

# Full wwPDB X-ray Structure Validation Report (i)

Nov 9, 2024 – 01:50 pm GMT

PDB ID : 6G65

Title : Crystal structure of a parallel six-helix coiled coil CC-Type2-VV

Authors: Rhys, G.G.; Brady, R.L.; Woolfson, D.N.

Deposited on : 2018-04-01

Resolution : 1.15 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul : 1.8.4, CSD as541be (2020)

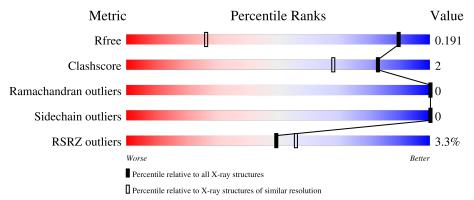
Xtriage (Phenix) : 1.13 EDS : 3.0

Percentile statistics : 20231227.v01 (using entries in the PDB archive December 27th 2023)

CCP4 : 9.0.003 (Gargrove)

Density-Fitness : 1.0.11

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.39

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.15 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | Whole archive $(\# \mathrm{Entries})$ | $\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries,\ resolution\ range(\mathring{A})}) \end{array}$ |
|-----------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| $R_{free}$            | 164625                                | 1095 (1.16-1.12)                                                                                                |
| Clashscore            | 180529                                | 1248 (1.16-1.12)                                                                                                |
| Ramachandran outliers | 177936                                | 1224 (1.16-1.12)                                                                                                |
| Sidechain outliers    | 177891                                | 1224 (1.16-1.12)                                                                                                |
| RSRZ outliers         | 164620                                | 1095 (1.16-1.12)                                                                                                |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |  |  |  |  |
|-----|-------|--------|------------------|-----|--|--|--|--|
| 1   | A     | 32     | 100%             |     |  |  |  |  |
| 1   | В     | 32     | 88%              | 12% |  |  |  |  |
| 1   | С     | 32     | 97%              |     |  |  |  |  |
| 1   | D     | 32     | 94%              | 6%  |  |  |  |  |
| 1   | Е     | 32     | 94%              | 6%  |  |  |  |  |



| Mol | Chain | Length | Quality of chain |    |
|-----|-------|--------|------------------|----|
| 1   | F     | 32     | 100%             |    |
| 1   | G     | 32     | 100%             |    |
| 1   | G     | 32     | 3%               |    |
| 1   | Н     | 32     | 94%              | 6% |
| 1   | I     | 32     | 97%              |    |
| 1   | J     | 32     | 94%              | 6% |
| 1   | K     | 32     | 97%              | •  |
| 1   | L     | 32     | 100%             |    |



# 2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 3193 atoms, of which 0 are hydrogens and 0 are deuteriums.

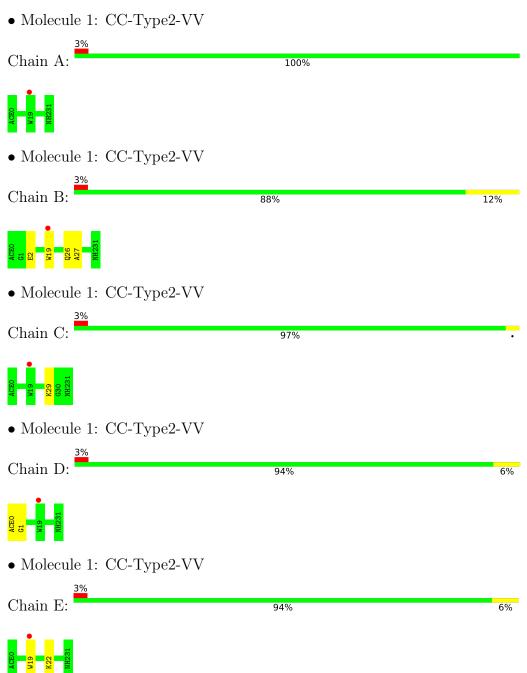
In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called CC-Type2-VV.

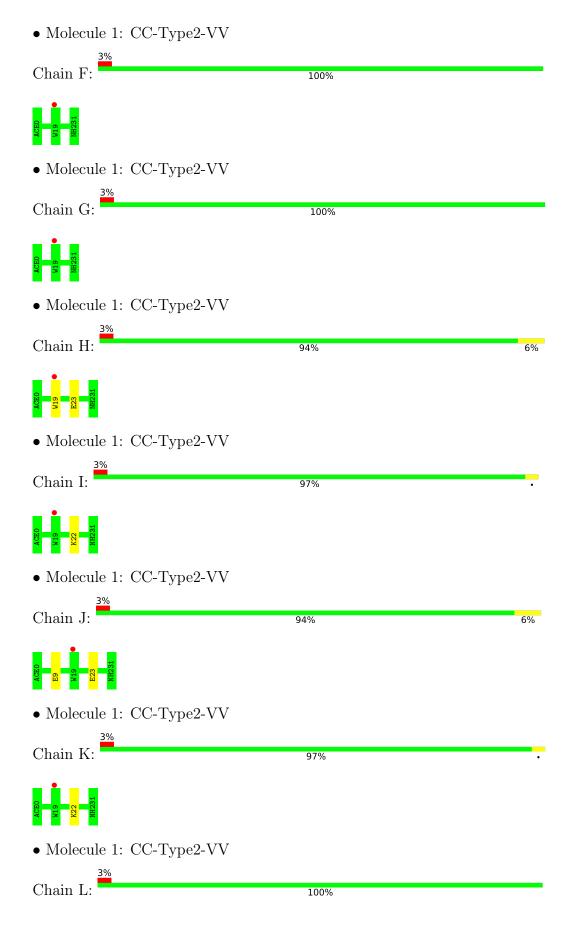
| Mol | Chain | Residues |       | Aton | ns |    | ZeroOcc | AltConf  | Trace |
|-----|-------|----------|-------|------|----|----|---------|----------|-------|
| 1   | A     | 32       | Total | С    | N  | О  | 9       | 2        | 1     |
| 1   | A     | 32       | 233   | 151  | 41 | 41 | 9       | <u> </u> | 1     |
| 1   | В     | 32       | Total | С    | N  | О  | 8       | 3        | 1     |
| 1   | Ъ     | 32       | 244   | 159  | 41 | 44 | O       | 3        | 1     |
| 1   | С     | 32       | Total | С    | N  | О  | 7       | 1        | 1     |
| 1   |       | 32       | 227   | 146  | 40 | 41 | •       | 1        | 1     |
| 1   | D     | 32       | Total | С    | N  | O  | 1       | 4        | 1     |
| 1   | D     | 32       | 248   | 162  | 42 | 44 | 1       | 4        | 1     |
| 1   | E     | 32       | Total | С    | N  | O  | 4       | 2        | 1     |
| 1   | ш     | 32       | 233   | 150  | 40 | 43 | 4       | Δ        | 1     |
| 1   | F     | 32       | Total | С    | N  | O  | 0       | 2        | 1     |
| 1   | I'    | 32       | 238   | 156  | 41 | 41 | U       | 2        | 1     |
| 1   | G     | 32       | Total | С    | N  | О  | 7       | 1        | 1     |
| 1   | G     | 52       | 227   | 145  | 39 | 43 | •       | 1        | 1     |
| 1   | Н     | 32       | Total | С    | Ν  | O  | 17      | 1        | 1     |
| 1   | 11    | 52       | 227   | 146  | 40 | 41 | 11      | 1        | 1     |
| 1   | I     | 32       | Total | С    | Ν  | O  | 11      | 3        | 1     |
| 1   | 1     | 32       | 239   | 154  | 41 | 44 | 11      | 0        | 1     |
| 1   | J     | 32       | Total | С    | N  | О  | 4       | 3        | 1     |
| 1   | J     | 32       | 239   | 154  | 40 | 45 | 4       | 3        | 1     |
| 1   | K     | 32       | Total | С    | N  | О  | 6       | 2        | 1     |
| 1   | 17    | J2       | 233   | 150  | 41 | 42 |         | 2        | 1     |
| 1   | L     | 32       | Total | С    | N  | О  | 7       | 3        | 1     |
| 1   | П     | J2       | 255   | 170  | 43 | 42 | 1       | J        | 1     |

• Molecule 2 is water.

| Mol | Chain | Residues | Atoms            | ZeroOcc | AltConf |
|-----|-------|----------|------------------|---------|---------|
| 2   | A     | 22       | Total O<br>22 22 | 0       | 0       |
| 2   | В     | 42       | Total O<br>42 42 | 0       | 0       |




| Mol | Chain | Residues | Atoms            | ZeroOcc | AltConf |
|-----|-------|----------|------------------|---------|---------|
| 2   | С     | 29       | Total O<br>29 29 | 0       | 0       |
| 2   | D     | 25       | Total O<br>25 25 | 0       | 0       |
| 2   | Е     | 32       | Total O<br>32 32 | 0       | 0       |
| 2   | F     | 31       | Total O<br>31 31 | 0       | 0       |
| 2   | G     | 36       | Total O<br>36 36 | 0       | 0       |
| 2   | Н     | 21       | Total O<br>21 21 | 0       | 0       |
| 2   | I     | 36       | Total O<br>36 36 | 0       | 0       |
| 2   | J     | 24       | Total O<br>24 24 | 0       | 0       |
| 2   | K     | 29       | Total O<br>29 29 | 0       | 0       |
| 2   | L     | 23       | Total O<br>23 23 | 0       | 0       |




# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.













#### Data and refinement statistics (i) 4

| Property                                       | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Source    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Space group                                    | C 1 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Depositor |
| Cell constants                                 | 65.56Å 96.79Å 56.40Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$         | $90.00^{\circ}$ $124.02^{\circ}$ $90.00^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Depositor |
| Resolution (Å)                                 | 13.88 - 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depositor |
| , ,                                            | 13.88 - 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EDS       |
| % Data completeness                            | 95.8 (13.88-1.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depositor |
| (in resolution range)                          | 96.3 (13.88-1.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EDS       |
| $R_{merge}$                                    | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depositor |
| $R_{sym}$                                      | (Not available)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depositor |
| $< I/\sigma(I) > 1$                            | 4.73 (at 1.15Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Xtriage   |
| Refinement program                             | PHENIX 1.10.1_2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depositor |
| $R, R_{free}$                                  | 0.176 , $0.190$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depositor |
| it, itifree                                    | 0.176 , 0.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DCC       |
| $R_{free}$ test set                            | 5266 reflections (5.11%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                        | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Xtriage   |
| Anisotropy                                     | 1.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3)$ , $B_{sol}(Å^2)$ | 0.49, 93.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EDS       |
| L-test for twinning <sup>2</sup>               | $< L > = 0.50, < L^2> = 0.33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Xtriage   |
| Estimated twinning fraction                    | $\begin{array}{c} 0.000 \; \text{for -h,h+2*l,1/2*h+1/2*k} \\ 0.000 \; \text{for -h,-h-2*l,1/2*h-1/2*k} \\ 0.000 \; \text{for -l/2*h+1/2*k-l,3/2*h+1/2*k+l,1} \\ 2^*\text{h-1/2*k} \\ 0.000 \; \text{for 1/2*h-1/2*k+l,-1/2*h+1/2*k+l,-h} \\ 0.000 \; \text{for 1/2*h-1/2*k-l,-3/2*h+1/2*k-l,1/2} \\ *\text{h+1/2*k} \\ 0.000 \; \text{for 1/2*h+1/2*k+l,1/2*h+1/2*k-l,-h-l} \\ 0.000 \; \text{for 1/2*h+1/2*k+l,3/2*h-1/2*k+l,-l} \\ 0.000 \; \text{for 1/2*h+1/2*k+l,-3/2*h-1/2*k-l,-l} \\ 0.000 \; \text{for 1/2*h-1/2*k-l,-1/2*h-1/2*k-l,-l} \\ 0.000 \; for -1/2*h-1/2*k-l,-1/2*h-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k$ | Xtriage   |
| $F_o, F_c$ correlation                         | 0.017 for h,-k,-h-l<br>0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EDS       |
| Total number of atoms                          | 3193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | wwPDB-VP  |
| Average B, all atoms (Å <sup>2</sup> )         | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | wwPDB-VP  |

<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes. <sup>2</sup>Theoretical values of <|L|>,  $<L^2>$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 30.73 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.2457e-03. The detected translational NCS is most likely also responsible for the elevated intensity ratio.



# 5 Model quality (i)

### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NH2, ACE

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal   | Mol Chain |      | lengths  | Bond angles |          |
|-------|-----------|------|----------|-------------|----------|
| IVIOI | Chain     | RMSZ | # Z  > 5 | RMSZ        | # Z  > 5 |
| 1     | A         | 0.36 | 0/237    | 0.40        | 0/317    |
| 1     | В         | 0.41 | 0/253    | 0.49        | 0/342    |
| 1     | С         | 0.39 | 0/228    | 0.44        | 0/306    |
| 1     | D         | 0.37 | 0/256    | 0.47        | 0/344    |
| 1     | Ε         | 0.39 | 0/237    | 0.47        | 0/318    |
| 1     | F         | 0.38 | 0/244    | 0.43        | 0/329    |
| 1     | G         | 0.38 | 0/228    | 0.40        | 0/307    |
| 1     | Н         | 0.58 | 0/228    | 0.48        | 0/306    |
| 1     | I         | 0.34 | 0/246    | 0.41        | 0/330    |
| 1     | J         | 0.44 | 0/246    | 0.45        | 0/330    |
| 1     | K         | 0.42 | 0/237    | 0.45        | 0/318    |
| 1     | L         | 0.33 | 0/269    | 0.37        | 0/364    |
| All   | All       | 0.40 | 0/2909   | 0.44        | 0/3911   |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | A     | 233   | 0        | 262      | 0       | 0            |



Continued from previous page...

| Mol | Chain |      | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|------|----------|----------|---------|--------------|
| 1   | В     | 244  | 0        | 260      | 5       | 0            |
| 1   | С     | 227  | 0        | 249      | 2       | 0            |
| 1   | D     | 248  | 0        | 267      | 1       | 0            |
| 1   | Е     | 233  | 0        | 255      | 1       | 0            |
| 1   | F     | 238  | 0        | 259      | 0       | 0            |
| 1   | G     | 227  | 0        | 242      | 0       | 0            |
| 1   | Н     | 227  | 0        | 249      | 4       | 0            |
| 1   | I     | 239  | 0        | 263      | 1       | 0            |
| 1   | J     | 239  | 0        | 261      | 3       | 0            |
| 1   | K     | 233  | 0        | 257      | 1       | 0            |
| 1   | L     | 255  | 0        | 277      | 0       | 0            |
| 2   | A     | 22   | 0        | 0        | 0       | 2            |
| 2   | В     | 42   | 0        | 0        | 1       | 0            |
| 2   | С     | 29   | 0        | 0        | 1       | 2            |
| 2   | D     | 25   | 0        | 0        | 0       | 0            |
| 2   | Е     | 32   | 0        | 0        | 0       | 0            |
| 2   | F     | 31   | 0        | 0        | 0       | 0            |
| 2   | G     | 36   | 0        | 0        | 0       | 0            |
| 2   | Н     | 21   | 0        | 0        | 2       | 0            |
| 2   | I     | 36   | 0        | 0        | 0       | 1            |
| 2   | J     | 24   | 0        | 0        | 2       | 1            |
| 2   | K     | 29   | 0        | 0        | 0       | 0            |
| 2   | L     | 23   | 0        | 0        | 0       | 1            |
| All | All   | 3193 | 0        | 3101     | 13      | 5            |

The all-atom clash score is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clash score for this structure is 2.

All (13) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1            | Atom-2            | $\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ (\rm \mathring{A}) \end{array}$ | Clash<br>overlap (Å) |
|-------------------|-------------------|-----------------------------------------------------------------------------------------|----------------------|
| 1:H:23:GLU:OE1    | 2:H:101:HOH:O     | 2.13                                                                                    | 0.66                 |
| 1:C:29[A]:LYS:NZ  | 2:C:102:HOH:O     | 2.35                                                                                    | 0.60                 |
| 1:B:27:ALA:HA     | 1:C:29[A]:LYS:HE3 | 1.83                                                                                    | 0.59                 |
| 1:B:26[A]:GLN:HG3 | 1:H:19:TRP:CZ3    | 2.39                                                                                    | 0.58                 |
| 1:E:19:TRP:O      | 1:E:22[B]:LYS:HG2 | 2.10                                                                                    | 0.51                 |
| 1:D:0:ACE:C       | 1:D:1[A]:GLY:HA3  | 2.30                                                                                    | 0.51                 |
| 1:J:9[B]:GLU:HG3  | 2:J:109:HOH:O     | 2.11                                                                                    | 0.51                 |
| 1:B:19[A]:TRP:CZ2 | 1:H:19:TRP:CH2    | 3.02                                                                                    | 0.48                 |
| 1:B:19[A]:TRP:CZ2 | 1:H:19:TRP:CZ2    | 3.05                                                                                    | 0.45                 |
| 1:J:9[A]:GLU:OE2  | 2:J:101:HOH:O     | 2.21                                                                                    | 0.44                 |



| Atom 1           | Atom 2            | Interatomic                    | Clash       |
|------------------|-------------------|--------------------------------|-------------|
| Atom-1           | Atom-2            | ${\rm distance} \ ({\rm \AA})$ | overlap (Å) |
| 2:H:101:HOH:O    | 1:I:22[A]:LYS:NZ  | 2.43                           | 0.43        |
| 1:J:23[B]:GLU:CD | 1:K:22[B]:LYS:HZ2 | 2.24                           | 0.41        |
| 1:B:2[A]:GLU:OE2 | 2:B:102:HOH:O     | 2.21                           | 0.41        |

All (5) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

| Atom-1        | Atom-2               | $\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$ | Clash<br>overlap (Å) |
|---------------|----------------------|----------------------------------------------------------------------------------|----------------------|
| 2:I:134:HOH:O | 2:I:134:HOH:O[2_555] | 2.16                                                                             | 0.04                 |
| 2:J:124:HOH:O | 2:J:124:HOH:O[2_555] | 2.17                                                                             | 0.03                 |
| 2:L:121:HOH:O | 2:L:121:HOH:O[2_555] | 2.17                                                                             | 0.03                 |
| 2:A:117:HOH:O | 2:C:104:HOH:O[2_656] | 2.18                                                                             | 0.02                 |
| 2:A:117:HOH:O | 2:C:122:HOH:O[2_656] | 2.19                                                                             | 0.01                 |

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed         | Favoured  | Allowed | Outliers | Perce | ntiles |
|-----|-------|------------------|-----------|---------|----------|-------|--------|
| 1   | A     | $32/32\ (100\%)$ | 32 (100%) | 0       | 0        | 100   | 100    |
| 1   | В     | $33/32\ (103\%)$ | 33 (100%) | 0       | 0        | 100   | 100    |
| 1   | C     | 31/32~(97%)      | 31 (100%) | 0       | 0        | 100   | 100    |
| 1   | D     | $34/32\ (106\%)$ | 34 (100%) | 0       | 0        | 100   | 100    |
| 1   | E     | $32/32\ (100\%)$ | 32 (100%) | 0       | 0        | 100   | 100    |
| 1   | F     | $32/32\ (100\%)$ | 32 (100%) | 0       | 0        | 100   | 100    |
| 1   | G     | 31/32~(97%)      | 31 (100%) | 0       | 0        | 100   | 100    |
| 1   | Н     | 31/32~(97%)      | 31 (100%) | 0       | 0        | 100   | 100    |
| 1   | I     | $33/32\ (103\%)$ | 33 (100%) | 0       | 0        | 100   | 100    |
| 1   | J     | $33/32\ (103\%)$ | 33 (100%) | 0       | 0        | 100   | 100    |



| Mol | Chain | Analysed       | Favoured   | Allowed | Outliers | Perce | entiles |
|-----|-------|----------------|------------|---------|----------|-------|---------|
| 1   | K     | 32/32 (100%)   | 32 (100%)  | 0       | 0        | 100   | 100     |
| 1   | L     | 34/32 (106%)   | 34 (100%)  | 0       | 0        | 100   | 100     |
| All | All   | 388/384 (101%) | 388 (100%) | 0       | 0        | 100   | 100     |

There are no Ramachandran outliers to report.

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed         | Analysed Rotameric Outliers |   | Perce | ntiles |
|-----|-------|------------------|-----------------------------|---|-------|--------|
| 1   | A     | $22/20\ (110\%)$ | 22 (100%)                   | 0 | 100   | 100    |
| 1   | В     | 23/20 (115%)     | 23 (100%)                   | 0 | 100   | 100    |
| 1   | С     | 21/20 (105%)     | 21 (100%)                   | 0 | 100   | 100    |
| 1   | D     | 23/20 (115%)     | 23 (100%)                   | 0 | 100   | 100    |
| 1   | Е     | 22/20 (110%)     | 22 (100%)                   | 0 | 100   | 100    |
| 1   | F     | 22/20 (110%)     | 22 (100%)                   | 0 | 100   | 100    |
| 1   | G     | 21/20 (105%)     | 21 (100%)                   | 0 | 100   | 100    |
| 1   | Н     | 21/20 (105%)     | 21 (100%)                   | 0 | 100   | 100    |
| 1   | I     | 23/20 (115%)     | 23 (100%)                   | 0 | 100   | 100    |
| 1   | J     | 23/20 (115%)     | 23 (100%)                   | 0 | 100   | 100    |
| 1   | K     | 22/20 (110%)     | 22 (100%)                   | 0 | 100   | 100    |
| 1   | L     | 24/20 (120%)     | 24 (100%)                   | 0 | 100   | 100    |
| All | All   | 267/240 (111%)   | 267 (100%)                  | 0 | 100   | 100    |

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.



#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

### 5.6 Ligand geometry (i)

There are no ligands in this entry.

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed      | <rsrz></rsrz> | $\#\mathrm{RSRZ}{>}2$ | $OWAB(\AA^2)$ | Q<0.9    |
|-----|-------|---------------|---------------|-----------------------|---------------|----------|
| 1   | A     | 30/32 (93%)   | 0.48          | 1 (3%) 49 56          | 6, 8, 16, 19  | 5 (16%)  |
| 1   | В     | 30/32 (93%)   | 0.53          | 1 (3%) 49 56          | 6, 8, 13, 15  | 7 (23%)  |
| 1   | С     | 30/32 (93%)   | 0.41          | 1 (3%) 49 56          | 7, 8, 15, 16  | 4 (13%)  |
| 1   | D     | 30/32 (93%)   | 0.48          | 1 (3%) 49 56          | 6, 8, 17, 20  | 5 (16%)  |
| 1   | Е     | 30/32 (93%)   | 0.62          | 1 (3%) 49 56          | 6, 9, 18, 21  | 5 (16%)  |
| 1   | F     | 30/32 (93%)   | 0.42          | 1 (3%) 49 56          | 6, 9, 16, 22  | 2 (6%)   |
| 1   | G     | 30/32 (93%)   | 0.27          | 1 (3%) 49 56          | 6, 8, 13, 18  | 5 (16%)  |
| 1   | Н     | 30/32 (93%)   | 0.51          | 1 (3%) 49 56          | 6, 9, 15, 22  | 8 (26%)  |
| 1   | I     | 30/32 (93%)   | 0.40          | 1 (3%) 49 56          | 6, 8, 13, 21  | 8 (26%)  |
| 1   | J     | 30/32 (93%)   | 0.40          | 1 (3%) 49 56          | 6, 8, 15, 17  | 5 (16%)  |
| 1   | K     | 30/32 (93%)   | 0.41          | 1 (3%) 49 56          | 6, 8, 14, 16  | 4 (13%)  |
| 1   | L     | 30/32 (93%)   | 0.65          | 1 (3%) 49 56          | 7, 8, 18, 24  | 6 (20%)  |
| All | All   | 360/384 (93%) | 0.46          | 12 (3%) 49 56         | 6, 8, 17, 24  | 64 (17%) |

All (12) RSRZ outliers are listed below:

| Mol | Chain | Res   | Type | RSRZ |
|-----|-------|-------|------|------|
| 1   | В     | 19[A] | TRP  | 7.9  |
| 1   | L     | 19[A] | TRP  | 6.6  |
| 1   | Н     | 19    | TRP  | 6.1  |
| 1   | Е     | 19    | TRP  | 5.2  |
| 1   | I     | 19    | TRP  | 4.8  |
| 1   | D     | 19[A] | TRP  | 4.4  |
| 1   | F     | 19[A] | TRP  | 4.0  |
| 1   | A     | 19    | TRP  | 3.9  |
| 1   | G     | 19    | TRP  | 3.5  |
| 1   | K     | 19    | TRP  | 3.0  |
| 1   | С     | 19    | TRP  | 2.8  |



|     |       | -   | - 0  |      |
|-----|-------|-----|------|------|
| Mol | Chain | Res | Type | RSRZ |
| 1   | J     | 19  | TRP  | 2.6  |

### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

# 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

# 6.4 Ligands (i)

There are no ligands in this entry.

### 6.5 Other polymers (i)

There are no such residues in this entry.

