54
1:E:360:ARG:HG2	1:E:467:THR:HG22	1.90	0.54
4:J:73:ASP:OD2	4:J:75:SER:OG	2.18	0.54
1:C:383:PHE:O	1:C:384:TYR:HD1	1.90	0.54
4:L:110:ASP:OD1	4:L:110:ASP:N	2.40	0.54
1:C:234:ASN:HD21	5:O:1:NAG:H83	1.73	0.54
9:E:608:NAG:H81	8:S:1:NAG:H62	1.87	0.54

	ti a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:K:37:GLN:HB3	3:K:47:LEU:HD21	1.89	0.54
4:L:58:ALA:O	4:L:59:HIS:ND1	2.40	0.54
3:K:8:PRO:HG2	3:K:11:LEU:HB3	1.90	0.54
1:C:120:VAL:HG12	1:C:434:MET:HB2	1.90	0.54
3:G:14:SER:N	3:G:17:GLU:OE1	2.40	0.54
4:L:36:TRP:HZ3	4:L:94:TYR:HB3	1.72	0.54
1:E:109:ILE:HD12	1:E:428:GLN:HB3	1.90	0.54
3:K:33:LEU:H	3:K:51:ALA:HB2	1.72	0.54
4:H:38:ARG:HD2	4:H:94:TYR:HE2	1.72	0.53
4:J:38:ARG:NH1	4:J:94:TYR:OH	2.40	0.53
2:D:594:GLY:HA2	2:D:599:SER:HB3	1.89	0.53
4:J:69:THR:OG1	4:J:84:ARG:NH1	2.40	0.53
3:K:15:PRO:HD3	3:K:109:LYS:HZ2	1.73	0.53
1:A:94:ASN:OD1	1:A:97:LYS:N	2.33	0.53
1:A:455:THR:N	1:A:469:ARG:O	2.38	0.53
2:F:519:PHE:HE1	2:F:582:ALA:HB2	1.72	0.53
2:B:579:ARG:NH2	2:D:584:GLU:OE1	2.35	0.53
4:L:67:ARG:HD2	4:L:85:ASN:HB3	1.90	0.53
4:H:85:ASN:O	4:H:85:ASN:ND2	2.42	0.53
8:S:1:NAG:O7	8:S:1:NAG:H3	2.08	0.53
1:E:105:HIS:HD1	1:E:479:TRP:HZ3	1.56	0.53
4:H:17:SER:OG	4:H:18:VAL:N	2.42	0.53
1:C:498:PRO:HB3	2:D:610:TRP:CD2	2.44	0.53
2:D:606:THR:OG1	2:D:607:ASN:N	2.41	0.53
1:E:343:GLY:O	1:E:346:VAL:HG12	2.09	0.52
2:B:641:ILE:HG13	2:B:642:ILE:N	2.24	0.52
4:L:60:TYR:CZ	4:L:70:ILE:HG22	2.45	0.52
2:B:536:THR:HA	2:B:539:VAL:HG22	1.90	0.52
1:C:270:VAL:N	1:C:289:ASN:OD1	2.42	0.52
2:D:559:PRO:C	1:E:72:HIS:HE1	2.12	0.52
1:E:342:LEU:HD22	1:E:361:PHE:HE2	1.74	0.52
1:C:457:ASP:OD1	1:C:457:ASP:N	2.41	0.52
1:E:284:ILE:O	1:E:285:LEU:HD12	2.09	0.52
1:C:327:ARG:O	1:C:419:ARG:NH2	2.43	0.52
1:C:421:LYS:O	1:C:422:GLN:NE2	2.42	0.52
1:E:50:THR:OG1	1:E:51:THR:N	2.42	0.52
1:E:270:VAL:HG12	1:E:288:PHE:HA	1.91	0.52
3:I:21:LEU:O	3:I:72:THR:HA	2.10	0.52
3:K:93:ASN:ND2	3:K:97:ARG:O	2.43	0.52
9:C:608:NAG:C7	9:C:608:NAG:HO3	2.22	0.52
2:D:532:ALA:HA	2:D:535:MET:HE2	1.91	0.52

	lo ao pagom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:H:16:SER:OG	4:H:17:SER:N	2.43	0.52
1:C:378:CYS:HB3	1:C:383:PHE:HE2	1.74	0.52
2:F:566:LEU:O	2:F:570:VAL:HG12	2.10	0.52
4:H:21:SER:OG	4:H:22:CYS:N	2.43	0.52
4:J:94:TYR:O	4:J:121:GLY:CA	2.52	0.51
2:D:601:LYS:H	2:D:601:LYS:HZ3	1.57	0.51
2:F:593:LEU:HB3	2:F:598:CYS:O	2.11	0.51
3:G:35:TRP:HD1	3:G:48:ILE:HB	1.73	0.51
1:E:258:GLN:NE2	1:E:470:PRO:HB2	2.25	0.51
2:F:586:TYR:CE2	2:F:590:GLN:HG3	2.45	0.51
4:J:6:GLU:OE2	4:J:121:GLY:N	2.42	0.51
4:L:108:GLU:OE1	4:L:108:GLU:N	2.43	0.51
1:A:120:VAL:CG1	1:A:434:MET:HB2	2.41	0.51
3:I:93:ASN:OD1	3:I:97:ARG:N	2.40	0.51
3:K:93:ASN:HD21	3:K:98:TYR:HA	1.76	0.51
4:L:39:GLN:NE2	4:L:43:GLN:O	2.31	0.51
1:A:377:ASN:OD1	1:A:378:CYS:N	2.44	0.51
9:C:604:NAG:H3	9:C:604:NAG:H83	1.92	0.51
3:G:21:LEU:O	3:G:72:THR:HA	2.11	0.51
3:G:59:PRO:HG2	3:G:62:PHE:CE2	2.46	0.51
1:A:360:ARG:HA	1:A:394:THR:HG23	1.93	0.51
4:L:73:ASP:O	4:L:77:SER:HA	2.10	0.51
1:A:270:VAL:N	1:A:289:ASN:OD1	2.44	0.51
3:I:45:ARG:HH22	3:I:58:VAL:HA	1.76	0.51
2:B:622:ILE:HG22	2:B:626:MET:SD	2.52	0.50
1:C:93:PHE:HE1	1:C:239:CYS:HB3	1.76	0.50
1:C:358:ILE:HG12	1:C:464:THR:O	2.11	0.50
1:A:370:GLU:HA	1:A:384:TYR:HE2	1.74	0.50
2:D:573:ILE:O	2:D:576:LEU:N	2.43	0.50
1:E:52:LEU:HB3	1:E:218:CYS:O	2.11	0.50
4:J:61:ALA:HB3	4:J:64:LEU:HB2	1.91	0.50
3:K:85:VAL:HG12	3:K:105:ARG:HA	1.93	0.50
1:C:370:GLU:OE2	1:C:425:ASN:N	2.34	0.50
1:C:498:PRO:HB3	2:D:610:TRP:CE3	2.47	0.50
1:C:491:ILE:HG22	1:C:493:PRO:HD3	1.93	0.50
2:D:518:VAL:HG23	2:D:544:LEU:HB3	1.93	0.50
1:C:360:ARG:HG2	1:C:467:THR:HG22	1.94	0.50
4:L:51:ILE:HA	4:L:58:ALA:HA	1.94	0.50
1:A:457:ASP:OD2	1:A:467:THR:OG1	2.21	0.50
1:C:51:THR:O	1:C:51:THR:OG1	2.30	0.50
2:F:566:LEU:HA	2:F:569:THR:HG22	1.91	0.50

	ti a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:I:77:SER:O	3:I:79:GLN:NE2	2.39	0.50
4:J:33:SER:OG	4:J:34:PHE:N	2.45	0.50
3:K:94:TRP:CZ3	3:K:96:PRO:HB3	2.47	0.50
1:A:93:PHE:CE2	1:A:228:CYS:HB2	2.46	0.50
1:A:430:ILE:HA	10:A:609:5VG:N28	2.26	0.50
1:C:120:VAL:HG23	1:C:202:THR:HG22	1.93	0.50
1:C:211:GLU:OE2	7:P:1:NAG:O6	2.29	0.50
1:C:259:LEU:HB2	1:C:374:HIS:CD2	2.47	0.50
2:D:589:ASP:O	2:D:591:GLN:N	2.45	0.50
4:L:9:ALA:HA	4:L:123:LEU:O	2.10	0.50
1:A:361:PHE:HB3	1:A:391:PHE:O	2.12	0.50
3:K:54:ARG:NE	3:K:62:PHE:O	2.45	0.50
2:B:622:ILE:HG13	2:B:623:TRP:CD1	2.46	0.50
1:C:259:LEU:HB2	1:C:374:HIS:HD2	1.77	0.50
1:E:64:GLU:HG2	1:E:65:LYS:N	2.27	0.50
1:A:50:THR:HB	1:A:223:PHE:HE2	1.77	0.49
2:B:593:LEU:HB3	2:B:598:CYS:O	2.12	0.49
4:H:39:GLN:O	4:H:93:VAL:HG12	2.12	0.49
1:C:430:ILE:HA	10:C:609:5VG:N28	2.26	0.49
1:E:272:ILE:HD11	1:E:349:LEU:HD22	1.94	0.49
4:L:60:TYR:OH	4:L:70:ILE:N	2.37	0.49
4:J:114:PHE:C	4:J:115:LEU:HD12	2.32	0.49
1:A:278:THR:O	9:A:602:NAG:O6	2.26	0.49
2:D:558:ALA:HB1	2:D:563:GLN:HB3	1.94	0.49
1:E:498:PRO:HB3	2:F:610:TRP:CG	2.47	0.49
4:J:105:ASP:N	4:J:105:ASP:OD1	2.44	0.49
4:J:123:LEU:HD23	4:J:124:VAL:N	2.27	0.49
3:I:33:LEU:HD23	3:I:89:GLN:O	2.13	0.49
1:C:265:LEU:HA	1:C:287:GLN:HE21	1.77	0.49
3:I:67:SER:OG	3:I:68:GLY:N	2.45	0.49
1:A:37:THR:OG1	2:B:604:CYS:O	2.18	0.49
2:D:566:LEU:HG	2:D:570:VAL:HG12	1.95	0.49
4:J:30:ILE:HD12	4:J:54:ILE:HD13	1.94	0.49
4:J:53:THR:O	4:J:56:ASP:N	2.46	0.49
3:K:13:VAL:HB	3:K:17:GLU:OE2	2.12	0.49
1:E:268:GLU:HG3	1:E:269:GLU:N	2.27	0.48
3:G:32:ASP:OD2	3:G:92:ASN:HA	2.13	0.48
4:H:19:LYS:HE2	4:H:82:GLU:HB2	1.94	0.48
4:J:38:ARG:HD3	4:J:94:TYR:CE1	2.48	0.48
3:K:99:THR:OG1	3:K:100:PHE:N	2.46	0.48
1:A:76:PRO:HD3	2:B:571:TRP:CD1	2.49	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:K:11:LEU:HD12	3:K:13:VAL:HG11	1.95	0.48
1:A:261:LEU:CD1	1:A:261:LEU:N	2.73	0.48
1:A:427:TRP:HB3	10:A:609:5VG:C20	2.44	0.48
1:E:360:ARG:O	1:E:467:THR:HA	2.13	0.48
9:E:606:NAG:O6	5:V:1:NAG:O7	2.24	0.48
4:L:12:LYS:O	4:L:127:SER:N	2.46	0.48
1:E:77:THR:OG1	1:E:78:ASP:N	2.47	0.48
1:E:456:ARG:HG2	1:E:468:PHE:HE1	1.79	0.48
1:A:333:VAL:O	1:A:413:SER:OG	2.31	0.48
4:J:30:ILE:HA	4:J:53:THR:HG21	1.96	0.48
3:K:100:PHE:HE2	4:L:45:LEU:HD22	1.79	0.48
1:A:335:LYS:HD2	1:A:414:ILE:HD11	1.95	0.48
1:A:350:ARG:HG2	1:A:354:GLY:O	2.14	0.48
1:A:503:ARG:HB2	2:B:607:ASN:OD1	2.14	0.48
1:C:279:ASN:C	1:C:456:ARG:HH12	2.17	0.48
1:E:281:ALA:O	1:E:282:LYS:HD3	2.13	0.48
3:K:38:GLN:NE2	3:K:39:LYS:O	2.47	0.48
1:A:423:ILE:HG12	1:A:434:MET:SD	2.54	0.48
1:E:358:ILE:HB	1:E:465:THR:HG22	1.95	0.48
3:I:25:ALA:HB3	3:I:69:ALA:HA	1.96	0.48
2:B:622:ILE:HG13	2:B:623:TRP:HD1	1.79	0.48
2:B:648:GLU:O	2:B:651:ASN:N	2.46	0.48
1:C:109:ILE:HD12	1:C:428:GLN:HB3	1.95	0.48
1:E:494:LEU:HD12	1:E:494:LEU:HA	1.66	0.48
3:G:35:TRP:CZ3	3:G:88:CYS:HB3	2.49	0.47
1:C:64:GLU:OE1	1:C:65:LYS:N	2.46	0.47
4:H:38:ARG:HB2	4:H:94:TYR:CD2	2.49	0.47
3:I:78:LEU:O	3:I:79:GLN:NE2	2.47	0.47
3:K:29:VAL:HG13	3:K:90:GLN:HE21	1.79	0.47
4:L:60:TYR:HD1	4:L:65:GLN:HE22	1.61	0.47
4:L:91:THR:HA	4:L:124:VAL:O	2.15	0.47
1:E:54:CYS:HB2	1:E:74:CYS:HB3	1.64	0.47
1:E:334:SER:OG	1:E:335:LYS:N	2.47	0.47
1:A:71:THR:HG1	2:B:571:TRP:HZ2	1.59	0.47
1:C:77:THR:OG1	1:C:78:ASP:N	2.45	0.47
4:H:65:GLN:OE1	4:H:66:GLY:N	2.46	0.47
1:E:198:THR:O	1:E:198:THR:OG1	2.27	0.47
1:E:277:ILE:O	1:E:278:THR:OG1	2.22	0.47
3:K:6:GLN:HG3	3:K:23:CYS:HB3	1.95	0.47
1:A:49:GLU:OE1	1:A:50:THR:N	2.47	0.47
1:A:259:LEU:HB2	1:A:374:HIS:HD2	1.79	0.47

	lo ao pagom	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:C:378:CYS:HB3	1:C:383:PHE:CE2	2.49	0.47
1:C:456:ARG:HG3	1:C:468:PHE:HE1	1.79	0.47
1:E:377:ASN:OD1	1:E:378:CYS:N	2.48	0.47
1:E:381:GLU:OE1	1:E:381:GLU:N	2.48	0.47
4:H:60:TYR:OH	4:H:70:ILE:N	2.39	0.47
4:L:36:TRP:CZ3	4:L:94:TYR:HB3	2.49	0.47
4:L:73:ASP:OD2	4:L:75:SER:OG	2.28	0.47
1:A:230:ASP:HB2	1:A:240:PRO:HD2	1.95	0.47
1:A:259:LEU:HD13	1:A:449:ILE:HG12	1.97	0.47
1:C:358:ILE:O	1:C:465:THR:HA	2.15	0.47
1:C:368:ASP:OD1	1:C:369:LEU:N	2.48	0.47
1:A:69:TRP:CD1	1:A:111:LEU:HA	2.49	0.47
3:I:22:SER:HA	3:I:71:PHE:O	2.15	0.47
3:I:29:VAL:HG13	3:I:92:ASN:HB2	1.97	0.47
1:A:394:THR:H	9:A:607:NAG:H83	1.80	0.46
1:E:95:MET:HE3	1:E:273:ARG:HD3	1.96	0.46
1:A:50:THR:OG1	1:A:51:THR:N	2.48	0.46
2:D:559:PRO:C	1:E:72:HIS:CE1	2.89	0.46
4:J:16:SER:H	4:J:86:LEU:HB2	1.80	0.46
3:K:32:ASP:O	3:K:33:LEU:HD22	2.14	0.46
4:L:38:ARG:NH2	4:L:90:ASP:OD1	2.48	0.46
4:L:86:LEU:HD23	4:L:126:VAL:HG22	1.97	0.46
1:C:358:ILE:HG22	1:C:396:ILE:HG13	1.96	0.46
1:E:242:VAL:HG12	1:E:243:SER:N	2.30	0.46
2:F:624:ASP:OD1	2:F:624:ASP:N	2.37	0.46
1:A:412:ASP:N	1:A:412:ASP:OD1	2.48	0.46
1:C:494:LEU:HD12	1:C:494:LEU:HA	1.66	0.46
2:F:589:ASP:O	2:F:591:GLN:N	2.49	0.46
1:A:295:ASN:HB3	1:A:332:ASN:OD1	2.15	0.46
2:B:573:ILE:O	2:B:577:GLN:HG3	2.15	0.46
2:B:656:ASN:HB2	1:E:504:ARG:HH21	1.80	0.46
3:K:18:ARG:HA	3:K:76:SER:HA	1.97	0.46
3:K:56:THR:O	3:K:58:VAL:HG13	2.16	0.46
4:H:38:ARG:HB2	4:H:94:TYR:CE2	2.50	0.46
1:C:334:SER:HB3	1:C:337:THR:HG22	1.97	0.46
2:F:529:THR:HG22	2:F:530:MET:H	1.80	0.46
4:H:83:LEU:HD23	4:H:84:ARG:N	2.31	0.46
4:L:71:THR:OG1	4:L:80:TYR:HB2	2.15	0.46
1:A:248:THR:HB	1:A:486:TYR:CE2	2.50	0.46
1:C:95:MET:HG2	1:C:96:TRP:CD1	2.51	0.46
2:D:587:LEU:HD23	2:D:587:LEU:HA	1.70	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:K:55:ALA:HB3	3:K:58:VAL:HG21	1.96	0.46
3:K:94:TRP:HA	3:K:95:PRO:C	2.36	0.46
4:L:94:TYR:H	4:L:122:THR:H	1.64	0.46
1:C:291:PRO:HG3	9:C:608:NAG:C7	2.46	0.46
1:E:278:THR:HG22	1:E:456:ARG:NH2	2.31	0.46
4:L:70:ILE:HD12	4:L:80:TYR:O	2.16	0.46
1:A:267:GLU:HG2	1:A:268:GLU:HG2	1.96	0.46
2:B:611:ASN:OD1	2:B:612:SER:N	2.48	0.46
1:E:255:VAL:HG23	1:E:475:MET:SD	2.56	0.46
1:A:259:LEU:HD12	1:A:374:HIS:CD2	2.51	0.45
1:C:360:ARG:O	1:C:467:THR:HA	2.16	0.45
1:E:66:HIS:CD2	1:E:212:PRO:HA	2.51	0.45
3:G:15:PRO:O	3:G:17:GLU:HG3	2.16	0.45
4:H:105:ASP:OD1	4:H:105:ASP:N	2.47	0.45
6:N:1:NAG:HO3	6:N:1:NAG:C7	2.29	0.45
1:A:364:SER:HB3	1:A:470:PRO:HG2	1.97	0.45
1:E:63:THR:O	1:E:63:THR:OG1	2.30	0.45
1:E:269:GLU:HA	1:E:289:ASN:HD21	1.81	0.45
3:G:93:ASN:HD21	3:G:97:ARG:C	2.17	0.45
1:C:65:LYS:HB3	1:C:115:SER:OG	2.16	0.45
4:J:60:TYR:CE2	4:J:70:ILE:HG13	2.48	0.45
4:L:13:LYS:HD3	4:L:128:SER:HB2	1.98	0.45
8:S:3:BMA:H61	8:S:6:MAN:H2	1.77	0.45
3:K:62:PHE:HA	3:K:74:THR:O	2.16	0.45
4:L:60:TYR:CE2	4:L:70:ILE:HG22	2.50	0.45
2:D:624:ASP:OD1	2:D:624:ASP:N	2.47	0.45
1:E:374:HIS:CE1	1:E:376:PHE:CD1	3.05	0.45
3:K:35:TRP:CE3	3:K:73:LEU:HD23	2.52	0.45
2:F:631:TRP:CE2	2:F:635:ILE:HG13	2.52	0.45
4:L:31:ARG:NH1	4:L:105:ASP:OD1	2.47	0.45
1:E:105:HIS:O	1:E:109:ILE:HG12	2.17	0.45
1:E:373:THR:HB	1:E:385:CYS:O	2.16	0.45
3:G:13:VAL:HB	3:G:17:GLU:OE1	2.17	0.45
1:C:232:LYS:HE2	1:C:232:LYS:HB3	1.83	0.45
1:C:281:ALA:O	1:C:282:LYS:HD3	2.17	0.45
1:C:343:GLY:O	1:C:346:VAL:HG12	2.16	0.45
3:K:18:ARG:HH22	3:K:74:THR:HA	1.80	0.45
3:K:87:TYR:CD1	3:K:103:GLY:HA3	2.52	0.45
4:L:94:TYR:N	4:L:122:THR:O	2.50	0.45
1:A:327:ARG:NH2	1:A:422:GLN:HE22	2.15	0.45
1:A:370:GLU:HG3	1:A:384:TYR:OH	2.17	0.45

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:423:ILE:HG12	1:C:434:MET:HG2	1.99	0.45	
4:J:1:GLU:HB2	4:J:117:HIS:CE1	2.51	0.45	
4:J:39:GLN:O	4:J:92:ALA:HB1	2.17	0.45	
1:A:338:TRP:CZ2	1:A:390:LEU:HG	2.51	0.45	
1:E:295:ASN:CB	1:E:446:VAL:HG12	2.47	0.45	
9:E:606:NAG:O4	5:V:1:NAG:H3	2.16	0.45	
3:K:35:TRP:HZ2	3:K:71:PHE:HB3	1.81	0.45	
3:I:108:ILE:HD12	3:I:110:ARG:HH11	1.81	0.44	
4:J:83:LEU:HD23	4:J:84:ARG:N	2.33	0.44	
4:L:67:ARG:HB2	4:L:84:ARG:O	2.17	0.44	
1:C:456:ARG:HG3	1:C:468:PHE:CE1	2.52	0.44	
1:E:343:GLY:HA2	1:E:346:VAL:HG12	1.99	0.44	
4:H:93:VAL:HG23	4:H:122:THR:O	2.17	0.44	
1:C:40:TYR:HD1	1:C:494:LEU:HD13	1.83	0.44	
1:C:270:VAL:HG23	1:C:289:ASN:OD1	2.18	0.44	
3:K:102:GLN:OE1	3:K:102:GLN:N	2.50	0.44	
1:A:345:VAL:O	1:A:349:LEU:HD13	2.18	0.44	
1:C:248:THR:OG1	1:C:249:HIS:N	2.51	0.44	
2:F:651:ASN:O	2:F:654:GLU:HG2	2.18	0.44	
3:K:77:SER:O	3:K:77:SER:OG	2.33	0.44	
1:E:278:THR:HG22	1:E:456:ARG:HH22	1.82	0.44	
6:N:4:MAN:H62	6:N:5:MAN:H3	2.00	0.44	
1:A:366:GLY:HA2	9:A:606:NAG:H61	2.00	0.44	
1:E:260:LEU:O	1:E:261:LEU:HD22	2.18	0.44	
4:H:36:TRP:CG	4:H:81:LEU:HD22	2.52	0.44	
1:A:112:TRP:CD2	TRP:CD2 1:A:427:TRP:HZ2		0.44	
1:A:259:LEU:HD23	1:A:259:LEU:HA	1.79	0.44	
2:D:540:GLN:O	2:D:544:LEU:HD23	2.17	0.44	
3:G:4:MET:HB3	3:G:4:MET:HE2	1.66	0.44	
4:L:20:VAL:HG13	4:L:81:LEU:HB3	1.99	0.44	
1:A:298:ARG:HG2	1:A:328:GLN:O	2.16	0.43	
2:B:648:GLU:HA	2:B:651:ASN:ND2	2.33	0.43	
1:E:217:TYR:O	1:E:248:THR:HG23	2.18	0.43	
4:H:51:ILE:HG13	4:H:57:VAL:O	2.18	0.43	
4:J:21:SER:OG	4:J:22:CYS:N	2.50	0.43	
3:K:16:GLY:H	3:K:78:LEU:HB2	1.83	0.43	
3:K:83:PHE:HB2	3:K:108:ILE:HG13	2.00	0.43	
1:C:53:PHE:CD2	1:C:53:PHE:O	2.70	0.43	
1:C:83:GLU:OE2	1:C:229:LYS:NZ	2.48	0.43	
1:A:119:CYS:HB2	3:K:94:TRP:CZ2	2.54	0.43	
3:K:32:ASP:OD1	3:K:32:ASP:OD1 3:K:32:ASP:N		0.43	

	lo ao pagom	Interatomic	Clash overlap (Å)		
Atom-1	Atom-2	distance (Å)			
2:D:615:SER:O	2:D:615:SER:OG	2.33	0.43		
1:E:112:TRP:CZ2	1:E:255:VAL:HG11	2.54	0.43		
2:F:616:ASN:N	2:F:616:ASN:OD1	2.51	0.43		
3:I:6:GLN:CD	3:I:103:GLY:H	2.22	0.43		
1:C:265:LEU:H	1:C:265:LEU:HG	1.72	0.43		
9:C:606:NAG:O3	5:R:2:NAG:H62	2.18	0.43		
1:E:349:LEU:HA	1:E:349:LEU:HD13	1.83	0.43		
3:G:39:LYS:HG2	3:G:84:ALA:HB2	2.01	0.43		
3:I:47:LEU:O	3:I:48:ILE:HD13	2.19	0.43		
4:J:97:ALA:HB3	4:J:115:LEU:HD23	2.00	0.43		
3:K:37:GLN:O	3:K:45:ARG:N	2.37	0.43		
3:K:48:ILE:HD13	3:K:55:ALA:H	1.84	0.43		
1:C:297:THR:O	1:C:329:ALA:HB1	2.18	0.43		
9:C:606:NAG:H3	5:R:1:NAG:H3	2.00	0.43		
2:F:567:LYS:HE3	2:F:567:LYS:HB2	1.85	0.43		
3:I:94:TRP:HA	3:I:95:PRO:C	2.38	0.43		
3:K:54:ARG:NH2	3:K:63:SER:HB2	2.34	0.43		
3:K:97:ARG:HD2	4:L:62:PRO:HD3	2.01	0.43		
1:A:494:LEU:HD12	1:A:494:LEU:HA	1.66	0.43		
1:C:296:CYS:HA	1:C:331:CYS:HA	2.01	0.43		
1:C:393:SER:OG	1:C:394:THR:N	2.52	0.43		
1:E:278:THR:HA	1:E:456:ARG:CZ	2.49	0.43		
1:E:474:ASP:O	1:E:476:ARG:N	2.51	0.43		
1:A:69:TRP:CG	1:A:111:LEU:HG	2.54	0.43		
1:A:422:GLN:NE2	1:A:438:PRO:HD3	2.33	0.43		
1:A:424:ILE:HD11 1:A:435:TYR:C		2.53	0.43		
1:E:42:VAL:HG21	2:F:628:TRP:CD2	2.54	0.43		
3:G:106:LEU:HD12	3:G:106:LEU:HA	1.80	0.43		
4:L:124:VAL:O	4:L:124:VAL:HG23	2.19	0.43		
1:A:267:GLU:CD	1:A:267:GLU:H	2.22	0.43		
1:A:286:VAL:HG12	1:A:287:GLN:N	2.34	0.43		
2:B:566:LEU:HD12	2:B:566:LEU:HA	1.88	0.43		
1:C:269:GLU:C	1:C:289:ASN:HD21	2.22	0.43		
1:E:260:LEU:C	1:E:261:LEU:HD22	2.38	0.43		
4:L:38:ARG:HD2 4:L:92:ALA:HB3		2.01	0.43		
1:A:34:LEU:HD23	1:A:500:ARG:HG2	2.01	0.42		
1:A:67:ASN:O	1:A:67:ASN:O 1:A:71:THR:HG22		0.42		
1:A:230:ASP:OD1	A:230:ASP:OD1 1:A:231:LYS:N		0.42		
4:L:61:ALA:HB3	4:L:64:LEU:HB3	2.00	0.42		
1:C:76:PRO:HG3	2:D:571:TRP:CE3	2.53	0.42		
1:C:258:GLN:HG2 1:C:470:PRO:HB2		2.01	0.42		

EMD-23462,	7LO6
------------	------

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:D:568:LEU:HD21	2:F:570:VAL:HG21	2.01	0.42	
1:E:339:ASN:HD22	5:U:1:NAG:C7	2.32	0.42	
4:H:4:LEU:HD22	4:H:22:CYS:SG	2.59	0.42	
1:A:120:VAL:HG11	1:A:434:MET:HE2	2.00	0.42	
1:C:286:VAL:HG12	1:C:287:GLN:N	2.34	0.42	
2:D:515:ILE:O	2:D:518:VAL:HG12	2.19	0.42	
2:D:576:LEU:HD21	2:F:576:LEU:HB3	2.01	0.42	
3:I:34:ALA:HA	3:I:48:ILE:O	2.19	0.42	
4:L:33:SER:O	4:L:98:GLY:HA2	2.18	0.42	
4:L:40:ALA:HA	4:L:92:ALA:HA	2.01	0.42	
1:E:498:PRO:HB3	2:F:610:TRP:CD1	:F:610:TRP:CD1 2.54		
1:C:295:ASN:OD1	1:C:295:ASN:N	2.51	0.42	
2:D:566:LEU:C	2:D:568:LEU:H	2.23	0.42	
1:E:446:VAL:O	8:S:1:NAG:H5	2.19	0.42	
4:H:36:TRP:CH2	4:H:96:CYS:HB2	2.55	0.42	
3:K:15:PRO:HD3	3:K:109:LYS:NZ	2.34	0.42	
4:L:19:LYS:HE2	4:L:19:LYS:HB3	1.91	0.42	
1:A:35:TRP:HD1	1:A:500:ARG:HA	1.84	0.42	
4:H:13:LYS:NZ	4:H:128:SER:O	2.38	0.42	
4:H:39:GLN:NE2	4:H:43:GLN:O	2.32	0.42	
4:H:57:VAL:HG12	4:H:58:ALA:N	2.35	0.42	
3:I:52:SER:O	3:I:52:SER:OG	2.37	0.42	
4:L:99:VAL:HG22	4:L:116:LYS:H	1.84	0.42	
7:P:3:BMA:H62	7:P:6:MAN:H2	1.88	0.42	
1:E:342:LEU:HD22	1:E:361:PHE:CE2	2.53	0.42	
2:F:625:ASN:OD1	2:F:625:ASN:N	2.52	0.42	
4:J:67:ARG:HA	4:J:84:ARG:NE	2.35	0.42	
3:K:18:ARG:NH1	3:K:20:THR:OG1	2.53	0.42	
1:A:284:ILE:HG22	1:A:285:LEU:N	2.34	0.42	
1:C:50:THR:OG1	1:C:51:THR:N	2.51	0.42	
2:D:558:ALA:CB	2:D:563:GLN:HB3	2.49	0.42	
1:E:59:LYS:HE2	1:E:59:LYS:HB2	1.87	0.42	
1:E:62:GLU:HG2	1:E:63:THR:H	1.85	0.42	
1:E:101:VAL:O	1:E:104:MET:N	2.46	0.42	
2:F:589:ASP:C 2:F:591:GLN:N		2.73	0.42	
3:K:108:ILE:HG22	3:K:108:ILE:HG22 3:K:109:LYS:H		0.42	
1:C:377:ASN:OD1	1:C:378:CYS:N	2.52	0.42	
1:C:387:THR:OG1	1:C:390:LEU:HD12	2.20	0.42	
2:F:633:LYS:HD3	2:F:633:LYS:HA	1.83	0.42	
4:H:38:ARG:HD2	4:H:94:TYR:CE2	2.52	0.42	
4:L:12:LYS:HA 4:L:12:LYS:HD3		1.83	0.42	

		Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
2:F:621:GLU:HA	2:F:624:ASP:OD2	2.20	0.42	
4:L:5:VAL:O	4:L:22:CYS:HA	2.19	0.42	
1:A:207:LYS:NZ	1:A:436:ALA:HB3	2.35	0.41	
2:B:540:GLN:O	2:B:543:ASN:N	2.53	0.41	
1:E:258:GLN:HG2	1:E:470:PRO:HB2	2.02	0.41	
3:G:34:ALA:O	3:G:88:CYS:HA	2.20	0.41	
4:H:60:TYR:HE2	4:H:70:ILE:HG13	1.81	0.41	
3:I:53:THR:OG1	3:I:54:ARG:N	2.53	0.41	
1:A:225:ILE:HB	1:A:245:VAL:O	2.20	0.41	
1:C:92:GLU:OE1	1:C:92:GLU:N	2.51	0.41	
1:C:277:ILE:HD12	1:C:277:ILE:HA	1.87	0.41	
2:D:563:GLN:O	2:D:566:LEU:N	2.53	0.41	
3:K:5:THR:O	3:K:5:THR:OG1	2.29	0.41	
1:A:259:LEU:C	1:A:261:LEU:HD12	2.40	0.41	
1:A:498:PRO:HG3	2:B:610:TRP:CZ3	2.55	0.41	
1:C:431:GLY:O	1:C:432:GLN:HG3	2.20	0.41	
3:G:13:VAL:N	3:G:107:GLU:O	2.52	0.41	
4:H:38:ARG:HG2	4:H:46:GLU:HB2	2.00	0.41	
3:K:3:VAL:HG22	3:K:5:THR:CG2	2.50	0.41	
1:A:219:ALA:HB2	1:A:225:ILE:HG13	2.01	0.41	
4:J:6:GLU:CD	4:J:121:GLY:H	2.23	0.41	
3:K:100:PHE:HB2	4:L:47:TRP:HB3	2.02	0.41	
1:C:108:ILE:HG13	1:C:109:ILE:N	2.35	0.41	
1:E:109:ILE:HD13	1:E:109:ILE:HA	1.84	0.41	
1:E:286:VAL:HG12	1:E:287:GLN:N	2.36	0.41	
4:H:19:LYS:HD3	4:H:19:LYS:HA	1.88	0.41	
4:H:39:GLN:O	4:H:92:ALA:HB1	2.20	0.41	
3:I:45:ARG:NH1	3:I:58:VAL:HG23	2.36	0.41	
4:L:98:GLY:O	4:L:116:LYS:HB3	2.19	0.41	
1:C:259:LEU:HD12	1:C:374:HIS:CD2	2.55	0.41	
4:J:17:SER:HA	4:J:86:LEU:HD23	2.02	0.41	
3:K:16:GLY:HA2	3:K:77:SER:HA	2.02	0.41	
1:A:341:THR:O	1:A:345:VAL:HG23	2.20	0.41	
3:G:35:TRP:HA	3:G:87:TYR:O	2.20	0.41	
1:C:45:TRP:NE1	1:C:45:TRP:NE1 1:C:91:GLU:OE1		0.41	
2:D:589:ASP:C	2:D:591:GLN:N	2.74	0.41	
2:D:593:LEU:HD23	2:D:593:LEU:HA	1.77	0.41	
2:D:612:SER:OG	D:612:SER:OG 2:D:616:ASN:HB3		0.41	
2:D:645:LEU:HA	2:D:645:LEU:HD12	1.87	0.41	
2:F:534:SER:O	2:F:537:LEU:HB3	2.20	0.41	
3:G:73:LEU:HD12 3:G:74:THR:N		2.34	0.41	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
4:J:97:ALA:CB	4:J:115:LEU:HD23	2.51	0.41	
4:L:20:VAL:CG1	4:L:81:LEU:HB3	2.51	0.41	
4:L:103:GLU:O	4:L:107:GLY:N	2.53	0.41	
1:A:213:ILE:HB	1:A:214:PRO:HD2	2.03	0.41	
1:A:454:LEU:HD13	1:A:468:PHE:CG	2.56	0.41	
1:A:455:THR:O	1:A:468:PHE:HA	2.20	0.41	
1:A:489:VAL:HG22	1:A:490:LYS:H	1.85	0.41	
1:E:105:HIS:ND1	1:E:479:TRP:HZ3	2.19	0.41	
1:E:269:GLU:CA	1:E:289:ASN:HD21	2.34	0.41	
1:E:353:PHE:HZ	1:E:456:ARG:HE	1.68	0.41	
2:F:595:ILE:HD13	2:F:595:ILE:HA	1.83	0.41	
2:F:618:ASN:HD22	2:F:621:GLU:HG3	1.85	0.41	
2:F:623:TRP:CD1	2:F:623:TRP:N	2.89	0.41	
3:G:6:GLN:HG3	3:G:102:GLN:H	1.86	0.41	
3:G:11:LEU:HA	3:G:11:LEU:HD23	1.83	0.41	
4:H:4:LEU:HD23	4:H:4:LEU:HA	1.90	0.41	
4:L:10:GLU:O	4:L:125:THR:OG1	2.36	0.41	
1:A:214:PRO:HA	1:A:251:ILE:O	2.21	0.41	
1:C:93:PHE:HZ	1:C:227:LYS:O	2.03	0.41	
2:D:638:TYR:O	2:D:642:ILE:HG13	2.21	0.41	
1:A:267:GLU:OE1	1:A:267:GLU:N	2.54	0.40	
1:A:503:ARG:HD3	2:B:607:ASN:ND2	2.35	0.40	
1:C:109:ILE:HA	1:C:109:ILE:HD13	1.75	0.40	
1:E:358:ILE:HD12	1:E:396:ILE:HG13	2.02	0.40	
3:I:36:TYR:HD1	3:I:46:LEU:HA	1.85	0.40	
3:K:100:PHE:CZ	4:L:37:VAL:HG21	2.56	0.40	
1:A:45:TRP:CE3	2:B:523:LEU:HD13	2.49	0.40	
1:A:122:LEU:HD21	4:L:55:LEU:HB3	2.03	0.40	
1:A:275:GLU:HG2	1:A:282:LYS:HZ2	1.87	0.40	
1:E:363:ASN:N	1:E:363:ASN:OD1	2.55	0.40	
1:E:77:THR:O	2:F:571:TRP:NE1	2.53	0.40	
1:E:363:ASN:O	1:E:469:ARG:NH1	2.54	0.40	
3:K:36:TYR:HD1	3:K:46:LEU:HA	1.86	0.40	
2:B:628:TRP:O	2:B:631:TRP:N	2.55	0.40	
1:C:383:PHE:C	1:C:384:TYR:HD1	2.24	0.40	
1:E:277:ILE:HD13	1:E:277:ILE:HA	1.81	0.40	
1:E:439:ILE:HD12	1:E:439:ILE:HA	1.96	0.40	
2:F:638:TYR:O	2:F:642:ILE:HG12	2.21	0.40	
3:G:12:SER:OG	3:G:107:GLU:HB3	2.21	0.40	
3:I:108:ILE:HD12	3:I:110:ARG:NH1	2.36	0.40	
4:J:89:ASP:OD1	4:J:89:ASP:N	2.55	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
2:B:573:ILE:HD13	2:B:573:ILE:HA	1.79	0.40	
1:C:353:PHE:HE2	1:C:468:PHE:HZ	1.68	0.40	
3:I:13:VAL:HA	3:I:109:LYS:HE3	2.04	0.40	
3:K:3:VAL:O	3:K:5:THR:HG23	2.22	0.40	
3:K:87:TYR:HD1	3:K:103:GLY:HA3	1.86	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	353/479~(74%)	305~(86%)	48 (14%)	0	100	100
1	С	354/479~(74%)	314 (89%)	40 (11%)	0	100	100
1	Е	355/479~(74%)	297 (84%)	58 (16%)	0	100	100
2	В	128/153~(84%)	110 (86%)	18 (14%)	0	100	100
2	D	130/153~(85%)	113 (87%)	17 (13%)	0	100	100
2	F	116/153~(76%)	97~(84%)	19 (16%)	0	100	100
3	G	109/214~(51%)	96 (88%)	12 (11%)	1 (1%)	14	48
3	Ι	109/214~(51%)	101 (93%)	8 (7%)	0	100	100
3	Κ	109/214~(51%)	92 (84%)	17 (16%)	0	100	100
4	Н	127/239~(53%)	120 (94%)	7~(6%)	0	100	100
4	J	127/239~(53%)	111 (87%)	16 (13%)	0	100	100
4	L	127/239~(53%)	111 (87%)	16 (13%)	0	100	100
All	All	2144/3255~(66%)	1867 (87%)	276 (13%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	G	30	SER

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	321/427~(75%)	319~(99%)	2(1%)	84	88
1	С	322/427~(75%)	320~(99%)	2(1%)	84	88
1	Е	324/427~(76%)	322~(99%)	2 (1%)	84	88
2	В	107/129~(83%)	105 (98%)	2(2%)	52	70
2	D	110/129~(85%)	110 (100%)	0	100	100
2	F	103/129~(80%)	102 (99%)	1 (1%)	73	81
3	G	92/184~(50%)	92~(100%)	0	100	100
3	Ι	91/184~(50%)	91 (100%)	0	100	100
3	Κ	91/184~(50%)	91 (100%)	0	100	100
4	Η	106/203~(52%)	106 (100%)	0	100	100
4	J	106/203~(52%)	106 (100%)	0	100	100
4	L	106/203~(52%)	105 (99%)	1 (1%)	75	83
All	All	1879/2829~(66%)	1869 (100%)	10 (0%)	85	90

All (10) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	126	CYS
1	А	349	LEU
2	В	605	CYS
2	В	610	TRP
1	С	203	GLN
1	С	247	CYS
1	Е	280	ASN
1	Е	301	ASN
2	F	658	GLN
4	L	43	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (23) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	105	HIS
1	А	280	ASN
1	А	352	HIS
2	В	640	GLN
2	В	651	ASN
1	С	72	HIS
1	С	374	HIS
1	Е	72	HIS
1	Е	80	ASN
1	Е	82	GLN
1	Е	103	GLN
1	Е	279	ASN
1	Е	352	HIS
1	Е	374	HIS
1	Е	422	GLN
2	F	575	GLN
3	G	6	GLN
3	G	79	GLN
3	G	102	GLN
3	Ι	6	GLN
3	Ι	79	GLN
4	L	65	GLN
4	L	117	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

32 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond

Ъ / . 1	— ———————————————————————————————————		D	T 1.	Bo	ond leng	\mathbf{ths}	В	ond ang	les
	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
5	NAG	М	1	1,5	14,14,15	0.53	0	17,19,21	0.50	0
5	NAG	М	2	5	14,14,15	0.19	0	17,19,21	0.58	0
6	NAG	N	1	1,6	14,14,15	0.28	0	$17,\!19,\!21$	0.63	0
6	NAG	N	2	6	14,14,15	0.29	0	17,19,21	0.84	0
6	BMA	N	3	6	11,11,12	0.51	0	$15,\!15,\!17$	1.21	0
6	MAN	N	4	6	11,11,12	0.24	0	$15,\!15,\!17$	0.70	0
6	MAN	N	5	6	11,11,12	0.31	0	$15,\!15,\!17$	0.69	0
5	NAG	О	1	1,5	14,14,15	0.64	1 (7%)	$17,\!19,\!21$	0.50	0
5	NAG	0	2	5	14,14,15	0.28	0	17,19,21	0.41	0
7	NAG	Р	1	1,7	14,14,15	0.67	0	$17,\!19,\!21$	0.48	0
7	NAG	Р	2	7	14,14,15	0.46	0	17,19,21	0.64	0
7	BMA	Р	3	7	11,11,12	1.04	1 (9%)	$15,\!15,\!17$	1.04	1 (6%)
7	MAN	Р	4	7	11,11,12	1.48	1 (9%)	$15,\!15,\!17$	1.88	4 (26%)
7	MAN	Р	5	7	11,11,12	1.34	1 (9%)	$15,\!15,\!17$	1.11	1 (6%)
7	MAN	Р	6	7	11,11,12	0.86	0	15,15,17	0.95	0
5	NAG	Q	1	1,5	14,14,15	0.43	0	17,19,21	1.37	2 (11%)
5	NAG	Q	2	5	14,14,15	0.27	0	17,19,21	0.44	0
5	NAG	R	1	1,5	14,14,15	0.61	1 (7%)	17,19,21	0.62	0
5	NAG	R	2	5	14,14,15	0.22	0	17,19,21	0.71	0
8	NAG	S	1	1,8	14,14,15	0.31	0	17,19,21	1.06	2 (11%)
8	NAG	S	2	8	14,14,15	0.30	0	17,19,21	0.99	1 (5%)
8	BMA	S	3	8	11,11,12	0.39	0	$15,\!15,\!17$	1.24	2 (13%)
8	MAN	S	4	8	11,11,12	0.24	0	$15,\!15,\!17$	0.98	2 (13%)
8	MAN	S	5	8	11,11,12	0.24	0	$15,\!15,\!17$	0.77	0
8	MAN	S	6	8	11,11,12	0.32	0	$15,\!15,\!17$	0.88	1 (6%)
8	MAN	S	7	8	11,11,12	0.24	0	15,15,17	0.82	0
5	NAG	Т	1	1,5	14,14,15	0.42	0	17,19,21	0.47	0
5	NAG	Т	2	5	14,14,15	0.18	0	17,19,21	0.48	0
5	NAG	U	1	1,5	14,14,15	0.55	0	17,19,21	0.63	0
5	NAG	U	2	5	14,14,15	0.26	0	17,19,21	0.39	0
5	NAG	V	1	1,5	14,14,15	0.75	1 (7%)	17,19,21	0.56	0
5	NAG	V	2	5	14,14,15	0.33	0	17,19,21	0.51	0

length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns.

5 NAG M 1 1,5 - $2/6/23/26$ $0/1/1/1$ 5 NAG M 2 5 - $4/6/23/26$ $0/1/1/1$ 6 NAG N 1 1,6 - $1/6/23/26$ $0/1/1/1$ 6 NAG N 2 6 - $3/6/23/26$ $0/1/1/1$ 6 MAN N 3 6 - $0/2/19/22$ $0/1/1/1$ 6 MAN N 4 6 - $2/2/19/22$ $0/1/1/1$ 6 MAN N 5 6 - $1/2/19/22$ $0/1/1/1$ 7 NAG O 2 5 - $2/6/23/26$ $0/1/1/1$ 7 NAG P 1 $1,7$ - $2/2/19/22$ $0/1/1/1$ 7 MAN P 3 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 -	Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5 NAG M 2 5 - $4/6/23/26$ $0/1/1/1$ 6 NAG N 1 1,6 - $1/6/23/26$ $0/1/1/1$ 6 NAG N 2 6 - $3/6/23/26$ $0/1/1/1$ 6 BMA N 3 6 - $0/2/19/22$ $0/1/1/1$ 6 MAN N 4 6 - $2/2/19/22$ $0/1/1/1$ 6 MAN N 5 6 - $1/2/19/22$ $0/1/1/1$ 7 NAG O 1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 7 NAG P 1 $1,7$ - $2/6/23/26$ $0/1/1/1$ 7 MAR P 3 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - <td>5</td> <td>NAG</td> <td>М</td> <td>1</td> <td>1,5</td> <td>-</td> <td>2/6/23/26</td> <td>0/1/1/1</td>	5	NAG	М	1	1,5	-	2/6/23/26	0/1/1/1
6 NAG N 1 1,6 - $1/6/23/26$ $0/1/1/1$ 6 NAG N 2 6 - $3/6/23/26$ $0/1/1/1$ 6 BMA N 3 6 - $0/2/19/22$ $0/1/1/1$ 6 MAN N 4 6 - $2/2/19/22$ $0/1/1/1$ 6 MAN N 5 6 - $1/2/19/22$ $0/1/1/1$ 6 MAN N 5 6 - $1/2/19/22$ $0/1/1/1$ 7 NAG O 2 5 - $2/6/23/26$ $0/1/1/1$ 7 NAG P 1 $1,7$ - $2/2/19/22$ $0/1/1/1$ 7 MAN P 4 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 -	5	NAG	М	2	5	-	4/6/23/26	0/1/1/1
6 NAG N 2 6 - $3/6/23/26$ $0/1/1/1$ 6 BMA N 3 6 - $0/2/19/22$ $0/1/1/1$ 6 MAN N 4 6 - $2/2/19/22$ $0/1/1/1$ 6 MAN N 5 6 - $1/2/19/22$ $0/1/1/1$ 6 MAN N 5 6 - $1/2/19/22$ $0/1/1/1$ 7 NAG O 2 5 - $2/6/23/26$ $0/1/1/1$ 7 NAG P 2 7 - $4/6/23/26$ $0/1/1/1$ 7 MAG P 3 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 4 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 -	6	NAG	N	1	1,6	-	1/6/23/26	0/1/1/1
6 BMA N 3 6 - $0/2/19/22$ $0/1/1/1$ 6 MAN N 4 6 - $2/2/19/22$ $0/1/1/1$ 6 MAN N 5 6 - $1/2/19/22$ $0/1/1/1$ 5 NAG O 1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 7 NAG P 1 $1,7$ - $2/6/23/26$ $0/1/1/1$ 7 NAG P 2 7 - $4/6/23/26$ $0/1/1/1$ 7 NAG P 2 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 3 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $1/2/19/22$ $0/1/1/1$ 5 NAG Q 1 $1,5$ - </td <td>6</td> <td>NAG</td> <td>N</td> <td>2</td> <td>6</td> <td>-</td> <td>3/6/23/26</td> <td>0/1/1/1</td>	6	NAG	N	2	6	-	3/6/23/26	0/1/1/1
6 MAN N 4 6 - $2/2/19/22$ $0/1/1/1$ 6 MAN N 5 6 - $1/2/19/22$ $0/1/1/1$ 5 NAG O 1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 7 NAG P 1 $1,7$ - $2/6/23/26$ $0/1/1/1$ 7 NAG P 2 7 - $4/6/23/26$ $0/1/1/1$ 7 NAG P 2 7 - $4/6/23/26$ $0/1/1/1$ 7 MAN P 3 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 4 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 - $2/2/19/22$ $0/1/1/1$ 5 NAG Q 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG R 1 $1,5$ <td< td=""><td>6</td><td>BMA</td><td>Ν</td><td>3</td><td>6</td><td>-</td><td>0/2/19/22</td><td>0/1/1/1</td></td<>	6	BMA	Ν	3	6	-	0/2/19/22	0/1/1/1
6 MAN N 5 6 - $1/2/19/22$ $0/1/1/1$ 5 NAG O 1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 5 NAG O 2 5 - $2/6/23/26$ $0/1/1/1$ 7 NAG P 1 $1,7$ - $2/6/23/26$ $0/1/1/1$ 7 NAG P 2 7 - $4/6/23/26$ $0/1/1/1$ 7 NAG P 3 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 4 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $1/2/19/22$ $0/1/1/1$ 5 NAG Q 2 5 - $2/6/23/26$ $0/1/1/1$ 5 NAG R 1 $1,5$ - </td <td>6</td> <td>MAN</td> <td>Ν</td> <td>4</td> <td>6</td> <td>-</td> <td>2/2/19/22</td> <td>0/1/1/1</td>	6	MAN	Ν	4	6	-	2/2/19/22	0/1/1/1
5 NAG O 1 1,5 - $4/6/23/26$ $0/1/1/1$ 5 NAG O 2 5 - $2/6/23/26$ $0/1/1/1$ 7 NAG P 1 $1,7$ - $2/6/23/26$ $0/1/1/1$ 7 NAG P 2 7 - $4/6/23/26$ $0/1/1/1$ 7 MAG P 3 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 4 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $1/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $1/2/19/22$ $0/1/1/1$ 5 NAG Q 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG R 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 8 NAG S 1 $1,8$ <	6	MAN	Ν	5	6	-	1/2/19/22	0/1/1/1
5 NAG O 2 5 - $2/6/23/26$ $0/1/1/1$ 7 NAG P 1 $1,7$ - $2/6/23/26$ $0/1/1/1$ 7 NAG P 2 7 - $4/6/23/26$ $0/1/1/1$ 7 MAR P 3 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 4 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $1/2/19/22$ $0/1/1/1$ 5 NAG Q 1 $1,5$ - $6/6/23/26$ $0/1/1/1$ 5 NAG R 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG R 2 5 - $4/6/23/26$ $0/1/1/1$ 8 NAG S 2 8 - </td <td>5</td> <td>NAG</td> <td>0</td> <td>1</td> <td>1,5</td> <td>-</td> <td>4/6/23/26</td> <td>0/1/1/1</td>	5	NAG	0	1	1,5	-	4/6/23/26	0/1/1/1
7 NAG P 1 1,7 - $2/6/23/26$ $0/1/1/1$ 7 NAG P 2 7 - $4/6/23/26$ $0/1/1/1$ 7 BMA P 3 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 4 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $2/2/19/22$ $0/1/1/1$ 5 NAG Q 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG R 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG R 1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 8 NAG S 1 $1,8$ <	5	NAG	Ο	2	5	-	2/6/23/26	0/1/1/1
7 NAG P 2 7 - $4/6/23/26$ $0/1/1/1$ 7 BMA P 3 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 4 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $1/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $1/2/19/22$ $0/1/1/1$ 5 NAG Q 1 $1,5$ - $6/6/23/26$ $0/1/1/1$ 5 NAG R 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG R 2 5 - $4/6/23/26$ $0/1/1/1$ 8 NAG S 1 $1,8$ - $4/6/23/26$ $0/1/1/1$ 8 MAN S 4 8 - $2/2/19/22$ $0/1/1/1$ 8 MAN S 5 8	7	NAG	Р	1	1,7	-	2/6/23/26	0/1/1/1
7 BMA P 3 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 4 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $1/2/19/22$ $0/1/1/1$ 5 NAG Q 2 5 - $2/6/23/26$ $0/1/1/1$ 5 NAG R 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG R 2 5 - $4/6/23/26$ $0/1/1/1$ 8 NAG S 2 8 - $0/2/19/22$ $0/1/1/1$ 8 MAN S 5 8 - $0/2/19/22$ $0/1/1/1$ 8 MAN S 5 8 <t< td=""><td>7</td><td>NAG</td><td>Р</td><td>2</td><td>7</td><td>-</td><td>4/6/23/26</td><td>0/1/1/1</td></t<>	7	NAG	Р	2	7	-	4/6/23/26	0/1/1/1
7 MAN P 4 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 5 7 - $2/2/19/22$ $0/1/1/1$ 7 MAN P 6 7 - $1/2/19/22$ $0/1/1/1$ 5 NAG Q 1 $1,5$ - $6/6/23/26$ $0/1/1/1$ 5 NAG Q 2 5 - $2/6/23/26$ $0/1/1/1$ 5 NAG R 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG R 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG R 2 5 - $4/6/23/26$ $0/1/1/1$ 8 NAG S 1 $1,8$ - $4/6/23/26$ $0/1/1/1$ 8 MAN S 2 8 - $0/2/19/22$ $0/1/1/1$ 8 MAN S 5 8 - $0/2/19/22$ $0/1/1/1$ 8 MAN S 6 8 </td <td>7</td> <td>BMA</td> <td>Р</td> <td>3</td> <td>7</td> <td>-</td> <td>2/2/19/22</td> <td>0/1/1/1</td>	7	BMA	Р	3	7	-	2/2/19/22	0/1/1/1
7MANP57- $2/2/19/22$ $0/1/1/1$ 7MANP67- $1/2/19/22$ $0/1/1/1$ 5NAGQ1 $1,5$ - $6/6/23/26$ $0/1/1/1$ 5NAGQ25- $2/6/23/26$ $0/1/1/1$ 5NAGR1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5NAGR25- $2/6/23/26$ $0/1/1/1$ 5NAGR25- $4/6/23/26$ $0/1/1/1$ 8NAGS1 $1,8$ - $4/6/23/26$ $0/1/1/1$ 8NAGS28- $0/6/23/26$ $0/1/1/1$ 8MANS48- $2/2/19/22$ $0/1/1/1$ 8MANS58- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS78- $1/2/19/22$ $0/1/1/1$ 5NAGT1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5NAGU1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5NAGU25- $2/6/23/26$ $0/1/1/1$ 5NAGV1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$ 5NAGV25	7	MAN	Р	4	7	-	2/2/19/22	0/1/1/1
7MANP67- $1/2/19/22$ $0/1/1/11$ 5NAGQ1 $1,5$ - $6/6/23/26$ $0/1/1/11$ 5NAGQ25- $2/6/23/26$ $0/1/1/11$ 5NAGR1 $1,5$ - $2/6/23/26$ $0/1/1/11$ 5NAGR25- $4/6/23/26$ $0/1/1/11$ 8NAGS1 $1,8$ - $4/6/23/26$ $0/1/1/11$ 8NAGS28- $0/6/23/26$ $0/1/1/11$ 8MANS38- $0/2/19/22$ $0/1/1/11$ 8MANS48- $2/2/19/22$ $0/1/1/11$ 8MANS58- $0/2/19/22$ $0/1/1/11$ 8MANS68- $0/2/19/22$ $0/1/1/11$ 8MANS78- $1/2/19/22$ $0/1/1/11$ 8MANS78- $1/2/19/22$ $0/1/1/11$ 5NAGT1 $1,5$ - $2/6/23/26$ $0/1/1/11$ 5NAGU1 $1,5$ - $2/6/23/26$ $0/1/1/11$ 5NAGV1 $1,5$ - $2/6/23/26$ $0/1/1/11$ 5NAGV1 $1,5$ - $2/6/23/26$ $0/1/1/11$ 5NAGV25- $2/6/23/26$ $0/1/1/11$ 5NAG <td< td=""><td>7</td><td>MAN</td><td>Р</td><td>5</td><td>7</td><td>-</td><td>2/2/19/22</td><td>0/1/1/1</td></td<>	7	MAN	Р	5	7	-	2/2/19/22	0/1/1/1
5NAGQ11,5- $6/6/23/26$ $0/1/1/1$ 5NAGQ25- $2/6/23/26$ $0/1/1/1$ 5NAGR11,5- $2/6/23/26$ $0/1/1/1$ 5NAGR25- $4/6/23/26$ $0/1/1/1$ 8NAGS11,8- $4/6/23/26$ $0/1/1/1$ 8NAGS28- $0/6/23/26$ $0/1/1/1$ 8MAGS28- $0/6/23/26$ $0/1/1/1$ 8MANS38- $0/2/19/22$ $0/1/1/1$ 8MANS58- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS78- $1/2/19/22$ $0/1/1/1$ 8MANS78- $1/2/19/22$ $0/1/1/1$ 5NAGT11,5- $2/6/23/26$ $0/1/1/1$ 5NAGU11,5- $2/6/23/26$ $0/1/1/1$ 5NAGU25- $2/6/23/26$ $0/1/1/1$ 5NAGV11,5- $2/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$	7	MAN	Р	6	7	-	1/2/19/22	0/1/1/1
5NAGQ25- $2/6/23/26$ $0/1/1/1$ 5NAGR11,5- $2/6/23/26$ $0/1/1/1$ 5NAGR25- $4/6/23/26$ $0/1/1/1$ 8NAGS11,8- $4/6/23/26$ $0/1/1/1$ 8NAGS28- $0/6/23/26$ $0/1/1/1$ 8MAGS38- $0/2/19/22$ $0/1/1/1$ 8MANS48- $2/2/19/22$ $0/1/1/1$ 8MANS58- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS78- $1/2/19/22$ $0/1/1/1$ 5NAGT11,5- $2/6/23/26$ $0/1/1/1$ 5NAGU11,5- $2/6/23/26$ $0/1/1/1$ 5NAGV11,5- $2/6/23/26$ $0/1/1/1$ 5NAGV11,5- $2/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$	5	NAG	Q	1	1,5	-	6/6/23/26	0/1/1/1
5NAGR11,5- $2/6/23/26$ $0/1/1/1$ 5NAGR25- $4/6/23/26$ $0/1/1/1$ 8NAGS11,8- $4/6/23/26$ $0/1/1/1$ 8NAGS28- $0/6/23/26$ $0/1/1/1$ 8BMAS38- $0/2/19/22$ $0/1/1/1$ 8MANS48- $2/2/19/22$ $0/1/1/1$ 8MANS58- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS78- $1/2/19/22$ $0/1/1/1$ 5NAGT11,5- $4/6/23/26$ $0/1/1/1$ 5NAGU11,5- $2/6/23/26$ $0/1/1/1$ 5NAGU25- $2/6/23/26$ $0/1/1/1$ 5NAGV11,5- $4/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$	5	NAG	Q	2	5	-	2/6/23/26	0/1/1/1
5NAGR25- $4/6/23/26$ $0/1/1/1$ 8NAGS11,8- $4/6/23/26$ $0/1/1/1$ 8NAGS28- $0/6/23/26$ $0/1/1/1$ 8BMAS38- $0/2/19/22$ $0/1/1/1$ 8MANS48- $2/2/19/22$ $0/1/1/1$ 8MANS58- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS78- $1/2/19/22$ $0/1/1/1$ 5NAGT11,5- $2/6/23/26$ $0/1/1/1$ 5NAGU11,5- $2/6/23/26$ $0/1/1/1$ 5NAGU11,5- $2/6/23/26$ $0/1/1/1$ 5NAGV11,5- $2/6/23/26$ $0/1/1/1$ 5NAGV11,5- $2/6/23/26$ $0/1/1/1$ 5NAGV11,5- $2/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$	5	NAG	R	1	1,5	-	2/6/23/26	0/1/1/1
8NAGS1 $1,8$ - $4/6/23/26$ $0/1/1/1$ 8NAGS28- $0/6/23/26$ $0/1/1/1$ 8BMAS38- $0/2/19/22$ $0/1/1/1$ 8MANS48- $2/2/19/22$ $0/1/1/1$ 8MANS58- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS78- $1/2/19/22$ $0/1/1/1$ 5NAGT1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5NAGU1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5NAGU25- $2/6/23/26$ $0/1/1/1$ 5NAGV1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$	5	NAG	R	2	5	-	4/6/23/26	0/1/1/1
8NAGS28- $0/6/23/26$ $0/1/1/1$ 8BMAS38- $0/2/19/22$ $0/1/1/1$ 8MANS48- $2/2/19/22$ $0/1/1/1$ 8MANS58- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS78- $1/2/19/22$ $0/1/1/1$ 5NAGT1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 5NAGU1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5NAGU25- $2/6/23/26$ $0/1/1/1$ 5NAGV1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$	8	NAG	S	1	1,8	-	4/6/23/26	0/1/1/1
8BMAS38- $0/2/19/22$ $0/1/1/1$ 8MANS48- $2/2/19/22$ $0/1/1/1$ 8MANS58- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS78- $1/2/19/22$ $0/1/1/1$ 5NAGT1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 5NAGT25- $2/6/23/26$ $0/1/1/1$ 5NAGU1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5NAGU25- $2/6/23/26$ $0/1/1/1$ 5NAGV1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$	8	NAG	S	2	8	-	0/6/23/26	0/1/1/1
8MANS48- $2/2/19/22$ $0/1/1/1$ 8MANS58- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS78- $1/2/19/22$ $0/1/1/1$ 5NAGT1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 5NAGT25- $2/6/23/26$ $0/1/1/1$ 5NAGU1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5NAGU25- $2/6/23/26$ $0/1/1/1$ 5NAGV1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$	8	BMA	S	3	8	-	0/2/19/22	0/1/1/1
8MANS58- $0/2/19/22$ $0/1/1/1$ 8MANS68- $0/2/19/22$ $0/1/1/1$ 8MANS78- $1/2/19/22$ $0/1/1/1$ 5NAGT11,5- $4/6/23/26$ $0/1/1/1$ 5NAGT25- $2/6/23/26$ $0/1/1/1$ 5NAGU11,5- $2/6/23/26$ $0/1/1/1$ 5NAGU25- $2/6/23/26$ $0/1/1/1$ 5NAGV11,5- $2/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$ 5NAGV25- $2/6/23/26$ $0/1/1/1$	8	MAN	S	4	8	-	2/2/19/22	0/1/1/1
8 MAN S 6 8 - $0/2/19/22$ $0/1/1/1$ 8 MAN S 7 8 - $1/2/19/22$ $0/1/1/1$ 5 NAG T 1 $1,5$ - $4/6/23/26$ $0/1/1/1$ 5 NAG T 2 5 - $2/6/23/26$ $0/1/1/1$ 5 NAG U 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG U 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG U 2 5 - $2/6/23/26$ $0/1/1/1$ 5 NAG V 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG V 1 $1,5$ - $2/6/23/26$ $0/1/1/1$ 5 NAG V 2 5 - $2/6/23/26$ $0/1/1/1$	8	MAN	S	5	8	-	0/2/19/22	0/1/1/1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	MAN	S	6	8	-	0/2/19/22	0/1/1/1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	MAN	S	7	8	-	1/2/19/22	0/1/1/1
5 NAG T 2 5 - 2/6/23/26 0/1/1/1 5 NAG U 1 1,5 - 2/6/23/26 0/1/1/1 5 NAG U 2 5 - 2/6/23/26 0/1/1/1 5 NAG U 2 5 - 2/6/23/26 0/1/1/1 5 NAG V 1 1,5 - 4/6/23/26 0/1/1/1 5 NAG V 2 5 - 2/6/23/26 0/1/1/1 5 NAG V 2 5 - 2/6/23/26 0/1/1/1	5	NAG	Т	1	1,5	-	4/6/23/26	0/1/1/1
5 NAG U 1 1,5 - 2/6/23/26 0/1/1/1 5 NAG U 2 5 - 2/6/23/26 0/1/1/1 5 NAG U 2 5 - 2/6/23/26 0/1/1/1 5 NAG V 1 1,5 - 4/6/23/26 0/1/1/1 5 NAG V 2 5 - 2/6/23/26 0/1/1/1	5	NAG	Т	2	5	-	2/6/23/26	0/1/1/1
5 NAG U 2 5 - 2/6/23/26 0/1/1/1 5 NAG V 1 1,5 - 4/6/23/26 0/1/1/1 5 NAG V 2 5 - 2/6/23/26 0/1/1/1 5 NAG V 2 5 - 2/6/23/26 0/1/1/1	5	NAG	U	1	1,5	-	2/6/23/26	0/1/1/1
5 NAG V 1 1,5 - 4/6/23/26 0/1/1/1 5 NAG V 2 5 - 2/6/23/26 0/1/1/1	5	NAG	U	2	5	-	2/6/23/26	0/1/1/1
5 NAG V 2 5 - 2/6/23/26 0/1/1/1	5	NAG	V	1	1,5	-	4/6/23/26	0/1/1/1
	5	NAG	V	2	5	-	2/6/23/26	0/1/1/1

'-' means no outliers of that kind were identified.

All (6) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
7	Р	4	MAN	C2-C3	-3.84	1.46	1.52
7	Р	5	MAN	O5-C1	-3.44	1.37	1.43
5	V	1	NAG	O5-C1	-2.63	1.39	1.43
5	0	1	NAG	O5-C1	-2.15	1.40	1.43
7	Р	3	BMA	O5-C1	-2.08	1.40	1.43
5	R	1	NAG	O5-C1	-2.04	1.40	1.43

All (16) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	Р	4	MAN	O2-C2-C3	-4.69	100.44	110.15
5	Q	1	NAG	C2-N2-C7	4.44	128.85	122.90
7	Р	4	MAN	C1-O5-C5	3.86	117.36	112.19
7	Р	5	MAN	O2-C2-C3	-3.13	103.67	110.15
7	Р	4	MAN	C2-C3-C4	-2.83	105.89	110.86
8	S	3	BMA	C6-C5-C4	-2.72	106.33	113.02
7	Р	3	BMA	O2-C2-C3	-2.56	104.86	110.15
8	S	1	NAG	O5-C1-C2	-2.47	107.47	111.29
5	Q	1	NAG	C1-C2-N2	2.45	114.29	110.43
8	S	6	MAN	O3-C3-C2	-2.29	105.38	110.05
8	S	4	MAN	C2-C3-C4	-2.28	106.86	110.86
8	S	2	NAG	O5-C1-C2	-2.19	107.91	111.29
8	S	3	BMA	C2-C3-C4	-2.17	107.04	110.86
8	S	1	NAG	C1-O5-C5	2.08	114.98	112.19
8	S	4	MAN	O2-C2-C3	-2.05	105.90	110.15
7	Р	4	MAN	C3-C4-C5	-2.03	106.56	110.23

There are no chirality outliers.

All (69) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
6	N	2	NAG	C3-C2-N2-C7
6	N	2	NAG	C8-C7-N2-C2
6	Ν	2	NAG	O7-C7-N2-C2
8	S	1	NAG	C3-C2-N2-C7
5	М	2	NAG	C4-C5-C6-O6
5	R	2	NAG	C4-C5-C6-O6
5	0	2	NAG	C4-C5-C6-O6
5	Т	2	NAG	C4-C5-C6-O6
5	М	2	NAG	O5-C5-C6-O6
5	R	1	NAG	O5-C5-C6-O6
5	Q	2	NAG	C4-C5-C6-O6

Mol	Chain	Res	Type	Atoms
5	V	2	NAG	C4-C5-C6-O6
7	Р	3	BMA	C4-C5-C6-O6
5	Т	2	NAG	O5-C5-C6-O6
5	М	1	NAG	O5-C5-C6-O6
5	R	2	NAG	O5-C5-C6-O6
5	0	1	NAG	O5-C5-C6-O6
5	Q	2	NAG	O5-C5-C6-O6
7	P	4	MAN	O5-C5-C6-O6
5	U	2	NAG	O5-C5-C6-O6
5	V	1	NAG	O5-C5-C6-O6
5	М	1	NAG	C4-C5-C6-O6
5	U	1	NAG	C4-C5-C6-O6
7	Р	5	MAN	O5-C5-C6-O6
8	S	4	MAN	O5-C5-C6-O6
5	R	1	NAG	C4-C5-C6-O6
5	0	2	NAG	O5-C5-C6-O6
5	U	1	NAG	O5-C5-C6-O6
5	0	1	NAG	C4-C5-C6-O6
5	V	2	NAG	O5-C5-C6-O6
7	Р	2	NAG	O5-C5-C6-O6
7	Р	2	NAG	C4-C5-C6-O6
5	U	2	NAG	C4-C5-C6-O6
7	Р	3	BMA	O5-C5-C6-O6
5	0	1	NAG	C8-C7-N2-C2
5	0	1	NAG	O7-C7-N2-C2
5	Q	1	NAG	C8-C7-N2-C2
5	Q	1	NAG	O7-C7-N2-C2
7	Р	2	NAG	C8-C7-N2-C2
7	Р	2	NAG	O7-C7-N2-C2
8	S	1	NAG	C8-C7-N2-C2
8	S	1	NAG	07-C7-N2-C2
7	P	1	NAG	C4-C5-C6-O6
5	Т	1	NAG	O5-C5-C6-O6
5	T	1	NAG	C4-C5-C6-O6
5	V	1	NAG	C4-C5-C6-O6
7	Р	1	NAG	O5-C5-C6-O6
8	S	7	MAN	O5-C5-C6-O6
8	S	4	MAN	C4-C5-C6-O6
6	N	5	MAN	O5-C5-C6-O6
7	P	6	MAN	O5-C5-C6-O6
6	N	4	MAN	C4-C5-C6-O6
7	I P	4	MAN	C4-C5-C6-O6

Mol	Chain	Res	Type	Atoms
5	V	1	NAG	C1-C2-N2-C7
6	N	4	MAN	O5-C5-C6-O6
5	М	2	NAG	C3-C2-N2-C7
5	R	2	NAG	C3-C2-N2-C7
5	Т	1	NAG	C3-C2-N2-C7
5	V	1	NAG	C3-C2-N2-C7
6	N	1	NAG	C3-C2-N2-C7
7	Р	5	MAN	C4-C5-C6-O6
5	М	2	NAG	C1-C2-N2-C7
5	Q	1	NAG	C1-C2-N2-C7
5	R	2	NAG	C1-C2-N2-C7
5	Т	1	NAG	C1-C2-N2-C7
8	S	1	NAG	C1-C2-N2-C7
5	Q	1	NAG	C3-C2-N2-C7
5	Q	1	NAG	C4-C5-C6-O6
5	Q	1	NAG	O5-C5-C6-O6

There are no ring outliers.

17 moi	nomers	are	invo	lved	in	19	short	contacts	:
--------	--------	-----	------	------	---------------	----	------------------------	----------	---

Mol	Chain	Res	Type	Clashes	Symm-Clashes
6	N	4	MAN	1	0
6	N	5	MAN	1	0
7	Р	3	BMA	1	0
5	Q	1	NAG	2	0
5	Т	1	NAG	1	0
5	0	1	NAG	1	0
8	S	1	NAG	3	0
5	R	1	NAG	1	0
6	N	1	NAG	2	0
5	U	1	NAG	1	0
7	Р	2	NAG	1	0
7	Р	1	NAG	1	0
7	Р	6	MAN	1	0
5	V	1	NAG	2	0
8	S	3	BMA	1	0
5	R	2	NAG	1	0
8	S	6	MAN	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

30 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tinle	В	ond leng	gths	В	ond ang	les
	Type	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
9	NAG	Е	601	1	14,14,15	0.37	0	17,19,21	0.60	0
9	NAG	С	608	1	14,14,15	0.30	0	17,19,21	0.77	0
9	NAG	А	603	1	14,14,15	0.79	1 (7%)	17,19,21	0.64	0
9	NAG	А	607	1	14,14,15	0.25	0	17,19,21	0.60	0
9	NAG	Е	607	1	14,14,15	0.43	0	17,19,21	0.47	0
9	NAG	Е	605	1	$14,\!14,\!15$	0.25	0	17,19,21	0.49	0
9	NAG	Е	606	1	14,14,15	0.23	0	17,19,21	0.53	0
9	NAG	Е	608	1	14,14,15	0.27	0	17,19,21	0.50	0
9	NAG	А	605	1	14,14,15	0.35	0	17,19,21	1.32	1 (5%)
10	5VG	А	609	-	33,33,33	2.25	11 (33%)	39,46,46	1.59	7 (17%)
9	NAG	Е	603	1	14,14,15	0.32	0	17,19,21	0.50	0
9	NAG	F	702	2	14,14,15	0.30	0	17,19,21	0.40	0
9	NAG	D	701	2	14,14,15	0.23	0	17,19,21	0.38	0
9	NAG	F	701	2	14,14,15	0.30	0	17,19,21	0.85	1 (5%)
9	NAG	С	605	1	14,14,15	0.23	0	17,19,21	0.43	0
10	5VG	С	609	-	33,33,33	2.28	11 (33%)	39,46,46	1.60	8 (20%)
9	NAG	А	601	1	14,14,15	0.24	0	17,19,21	0.52	0
9	NAG	Е	602	1	14,14,15	0.26	0	17,19,21	0.38	0
9	NAG	С	601	1	14,14,15	0.16	0	17,19,21	0.68	1 (5%)
9	NAG	С	603	1	14,14,15	0.17	0	17,19,21	0.45	0
9	NAG	Е	604	1	14,14,15	0.44	0	17,19,21	1.63	3 (17%)
9	NAG	А	604	1	14,14,15	0.27	0	17,19,21	0.43	0
9	NAG	А	602	1	14,14,15	0.54	0	17,19,21	1.29	2 (11%)
9	NAG	С	602	1	14,14,15	0.96	1 (7%)	17,19,21	0.98	1 (5%)
9	NAG	С	607	1	14,14,15	0.27	0	17,19,21	0.52	0
9	NAG	А	606	1	14,14,15	0.22	0	17,19,21	0.46	0
9	NAG	С	604	1	14,14,15	0.32	0	17,19,21	1.34	2 (11%)
9	NAG	А	608	1	14,14,15	0.20	0	17,19,21	0.50	0
9	NAG	С	606	1	14,14,15	0.25	0	17,19,21	0.64	0
10	5VG	Е	609	_	33,33,33	2.30	11 (33%)	39,46,46	1.85	7 (17%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	NAG	Ε	601	1	-	0/6/23/26	0/1/1/1
9	NAG	\mathbf{C}	608	1	-	3/6/23/26	0/1/1/1
9	NAG	А	603	1	-	1/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	NAG	А	607	1	-	4/6/23/26	0/1/1/1
9	NAG	Е	607	1	-	2/6/23/26	0/1/1/1
9	NAG	Е	605	1	-	3/6/23/26	0/1/1/1
9	NAG	Е	606	1	-	2/6/23/26	0/1/1/1
9	NAG	Е	608	1	-	2/6/23/26	0/1/1/1
9	NAG	А	605	1	-	6/6/23/26	0/1/1/1
10	5VG	А	609	-	-	3/20/32/32	0/3/3/3
9	NAG	Е	603	1	-	2/6/23/26	0/1/1/1
9	NAG	F	702	2	-	1/6/23/26	0/1/1/1
9	NAG	D	701	2	-	2/6/23/26	0/1/1/1
9	NAG	F	701	2	-	0/6/23/26	0/1/1/1
9	NAG	С	605	1	-	2/6/23/26	0/1/1/1
10	5VG	С	609	-	-	2/20/32/32	0/3/3/3
9	NAG	А	601	1	-	4/6/23/26	0/1/1/1
9	NAG	Е	602	1	-	3/6/23/26	0/1/1/1
9	NAG	С	601	1	-	0/6/23/26	0/1/1/1
9	NAG	С	603	1	-	2/6/23/26	0/1/1/1
9	NAG	Е	604	1	-	4/6/23/26	0/1/1/1
9	NAG	А	604	1	-	1/6/23/26	0/1/1/1
9	NAG	А	602	1	-	4/6/23/26	0/1/1/1
9	NAG	С	602	1	-	2/6/23/26	0/1/1/1
9	NAG	С	607	1	-	4/6/23/26	0/1/1/1
9	NAG	А	606	1	-	2/6/23/26	0/1/1/1
9	NAG	С	604	1	-	6/6/23/26	0/1/1/1
9	NAG	А	608	1	-	4/6/23/26	0/1/1/1
9	NAG	С	606	1	-	0/6/23/26	0/1/1/1
10	5VG	Е	609	-	-	2/20/32/32	0/3/3/3

All (35) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
10	А	609	5VG	C02-N03	6.21	1.45	1.33
10	Е	609	5VG	C05-C13	-5.74	1.47	1.54
10	С	609	5VG	C05-C13	-5.51	1.47	1.54
10	С	609	5VG	C02-N03	5.37	1.43	1.33
10	Е	609	5VG	C02-N03	5.07	1.43	1.33
10	С	609	5VG	C15-N14	4.96	1.44	1.34

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
10	А	609	5VG	C15-N14	4.93	1.44	1.34
10	Е	609	5VG	C15-N14	4.76	1.44	1.34
10	А	609	5VG	C17-N19	4.73	1.45	1.35
10	А	609	5VG	C05-C13	-4.60	1.48	1.54
10	С	609	5VG	C17-N19	4.57	1.45	1.35
10	Е	609	5VG	C17-N19	4.20	1.44	1.35
10	Е	609	5VG	O18-C17	-3.43	1.17	1.23
10	Е	609	5VG	O16-C15	-3.30	1.17	1.23
9	С	602	NAG	C1-C2	3.18	1.56	1.52
10	С	609	5VG	O18-C17	-3.04	1.17	1.23
10	Е	609	5VG	C06-C05	-2.95	1.48	1.54
10	С	609	5VG	O16-C15	-2.91	1.18	1.23
10	А	609	5VG	C02-N01	2.90	1.45	1.34
10	А	609	5VG	C06-C07	2.88	1.56	1.50
10	С	609	5VG	C06-C05	-2.88	1.48	1.54
10	С	609	5VG	C02-N01	2.82	1.44	1.34
10	Е	609	5VG	C02-N01	2.80	1.44	1.34
10	А	609	5VG	O18-C17	-2.79	1.18	1.23
9	А	603	NAG	C1-C2	2.74	1.56	1.52
10	А	609	5VG	O16-C15	-2.74	1.18	1.23
10	Ε	609	5VG	C02-N28	-2.34	1.24	1.32
10	С	609	5VG	C06-C07	2.32	1.55	1.50
10	А	609	5VG	C20-N19	2.30	1.46	1.41
10	С	609	5VG	C02-N28	-2.25	1.24	1.32
10	Е	609	5VG	C06-C07	2.16	1.54	1.50
10	Е	609	5VG	C20-N19	2.10	1.45	1.41
10	A	609	5VG	C24-CL25	2.10	1.78	1.73
10	С	609	5VG	C20-N19	2.07	1.45	1.41
10	A	609	5VG	C02-N28	-2.06	1.25	1.32

All (33) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
10	Е	609	5VG	C05-C04-N03	-6.26	101.87	112.08
10	А	609	5VG	C15-C17-N19	5.15	120.95	112.25
10	С	609	5VG	C05-C04-N03	-5.05	103.85	112.08
9	С	604	NAG	C2-N2-C7	4.59	129.06	122.90
10	Е	609	5VG	C15-C17-N19	4.58	119.98	112.25
9	Е	604	NAG	C2-N2-C7	4.49	128.91	122.90
9	А	605	NAG	C2-N2-C7	4.46	128.88	122.90
9	А	602	NAG	C2-N2-C7	4.35	128.73	122.90
9	Е	604	NAG	C1-O5-C5	3.75	117.21	112.19

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
10	С	609	5VG	C15-C17-N19	3.34	117.89	112.25
10	А	609	5VG	C12-C13-N14	-3.33	105.05	114.77
10	Е	609	5VG	C17-C15-N14	3.27	121.57	113.73
10	С	609	5VG	C17-C15-N14	3.14	121.25	113.73
9	F	701	NAG	C1-O5-C5	3.11	116.35	112.19
10	Е	609	5VG	O16-C15-N14	-2.86	118.06	123.09
10	А	609	5VG	C09-C00-N	-2.80	105.93	112.67
9	С	602	NAG	C1-O5-C5	2.57	115.64	112.19
9	Е	604	NAG	C1-C2-N2	2.55	114.46	110.43
10	А	609	5VG	C07-C06-C05	2.52	107.86	104.02
10	С	609	5VG	C09-C00-N	-2.50	106.66	112.67
10	С	609	5VG	C06-C07-C12	-2.49	107.51	110.95
10	С	609	5VG	C12-C13-N14	-2.42	107.69	114.77
10	А	609	5VG	O18-C17-C15	-2.39	117.35	121.24
10	Е	609	5VG	C07-C06-C05	2.38	107.65	104.02
10	А	609	5VG	C06-C07-C12	-2.32	107.75	110.95
10	А	609	5VG	C20-N19-C17	-2.29	123.39	127.45
9	С	601	NAG	C1-O5-C5	2.25	115.19	112.19
10	Е	609	5VG	C09-C00-N	-2.16	107.47	112.67
9	С	604	NAG	C1-C2-N2	2.13	113.79	110.43
10	С	609	5VG	O16-C15-N14	-2.07	119.44	123.09
9	А	602	NAG	C1-C2-N2	2.05	113.66	110.43
10	С	609	5VG	C07-C12-C13	-2.05	107.10	110.12
10	Е	609	5VG	C20-N19-C17	-2.04	123.83	127.45

There are no chirality outliers.

All (73) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
9	С	608	NAG	C3-C2-N2-C7
9	С	608	NAG	C8-C7-N2-C2
9	С	608	NAG	O7-C7-N2-C2
10	А	609	5 VG	C09-C00-N-C
10	А	609	5VG	N03-C04-C05-C13
10	С	609	5 VG	N03-C04-C05-C13
10	С	609	5VG	N03-C04-C05-C06
10	Е	609	5 VG	N03-C04-C05-C13
10	Е	609	5VG	N03-C04-C05-C06
9	А	605	NAG	C4-C5-C6-O6
9	А	606	NAG	O5-C5-C6-O6
9	С	607	NAG	O5-C5-C6-O6
9	D	701	NAG	O5-C5-C6-O6

Mol	Chain	Res	Type	Atoms
9	А	605	NAG	O5-C5-C6-O6
9	С	604	NAG	C4-C5-C6-O6
9	С	607	NAG	C4-C5-C6-O6
9	А	601	NAG	O5-C5-C6-O6
9	А	608	NAG	O5-C5-C6-O6
9	Е	607	NAG	O5-C5-C6-O6
9	А	606	NAG	C4-C5-C6-O6
9	D	701	NAG	C4-C5-C6-O6
9	Е	607	NAG	C4-C5-C6-O6
9	С	603	NAG	O5-C5-C6-O6
9	С	604	NAG	O5-C5-C6-O6
9	Е	606	NAG	O5-C5-C6-O6
9	Е	606	NAG	C4-C5-C6-O6
9	А	601	NAG	C4-C5-C6-O6
9	А	608	NAG	C4-C5-C6-O6
9	А	601	NAG	C8-C7-N2-C2
9	А	601	NAG	O7-C7-N2-C2
9	А	602	NAG	C8-C7-N2-C2
9	А	602	NAG	O7-C7-N2-C2
9	А	605	NAG	C8-C7-N2-C2
9	А	605	NAG	O7-C7-N2-C2
9	А	608	NAG	C8-C7-N2-C2
9	А	608	NAG	O7-C7-N2-C2
9	С	604	NAG	C8-C7-N2-C2
9	С	604	NAG	O7-C7-N2-C2
9	Е	602	NAG	C8-C7-N2-C2
9	E	602	NAG	O7-C7-N2-C2
9	E	604	NAG	C8-C7-N2-C2
9	E	604	NAG	O7-C7-N2-C2
9	E	603	NAG	O5-C5-C6-O6
9	E	603	NAG	C4-C5-C6-O6
9	С	605	NAG	O5-C5-C6-O6
9	A	604	NAG	05-C5-C6-O6
9	C	602	NAG	O5-C5-C6-O6
9	C	602	NAG	C4-C5-C6-O6
9	E	605	NAG	O5-C5-C6-O6
9	A	607	NAG	C4-C5-C6-O6
9	A	603	NAG	O5-C5-C6-O6
9	A	607	NAG	O5-C5-C6-O6
9	F	702	NAG	O5-C5-C6-O6
9	E	602	NAG	O5-C5-C6-O6
9	E	608	NAG	05-C5-C6-O6

Mol	Chain	Res	Type	Atoms
9	С	603	NAG	C4-C5-C6-O6
9	А	607	NAG	C1-C2-N2-C7
9	С	604	NAG	C1-C2-N2-C7
9	С	607	NAG	C1-C2-N2-C7
9	Е	605	NAG	C1-C2-N2-C7
10	А	609	5VG	N03-C04-C05-C06
9	А	607	NAG	C3-C2-N2-C7
9	С	604	NAG	C3-C2-N2-C7
9	С	607	NAG	C3-C2-N2-C7
9	Е	604	NAG	C3-C2-N2-C7
9	Е	605	NAG	C3-C2-N2-C7
9	С	605	NAG	C4-C5-C6-O6
9	А	602	NAG	C1-C2-N2-C7
9	А	605	NAG	C1-C2-N2-C7
9	Е	604	NAG	C1-C2-N2-C7
9	А	602	NAG	C3-C2-N2-C7
9	А	605	NAG	C3-C2-N2-C7
9	Е	608	NAG	C3-C2-N2-C7

There are no ring outliers.

15 monomers are involved in 20 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
9	С	608	NAG	2	0
9	А	603	NAG	1	0
9	А	607	NAG	1	0
9	Е	606	NAG	2	0
9	Е	608	NAG	1	0
9	А	605	NAG	1	0
10	А	609	5VG	2	0
10	С	609	5VG	1	0
9	Ε	604	NAG	1	0
9	А	602	NAG	2	0
9	А	606	NAG	1	0
9	С	604	NAG	1	0
9	A	608	NAG	1	0
9	С	606	NAG	2	0
10	Е	609	5VG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will

also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and similar rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-23462. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 128

Y Index: 128

Z Index: 128

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 126

Y Index: 127

Z Index: 130

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.013. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 144 $\rm nm^3;$ this corresponds to an approximate mass of 130 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.256 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-23462 and PDB model 7LO6. Per-residue inclusion information can be found in section 3 on page 10.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.013 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.013).

9.4 Atom inclusion (i)

At the recommended contour level, 91% of all backbone atoms, 81% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.013) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8100	0.4560
А	0.7680	0.4270
В	0.8100	0.4450
С	0.9080	0.5120
D	0.8760	0.4790
Е	0.9280	0.5220
F	0.8800	0.4860
G	0.8480	0.4350
Н	0.8770	0.4720
Ι	0.7930	0.4330
J	0.8510	0.4590
К	0.2240	0.2570
L	0.5090	0.3130
М	0.8210	0.4180
Ν	0.7380	0.4490
0	0.5360	0.4510
Р	0.9310	0.5460
Q	0.7500	0.4630
R	0.9290	0.4770
S	0.8310	0.4650
Т	0.9640	0.4820
U	0.5360	0.4490
V	0.9640	0.4650

