

Oct 20, 2024 – 11:19 AM EDT

PDB ID	:	6VWM
EMDB ID	:	EMD-21421
Title	:	70S ribosome bound to HIV frameshifting stem-loop (FSS) and P-site tRNA (non-rotated conformation. Structure I)
A (1)		(non-rotated comonitation, Structure 1)
Autnors	:	D.M.
Deposited on	:	2020-02-20
Resolution	:	3.40 Å(reported)
This is	a l	Full wwPDB EM Validation Report for a publicly released PDB entry.
		We welcome your comments at validation mail www.db ora

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	EM structures
Metric	$(\# { m Entries})$	$(\# {\rm Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	3	120	·■	
2	5	76	28% 75% 25%	
3	А	273	99%	••
4	В	209	100%	
5	С	201	8%	
6	D	179	37% 95%	
7	Е	177	98%	•
8	G	149	16% 32% • 68%	

Chain Length Quality of chain Mol 9 Η 14299% . 10 Ι 123100% 11 J 144•• 98% i. 12Κ 136100% L 1312794% 6% 12% 14М 117. . 95% Ν 1511597% . . i ... 16Ο 11898% 5% Р 103 17100% 18Q 110100% i R 1910090% 10% \mathbf{S} 20104• 8% 91% 6% ... 21Т 94 97% i 22U 85 86% 12% • i 23V 7899% W 24635% 95% Х 255998% • Y 265796% 44% Ζ 275587% 13% 28AA 46 100% AB . . 296595% • 30 AC38 97% • 7% ••• 31 22903 78% 19% 62% 32241 \mathbf{a} 90% • 9% 30% 33 b 233 15% 84%

Continued from previous page...

Conti	nued fron	n previous	page		
Mol	Chain	Length	Quality of chain		
			31%		
34	с	206	72%	5%	22%
<u>م</u> ۲	1	105	8%		
35	d	167	93%		• 6%
26	0	195	23%		
- 50	е	199	75%		25%
37	f	179	54%	16%	
	1	110	12%	4078	
38	g	130	98%		••
	0		51%		
39	h	130	90%		• 7%
			51%		
40	i	103	85%		• 14%
41	•	100	16%		
41	J	129	88%		• 9%
49	1.	194			
42	K	124	<u> </u>		• 10%
43	1	118	Q3%		• 6%
10	1	110	39%		• 078
44	m	101	98%		••
			11%		
45	n	89	97%		• •
			13%		
46	0	82	100%		
477		0.1	11%		
41	р	84	92%		• 7%
18	a	75			000/
40	q	15			28%
49	r	92	82%		. 1/%
10	1		8%		• 1470
50	S	87	97%		·
			28%		
51	t	71	96%		·
			8%		_
52	1	1540	77%		20% ••
F 0	4	0.2	28%		
53	4	93	35% 11%	54%	

2 Entry composition (i)

There are 54 unique types of molecules in this entry. The entry contains 140044 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	3	120	Total 2568	C 1145	N 471	0 833	Р 119	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
3	120	А	U	conflict	GB 984297099

• Molecule 2 is a RNA chain called tRNAPhe.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	5	76	Total 1622	С 724	N 292	0 531	Р 75	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
5	47	G	U	conflict	GB 984297099
5	48	U	С	conflict	GB 984297099

• Molecule 3 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
3	А	271	Total 2082	C 1288	N 423	0 364	${ m S} 7$	0	0

• Molecule 4 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	В	209	Total 1565	C 979	N 288	0 294	${S \over 4}$	0	0

• Molecule 5 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	С	201	Total 1552	C 974	N 283	O 290	${ m S}{ m 5}$	0	0

• Molecule 6 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
6	D	177	Total 1410	C 899	N 249	O 256	S 6	0	0

• Molecule 7 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	Е	173	Total 1298	C 817	N 238	0 241	${S \atop 2}$	0	0

• Molecule 8 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
0	C	18	Total	С	N	0	S	0	0
0	G	40	368	238	63	66	1	0	0

• Molecule 9 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	AltConf	Trace			
9	Н	142	Total 1129	C 714	N 212	0 199	$\frac{S}{4}$	0	0

• Molecule 10 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	Ι	123	Total 947	C 593	N 181	0 167	S 6	0	0

• Molecule 11 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	J	143	Total 1043	C 649	N 206	0 186	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	K	136	Total 1074	C 686	N 205	O 177	S 6	0	0

• Molecule 13 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	L	119	Total 951	C 588	N 195	0 163	${ m S}{ m 5}$	0	0

• Molecule 14 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
14	М	114	Total 875	C 542	N 175	O 158	0	0

• Molecule 15 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	Ν	114	Total 917	С 574	N 179	O 163	S 1	0	0

• Molecule 16 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
16	О	117	Total 947	C 604	N 192	0 151	0	0

• Molecule 17 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Р	103	Total 816	C 516	N 153	0 145	${ m S} { m 2}$	0	0

• Molecule 18 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms		AltConf	Trace	
18	Q	110	Total 857	C 532	N 166	0 156	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	R	90	Total 714	C 449	N 136	0 128	S 1	0	0

• Molecule 20 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
20	S	96	Total 735	C 464	N 138	O 133	0	0

• Molecule 21 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Т	93	Total 745	C 474	N 136	0 133	${ m S} { m 2}$	0	0

• Molecule 22 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms			AltConf	Trace
22	U	75	Total 575	C 356	N 116	O 102	S 1	0	0

• Molecule 23 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	V	77	Total 625	C 388	N 129	O 106	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 24 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
94	W	60	Total	С	Ν	Ο	S	0	0
24	vv	00	491	303	96	91	1	0	0

• Molecule 25 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
25	Х	58	Total 449	C 281	N 87	O 79	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
26	Y	55	Total 434	C 263	N 92	0 78	S 1	0	0

• Molecule 27 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
27	Z	48	Total 396	$\begin{array}{c} \mathrm{C} \\ 255 \end{array}$	N 72	O 69	0	0

• Molecule 28 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
28	AA	46	Total 377	C 228	N 90	O 57	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
29	AB	64	Total	С	N	0	S	0	0
			504	323	105	74	2		

• Molecule 30 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms					AltConf	Trace
30	AC	38	Total 302	C 185	N 65	0 48	S 4	0	0

• Molecule 31 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues			AltConf	Trace			
31	2	2833	Total 60819	C 27131	N 11192	O 19664	Р 2832	0	0

There are 19 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
2	208	С	-	insertion	GB 984297099
2	284	U	С	conflict	GB 984297099
2	285	G	А	conflict	GB 984297099
2	356	G	А	conflict	GB 984297099
2	542	С	U	conflict	GB 984297099
2	747	С	U	conflict	GB 984297099

Chain	Residue	Modelled	Actual	Comment	Reference
2	1174	U	G	conflict	GB 984297099
2	1211	С	U	conflict	GB 984297099
2	1513	U	С	conflict	GB 984297099
2	1723	G	А	conflict	GB 984297099
2	1730	С	U	conflict	GB 984297099
2	1865	U	С	conflict	GB 984297099
2	2163	А	G	conflict	GB 984297099
2	2712	С	U	conflict	GB 984297099
2	2794	С	U	conflict	GB 984297099
2	2796	U	С	conflict	GB 984297099
2	2797	U	С	conflict	GB 984297099
2	2799	А	G	conflict	GB 984297099
2	2802	G	А	conflict	GB 984297099

• Molecule 32 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues	Atoms					AltConf	Trace
32	a	220	Total 1672	C 1062	N 293	O 310	${ m S} 7$	0	0

• Molecule 33 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	b	197	Total 1502	C 957	N 276	O 266	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	с	160	Total 1280	C 801	N 241	O 235	${ m S} { m 3}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
с	47	ILE	LEU	conflict	UNP P0A7V8

• Molecule 35 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues	Atoms					AltConf	Trace
35	d	157	Total 1146	С 714	N 215	0 211	S 6	0	0

• Molecule 36 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues	Atoms					AltConf	Trace
36	е	101	Total 824	C 520	N 149	0 149	S 6	0	0

• Molecule 37 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues	Atoms					AltConf	Trace
37	f	97	Total 742	C 467	N 133	0 139	${ m S} { m 3}$	0	0

• Molecule 38 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues	Atoms					AltConf	Trace
38	g	129	Total 979	C 616	N 173	0 184	S 6	0	0

• Molecule 39 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	h	121	Total 950	C 591	N 189	0 168	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 40 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	i	89	Total 726	C 455	N 141	O 129	S 1	0	0

• Molecule 41 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	j	117	Total 877	C 540	N 174	O 160	${ m S} { m 3}$	0	0

• Molecule 42 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	k	111	Total 867	C 535	N 180	0 148	$\frac{S}{4}$	0	0

• Molecule 43 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	1	111	Total 859	C 531	N 172	0 153	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	m	100	Total 805	C 499	N 164	0 139	${ m S} { m 3}$	0	0

• Molecule 45 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	n	87	Total 702	C 433	N 140	0 128	S 1	0	0

• Molecule 46 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	0	82	Total 649	C 406	N 128	0 114	S 1	0	0

• Molecule 47 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	р	78	Total 632	C 400	N 118	0 111	${ m S} { m 3}$	0	0

• Molecule 48 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
48	q	54	Total 443	C 281	N 81	O 81	0	0

• Molecule 49 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	r	79	Total 637	C 408	N 120	O 107	${ m S} { m 2}$	0	0

• Molecule 50 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	s	84	Total 655	C 406	N 136	0 110	${ m S} { m 3}$	0	0

• Molecule 51 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues	Atoms			AltConf	Trace		
51	t	68	Total 566	C 351	N 120	0 94	S 1	0	0

• Molecule 52 is a RNA chain called 16S ribosomal RNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
52	1	1508	Total 32365	C 14434	N 5945	O 10478	Р 1508	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	1517	А	G	$\operatorname{conflict}$	GB 1726036237

• Molecule 53 is a RNA chain called HIV frameshift stimulating sequence mRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
53	4	43	Total 926	C 413	N 174	O 296	Р 43	0	0

• Molecule 54 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
54	А	1	Total Mg 1 1	0
54	Y	1	Total Mg 1 1	0
54	2	45	TotalMg4545	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
54	1	6	Total Mg 6 6	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 5S ribosomal RNA

• Molecule 6: 50S ribosomal protein L5

• Molecule 12: 50S ribosomal protein L16
Chain K: 100%
\bullet Molecule 13: 50S ribosomal protein L17
Chain L: 94% 6%
M1 10 GLU GLU ALA ALA ALA GLU GLU
• Molecule 14: 50S ribosomal protein L18
Chain M: 95% · ·
MET LYS K4 K5 K5 K3 K3 R3 R3 K3 K63 K63 K63 K63 K63 K63 K63 K63 K63
• Molecule 15: 50S ribosomal protein L19
Chain N: 97% ···
MET S1 C13 D31 D31 S32 S32 N13 A M13 A A
• Molecule 16: 50S ribosomal protein L20
Chain O: 98%
A1 F56 A117
\bullet Molecule 17: 50S ribosomal protein L21
Chain P: 100%
E16 E37 A103 A A A
• Molecule 18: 50S ribosomal protein L22
Chain Q:

GL

• Molecule 25: 50S ribosomal protein L30

• Molecule 19: 50S ribosomal protein L23

Chain R: 90% 10% LEU ASP PHE VAL GLY GLY ALA GLU • Molecule 20: 50S ribosomal protein L24 Chain S: 91% • 8% VAL PRO ALA LEU ASN GLN • Molecule 21: 50S ribosomal protein L25 Chain T: . . 97% • Molecule 22: 50S ribosomal protein L27 Chain U: 86% 12% MET ALA HIS LYS LYS LYS ALA GLY GLY SER THR • Molecule 23: 50S ribosomal protein L28 Chain V: 99% • Molecule 24: 50S ribosomal protein L29 Chain W: 95% 5%

Chain X:	98% .	
MET A1 K2 E58		
• Molecule 26	: 50S ribosomal protein L32	
Chain Y:	96%	
MET A1 R51 A55 LYS		
• Molecule 27	2: 50S ribosomal protein L33	
Chain Z:	44% 87% 13%	
MET ALA LYS GLY GLY R5 R5 V1	S12 513 615 716 615 718 719 817 826 823 823 823 823 823 823 823 823 823 823	
• Molecule 28	: 50S ribosomal protein L34	
Chain AA:	100%	
There are no	outlier residues recorded for this chain.	
• Molecule 29	: 50S ribosomal protein L35	
Chain AB:	95% • •	
MET P1 T5 V6 A64		
• Molecule 30	: 50S ribosomal protein L36	
Chain AC:	97% •	
M1 V25 G38		
• Molecule 31	: 23S ribosomal RNA	
Chain 2:	78% 19% ••	
G1 U4 A14 G23 G23 A28	U34 U34 A44 A44 A44 A44 A463 A463 A463 A463 A	

•	Molecule	34:	30S	ribosomal	protein	S4
-	morecure	U I ·	000	11000011101	protonn	~ -

G 6847 6848 6849 8872 8872 6872	C883 C885 C885 C885 A90 A90 A90 A90 A90 A90 A90 A90 C934 A914 A914 A9135	A938 6942 A946 0947 0947 0956 U956 A958 A958	(3966 (3966 (377) (377) (377) (377) (377) (3975 (3975 (3975 (3975 (3987) (3988) (3988) (3988) (3989) (3989)	UB91 1992 6993 A994 A996 A996 VU997
C998 C999 A1000 C1001 G1002 G1003 A1004	A1005 G1005 U1007 U1008 U1008 U1010 C1011 A1012 G1013 A1014	U1017 C1018 A1019 A1021 A1021 A1022 C1022 C1022 C1022 C1022 C1025 C1026 C1026	C1027 C1028 U1029 U1029 C1031 G1033 G1033 A1035 A1035 A1035 C1033 G1035 G1033 G1035 G1035	01040 01041 042 01042 01043 01045 01045 01045 01045 01053 01053 01056 01055 01055 01055 01045 010555 010555 010555 010555 010555 010555 010555 010555 00
G1108 U1125 ♦ C1129 ♦ G1131	C1132 C1133 C1133 C1134 C1135 C1135 C1135 C1140 C1140 C1140 C1141 C1143	d1144 A1145 A1145 01158 01158 01158 01162 A1168 A1168	U1173 U1182 U1183 U1183 G1190 A1191 A1197 A1201 U1202	01206 01206 01212 01215 01218 01218 01224 01224
C1226 A1227 A1238 A1239 U1240 C1241 A1256 A1256	A1257 ◆ C1268 ◆ C1262 ◆ C1265 ◆ C1265 ◆ A1274 ◆	C1278 C1279 C1279 C1281 C1281 C1281 C1281 A1287 A1287 A1288 A1288 A1288 A1288 C1296	(1297 (1298 (1298 (1390 (1300 (1300 (1300 (1317 (1317 (1317 (1331 (1333) (133)	A1346 01347 01348 11383 01378
U1391 A1394 C1397 C1403 C1403	A1408 G1419 G1426 A1429 A1433 A1433 G1438 G1438 G1438 U1440	A1441 A1446 A1447 C1448 C1448 U1450 U1451 C1452 C1452 C1452 G1458 G1454 G1454 G1454	U1470 U1470 A1492 A1493 U1496 U1496 C1496 C1496 C1496 A1499 A1512 A1512 A1513 A1514	C1529 61530 01531 01532 A A C C C
vevvee	2. IIIV from och ift d		nos mDNA	
• Molecule 5 Chain 4:	3: HIV framesmit s 28% 35%	11%	54%	_
	D U D U 4 4 U 4 D 4 4 4 U U	< < U < < U < < U < < U o	1221 1221 1221 1221 122 122 122 122 122	455 658 A 60 A 60 A 62 A 62
U63 C664 G66 G66 C68 C68 C68	UT0 UT1 CT2 CT3 CT4 AT5 AT5 AT7 AT7 AT7 AT7 CT6 CT6 CT6 CT6 CT6 CT6 CT6 CT7 CT6 CT6 CT7 CT6 CT7 CT7 CT7 CT7 CT7 CT7 CT7 CT7 CT7 CT7	G 81 A 82 A 83 G 84 G 85 C 86 C 85 C 85 C 85 C 85 C 87 A 92 A 92		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	640261	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	75	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	28.305	Depositor
Minimum map value	-9.165	Depositor
Average map value	0.187	Depositor
Map value standard deviation	1.136	Depositor
Recommended contour level	6	Depositor
Map size (Å)	654.48, 654.48, 654.48	wwPDB
Map dimensions	648, 648, 648	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.01, 1.01, 1.01	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	3	0.26	0/2872	0.87	0/4479	
2	5	0.29	0/1813	0.98	0/2826	
3	А	0.25	0/2121	0.44	0/2852	
4	В	0.26	0/1586	0.46	0/2134	
5	С	0.25	0/1571	0.42	0/2113	
6	D	0.26	0/1434	0.48	1/1926~(0.1%)	
7	Е	0.25	0/1318	0.46	0/1786	
8	G	0.26	0/373	0.44	0/502	
9	Н	0.25	0/1152	0.43	0/1551	
10	Ι	0.25	0/956	0.46	0/1279	
11	J	0.25	0/1052	0.45	0/1401	
12	K	0.25	0/1093	0.43	0/1460	
13	L	0.25	0/964	0.44	0/1289	
14	М	0.25	0/885	0.46	0/1187	
15	Ν	0.26	0/929	0.44	0/1242	
16	0	0.25	0/960	0.36	0/1278	
17	Р	0.27	0/829	0.49	0/1107	
18	Q	0.24	0/864	0.44	0/1156	
19	R	0.24	0/720	0.43	0/962	
20	S	0.26	0/741	0.44	0/984	
21	Т	0.25	0/758	0.42	0/1015	
22	U	0.26	0/582	0.44	0/769	
23	V	0.24	0/635	0.45	0/848	
24	W	0.24	0/492	0.41	0/655	
25	Х	0.26	0/453	0.44	0/605	
26	Y	0.24	0/440	0.47	0/588	
27	Z	0.23	0/403	0.46	0/538	
28	AA	0.23	0/380	0.41	0/498	
29	AB	0.26	0/513	0.45	0/676	
30	AC	0.24	0/303	0.44	0/397	
31	2	0.29	0/68117	0.89	68/106268~(0.1%)	
32	a	0.25	0/1703	0.45	0/2305	

Mol Chain		Bond	Bond lengths		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5		
33	b	0.24	0/1528	0.43	0/2069		
34	с	0.24	0/1297	0.43	0/1740		
35	d	0.25	0/1159	0.47	0/1561		
36	е	0.24	0/843	0.50	0/1140		
37	f	0.24	0/750	0.43	0/1009		
38	g	0.25	0/989	0.45	0/1326		
39	h	0.24	0/960	0.49	0/1280		
40	i	0.23	0/735	0.45	0/991		
41	j	0.25	0/893	0.46	0/1205		
42	k	0.25	0/878	0.51	0/1176		
43	1	0.23	0/868	0.45	0/1161		
44	m	0.24	0/817	0.44	0/1088		
45	n	0.22	0/710	0.46	0/950		
46	0	0.24	0/659	0.46	0/884		
47	р	0.24	0/641	0.45	0/860		
48	q	0.24	0/449	0.42	0/604		
49	r	0.27	0/652	0.51	0/877		
50	s	0.24	0/661	0.38	0/876		
51	t	0.23	0/573	0.36	0/759		
52	1	0.27	0/36240	0.90	40/56532~(0.1%)		
53	4	0.27	0/1037	0.94	0/1616		
All	All	0.28	0/152351	0.81	109/228380~(0.0%)		

There are no bond length outliers.

All (109) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
31	2	2794	С	N3-C2-O2	-10.09	114.84	121.90
31	2	2210	U	C2-N1-C1'	9.21	128.75	117.70
31	2	2210	U	N1-C2-O2	8.95	129.06	122.80
52	1	1141	С	N3-C2-O2	-8.94	115.64	121.90
31	2	268	С	N3-C2-O2	-8.67	115.83	121.90
31	2	1858	А	N1-C6-N6	-8.10	113.74	118.60
31	2	435	С	N1-C2-O2	7.96	123.68	118.90
52	1	13	U	N3-C4-O4	-7.83	113.92	119.40
31	2	2210	U	N3-C2-O2	-7.81	116.73	122.20
31	2	435	С	C2-N1-C1'	7.64	127.20	118.80
31	2	2214	С	N1-C2-O2	7.56	123.44	118.90
52	1	1141	С	N1-C2-O2	7.53	123.42	118.90
52	1	13	U	C5-C4-O4	7.52	130.41	125.90
52	1	624	С	N3-C2-O2	-7.50	116.65	121.90
31	2	1881	С	C2-N1-C1'	7.42	126.96	118.80

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
31	2	1313	U	C2-N1-C1'	7.36	126.53	117.70
52	1	217	С	C2-N1-C1'	7.13	126.64	118.80
52	1	754	С	C2-N1-C1'	7.10	126.61	118.80
31	2	1313	U	N1-C2-O2	6.92	127.64	122.80
31	2	1313	U	N3-C2-O2	-6.84	117.41	122.20
31	2	435	С	N3-C2-O2	-6.80	117.14	121.90
31	2	268	С	C6-N1-C2	-6.78	117.59	120.30
31	2	1348	С	N1-C2-O2	6.77	122.96	118.90
31	2	2793	С	N1-C2-O2	6.75	122.95	118.90
31	2	2214	С	C2-N1-C1'	6.68	126.15	118.80
31	2	2473	U	N1-C2-O2	6.66	127.46	122.80
31	2	2473	U	C2-N1-C1'	6.50	125.50	117.70
31	2	1774	С	N3-C2-O2	-6.45	117.39	121.90
31	2	2473	U	N3-C2-O2	-6.33	117.77	122.20
52	1	839	С	N1-C2-O2	6.32	122.69	118.90
31	2	2210	U	C6-N1-C1'	-6.25	112.45	121.20
52	1	439	U	C5-C4-O4	-6.25	122.15	125.90
31	2	1170	С	C2-N1-C1'	6.16	125.58	118.80
52	1	839	С	C2-N1-C1'	6.16	125.58	118.80
52	1	1158	С	C2-N1-C1'	6.16	125.58	118.80
31	2	265	А	P-O3'-C3'	6.16	127.09	119.70
31	2	2556	С	N1-C2-O2	6.06	122.54	118.90
52	1	1201	А	P-O3'-C3'	6.03	126.93	119.70
52	1	1088	G	N1-C6-O6	-5.98	116.31	119.90
31	2	267	С	N1-C2-O2	5.97	122.48	118.90
31	2	1176	U	C2-N1-C1'	5.97	124.87	117.70
31	2	2794	С	N1-C2-O2	5.93	122.46	118.90
52	1	516	U	C2-N1-C1'	5.88	124.75	117.70
31	2	1561	С	C2-N1-C1'	5.83	125.22	118.80
31	2	1858	A	C5-C6-N6	5.82	128.36	123.70
31	2	2214	С	N3-C2-O2	-5.82	117.83	121.90
52	1	754	С	N1-C2-O2	5.79	122.37	118.90
52	1	624	С	N1-C2-N3	5.77	123.24	119.20
31	2	1893	С	N1-C2-O2	5.76	122.35	118.90
31	2	435	С	C6-N1-C2	-5.66	118.04	120.30
52	1	1391	U	N1-C2-O2	5.65	126.76	122.80
52	1	1448	С	C2-N1-C1'	5.63	125.00	118.80
52	1	428	G	C8-N9-C1'	5.60	134.29	127.00
31	2	1956	U	N1-C2-O2	5.58	126.70	122.80
31	2	1881	С	<u>C6-N1-C1</u> '	-5.57	114.12	120.80
31	2	1314	С	C2-N1-C1'	5.57	124.92	118.80
31	2	1176	U	N1-C2-O2	5.56	126.69	122.80

α \cdot \cdot \cdot	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
52	1	1140	С	N1-C2-O2	5.50	122.20	118.90
6	D	102	LEU	CA-CB-CG	5.49	127.94	115.30
52	1	1296	С	N1-C2-O2	5.48	122.19	118.90
31	2	2901	С	N1-C2-O2	5.45	122.17	118.90
31	2	2431	U	O4'-C1'-N1	5.44	112.55	108.20
52	1	1470	U	C2-N1-C1'	5.43	124.22	117.70
52	1	428	G	N3-C4-N9	-5.42	122.75	126.00
31	2	1176	U	N3-C2-O2	-5.41	118.41	122.20
52	1	1448	С	N1-C2-O2	5.40	122.14	118.90
31	2	211	С	C2-N1-C1'	5.39	124.73	118.80
52	1	1455	G	N1-C6-O6	-5.37	116.68	119.90
31	2	1574	С	N1-C2-O2	5.36	122.12	118.90
31	2	2803	G	C5-C6-O6	5.34	131.81	128.60
52	1	679	С	C2-N1-C1'	5.34	124.67	118.80
31	2	1774	С	N1-C2-O2	5.34	122.10	118.90
31	2	1868	С	C2-N1-C1'	5.34	124.67	118.80
31	2	837	С	N1-C2-O2	5.33	122.10	118.90
31	2	2562	U	C2-N1-C1'	5.33	124.09	117.70
52	1	624	С	C6-N1-C2	-5.32	118.17	120.30
31	2	139	U	C2-N1-C1'	5.30	124.06	117.70
31	2	1170	С	N1-C2-O2	5.30	122.08	118.90
31	2	2901	С	N3-C2-O2	-5.29	118.19	121.90
52	1	217	С	C6-N1-C1'	-5.28	114.46	120.80
31	2	2210	U	C5-C6-N1	5.27	125.33	122.70
31	2	2795	С	N3-C2-O2	-5.27	118.21	121.90
31	2	1348	С	C2-N1-C1'	5.25	124.58	118.80
31	2	2562	U	N1-C2-O2	5.24	126.47	122.80
52	1	623	С	N1-C2-O2	5.23	122.04	118.90
52	1	1141	С	C6-N1-C2	-5.23	118.21	120.30
31	2	114	U	C2-N1-C1'	5.22	123.97	117.70
52	1	754	С	C6-N1-C1'	-5.22	114.53	120.80
31	2	1914	С	N1-C2-O2	5.22	122.03	118.90
52	1	624	С	C2-N3-C4	-5.22	117.29	119.90
31	2	2802	G	N1-C2-N2	-5.21	111.51	116.20
52	1	1158	С	O4'-C1'-N1	5.21	112.37	108.20
31	2	436	C	C2-N1-C1'	5.20	124.52	118.80
31	2	1348	C	N3-C2-O2	-5.20	118.26	121.90
31	2	1893	С	<u>C2-N1-C1</u> '	5.19	124.51	118.80
31	2	732	С	C2-N1-C1'	5.18	124.50	118.80
52	1	1088	G	C5-C6-O6	5.17	131.71	128.60
31	2	1956	U	N3-C2-O2	-5.17	118.58	122.20
52	1	428	G	C4-N9-C1'	-5.16	119.79	126.50

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
52	1	1300	G	P-O3'-C3'	5.15	125.88	119.70
52	1	516	U	N3-C2-O2	-5.15	118.60	122.20
52	1	1190	G	P-O3'-C3'	5.11	125.83	119.70
52	1	1391	U	C2-N1-C1'	5.10	123.83	117.70
31	2	1666	G	N1-C6-O6	-5.06	116.86	119.90
31	2	268	С	N1-C2-O2	5.05	121.93	118.90
31	2	435	С	C6-N1-C1'	-5.04	114.75	120.80
52	1	267	С	N1-C2-O2	5.03	121.92	118.90
31	2	143	С	C2-N1-C1'	5.02	124.32	118.80
31	2	2793	С	N3-C2-O2	-5.01	118.39	121.90

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	А	269/273~(98%)	255~(95%)	14 (5%)	0	100	100
4	В	207/209~(99%)	200 (97%)	7 (3%)	0	100	100
5	С	199/201~(99%)	193 (97%)	6 (3%)	0	100	100
6	D	175/179~(98%)	161 (92%)	14 (8%)	0	100	100
7	Е	171/177~(97%)	159~(93%)	12 (7%)	0	100	100
8	G	46/149~(31%)	44 (96%)	2(4%)	0	100	100
9	Н	140/142~(99%)	137 (98%)	3(2%)	0	100	100
10	Ι	121/123~(98%)	116 (96%)	5 (4%)	0	100	100

\mathbf{Mol}	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
11	J	141/144~(98%)	136 (96%)	5 (4%)	0	100	100
12	К	134/136~(98%)	132 (98%)	2(2%)	0	100	100
13	L	117/127~(92%)	110 (94%)	7~(6%)	0	100	100
14	М	112/117~(96%)	103 (92%)	9~(8%)	0	100	100
15	Ν	112/115~(97%)	101 (90%)	11 (10%)	0	100	100
16	Ο	115/118~(98%)	114 (99%)	1 (1%)	0	100	100
17	Р	101/103~(98%)	100 (99%)	1 (1%)	0	100	100
18	Q	108/110~(98%)	104 (96%)	4 (4%)	0	100	100
19	R	88/100~(88%)	85~(97%)	3(3%)	0	100	100
20	S	92/104~(88%)	92 (100%)	0	0	100	100
21	Т	91/94~(97%)	87~(96%)	4 (4%)	0	100	100
22	U	73/85~(86%)	72 (99%)	1 (1%)	0	100	100
23	V	75/78~(96%)	74 (99%)	1 (1%)	0	100	100
24	W	58/63~(92%)	57~(98%)	1 (2%)	0	100	100
25	Х	56/59~(95%)	54 (96%)	2(4%)	0	100	100
26	Y	53/57~(93%)	51 (96%)	2(4%)	0	100	100
27	Ζ	46/55~(84%)	46 (100%)	0	0	100	100
28	AA	44/46~(96%)	44 (100%)	0	0	100	100
29	AB	62/65~(95%)	59~(95%)	3~(5%)	0	100	100
30	AC	36/38~(95%)	34~(94%)	2~(6%)	0	100	100
32	a	218/241~(90%)	209~(96%)	9~(4%)	0	100	100
33	b	193/233~(83%)	186 (96%)	7 (4%)	0	100	100
34	с	158/206~(77%)	149 (94%)	9~(6%)	0	100	100
35	d	155/167~(93%)	149~(96%)	6~(4%)	0	100	100
36	е	99/135~(73%)	87~(88%)	12 (12%)	0	100	100
37	f	93/179~(52%)	88~(95%)	5(5%)	0	100	100
38	g	127/130~(98%)	124~(98%)	3~(2%)	0	100	100
39	h	119/130 (92%)	106 (89%)	13 (11%)	0	100	100
40	i	85/103~(82%)	81~(95%)	4(5%)	0	100	100
41	j	115/129 (89%)	$107 \ (93\%)$	8 (7%)	0	100	100
42	k	107/124~(86%)	95~(89%)	12 (11%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
43	1	109/118~(92%)	101 (93%)	8 (7%)	0	100	100
44	m	98/101~(97%)	92 (94%)	6 (6%)	0	100	100
45	n	85/89~(96%)	82 (96%)	3(4%)	0	100	100
46	О	80/82~(98%)	77~(96%)	3(4%)	0	100	100
47	р	76/84~(90%)	66~(87%)	10 (13%)	0	100	100
48	q	52/75~(69%)	49 (94%)	3~(6%)	0	100	100
49	r	77/92~(84%)	65~(84%)	12 (16%)	0	100	100
50	\mathbf{S}	82/87~(94%)	79~(96%)	3~(4%)	0	100	100
51	t	66/71~(93%)	63~(96%)	3~(4%)	0	100	100
All	All	5236/5843~(90%)	4975 (95%)	261(5%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
3	А	216/218~(99%)	214 (99%)	2(1%)	75 86
4	В	164/164~(100%)	164 (100%)	0	100 100
5	С	165/165~(100%)	165 (100%)	0	100 100
6	D	148/150~(99%)	142 (96%)	6 (4%)	26 51
7	Е	134/138~(97%)	134 (100%)	0	100 100
8	G	39/114~(34%)	38~(97%)	1 (3%)	41 64
9	Н	116/116~(100%)	114 (98%)	2(2%)	56 74
10	Ι	104/104~(100%)	104 (100%)	0	100 100
11	J	102/103~(99%)	100 (98%)	2(2%)	50 70
12	K	109/109~(100%)	109 (100%)	0	100 100
13	L	99/103~(96%)	99 (100%)	0	100 100
14	М	$8\overline{4/87}~(97\%)$	81 (96%)	3 (4%)	30 56

Continued	from	previous	page
Contentaca	<i>J</i> 10110	preciouo	pago

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
15	Ν	99/100~(99%)	96 (97%)	3(3%)	36	61
16	Ο	89/90~(99%)	88 (99%)	1 (1%)	70	81
17	Р	84/84~(100%)	84 (100%)	0	100	100
18	Q	93/93~(100%)	93 (100%)	0	100	100
19	R	77/84~(92%)	77 (100%)	0	100	100
20	\mathbf{S}	78/85~(92%)	77 (99%)	1 (1%)	65	78
21	Т	77/78~(99%)	75 (97%)	2(3%)	41	64
22	U	57/63~(90%)	55 (96%)	2(4%)	31	56
23	V	67/68~(98%)	67~(100%)	0	100	100
24	W	54/55~(98%)	54 (100%)	0	100	100
25	Х	48/49~(98%)	48 (100%)	0	100	100
26	Y	46/48~(96%)	46 (100%)	0	100	100
27	Ζ	44/49~(90%)	44 (100%)	0	100	100
28	AA	38/38~(100%)	38 (100%)	0	100	100
29	AB	51/52~(98%)	49 (96%)	2(4%)	27	53
30	AC	34/34~(100%)	33~(97%)	1 (3%)	37	61
32	a	171/199~(86%)	168 (98%)	3~(2%)	54	73
33	b	152/190~(80%)	150 (99%)	2(1%)	65	78
34	с	134/173~(78%)	123~(92%)	11 (8%)	9	31
35	d	117/126~(93%)	115 (98%)	2(2%)	56	74
36	е	88/116~(76%)	88 (100%)	0	100	100
37	f	77/147~(52%)	76 (99%)	1 (1%)	65	78
38	g	104/105~(99%)	103 (99%)	1 (1%)	73	83
39	h	97/107~(91%)	93~(96%)	4 (4%)	26	51
40	i	80/90 (89%)	$79 \ (99\%)$	1 (1%)	65	78
41	j	90/99~(91%)	86 (96%)	4 (4%)	24	50
42	k	93/104 (89%)	89 (96%)	4 (4%)	25	50
43	l	$90/\overline{96}\ (94\%)$	89 (99%)	1 (1%)	70	81
44	m	$83/\overline{84}\ (99\%)$	82 (99%)	1 (1%)	67	80
45	n	$75/\overline{77}\ (97\%)$	74 (99%)	1 (1%)	65	78
46	0	65/65~(100%)	65~(100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
47	р	72/78~(92%)	71~(99%)	1 (1%)	62 77
48	q	47/65~(72%)	47 (100%)	0	100 100
49	r	70/79~(89%)	66~(94%)	4 (6%)	17 43
50	\mathbf{S}	64/66~(97%)	64 (100%)	0	100 100
51	t	56/61~(92%)	56~(100%)	0	100 100
All	All	4341/4768~(91%)	4272 (98%)	69 (2%)	58 75

All (69) residues with a non-rotameric side chain are listed below:

Mol	Iol Chain Res		Type	
3	А	50	THR	
3	А	86	ARG	
6	D	6	TYR	
6	D	7	TYR	
6	D	39	VAL	
6	D	43	ILE	
6	D	47	LYS	
6	D	114	ARG	
8	G	21	VAL	
9	Н	17	VAL	
9	Н	96	ARG	
11	J	57	LEU	
11	J	111	ILE	
14	М	48	LEU	
14	М	63	LYS	
14	М	106	LEU	
15	Ν	80	VAL	
15	Ν	81	ASP	
15	N	83	ILE	
16	0	56	PHE	
20	S	27	VAL	
21	Т	72	VAL	
21	Т	92	VAL	
22	U	10	ARG	
22	U	52	ASP	
29	AB	5	THR	
29	AB	6	VAL	
30	AC	25	VAL	
32	a	73	ARG	
32	a	92	ASN	

Mol	Chain	Res	Type
32	a	107	ARG
33	b	14	VAL
33	b	87	ARG
34	с	45	PRO
34	с	69	ARG
34	с	71	PHE
34	с	82	LYS
34	с	100	VAL
34	с	115	GLN
34	с	124	VAL
34	с	154	VAL
34	с	169	TRP
34	с	181	PHE
34	с	190	LEU
35	d	10	LEU
35	d	92	ARG
37	f	91	ARG
38	g	60	LEU
39	h	55	ASP
39	h	93	LEU
39	h	106	ASP
39	h	128	LYS
40	i	58	ASN
41	j	34	THR
41	j	52	ARG
41	j	69	CYS
41	j	92	ARG
42	k	17	LYS
42	k	20	VAL
42	k	52	CYS
42	k	60	PHE
43	1	10	ASP
44	m	32	ASP
45	n	46	LYS
47	р	56	ASP
49	r	5	LYS
49	r	35	ARG
49	r	43	MET
49	r	60	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (52) such sidechains are listed below:

Mol	Chain	Res	Type
3	А	133	ASN
4	В	32	ASN
4	В	150	GLN
5	С	163	ASN
6	D	4	HIS
6	D	36	ASN
6	D	62	GLN
7	Е	63	GLN
9	Н	40	HIS
9	Н	136	GLN
13	L	31	HIS
14	М	38	GLN
14	М	98	GLN
16	0	36	GLN
16	0	43	GLN
16	0	71	ASN
17	Р	91	GLN
18	Q	31	GLN
18	Q	61	ASN
20	S	45	GLN
20	S	65	GLN
20	S	68	ASN
27	Ζ	18	HIS
32	a	38	HIS
32	a	50	ASN
32	a	88	GLN
32	a	102	ASN
32	a	145	ASN
33	b	99	GLN
34	с	84	ASN
34	с	115	GLN
34	с	130	ASN
34	с	197	HIS
35	d	145	ASN
36	е	11	HIS
36	е	17	GLN
37	f	27	ASN
37	f	96	ASN
39	h	31	GLN
41	j	118	ASN
43	1	99	GLN
44	m	59	GLN
45	n	45	HIS

Continued from previous page...

Mol	Chain	Res	Type
46	0	79	ASN
47	р	30	HIS
47	р	50	ASN
48	q	51	GLN
49	r	55	GLN
50	s	2	ASN
50	s	19	HIS
50	s	47	GLN
50	S	77	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	3	119/120~(99%)	33~(27%)	1 (0%)
2	5	75/76~(98%)	19~(25%)	0
31	2	2831/2903~(97%)	550 (19%)	9~(0%)
52	1	1505/1540~(97%)	307~(20%)	6 (0%)
53	4	42/93~(45%)	10 (23%)	0
All	All	4572/4732~(96%)	919~(20%)	16~(0%)

All (919) RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	3	9	G
1	3	12	С
1	3	13	G
1	3	14	U
1	3	15	А
1	3	16	G
1	3	20	G
1	3	24	G
1	3	25	U
1	3	26	С
1	3	27	С
1	3	34	А
1	3	35	С
1	3	41	G
1	3	42	С
1	3	44	G
1	3	45	А
1	3	50	А

Mol	Chain	Res	Type
1	3	51	G
1	3	52	А
1	3	53	А
1	3	57	А
1	3	59	А
1	3	64	G
1	3	66	А
1	3	67	G
1	3	69	G
1	3	87	U
1	3	89	U
1	3	90	С
1	3	108	А
1	3	110	C
1	3	112	G
2	5	9	A
2	5	17	С
2	5	19	G
2	5	20	U
2	5	21	А
2	5	22	G
2	5	23	А
2	5	26	А
2	5	30	G
2	5	37	А
2	5	43	С
2	5	45	U
2	5	46	G
2	5	47	G
2	5	61	С
2	5	69	G
2	5	70	G
2	5	73	А
2	5	76	А
31	2	4	U
31	2	14	A
31	2	23	G
31	2	27	G
31	2	28	A
31	2	34	U
31	2	43	G
31	2	44	А

Mol	Chain	Res	Type
31	2	49	А
31	2	50	U
31	2	51	G
31	2	63	А
31	2	64	А
31	2	71	А
31	2	74	А
31	2	75	G
31	2	88	G
31	2	91	А
31	2	96	С
31	2	101	А
31	2	102	U
31	2	118	A
31	2	119	A
31	2	120	U
31	2	125	A
31	2	126	А
31	2	139	U
31	2	140	С
31	2	142	А
31	2	150	U
31	2	162	U
31	2	163	С
31	2	178	G
31	2	181	А
31	2	186	G
31	2	196	А
31	2	199	А
31	2	205	G
31	2	212	G
31	2	215	G
31	2	216	А
31	2	222	А
31	2	223	A
31	2	228	С
31	2	229	С
31	2	233	A
31	2	238	С
31	2	239	С
31	2	242	G
31	2	248	G

Mol	Chain	Res	Type
31	2	255	А
31	2	265	А
31	2	266	G
31	2	267	С
31	2	268	С
31	2	271	G
31	2	275	С
31	2	276	U
31	2	277	G
31	2	281	С
31	2	284	U
31	2	286	U
31	2	289	G
31	2	290	U
31	2	291	G
31	2	292	U
31	2	311	А
31	2	322	А
31	2	323	С
31	2	329	G
31	2	330	А
31	2	343	С
31	2	345	А
31	2	346	А
31	2	347	А
31	2	348	А
31	2	349	U
31	2	350	G
31	2	354	A
31	2	356	G
31	2	358	U
31	2	362	A
31	2	365	U
31	2	369	U
31	2	370	G
31	2	372	G
31	2	384	A
31	2	386	G
31	2	387	U
31	2	390	U
31	2	404	A
31	2	406	G

Mol	Chain	Res	Type
31	2	411	G
31	2	422	А
31	2	424	G
31	2	436	С
31	2	455	С
31	2	456	С
31	2	467	G
31	2	481	G
31	2	490	С
31	2	491	G
31	2	504	А
31	2	505	А
31	2	509	С
31	2	512	G
31	2	518	G
31	2	527	С
31	2	528	А
31	2	529	А
31	2	531	С
31	2	532	А
31	2	544	С
31	2	545	U
31	2	546	U
31	2	549	G
31	2	563	А
31	2	573	U
31	2	575	A
31	2	580	U
31	2	603	А
31	2	613	А
31	2	614	А
31	2	615	U
31	2	616	А
31	2	627	A
31	2	637	А
31	2	643	A
31	2	644	А
31	2	647	G
31	2	653	U
31	2	654	A
31	2	669	G
31	2	675	A

Mol	Chain	Res	Type
31	2	686	U
31	2	695	G
31	2	711	G
31	2	714	U
31	2	717	С
31	2	726	G
31	2	727	А
31	2	730	А
31	2	734	А
31	2	737	С
31	2	738	G
31	2	740	С
31	2	747	C
31	2	748	G
31	2	765	C
31	2	775	G
31	2	782	А
31	2	783	А
31	2	784	G
31	2	785	G
31	2	790	U
31	2	792	А
31	2	805	G
31	2	810	U
31	2	812	С
31	2	819	А
31	2	827	U
31	2	828	U
31	2	846	U
31	2	847	U
31	2	857	G
31	2	858	G
31	2	859	G
31	2	860	U
31	2	864	G
31	2	866	A
31	2	878	A
31	2	883	G
31	2	887	U
31	2	896	A
31	2	897	С
31	2	899	A

Mol	Chain	Res	Type
31	2	902	С
31	2	910	А
31	2	914	G
31	2	915	С
31	2	923	G
31	2	931	U
31	2	932	U
31	2	933	А
31	2	934	U
31	2	937	С
31	2	941	А
31	2	945	А
31	2	946	С
31	2	953	G
31	2	961	С
31	2	973	A
31	2	974	G
31	2	979	А
31	2	983	А
31	2	985	С
31	2	995	С
31	2	996	А
31	2	1009	A
31	2	1010	А
31	2	1012	U
31	2	1013	С
31	2	1022	G
31	2	1025	G
31	2	1026	G
31	2	1033	U
31	2	1115	G
31	2	1122	G
31	2	1124	G
31	2	1132	U
31	2	1134	A
31	2	1135	С
31	2	1141	U
31	2	1142	A
31	2	1143	A
31	2	1155	A
31	2	1168	G
31	2	1169	A

Mol	Chain	Res	Type
31	2	1170	С
31	2	1171	G
31	2	1172	С
31	2	1173	U
31	2	1174	U
31	2	1175	А
31	2	1176	U
31	2	1180	U
31	2	1186	G
31	2	1211	С
31	2	1212	G
31	2	1236	G
31	2	1247	А
31	2	1248	G
31	2	1253	A
31	2	1256	G
31	2	1264	А
31	2	1268	А
31	2	1271	G
31	2	1272	А
31	2	1287	А
31	2	1289	С
31	2	1300	G
31	2	1301	А
31	2	1329	U
31	2	1333	G
31	2	1341	G
31	2	1345	С
31	2	1346	G
31	2	1360	G
31	2	1365	A
31	2	1368	G
31	2	$1\overline{379}$	U
31	2	1395	A
31	2	1407	G
31	2	1416	G
31	2	1419	A
31	2	1420	A
31	2	1421	G
31	2	1425	G
31	2	1427	A
31	2	1428	С

Mol	Chain	Res	Type
31	2	1437	С
31	2	1452	G
31	2	1455	G
31	2	1460	U
31	2	1461	С
31	2	1482	G
31	2	1490	А
31	2	1491	G
31	2	1503	А
31	2	1504	А
31	2	1515	А
31	2	1522	А
31	2	1523	U
31	2	1524	G
31	2	1528	А
31	2	1530	G
31	2	1534	U
31	2	1535	А
31	2	1536	С
31	2	1537	G
31	2	1540	G
31	2	1541	С
31	2	1546	G
31	2	1548	А
31	2	1554	U
31	2	1559	U
31	2	1561	С
31	2	1566	А
31	2	1569	А
31	2	1578	U
31	2	1584	U
31	2	1603	A
31	2	1607	С
31	2	1608	A
31	2	1613	G
31	2	1639	C
31	2	1646	С
31	2	$1\overline{647}$	U
31	2	1648	U
31	2	$1\overline{649}$	G
31	2	1654	A
31	2	1663	G

Mol	Chain	Res	Type
31	2	1674	G
31	2	1695	G
31	2	1702	G
31	2	1703	G
31	2	1721	G
31	2	1728	С
31	2	1729	U
31	2	1730	С
31	2	1732	С
31	2	1733	G
31	2	1738	G
31	2	1756	G
31	2	1764	С
31	2	1773	А
31	2	1782	U
31	2	1800	С
31	2	1801	А
31	2	1808	А
31	2	1816	С
31	2	1819	А
31	2	1829	А
31	2	1835	G
31	2	1839	G
31	2	1845	G
31	2	1848	А
31	2	1849	G
31	2	1850	G
31	2	1856	U
31	2	1857	G
31	2	1858	А
31	2	1860	G
31	2	1867	G
31	2	1870	С
31	2	1876	A
31	2	1880	U
31	2	1883	U
31	2	1884	G
31	2	1885	A
31	2	1893	С
31	2	1906	G
31	2	1912	A
31	2	1913	А

Mol	Chain	Res	Type
31	2	1914	С
31	2	1918	А
31	2	1924	С
31	2	1926	U
31	2	1927	А
31	2	1929	G
31	2	1930	G
31	2	1936	А
31	2	1937	А
31	2	1938	А
31	2	1939	U
31	2	1940	U
31	2	1955	U
31	2	1964	G
31	2	1966	А
31	2	1967	С
31	2	1970	А
31	2	1972	G
31	2	1989	G
31	2	1991	U
31	2	1992	G
31	2	1993	U
31	2	1995	U
31	2	1996	С
31	2	1997	С
31	2	2022	U
31	2	2023	С
31	2	2031	А
31	2	2034	U
31	2	2043	С
31	2	2052	А
31	2	2055	С
31	2	2056	G
31	2	2060	A
31	2	2061	G
31	2	2062	A
31	2	2069	G
31	2	2093	G
31	2	2097	А
31	2	2098	U
31	2	2106	U
31	2	2110	G

Mol	Chain	Res	Type
31	2	2112	G
31	2	2113	U
31	2	2118	U
31	2	2119	А
31	2	2120	G
31	2	2121	G
31	2	2126	А
31	2	2127	G
31	2	2131	U
31	2	2132	U
31	2	2133	G
31	2	2134	А
31	2	2136	G
31	2	2138	G
31	2	2145	C
31	2	2146	C
31	2	2148	G
31	2	2149	U
31	2	2150	С
31	2	2155	U
31	2	2156	G
31	2	2158	А
31	2	2159	G
31	2	2165	С
31	2	2171	A
31	2	2172	U
31	2	2173	A
31	2	2180	U
31	2	2189	U
31	2	2198	A
31	2	2204	G
31	2	2210	U
31	2	2213	U
31	2	2214	С
31	2	2225	A
31	2	2238	G
31	2	2239	G
31	2	2256	G
31	2	2266	A
31	2	2278	A
31	2	2283	С
31	2	2285	С

Mol	Chain	Res	Type
31	2	2287	А
31	2	2305	U
31	2	2307	G
31	2	2309	А
31	2	2310	С
31	2	2311	А
31	2	2312	U
31	2	2313	С
31	2	2318	G
31	2	2322	А
31	2	2325	G
31	2	2326	С
31	2	2327	A
31	2	2336	A
31	2	2347	С
31	2	2350	С
31	2	2354	С
31	2	2361	G
31	2	2383	G
31	2	2385	С
31	2	2388	А
31	2	2390	U
31	2	2391	G
31	2	2402	U
31	2	2403	С
31	2	2406	А
31	2	2422	С
31	2	2423	U
31	2	2424	С
31	2	2427	С
31	2	2429	G
31	2	2430	А
31	2	2431	U
31	2	2433	А
31	2	2435	А
31	2	2436	G
31	2	2441	U
31	2	2448	А
31	2	2463	С
31	2	2464	G
31	2	2468	А
31	2	2472	G

Mol	Chain	Res	Type
31	2	2473	U
31	2	2475	С
31	2	2476	А
31	2	2477	U
31	2	2478	А
31	2	2494	G
31	2	2498	С
31	2	2501	С
31	2	2503	А
31	2	2505	G
31	2	2506	U
31	2	2518	А
31	2	2520	С
31	2	2529	G
31	2	2534	A
31	2	2547	A
31	2	2554	U
31	2	2566	А
31	2	2567	G
31	2	2572	А
31	2	2582	G
31	2	2586	U
31	2	2602	А
31	2	2603	G
31	2	2609	U
31	2	2613	U
31	2	2615	U
31	2	2623	G
31	2	2629	U
31	2	2630	G
31	2	2639	A
31	2	2656	U
31	2	2661	G
31	2	2682	A
31	2	2685	G
31	2	2689	U
31	2	2690	U
31	2	2714	G
31	2	2718	G
31	2	2722	G
31	2	2726	A
31	2	2733	A

Mol	Chain	Res	Type
31	2	2744	G
31	2	2746	U
31	2	2748	А
31	2	2750	А
31	2	2752	С
31	2	2762	С
31	2	2764	А
31	2	2765	А
31	2	2766	А
31	2	2776	А
31	2	2778	А
31	2	2779	U
31	2	2791	G
31	2	2793	С
31	2	2795	С
31	2	2796	U
31	2	2798	U
31	2	2799	А
31	2	2800	А
31	2	2801	G
31	2	2808	G
31	2	2818	U
31	2	2820	А
31	2	2833	U
31	2	2836	U
31	2	2849	U
31	2	2850	А
31	2	2859	G
31	2	2867	G
31	2	2872	А
31	2	2873	A
31	2	2879	А
31	2	2880	С
31	2	2883	А
31	2	2884	U
31	2	2885	G
31	2	2893	A
31	2	2902	С
52	1	9	G
52	1	13	U
52	1	22	G
52	1	37	U

Mol	Chain	Res	Type
52	1	39	G
52	1	47	С
52	1	48	С
52	1	51	А
52	1	53	А
52	1	54	С
52	1	61	G
52	1	66	А
52	1	71	А
52	1	94	G
52	1	95	С
52	1	105	G
52	1	121	U
52	1	127	G
52	1	131	А
52	1	136	С
52	1	144	G
52	1	146	G
52	1	149	А
52	1	150	U
52	1	151	А
52	1	158	G
52	1	159	G
52	1	160	А
52	1	163	С
52	1	169	С
52	1	170	U
52	1	171	А
52	1	174	А
52	1	179	А
52	1	181	A
$5\overline{2}$	1	184	G
52	1	195	A
$5\overline{2}$	1	197	A
52	1	199	А
52	1	200	G
$5\overline{2}$	1	204	G
52	1	209	U
$5\overline{2}$	1	210	C
52	1	215	С
52	1	220	G
52	1	226	G

Mol	Chain	Res	Type
52	1	240	G
52	1	244	U
52	1	245	U
52	1	247	G
52	1	251	G
52	1	266	G
52	1	267	С
52	1	268	U
52	1	281	G
52	1	289	G
52	1	305	G
52	1	306	А
52	1	316	С
52	1	320	A
52	1	328	С
52	1	330	С
52	1	339	С
52	1	346	G
52	1	347	G
52	1	352	С
52	1	363	А
52	1	367	U
52	1	369	G
52	1	372	С
52	1	373	А
52	1	376	G
52	1	388	G
52	1	390	U
52	1	398	U
52	1	406	G
52	1	411	A
52	1	413	G
52	1	418	С
52	1	420	U
52	1	421	U
52	1	422	С
52	1	424	G
52	1	429	U
52	1	438	U
52	1	446	G
52	1	464	U
52	1	465	A

Mol	Chain	Res	Type
52	1	467	U
52	1	468	А
52	1	478	А
52	1	482	А
52	1	484	G
52	1	486	U
52	1	491	G
52	1	494	G
52	1	495	А
52	1	497	G
52	1	504	С
52	1	505	G
52	1	509	A
52	1	510	A
52	1	517	G
52	1	518	С
52	1	527	G
52	1	530	G
52	1	531	U
52	1	532	А
52	1	547	А
52	1	560	А
52	1	563	А
52	1	564	С
52	1	572	А
52	1	576	С
52	1	577	G
52	1	586	С
52	1	587	G
52	1	588	G
52	1	595	А
52	1	596	A
52	1	606	G
52	1	619	U
52	1	620	С
52	1	640	A
52	1	641	U
52	1	642	А
52	1	645	G
52	1	649	A
52	1	653	U
52	1	654	G

Mol	Chain	Res	Type
52	1	660	С
52	1	661	G
52	1	662	U
52	1	665	А
52	1	681	А
52	1	686	U
52	1	688	G
52	1	694	А
52	1	695	А
52	1	701	U
52	1	702	А
52	1	703	G
52	1	711	G
52	1	718	A
52	1	719	С
52	1	721	G
52	1	723	U
52	1	724	G
52	1	731	G
52	1	747	А
52	1	755	G
52	1	757	U
52	1	758	С
52	1	760	G
52	1	777	А
52	1	781	А
52	1	794	А
52	1	797	С
52	1	799	G
52	1	812	G
$5\overline{2}$	1	815	A
52	1	817	С
52	1	820	U
52	1	821	G
52	1	828	U
52	1	832	G
52	1	838	G
52	1	839	С
52	1	849	G
52	1	872	А
52	1	876	С
52	1	883	С

Mol	Chain	Res	Type
52	1	884	U
52	1	885	G
52	1	889	А
52	1	900	А
52	1	902	G
52	1	914	А
52	1	934	С
52	1	935	А
52	1	938	А
52	1	942	G
52	1	946	А
52	1	948	С
52	1	956	U
52	1	957	U
52	1	958	А
52	1	959	A
52	1	966	G
52	1	969	А
52	1	971	G
52	1	974	А
52	1	975	А
52	1	976	G
52	1	977	А
52	1	986	U
52	1	987	G
52	1	988	G
52	1	989	U
52	1	992	U
52	1	993	G
52	1	994	A
52	1	1004	A
52	1	1020	G
52	1	1030	U
52	1	1031	С
52	1	1033	G
52	1	1034	G
52	1	1045	С
52	1	1049	U
52	1	1053	G
52	1	1066	С
52	1	1088	G
52	1	1094	G

Mol	Chain	Res	Type	
52	1	1095	U	
52	1	1101	А	
52	1	1108	G	
52	1	1130	А	
52	1	1136	С	
52	1	1137	С	
52	1	1138	G	
52	1	1139	G	
52	1	1140	С	
52	1	1141	С	
52	1	1157	А	
52	1	1158	С	
52	1	1159	U	
52	1	1168	U	
52	1	1169	A	
52	1	1182	G	
52	1	1183	U	
52	1	1184	G	
52	1	1191	А	
52	1	1196	А	
52	1	1197	A	
52	1	1202	U	
52	1	1205	U	
52	1	1206	G	
52	1	1212	U	
52	1	1216	A	
52	1	1217	С	
52	1	1218	С	
52	1	1219	А	
52	1	1224	U	
52	1	$12\overline{25}$	A	
$5\overline{2}$	1	1226	C	
52	1	1227	A	
$5\overline{2}$	1	1238	A	
52	1	1240	U	
$5\overline{2}$	1	1241	G	
52	1	1256	А	
52	1	1258	G	
52	1	1261	A	
52	1	1275	A	
52	1	1278	G	
52	1	1280	A	

Mol	Chain	Res	Type
52	1	1282	С
52	1	1287	А
52	1	1289	А
52	1	1296	С
52	1	1297	G
52	1	1298	U
52	1	1300	G
52	1	1301	U
52	1	1302	С
52	1	1317	С
52	1	1320	С
52	1	1331	G
52	1	1335	U
52	1	1340	A
52	1	1346	А
52	1	1347	G
52	1	1348	U
52	1	1363	А
52	1	1381	U
52	1	1394	А
52	1	1397	С
52	1	1403	С
52	1	1404	С
52	1	1408	А
52	1	1419	G
52	1	1426	G
52	1	1429	А
52	1	1433	А
52	1	1438	G
52	1	1439	G
52	1	1440	U
52	1	1441	А
52	1	1446	A
52	1	1447	А
52	1	1448	С
52	1	1449	С
52	1	1451	U
52	1	1452	С
52	1	1453	G
52	1	1455	G
52	1	1492	A
52	1	1494	G

Mol	Chain	Res	Type
52	1	1495	U
52	1	1497	G
52	1	1499	А
52	1	1502	А
52	1	1517	А
52	1	1519	А
52	1	1529	G
52	1	1530	G
52	1	1532	U
53	4	52	G
53	4	56	G
53	4	57	А
53	4	58	G
53	4	59	А
53	4	60	А
53	4	61	G
53	4	62	А
53	4	63	U
53	4	64	С

All (16) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	3	52	А
31	2	227	А
31	2	265	А
31	2	784	G
31	2	859	G
31	2	882	G
31	2	1179	G
31	2	1340	U
31	2	2581	G
31	2	2858	С
52	1	178	С
52	1	421	U
52	1	509	А
52	1	1190	G
52	1	1201	А
52	1	1300	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 53 ligands modelled in this entry, 53 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-21421. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 324

Y Index: 324

Z Index: 324

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 331

Y Index: 312

Z Index: 310

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 6.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1184 $\rm nm^3;$ this corresponds to an approximate mass of 1070 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.294 $\rm \AA^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.294 $Å^{-1}$

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.40	-	-
Author-provided FSC curve	3.37	4.14	3.44
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-21421 and PDB model 6VWM. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 6.0 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (6).

9.4 Atom inclusion (i)

At the recommended contour level, 85% of all backbone atoms, 79% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (6) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7920	0.3850
1	0.8080	0.3310
2	0.8790	0.4250
3	0.8290	0.3480
4	0.3700	0.1060
5	0.6180	0.2380
А	0.8480	0.4640
AA	0.9320	0.4860
AB	0.8620	0.4650
AC	0.8320	0.4320
В	0.8030	0.4750
С	0.7450	0.4490
D	0.4620	0.2700
Ε	0.6090	0.3710
G	0.4110	0.3160
Н	0.8320	0.4730
Ι	0.8320	0.4750
J	0.8140	0.4700
Κ	0.8380	0.4630
\mathbf{L}	0.8470	0.4740
Μ	0.6680	0.3500
Ν	0.8040	0.4520
Ο	0.8460	0.4690
Р	0.7580	0.4700
Q	0.8210	0.4680
R	0.7940	0.4480
S	0.7470	0.4570
Т	0.7010	0.4250
U	0.8410	0.4900
V	0.8450	0.4470
W	0.7220	0.4190
Х	0.7850	0.4630
Y	0.8350	0.4720
Z	0.3710	0.3860
a	0.3310	0.2980

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
b	0.5120	0.2990
С	0.4850	0.2900
d	0.7150	0.3810
е	0.5380	0.3210
f	0.3630	0.2040
g	0.6530	0.3520
h	0.3810	0.2370
i	0.3320	0.2660
j	0.6190	0.3170
k	0.6770	0.3500
1	0.3780	0.2020
m	0.4990	0.2650
n	0.6780	0.3400
О	0.6540	0.3650
р	0.7190	0.3750
q	0.6620	0.3500
r	0.3450	0.2450
S	0.7250	0.3240
t	0.5280	0.3200

