

Nov 3, 2024 – 12:03 am GMT

PDB ID	:	5LJ5
EMDB ID	:	EMD-4057
Title	:	Overall structure of the yeast spliceosome immediately after branching.
Authors	:	Galej, W.P.; Wilkinson, M.F.; Fica, S.M.; Oubridge, C.; Newman, A.J.; Nagai,
		К.
Deposited on	:	2016-07-17
Resolution	:	10.00 Å(reported)
This is	a I	Full wwPDB EM Validation Report for a publicly released PDB entry

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 10.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$		
Clashscore	210492	15764		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for ≥ 3 , 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality of chain								
1	U	179	33%	36%	9% •	21%						
2	Е	16	25%	62%	6	12%						
3	Ι	76	22%	20% •	57%							
4	Z	1175	9% 5%	85'	%							
5	V	112	42%	3:	1% 12%	6 • 13%						
6	А	2413	<u>.</u>	73%	15	• 10%						
7	В	2163		77%	·	21%						

Mol	Chain	Length	Quality of chain							
8	D	278	34% 7%	59%						
9	F	179	23% ·	74%						
10	С	1008	66%	20% · 12%						
11	G	235	34% 6% ·	59%						
12	Н	591	58%	8% • 32%						
13	J	451	52%	17% · 28%						
14	K	379	31% 11% ·	57%						
15	L	157	83%	15% •						
16	М	339	60%	13% • 26%						
17	Ν	364	40% 15%	• 43%						
18	Ο	590	• 38% 9% •	52%						
19	Р	175	17% ••	79%						
20	R	135	60%	11% • 28%						
21	S	687	58%	8% · 32%						
22	Т	859	66%	• 31%						
23	b	196	41%	59%						
23	k	196	40% •	59%						
24	d	101	76%	5% 19%						
24	n	101	81%	19%						
25	е	94	74%	5% 20%						
25	р	94	79%	• 20%						
26	f	86	80%	• 16%						
26	q	86	84%	16%						
27	g	77	88%	• 10%						
27	r	77	88%	• 10%						

Mol	Chain	Length	Quality of chain	
28	h	146	56%	44%
28	1	146	53% .	46%
29	j	110	83%	• 15%
29	m	110	85%	15%
30	W	238	65% •	31%
31	Y	111	76%	24%
32	Q	1071	46% 10% •	42%
33	t	503	87%	13%
33	u	503	45% 87%	13%
33	v	503	5% 83%	• 15%
33	W	503	28%	• 14%
34	s	175	• 59% • •	37%
35	x	188	70%	30%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
37	ZN	N	401	-	-	Х	-
37	ZN	N	402	-	-	Х	-

2 Entry composition (i)

There are 38 unique types of molecules in this entry. The entry contains 85476 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called U5 snRNA (small nuclear RNA).

Mol	Chain	Residues		A	AltConf	Trace			
1	U	141	Total 2999	C 1342	N 530	O 986	Р 141	0	0

• Molecule 2 is a RNA chain called Exon 1 (5' exon) of UBC4 pre-mRNA.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
2	Е	16	Total 346	C 155	N 66	O 109	Р 16	0	0

• Molecule 3 is a RNA chain called Intron of UBC4 pre-mRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	Ι	33	Total 693	C 312	N 116	0 232	Р 33	0	0

• Molecule 4 is a RNA chain called U2 snRNA (small nuclear RNA).

Mol	Chain	Residues		Α	AltConf	Trace			
4	Z	171	Total 3610	C 1614	N 604	0 1221	Р 171	0	0

• Molecule 5 is a RNA chain called U6 snRNA (small nuclear RNA).

Mol	Chain	Residues		A	AltConf	Trace			
5	V	97	Total 2066	C 925	N 368	O 676	Р 97	0	0

• Molecule 6 is a protein called Pre-mRNA-splicing factor 8.

Mol	Chain	Residues		At	AltConf	Trace			
6	А	2168	Total 16919	C 10835	N 2966	O 3060	${ m S}{ m 58}$	0	0

• Molecule 7 is a protein called Pre-mRNA-splicing helicase BRR2.

Mol	Chain	Residues		Ato	oms		AltConf	Trace
7	В	1707	Total 8462	C 5048	N 1707	O 1707	1	0

• Molecule 8 is a protein called Protein CWC16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	D	114	Total 912	C 577	N 165	0 162	S 8	0	0

• Molecule 9 is a protein called Pre-mRNA-splicing factor CWC25.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
9	F	46	Total 321	C 203	N 61	O 57	0	0

• Molecule 10 is a protein called Pre-mRNA-splicing factor SNU114.

Mol	Chain	Residues		Α	AltConf	Trace			
10	С	882	Total 6756	C 4393	N 1133	O 1203	S 27	0	0

• Molecule 11 is a protein called Pre-mRNA-splicing factor ISY1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	G	97	Total 823	C 513	N 154	0 155	S 1	0	0

• Molecule 12 is a protein called CWC22.

Mol	Chain	Residues		Ate	AltConf	Trace			
12	Н	399	Total 2639	C 1657	N 468	O 506	S 8	0	0

• Molecule 13 is a protein called Pre-mRNA-splicing factor PRP46.

Mol	Chain	Residues		At	AltConf	Trace			
13	J	326	Total 2556	C 1616	N 454	0 476	S 10	0	0

• Molecule 14 is a protein called Pre-mRNA-processing protein 45.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	K	163	Total 1289	C 808	N 236	O 240	${ m S}{ m 5}$	0	0

• Molecule 15 is a protein called Pre-mRNA-splicing factor BUD31.

Mol	Chain	Residues		A	toms	AltConf	Trace		
15	L	155	Total 1270	C 797	N 238	0 225	S 10	0	0

• Molecule 16 is a protein called Pre-mRNA-splicing factor CWC2.

Mol	Chain	Residues		At	AltConf	Trace			
16	М	252	Total 2012	C 1277	N 354	O 370	S 11	0	0

• Molecule 17 is a protein called Pre-mRNA-splicing factor SLT11.

Mol	Chain	Residues		At	AltConf	Trace			
17	Ν	209	Total 1658	C 1055	N 287	O 301	S 15	0	0

• Molecule 18 is a protein called Pre-mRNA-splicing factor CEF1.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	О	283	Total 2068	C 1285	N 385	O 392	S 6	0	0

• Molecule 19 is a protein called CWC15.

Mol	Chain	Residues	Atoms			AltConf	Trace	
19	Р	36	Total 275	C 176	N 53	O 46	0	0

• Molecule 20 is a protein called Pre-mRNA-splicing factor CWC21.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
20	R	97	Total 544	C 325	N 106	0 113	0	0

• Molecule 21 is a protein called Pre-mRNA-splicing factor CLF1.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	S	464	Total 3121	C 1949	N 581	0 584	S 7	0	0

• Molecule 22 is a protein called Pre-mRNA-splicing factor SYF1.

Mol	Chain	Residues		Ator	ns		AltConf	Trace
22	Т	592	Total 2946	C 1762	N 592	O 592	0	0

• Molecule 23 is a protein called Small nuclear ribonucleoprotein-associated protein B.

Mol	Chain	Residues	Atoms	AltConf	Trace
23	b	80	Total C N O S 631 403 114 111 3	0	0
23	k	80	Total C N O 396 236 80 80	0	0

• Molecule 24 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues	Atoms	AltConf	Trace
24	d	82	Total C N O S 625 399 109 115 2	0	0
24	n	82	Total C N O 404 240 82 82	0	0

• Molecule 25 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues	Atoms	AltConf	Trace
25	е	75	Total C N O S 575 379 92 101 3	0	0
25	р	75	Total C N O 369 219 75 75	0	0

• Molecule 26 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues	Atoms	AltConf	Trace
26	f	72	Total C N O S 573 368 101 103 1	0	0
26	q	72	Total C N O 354 210 72 72	0	0

• Molecule 27 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues	Atoms	AltConf	Trace
27	g	69	Total C N O S 529 337 93 97 2	0	0
27	r	69	Total C N O 340 202 69 69	0	0

• Molecule 28 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues	Atoms	AltConf	Trace
28	h	82	Total C N O S 644 409 110 123 2	0	0
28	1	79	Total C N O 392 234 79 79	0	0

• Molecule 29 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues	Atoms	AltConf	Trace
29	j	94	Total C N O S 741 477 141 119 4	0	0
29	m	94	Total C N O 467 279 94 94	0	0

• Molecule 30 is a protein called U2 small nuclear ribonucleoprotein A'.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
30	W	164	Total 816	C 488	N 164	0 164	0	0

• Molecule 31 is a protein called U2 small nuclear ribonucleoprotein B".

Mol	Chain	Residues		Atom	ıs		AltConf	Trace
31	Y	84	Total 416	C 248	N 84	0 84	0	0

• Molecule 32 is a protein called Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16.

Mol	Chain	Residues		Ator	ns		AltConf	Trace
32	Q	619	Total 3066	C 1828	N 619	O 619	0	0

• Molecule 33 is a protein called Pre-mRNA-processing factor 19.

Mol	Chain	Residues		Ator	AltConf	Trace		
33	t	438	Total 2171	C 1295	N 438	O 438	0	0
33	u	437	Total 2166	C 1292	N 437	O 437	0	0
33	V	426	Total 2111	C 1259	N 426	O 426	0	0
33	W	435	Total 2156	C 1286	N 435	O 435	0	0

• Molecule 34 is a protein called Pre-mRNA-splicing factor SNT309.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
34	s	110	Total 548	C 328	N 110	O 110	0	0

• Molecule 35 is a protein called unknown.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
35	х	132	Total 660	C 396	N 132	O 132	0	0

• Molecule 36 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
36	Е	1	Total Mg 1 1	0
36	V	1	Total Mg 1 1	0

• Molecule 37 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
37	D	1	Total Zn 1 1	0
37	L	3	Total Zn 3 3	0
37	М	1	Total Zn 1 1	0
37	Ν	2	Total Zn 2 2	0

• Molecule 38 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
38	С	1	Total	С	Ν	Ο	Р	0
- 30	U	T	32	10	5	14	3	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: U5 snRNA (small nuclear RNA)

• Molecule 6: Pre-mRNA-splicing factor 8

C	ha	in	A	.:														73	8%															1	.5%	6		•	1	.0%	, D				
MET	GLY	LEU	PRO	PR0 PP0	PRO	GLY	HHH CI II	GLU	ASP	SER	ASP	0 IT	ALA LEU	PRO	PRO	PRO	PR0	PRO	PRO	PRO	GLY	TYR	ULE	GLU	GLU	LEU	ASN	PRO	MET	DRU	SER	SER	VAL	GLU	ASP	PHE	LEU	PRO	PRO	PRO	PR0	PRO	SER	ASN PHE	GLU
ILE	ALA	GLU	ILE	VAL	PHE	THR	DEU PRO	PRO	PRO	PRO	PRO	DAG	GT.Y	LEU	ASP	GLU	LEU	THR	LYS	ALA	GLU	LYS	VAL	GLU	LEU	HIS	LYS	ARG	LYS	ASP	ILE	GLY	LYS	THR	PHE	THR	ARG	LYS	ABG	LYS	ARG	LYS	LYS	MET THR	LYS
LYS	LYS	ARG	ASN	LEU	0711	P136	E13/ H138	L139	R140	K141	I142	T-4 AE	0771	M149		M153	114 C4	TOTJ	L165		L168	P169	1172	L173	K174	L175	P182	-	V189	1 1 0 0	Y193		A198	V202	N203	T205	-	E210	P211 V212	Y213	T214	0216	W217	S218 A219	T220
W221	R225	occ.n	077V	F239	D244		r.249	E252	-	1255	E256	J GZ N	1.261		1264	N265	1 060	P700	K277		D282	5283	R285	L286	E287		1230 S297	-	L305	M308	S309	N310		R319	D320 E321	U322	-	N326	1.34.9	N343	N344	P350		E353 P354	L355
	Taru	R376	L390	DOCE	L 290	V398	V403	N404	N405		1410		N4712	F424	D425		L428	PRO	ILE	PRO	SIH	PHE	ASP	ASN	ASN	SER	LEU	ASN	VAL	ASM	THR	LYS	GLU ASN	GLY	ASP	THR	LEU	PRO	E456 D457	F458	1 4 6 0	L400 1469		A476	L479
Y480	M493		0508 0508	VE1	5 TCI	S521	1977	L526	-	Y529		K555 VEE6	0001	I562	D563	W564	V565	1.571	C572		1583	L LOO	L000	L591		K600	L605	T606	T607	CE13	R614	L615	LEOE	L626	K627	M629	K630	L631	D634		V637	Hoso F639		V644	F647
0648 1040	L049	1656	H659	1660	L663	T664	1665 T666	0001	V673	M674	H675	Deon	7007	1686	1687		K690	1.695		<mark>q705</mark>	P706	A707	00 M	W711	L712	N713 E714	r/14 L715	R716	G717	01/10 21/1	P720		R/24	N728	L729	T731	-	R737	T741	V742	K743	1745		R749 L750	D751
A752	Y754	D755 1766	E757	L758 D750	N760		1/66	M770	-	1774	R775	1770	N/ 10	1782	L783	Q784	H7 85	W793		96 ZN		1808	1811		A820	D821	R831	E832	R833	1034	K842		0846 7846	K847	N848 1 8 4 0	CHO1	L852	T853	TR57	K858	10.76	E877	E878	A879 T880	T881
I 882	W889	003	road	L912	L919		7.7.6 A	L929	-	L937	1004	Y 944	H948		L951	N952	R953	50A T	D968	1969	T970	179M		0976	N977	1978	Y982	-	T991			D1004	N1011		K1014		E1019	I 1020	P1021	L1023	L1024	CZOT A	W1028	11032	
A1047	v 1048 L1049		50017	T1064 11065	L1066	N1067	T1078		T1083	A1084	K1085	111000	V 1089	I1090		V1098	N1099	1.1103	I1104		I1113	1 4 1 0 4		F1144		T1162	L1165	D1166	R1167	29111	L1171		W120/	K1209	B 1010	M1213	R1214	1	11211	L1222	G1223	V1226		V1234	T1239
	0 1 240	Y1251	N1255	11760		E1277	D1 282	20210	W1286	D1287	L1288			11309	K1310		R1315 11216	R1317		81323	G1324	S1325	11320 T1327	F1328	T1329	114 225	N1336	T1337	S1338	F1339	L1342	F1343	11344 V1345	F1346	R1347	11350		E1354	P1355 1.1356	L1357	D1358	11.359	V1361	E1364	
I1367	41368 N1369	R1370 V1271	K1372	L1373	L1375		K13/8 M1379		R1382	F1383	10011	V138/ E1200	L 1000	K1392	E1393	L1394	1 1 2 0 7		11400		11407	P1408	A 1403	Q1417	T1418	11 4 0 4	1771U	M1429		D1433	L1435	L1436	111227	E1448	V1 / 61		I1491		L1494	11510	14 14 14	CTCLY	E1520	W1537	
Y1542	CHOLN	V1546	L1557	TIERO	L1561	F1562	T1565		W1570		F1574	11 6 00	1.1590		A1593		L1598	01600	11601	P1602	N1603	R1604	W1609	W1610		11614	Y1620	V1621	000 7	11032	P1639		11643 S1644	L1645	11646		W1654		1165/	11668	L1669	V1681		H1707 E1708	
Q1737	L1/38	D1742	S1749		70/14	F1756	T1760		N1763		L1779	11 70E	P1796		S1801	M1802	R1803	M1806		L1815	000	K1820	L1823	Q1824		Q1827	SER	VAL	GLN	GLU DRU	PHE	LEU	ASN S1837		T1881	11893		L1920	17617	L1944	M4 04 0	MI 240	11 <mark>956</mark>	L.1974	
V1977	8/AT 1	W2048	L2060	E7070	P 2010	G2085	GLN ASN	ILE	LYS	ALA	PRO	SER.	VAL I.YS	ARG	GLN	LYS	MET	GLU GLU	TEU	GLU	ALA	ALA	SER	GLU	LYS	GLN	ASP	GLU	GLU	ALA	GLY	ALA	SER. THR	VAL	MET	THR	LYS	THR	ASN	ALA	GLN	GLU GLU	GLU	ILE VAL	VAL

ASP GLU GLU GLU GLU GLU GLU GLU GLN ILE ASP VAL PHE SER

• Molecule 8: Protein CWC16

A STLE A STLE GGLU GGLU VLAL CLEU CLEU CLEU CLU GGLU GGLU GGLU GGLU GGLU CLEU CLU SGLU CLU SGLU CLU SGLU CLU SGLU CLU SGLU CLU SCLU CGLU CGLU CGLU CGLU CGLU CGLU CGLU C	ASP GLU GLU GLU GLU GLU ARG LYS LYS ASN LYS ASN LYS ASN MET
--	---

• Molecule 9: Pre-mRNA-splicing factor CWC25

Chain F:	23% •		74%	
MET GLY S3 L6 R20 R20 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	131 131 GLU GLU GLU GLU GLU LEU	GLU SER SER SER SER SER LYS FLO GLU CLU LEU LLU LVS ASP	ALEU ALEU LEU LYS LYS SER SER SER SER GLV GLV GLV GLV GLV GLV ASP	LYN LEU SER ASP GLU CLYS GLU ASP TYR LEU
LEU GLY CLYS LYS LYS LYS LEU ASP SER SER SER LEU	ASN GLN ALA ALA PRO PRO VAL ARG ARG	THR THR THR THR SER SER ALA ALA THR THR SER SER	SER LYS LYS LYS LYS LYS SER LEU LEU LEU LSP ASP ASP ASP	LYS PHE LYS VAL THR LYS GLN GLN GLN ARG
THR PRO ASP ASP SER THR LYS LYS ALA ALA MET SER	GLN ARG GLY GLY FRO FRO SER SER PRO ALA	ASP LEU ASP TYR		
• Molecule 10:	Pre-mRNA-sp	blicing factor SNU1	14	
Chain C:		66%	20% ·	12%
MET GLU GLY ASP ASP LEU PHE GLU CLU GLY	ASN LEU TLE GLY VAL ASP PRO PRO PRO SSR	GLU GLU GLU GLU SER VAL ASP GLU GLU GLU GLU GLU GLU	ALHK ALHK PHE GLU GLU GLU ASN ASN ASN ASN CLU CLU	ARG GLN THR SER LEU GLY SER LYS LYS
GLU LEU GLY CLEU SER LEU CLU PRO PRO FRO FRO F17	V76 L77 M78 E92 F93 V94 L100	H103 T104 1105 L109 L109 R117 Y118 Y118 Y118 S125	N126 1133 1133 1133 0137 1138 1138 1138 1139 1153 1153 1153	W172 1185 1191 K192 L193 C200 T201
K206 S207 R208 M208 M208 M211 F212 L213 L213 L213 V219	N220 F221 N222 N222 T225 V225 V226 V226 L229 L229	A231 A231 2332 2333 1234 1235 1236 1235 1235 1225 1225	4259 4259 7264 7264 7265 7264 7266 7266 7266 1270 8277 8277 8277	L277 L277 D283 K287 K287 K287 K287 K287 K287 K287 K287
I311 1312 F313 F313 F314 F314 S315 C319 C319 C319 F320 T321	F322 T323 V328 S335 1336 T345 T345	N358 N358 F359 F359 F359 F381 F381 F385 F385 F385 F385 F385 F385	L400 R401 R401 L406 N406 R407 L408 P419 P419 P419 L421 L421 L421	Q431 Q432 V435 V436 D437 I439 I439 Q444
P445 E446 E447 1453 1458 P459 P459 P459 V469	A470 H471 V472 L473 L475 T475 V486 V486 I488 I488	L492 L493 L493 E601 E601 T504 T504 T504 T518 SER SER THR	THR SER ASN CLU CLU CLU ASP F530 P535 P535	1542 1544 1545 1545 1561 1561 1561 1562 1563
1567 2574 2574 2574 1577 1576 1577 1590 1598	1599 V602 1605 V605 1607 1607 1607 1610	L615 P616 K617 A621 1625 S626 S626 S626 S626 1633 1634	E641 1644 M652 D653 1655 V665 V665 A664 A664 X665	1670 1670 1677 1677 1677 1677 1677 1677
SER ARG LEU GLU GLU GLU ASN LEU CLU LEU	SER 1708 710 710 710 ASN ASN THR LEU CLY	LI'S GLN GLN CYS CYS CLN CYS CLN CLN CLN CLN CLN ASP ASP ASP ASP ASP ASP	F7 44 F7 65 D7 68 D7 68 N7 70 ASN ASN ASN ASN	S784 7791 7794 7794 7799 7799 7799
P807 L808 L820 N830 S836 Q837	P840 L851 L851 L857 P860 P860 Y862 Y862 E863	D864 1866 1866 1872 1873 1888 1888 1889 1889 1889	8901 8905 1908 1908 1922 1922 1922 1922	W 033 W 033W
R964 D965 V967 V967 R971 L989 L989 Y992	Y998 ALA ALA GLN LEU ARG GLU ASN CLV LEU	VAL		

• Molecule 11: F	Pre-mRNA-sp	licing factor	ISY1			
Chain G:	34%	6% •		59%		I
M1 82 82 84 84 61 81 81 81 81 81 81 81 81 81 81 81 81 81	R31 Y32 Q33 V41 K51 Y54 S55	158 Q74 L78 W94	D97 HIS THR LEU MET GLU LYS LYS THR	LYS ARG LYS ARG LEU GLU GLU SER	VAL LEU MET ASN SER GLY	LEU ILEU ASN GLY
LYS ARG ARG ARG GLY ARG ALA LEU CLU CLU CLU CLU CGLU CGLU	VAL LYS GLU TRP LEU LYS GLN SER GLN ARG	GLN ASP ASP GLY GLY SER ILE ASN THR	LYS CYS TLE PRO LYS ASP ASP ASP	PHE TYR TYR HIS GLY CLY VAL THR	ALA ALA LEU THR GLU GLU GLU	ASN TRP THR SER
ILE LEU LYS LYS ALA ALA HIS ASN VAL VAL VAL VAL ASN CLU	ASP GLU GLU GLU MET SER ARG GLN GLN	GLU ILE HIS VAL PRO THR LEU ALA ASP	MET GLU HIS TRP TRP LEU VAL GLN ARG ARG	LYS LYS LYS LYS LEU MET ASP GLU LEU	LEU	
• Molecule 12: (CWC22					
Chain H:	58%	5	8% •	32%		
MET SER THR ALA THR ILE GLN GLU ASP GLU III	N66 LYS GLN N69 N69 S207 GLY S2R CLN GLY	LEU PHE LEU LEU ASP PRO SER SER TYR	THR VAL HIS THR HIS SER TYR ILE VAL	SER ASP GLU GLU ASP ALA ALA ALA	GLU GLY GLY ASN PHE GLU CO	D256 L262
LEU ILE ASN ASN THR SER ASP ASP GLU GLY SEL	ASN SER GLN LEU LLU CLN TLE TYR MET THR	SER THR ASN ASP V289 E291 F291 K292	L297 V298 L299 L209 E303 E307 L312	L313 K314 1317 1326 0326 1328	1329 1330 1330 1333 1333 1333 1334 1343	1345 L346 S347 E348
1351 R355 8356 8356 8356 1359 1359 2363 8363 8363 8363	N368 Y369 1373 1373 (1381 L381 L381 L384	F387 L391 E395 F396 M399	L 402 L YS L YS I L E L EU L EU G L U E 410 E 410	P414 F419 I420 K421 L427	L436 L440 K444 L445	M448 F465
1468 6469 1470 1470 1473 1473 1481 1481 1115 1115 1115 1115 1115 1115	VAL GLU ALA GLU GLU GLU CLV LYS	LEU ARG GLU GLU CLU CLU CLU LYS	LEU ARG LYS LYS ARA ARG GLU SER GLN	PRO THR GLN GLY PRO LYS LYS HIS	GLU SER ARG LEU PHE LEU GLN ASN	ASP THR ARG ASP
ASN SER ARG SER ARG SER PRO PHE THR VAL THR THR	ARG LYS ARG ARG SER ARG PRO PRO	ARG GLY SER ARG ASN ASN ASN ARG	SER ARG THR PRO PRO ARG ARG PRO LYS	ASN HIS ARG ASN ARG SER ARG THR	PRO PRO ALA ARG ARG GLN ARG	ARG
• Molecule 13: H	Pre-mRNA-sp	licing factor	PRP46			
Chain J:	52%		17%	• 289	%	
MET ASP GLY GLY ASN HIS LYS VAL GLU ASN LEU GLY GLY	ASP VAL ASP LYS PHE TYR SER ARG ARG	TRP ASN ASN GLN PHE SER TYR MET ALA	THR LEU PRO PRO HIS LEU GLN SER GLU	MET GLU GLV GLN LYS SER LEU LEU	MEI ARG TYR ASP THR TYR ARG ARG	GLU SER SER SER
PHE SER GLY GLU GLU CLY LYS LYS LAC LEU CLU HIS	VAL PRO THR AFF AFF SER GLU SER SER GLU GLU	ALA VAL TLE SER LYS LYS ASP ASP ASP	THR HIS ALA SER SER ALA ALA VAL ASN LYS	ILE PHE GLN GLU GLU ALA ALA ALA	GLU LEU R114 W129	6137 H138 L139
V142 R143 C144 V145 1147 D148 P148 V150 U151 W154	F155 1157 1157 1157 1161 1161 1162 1162	V182 M183 T184 D187 V188 H194	F198 8199 V200 E201 E202 V206 V206	q215 1216 1217 R218 Y221	L224 S225 G226 V227 T229 T229	A240 T241 D245
8246 1248 1248 1257 1257 1262 1262 1269 1269 1269 1269 1269	Q273 C274 T275 P276 V277 D276 P279 P279 V282 S383	S284 S285 T286 T289 V290 V290 V290	T305 H306 S310 V311 T314 F321	5322 1328 1328 1329 1333 5333	M334 0335 1336 1341 1341 1342 1342	L356 L356 L364
D377 D377 D385 D385 D385 L387 A388 T389 L386 L386 L386 L386	D408 1423 1423 428 A28 A28 A14 A14 A14	THR LYS GLU SER GLU P438 N442 N443	P444 M445 LEU SER ALA LYS ARG ARG			
• Molecule 14: H	Pre-mRNA-pr	ocessing prot	tein 45			

WORLDWIDE PROTEIN DATA BANK

THR LEU GLY PRO

THR VAL SER VAL VAL SER THR CYS PRO LYS ASP ASP ASN ASN SER SER SER

> PRO ASN SER LYS ALA

GLN LEU SER SER LEU SER ILE SER GLY LEU ILEU

• Molecule 25:	Small nuclear ribonucleoprotein E		
Chain p:	79%	• 20%	
MET SER ASN LYS LYS LYS ALA ALA M10	ALA ALA ALA ASP G74 ASP ALA ASP ASP		
• Molecule 26:	Small nuclear ribonucleoprotein F		
Chain f:	80%	• 16%	
MET SER GLU SER SER SER ASP ILE SER ALA MLN GLN	P12 P15 T36 T36 F17 F17 ASN		
• Molecule 26:	Small nuclear ribonucleoprotein F		
Chain q:	84%	16%	
MET SER GLU SER SER SER ALA MET GLN	P12 E83 PRO ASN		
• Molecule 27:	Small nuclear ribonucleoprotein G		
Chain g:	88%	• 10%	
MET V2 V3 A2 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5	ALA N53 TLE		
• Molecule 27:	Small nuclear ribonucleoprotein G		
Chain r:	88%	• 10%	
MET V2 ASN GLV GLV ASP PRO ALA N53 N53			
• Molecule 28:	Small nuclear ribonucle oprotein Sm $\rm D1$		
Chain h:	56%	44%	
M1 P48 GLN PR0 ARG ASN LEU LEU ASN LEU	SER SER ASN GLY ALA ALA ALA ALA ALA GLV GLV GLV GLV GLN GLN GLN GLN GLN GLN GLN GLN GLN GLN	SER SER GLY GLN TLE ALA ASP ASP PRO PRO PRO LYS SER ARG	ARG ASP PHE GLY ATA
PRO ALA ASN ASN LYS ARG PRO ARG ARG GLY LEU			
• Molecule 28:	Small nuclear ribonucleoprotein Sm D1		
Chain l:	53% •	46%	

MA V25 P48 CLN P48 CLN P48 CLN P48 CLN P40 CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN
ARG PHFE PHFE OLT PALA ALA ALA ARG ARG CLY LEU
\bullet Molecule 29: Small nuclear ribonucleoprotein Sm D2
Chain j: 83% • 15%
MET SER SER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
\bullet Molecule 29: Small nuclear ribonucleoprotein Sm D2
Chain m: 85% 15%
MET SER GIN TILE TILE ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
• Molecule 30: U2 small nuclear ribonucleoprotein A'
Chain W: 65% · 31%
MI THR 1148 1148 1154 1154 1156 1156 116 116 116 116 116 116 1176 116 116 1
VAL VAL THRE THRE THRE VAL VAL ARG ASN ALA ARG CLU CLEU CLEU CLEU CLEU CLEU CLEU CLEU
• Molecule 31: U2 small nuclear ribonucleoprotein B"
Chain Y: 76% 24%
MET ATA ATA ATA ATA ATA ATA ATA ATA ATA A
• Molecule 32: Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16
Chain Q: 46% 10% · 42%
MET MET SER SER ARG OLU ARG OLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C
TILE RAISN CLUDU C
PHE LLYS LLYS LLYS LLYS LLYS LLYS LLYS LLY
TYR TYR VLEU VLEU VLEU VLEU PR.0 PR.0 PR.0 PR.0 PLEU PR.0 PLEU PR.0 PLEU PLEU PR.0 PLEU PLEU PLEU PLEU PLEU PLEU PLEU PLEU

• Molecule 34: Pre-mRNA-splicing factor SNT309

Chain s:	59%	••	37%	-
MET ASP GLY CLY CLEU SER PHE VAL ASP CLY CLYS CLY CLYS CLY D14 D14	131 LYS LYS ARG ARG ARG AL ARG ARG ARG ARG ARG ARG ARG ARG ARG ARS ARG ARS ARG ARS ARG ARS ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	ARG LYS GLY ALA ASP ASP ASP ASP SER SER THR	LEU THR ASN ALA ALA TTR TTR CLU TTR CLU LEU CLS	ARG ASN LYS LYS ARG ARG
۲ میں کی کہ کو	OMU			
Chain x:	70%		30%	-
X1 7 101 101 101 101 101 101 101 101 101	UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK	UNK UNK UNK UNK UNK UNK UNK	UNK UNK UNK UNK UNK UNK UNK	UNK UNK UNK UNK UNK

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	15872	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	2	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	4000	Depositor
Magnification	35714	Depositor
Image detector	GATAN K2 QUANTUM $(4k \ge 4k)$	Depositor
Maximum map value	0.073	Depositor
Minimum map value	-0.018	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.003	Depositor
Recommended contour level	0.006	Depositor
Map size (Å)	589.16, 589.16, 589.16	wwPDB
Map dimensions	412, 412, 412	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.43, 1.43, 1.43	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, GTP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	U	0.31	0/3351	0.75	1/5213~(0.0%)
2	Е	0.36	0/388	0.69	0/603
3	Ι	0.28	0/772	0.71	0/1195
4	Ζ	0.26	0/4018	0.72	0/6233
5	V	0.32	0/2310	0.77	3/3594~(0.1%)
6	А	0.44	0/17321	0.75	0/23534
7	В	0.52	0/8463	0.72	0/11800
8	D	0.37	0/929	0.67	0/1243
9	F	0.42	0/325	0.74	0/442
10	С	0.41	0/6902	0.73	0/9386
11	G	0.42	0/839	0.74	0/1126
12	Н	0.43	0/2667	0.80	1/3630~(0.0%)
13	J	0.45	0/2613	0.74	0/3551
14	Κ	0.40	0/1308	0.72	0/1765
15	L	0.40	0/1294	0.75	0/1732
16	М	0.42	0/2058	0.70	0/2769
17	Ν	0.41	0/1680	0.76	0/2258
18	0	0.49	0/2091	0.86	2/2824~(0.1%)
19	Р	0.43	0/282	0.69	0/380
20	R	0.40	0/545	0.77	0/748
21	S	0.44	0/3155	0.83	0/4298
22	Т	0.38	0/2918	0.74	0/4032
23	b	0.34	0/636	0.59	0/856
23	k	0.28	0/394	0.50	0/546
24	d	0.36	0/634	0.62	1/859~(0.1%)
24	n	0.29	0/403	0.53	0/559
25	е	0.40	0/585	0.56	0/795
25	р	0.30	0/367	0.55	0/507
26	f	0.39	0/585	0.59	0/791
26	q	0.30	0/353	0.53	0/489
27	g	0.36	0/532	0.55	0/715
27	r	0.28	0/338	0.45	0/467

Mal	Chain	Bond	lengths	E	Bond angles
10101	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
28	h	0.35	0/649	0.54	0/880
28	l	0.30	0/390	0.53	0/541
29	j	0.38	0/753	0.61	0/1013
29	m	0.31	0/466	0.54	0/649
30	W	0.31	0/814	0.53	0/1134
31	Y	0.32	0/415	0.55	0/577
32	Q	0.51	0/3061	1.22	18/4260~(0.4%)
33	t	0.46	0/2165	0.67	1/3010~(0.0%)
33	u	0.50	0/2160	0.69	1/3003~(0.0%)
33	V	0.51	0/2104	0.74	4/2923~(0.1%)
33	W	0.47	0/2150	0.68	2/2989~(0.1%)
34	s	0.57	0/546	0.80	0/760
All	All	0.43	0/86729	0.75	34/120679~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
6	А	0	2
11	G	0	1
16	М	0	1
18	0	0	2
21	S	0	1
32	Q	0	45
33	t	0	1
33	V	0	1
33	W	0	1
34	s	0	2
All	All	0	57

There are no bond length outliers.

All (34) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	Q	384	ALA	CB-CA-C	8.22	122.43	110.10
1	U	39	U	C2'-C3'-O3'	8.13	127.38	109.50
32	Q	745	PHE	C-N-CA	7.85	141.32	121.70
32	Q	413	VAL	CB-CA-C	7.51	125.67	111.40
32	Q	745	PHE	O-C-N	-6.99	111.52	122.70
5	V	35	А	C5'-C4'-O4'	6.92	117.40	109.10

EMD-4057,	5LJ5
-----------	------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	Q	654	ILE	CB-CA-C	6.74	125.07	111.60
32	Q	916	ALA	N-CA-CB	-6.59	100.87	110.10
32	Q	403	THR	N-CA-C	6.55	128.68	111.00
12	Н	440	LEU	CA-CB-CG	6.54	130.33	115.30
24	d	81	ALA	C-N-CD	-6.46	106.39	120.60
32	Q	574	GLU	N-CA-CB	-6.45	98.98	110.60
32	Q	745	PHE	CA-C-N	6.17	130.78	117.20
32	Q	384	ALA	N-CA-CB	6.16	118.72	110.10
18	0	564	TYR	CB-CA-C	6.15	122.71	110.40
33	W	39	PRO	N-CA-CB	6.01	110.51	103.30
33	V	134	SER	CA-C-O	-5.67	108.20	120.10
32	Q	402	VAL	N-CA-C	5.55	125.99	111.00
5	V	35	А	O4'-C4'-C3'	5.43	110.44	106.10
32	Q	394	ASN	CB-CA-C	5.41	121.22	110.40
32	Q	483	ASP	CB-CA-C	5.37	121.14	110.40
32	Q	447	LYS	N-CA-C	5.31	125.33	111.00
32	Q	477	GLU	C-N-CA	5.29	134.93	121.70
33	V	76	SER	N-CA-CB	5.29	118.43	110.50
32	Q	400	ILE	C-N-CA	5.18	134.64	121.70
33	V	134	SER	O-C-N	5.17	130.98	122.70
5	V	92	С	C2'-C3'-O3'	5.13	121.91	113.70
33	u	306	ASP	CB-CA-C	-5.13	100.15	110.40
33	t	306	ASP	CB-CA-C	-5.12	100.17	110.40
33	V	306	ASP	CB-CA-C	-5.11	100.18	110.40
32	Q	445	LYS	CB-CA-C	-5.10	100.20	110.40
33	W	306	ASP	CB-CA-C	-5.10	100.20	110.40
32	Q	470	VAL	C-N-CA	5.09	134.43	121.70
18	0	564	TYR	O-C-N	-5.06	114.61	122.70

There are no chirality outliers.

All (57) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
6	А	1325	SER	Peptide
6	А	403	TYR	Peptide
11	G	3	ARG	Peptide
16	М	231	ASP	Peptide
18	0	567	ARG	Mainchain
18	0	83	GLN	Peptide
32	Q	367	GLN	Peptide
32	Q	390	GLU	Peptide
32	Q	399	SER	Peptide

Mol	Chain	Res	Type	Group
32	Q	429	VAL	Peptide
32	Q	439	THR	Peptide
32	Q	441	SER	Peptide
32	Q	442	GLU	Peptide
32	Q	444	THR	Peptide
32	Q	445	LYS	Peptide
32	Q	446	LEU	Peptide
32	Q	465	ASP	Peptide
32	Q	468	SER	Peptide
32	Q	501	LEU	Peptide
32	Q	541	VAL	Peptide
32	Q	543	ASP	Peptide
32	Q	628	HIS	Peptide
32	Q	662	LYS	Peptide
32	Q	705	ASP	Peptide
32	Q	706	THR	Peptide
32	Q	707	PHE	Peptide
32	Q	733	SER	Peptide
32	Q	736	VAL	Peptide
32	Q	737	THR	Peptide
32	Q	744	PRO	Peptide
32	Q	745	PHE	Peptide
32	Q	747	ASP	Peptide
32	Q	748	LYS	Peptide
32	Q	749	PRO	Peptide
32	Q	797	VAL	Peptide
32	Q	798	ARG	Peptide
32	Q	833	ASN	Peptide
32	Q	856	ASN	Peptide
32	Q	857	PHE	Peptide
32	Q	889	GLN	Peptide
32	Q	893	VAL	Peptide
32	Q	895	SER	Peptide
32	Q	896	SER	Peptide
32	Q	911	PHE	Peptide
32	Q	915	ALA	Peptide
32	Q	916	ALA	Peptide
32	Q	923	ASN	Peptide
32	Q	924	TYR	Peptide
32	Q	944	LEU	Peptide
32	Q	960	SER	Peptide
32	Q	977	GLU	Peptide

 $Continued \ from \ previous \ page...$

	ě	<u> </u>	10	
Mol	Chain	\mathbf{Res}	Type	Group
21	S	237	ILE	Peptide
34	s	111	VAL	Peptide
34	s	132	LEU	Peptide
33	t	3	CYS	Mainchain
33	V	109	LEU	Mainchain
33	W	134	SER	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	U	2999	0	1515	24	0
2	Е	346	0	173	5	0
3	Ι	693	0	351	3	0
4	Ζ	3610	0	1831	10	0
5	V	2066	0	1042	23	0
6	А	16919	0	16184	233	0
7	В	8462	0	3706	27	0
8	D	912	0	936	11	0
9	F	321	0	282	3	0
10	С	6756	0	6801	117	0
11	G	823	0	808	10	0
12	Н	2639	0	2073	25	0
13	J	2556	0	2551	54	0
14	K	1289	0	1309	17	0
15	L	1270	0	1294	12	0
16	М	2012	0	1968	32	0
17	N	1658	0	1712	59	0
18	0	2068	0	1853	39	0
19	Р	275	0	283	4	0
20	R	544	0	345	17	0
21	S	3121	0	2399	55	0
22	Т	2946	0	1252	11	0
23	b	631	0	670	0	0
23	k	396	0	169	0	0
24	d	625	0	647	0	0
24	n	404	0	180	0	0
25	е	575	0	597	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
25	р	369	0	152	0	0
26	f	573	0	572	0	0
26	q	354	0	153	0	0
27	g	529	0	557	0	0
27	r	340	0	152	0	0
28	h	644	0	686	0	0
28	1	392	0	165	0	0
29	j	741	0	778	0	0
29	m	467	0	199	0	0
30	W	816	0	341	1	0
31	Y	416	0	182	0	0
32	Q	3066	0	1345	52	0
33	t	2171	0	945	0	0
33	u	2166	0	942	0	0
33	V	2111	0	917	0	0
33	W	2156	0	938	0	0
34	s	548	0	219	0	0
35	Х	660	0	142	0	0
36	Е	1	0	0	0	0
36	V	1	0	0	0	0
37	D	1	0	0	1	0
37	L	3	0	0	0	0
37	М	1	0	0	0	0
37	N	2	0	0	5	0
38	С	32	0	12	0	0
All	All	85476	0	62328	741	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (741) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
32:Q:434:ARG:O	32:Q:874:ARG:HA	1.26	1.35
17:N:34:CYS:SG	17:N:37:CYS:SG	1.35	1.34
20:R:36:GLN:O	20:R:40:GLN:N	1.60	1.32
1:U:45:A:N1	1:U:74:U:O4	1.65	1.30
21:S:467:GLN:CA	21:S:471:LEU:HA	1.65	1.24
32:Q:472:ILE:CB	32:Q:503:ILE:H	1.55	1.19
17:N:16:CYS:SG	17:N:73:CYS:HB2	1.85	1.16
32:Q:435:PHE:HA	32:Q:877:ASP:N	1.61	1.15

	h a c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
32:Q:434:ARG:C	32:Q:874:ARG:HA	1.69	1.13
32:Q:472:ILE:CB	32:Q:503:ILE:N	2.11	1.11
32:Q:472:ILE:CB	32:Q:503:ILE:CA	2.28	1.11
16:M:108:VAL:HG11	17:N:59:LEU:HD13	1.26	1.10
20:R:37:GLN:O	20:R:41:GLN:CB	2.00	1.10
16:M:108:VAL:HG21	17:N:73:CYS:O	1.52	1.09
32:Q:435:PHE:CA	32:Q:877:ASP:H	1.65	1.07
32:Q:672:SER:HA	32:Q:956:LEU:O	1.55	1.05
6:A:2364:THR:H	32:Q:521:PRO:N	1.56	1.03
22:T:360:LYS:CB	22:T:381:HIS:CB	2.36	1.03
21:S:467:GLN:CB	21:S:471:LEU:O	2.07	1.02
21:S:467:GLN:HA	21:S:471:LEU:HA	1.03	1.01
17:N:61:CYS:HG	37:N:401:ZN:ZN	0.67	1.00
21:S:467:GLN:HA	21:S:471:LEU:CA	1.90	0.99
6:A:2364:THR:N	32:Q:521:PRO:N	2.13	0.96
32:Q:435:PHE:HA	32:Q:877:ASP:H	1.14	0.95
17:N:61:CYS:SG	37:N:401:ZN:ZN	1.54	0.94
32:Q:472:ILE:CB	32:Q:503:ILE:HA	1.98	0.92
22:T:429:SER:O	22:T:433:LEU:N	2.03	0.92
21:S:467:GLN:CA	21:S:471:LEU:CA	2.37	0.92
16:M:108:VAL:HG22	17:N:75:MET:HG2	1.53	0.91
21:S:332:GLU:CB	21:S:338:ILE:CB	2.51	0.89
21:S:467:GLN:CB	21:S:471:LEU:HA	2.03	0.89
32:Q:472:ILE:CB	32:Q:503:ILE:O	2.22	0.88
20:R:36:GLN:O	20:R:40:GLN:CB	2.21	0.88
21:S:332:GLU:CB	21:S:334:PHE:O	2.22	0.88
16:M:108:VAL:HG11	17:N:59:LEU:CD1	2.03	0.88
21:S:467:GLN:CB	21:S:471:LEU:CA	2.52	0.87
22:T:420:SER:O	22:T:421:ALA:O	1.93	0.87
32:Q:472:ILE:CB	32:Q:503:ILE:C	2.43	0.86
32:Q:528:ARG:CB	32:Q:530:PHE:N	2.39	0.86
32:Q:673:LEU:H	32:Q:957:LEU:HA	1.38	0.85
8:D:88:CYS:SG	37:D:1001:ZN:ZN	1.65	0.85
7:B:479:GLU:HA	7:B:498:SER:CB	2.07	0.85
6:A:2364:THR:CB	32:Q:521:PRO:N	2.40	0.84
32:Q:587:PHE:O	32:Q:591:TYR:CB	2.26	0.84
17:N:16:CYS:SG	17:N:73:CYS:CB	2.65	0.84
32:Q:434:ARG:O	32:Q:874:ARG:CA	2.21	0.84
16:M:250:MET:HB2	17:N:139:LEU:HD11	1.58	0.83
20:R:28:ASN:O	20:R:32:PRO:CD	2.27	0.83
13:J:210:ASP:HB2	13:J:217:ILE:HD11	1.61	0.83

	h i o	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
7:B:1182:ALA:O	32:Q:496:ARG:HA	1.80	0.82	
16:M:108:VAL:HG22	17:N:75:MET:CG	2.10	0.82	
18:O:564:TYR:HA	18:O:566:TYR:H	1.44	0.82	
17:N:220:THR:HG22	17:N:240:LEU:HD12	1.62	0.81	
6:A:759:ARG:HD2	6:A:783:LEU:HD13	1.61	0.81	
18:O:564:TYR:CA	18:O:566:TYR:H	1.93	0.81	
21:S:329:LEU:HA	21:S:338:ILE:CB	2.10	0.81	
10:C:389:LEU:HD21	10:C:421:LEU:HD12	1.64	0.80	
20:R:36:GLN:O	20:R:40:GLN:CA	2.29	0.79	
32:Q:459:LEU:CB	32:Q:782:LYS:CB	2.60	0.79	
18:O:564:TYR:HA	18:O:566:TYR:N	2.00	0.77	
5:V:67:C:H2'	5:V:68:C:O4'	1.85	0.76	
32:Q:586:LYS:O	32:Q:590:VAL:N	2.19	0.76	
20:R:37:GLN:O	20:R:41:GLN:N	2.19	0.76	
16:M:108:VAL:CG1	17:N:59:LEU:HD13	2.14	0.76	
13:J:323:VAL:HG12	13:J:336:LEU:HD12	1.67	0.75	
1:U:45:A:N1	1:U:74:U:C4	2.54	0.75	
17:N:113:LEU:HD11	17:N:120:LEU:HD11	1.69	0.75	
16:M:22:ILE:HG23	16:M:23:PRO:HD3	1.67	0.74	
17:N:37:CYS:SG	37:N:401:ZN:ZN	1.77	0.74	
21:S:332:GLU:CB	21:S:335:PRO:HA	2.18	0.73	
32:Q:459:LEU:HA	32:Q:782:LYS:CB	2.17	0.73	
18:O:230:THR:HG23	21:S:116:ASN:HD21	1.53	0.73	
5:V:76:A:OP2	6:A:749:ARG:NH1	2.21	0.73	
16:M:108:VAL:CG1	17:N:59:LEU:HD22	2.20	0.72	
17:N:71:CYS:SG	37:N:402:ZN:ZN	1.77	0.72	
21:S:467:GLN:CB	21:S:471:LEU:C	2.56	0.72	
6:A:1361:VAL:HG21	6:A:1407:ILE:HD11	1.72	0.72	
8:D:51:CYS:SG	8:D:88:CYS:HB3	2.30	0.72	
6:A:1335:TRP:CD1	6:A:1367:ILE:HG13	2.24	0.72	
6:A:853:THR:HG23	6:A:971:MET:HG3	1.70	0.71	
7:B:1163:SER:CA	32:Q:497:ARG:O	2.32	0.71	
6:A:1335:TRP:CZ2	6:A:1339:LEU:HD13	2.25	0.71	
6:A:745:THR:HA	13:J:182:VAL:HG21	1.73	0.70	
6:A:631:LEU:HD21	6:A:663:LEU:HD12	1.73	0.70	
10:C:406:VAL:HG11	10:C:427:LEU:HB3	1.71	0.70	
16:M:250:MET:CB	17:N:139:LEU:HD11	2.21	0.70	
10:C:493:LEU:HD21	10:C:539:VAL:HG21	1.74	0.70	
21:S:209:GLU:HB3	21:S:218:THR:HG22	1.75	0.69	
32:Q:672:SER:CA	32:Q:956:LEU:O	2.37	0.69	
4:Z:34:G:N2	6:A:1325:SER:OG	2.22	0.68	

	juo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:A:1067:ASN:HB2	6:A:1083:THR:HG21	1.76	0.68
6:A:1342:LEU:CD2	6:A:1360:LEU:HD21	2.24	0.68
13:J:206:VAL:HG11	13:J:241:THR:HG21	1.76	0.67
16:M:108:VAL:HG13	17:N:59:LEU:HD22	1.76	0.67
20:R:28:ASN:O	20:R:32:PRO:HD3	1.93	0.67
32:Q:459:LEU:CA	32:Q:782:LYS:CB	2.72	0.67
32:Q:435:PHE:CA	32:Q:877:ASP:N	2.34	0.67
7:B:1163:SER:O	7:B:1164:THR:CB	2.43	0.67
10:C:621:ALA:HB2	10:C:664:ALA:HB2	1.76	0.67
10:C:241:VAL:HG11	10:C:273:LEU:HD23	1.76	0.66
18:O:21:LEU:HD12	18:O:40:LEU:HD11	1.76	0.66
10:C:200:CYS:HB3	10:C:436:VAL:HG21	1.78	0.66
13:J:290:VAL:HG12	13:J:311:VAL:HG11	1.77	0.66
1:U:110:U:H2'	1:U:111:C:O4'	1.95	0.66
6:A:741:ILE:HD11	13:J:224:LEU:HD22	1.78	0.65
16:M:108:VAL:CG2	17:N:75:MET:HG2	2.24	0.65
6:A:1286:TRP:CE2	6:A:1302:LEU:HD11	2.31	0.65
18:O:60:LEU:HD21	18:O:94:PRO:HB3	1.79	0.65
32:Q:434:ARG:C	32:Q:874:ARG:CA	2.57	0.65
12:H:299:LEU:HD11	12:H:329:ILE:HG12	1.79	0.65
6:A:716:ARG:O	6:A:720:PRO:HD2	1.97	0.64
10:C:193:LEU:HD11	10:C:228:ALA:HB2	1.78	0.64
17:N:125:ILE:HG21	17:N:135:ILE:HD12	1.80	0.64
13:J:282:VAL:HG11	13:J:323:VAL:HG21	1.80	0.64
6:A:1344:THR:O	6:A:1347:ARG:NH1	2.30	0.64
13:J:142:VAL:HG11	13:J:423:ILE:CG2	2.28	0.64
10:C:323:THR:HG21	10:C:438:ALA:HB2	1.81	0.63
6:A:630:LYS:O	6:A:634:ASP:N	2.26	0.63
10:C:501:ILE:HD13	10:C:567:ILE:HG23	1.79	0.63
10:C:872:LEU:HD13	10:C:922:THR:HG22	1.79	0.63
5:V:90:U:O2'	5:V:92:C:C6	2.52	0.63
22:T:429:SER:O	22:T:433:LEU:CB	2.47	0.62
12:H:445:LEU:HD11	12:H:448:MET:HG3	1.80	0.62
21:S:225:ALA:O	21:S:229:VAL:HG23	1.98	0.62
8:D:63:LYS:HE3	9:F:6:LEU:HD22	1.80	0.62
17:N:71:CYS:HG	37:N:402:ZN:ZN	1.13	0.62
6:A:213:TYR:HA	6:A:216:GLN:HE21	1.63	0.62
5:V:90:U:O2'	5:V:92:C:C5	2.53	0.62
6:A:673:VAL:HG22	6:A:714:PHE:CE1	2.34	0.62
10:C:251:GLN:HG2	10:C:933:TRP:CD2	2.35	0.61
13:J:277:VAL:HG11	13:J:321:PHE:CZ	2.36	0.61

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
16:M:108:VAL:CG2	17:N:73:CYS:O	2.40	0.61
6:A:857:ILE:HD11	6:A:969:ILE:HD11	1.82	0.61
17:N:91:ILE:HD12	17:N:125:ILE:HD12	1.82	0.61
6:A:268:LEU:HD13	6:A:277:LYS:HB2	1.82	0.61
10:C:602:VAL:HG11	10:C:860:PRO:HG3	1.81	0.61
6:A:673:VAL:HG22	6:A:714:PHE:CZ	2.36	0.61
7:B:1162:ALA:O	32:Q:367:GLN:N	2.34	0.61
21:S:149:VAL:O	21:S:152:VAL:HG12	2.01	0.61
32:Q:435:PHE:CB	32:Q:877:ASP:H	2.12	0.61
6:A:1557:LEU:HD13	6:A:1562:PHE:CE2	2.36	0.61
10:C:133:ILE:HD13	10:C:560:GLN:HB3	1.83	0.61
1:U:98:U:HO2'	5:V:75:A:H8	1.48	0.60
7:B:487:CYS:O	7:B:490:ALA:N	2.33	0.60
10:C:270:LEU:HD11	10:C:313:PHE:HB3	1.82	0.60
17:N:39:LEU:HD13	17:N:40:PRO:HD2	1.84	0.60
6:A:1738:LEU:HD13	6:A:1779:LEU:HD11	1.84	0.60
4:Z:38:U:O2	11:G:1:MET:N	2.34	0.60
7:B:1973:ALA:O	7:B:1976:ALA:HB3	2.01	0.60
13:J:323:VAL:CG1	13:J:336:LEU:HD12	2.32	0.60
15:L:66:LEU:HD13	15:L:73:ILE:HG13	1.83	0.59
8:D:51:CYS:SG	8:D:88:CYS:SG	3.00	0.59
10:C:656:LEU:HD22	10:C:670:ILE:HD11	1.85	0.59
10:C:866:ILE:HB	10:C:902:VAL:HG13	1.83	0.59
6:A:1032:ILE:HG12	6:A:1171:LEU:HD22	1.83	0.59
20:R:37:GLN:O	20:R:41:GLN:CA	2.51	0.59
32:Q:402:VAL:CB	32:Q:449:VAL:H	2.15	0.59
10:C:499:VAL:HG11	10:C:577:LEU:HD13	1.83	0.59
21:S:173:VAL:HG23	21:S:188:ILE:HD11	1.85	0.59
32:Q:452:GLY:O	32:Q:784:PRO:CB	2.50	0.59
6:A:390:LEU:HD21	10:C:605:ILE:HD11	1.85	0.58
13:J:240:ALA:HB1	13:J:248:ILE:HD11	1.82	0.58
13:J:160:ASN:HA	13:J:184:THR:HB	1.85	0.58
17:N:39:LEU:HD23	17:N:111:ARG:HG2	1.85	0.58
12:H:298:VAL:HG11	12:H:312:LEU:HD23	1.84	0.58
6:A:842:LYS:O	6:A:845:VAL:HG12	2.02	0.58
17:N:207:LEU:HD11	17:N:251:LEU:HD11	1.86	0.58
17:N:16:CYS:SG	17:N:71:CYS:SG	3.02	0.58
13:J:248:ILE:HG23	13:J:262:LEU:HB2	1.84	0.58
32:Q:425:LEU:HA	32:Q:429:VAL:CB	2.33	0.58
6:A:1668:ILE:HD13	6:A:1801:SER:HB3	1.86	0.58
18:O:185:LEU:O	18:O:188:ARG:HG3	2.03	0.58

	t i c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
17:N:16:CYS:HG	17:N:73:CYS:HB2	1.65	0.57
13:J:147:ILE:HD13	13:J:408:ASP:HA	1.84	0.57
20:R:37:GLN:C	20:R:41:GLN:H	2.07	0.57
17:N:16:CYS:SG	17:N:73:CYS:SG	3.02	0.57
6:A:1632:ILE:HG21	6:A:1645:LEU:HD13	1.85	0.57
18:O:185:LEU:O	18:O:189:ARG:HG2	2.03	0.57
6:A:395:PRO:HB2	6:A:398:VAL:HG21	1.87	0.57
6:A:305:LEU:HD21	6:A:476:ALA:HB2	1.85	0.57
15:L:66:LEU:HD13	15:L:73:ILE:CG1	2.34	0.57
6:A:322:VAL:HG23	6:A:508:GLN:HE21	1.70	0.56
6:A:342:LEU:HB3	6:A:344:ASN:HD22	1.70	0.56
6:A:1557:LEU:HD11	6:A:1570:TRP:HB2	1.86	0.56
10:C:328:VAL:HG21	10:C:345:THR:HG22	1.87	0.56
21:S:229:VAL:HG22	21:S:238:TRP:HZ2	1.69	0.56
6:A:370:ILE:HB	6:A:1418:THR:HG21	1.87	0.56
6:A:969:ILE:HG22	6:A:982:TYR:HA	1.86	0.56
6:A:1049:LEU:HB2	6:A:1258:LEU:HD11	1.86	0.56
32:Q:456:ARG:CB	32:Q:784:PRO:CB	2.83	0.56
12:H:465:PHE:HB2	12:H:473:LEU:HD23	1.88	0.56
5:V:59:A:H2'	5:V:60:G:O4'	2.05	0.56
6:A:948:HIS:CE1	6:A:952:ASN:HD21	2.23	0.56
8:D:51:CYS:SG	8:D:88:CYS:CB	2.94	0.56
18:O:33:TRP:CE3	18:O:36:VAL:HG11	2.41	0.56
21:S:184:GLY:O	21:S:188:ILE:HG23	2.05	0.56
21:S:332:GLU:CB	21:S:334:PHE:C	2.74	0.56
13:J:289:THR:HG22	13:J:305:THR:HG22	1.88	0.56
32:Q:673:LEU:N	32:Q:957:LEU:HA	2.17	0.56
17:N:226:LEU:HD13	17:N:266:ILE:HD11	1.87	0.56
32:Q:434:ARG:CB	32:Q:874:ARG:O	2.54	0.56
6:A:878:GLU:O	6:A:882:ILE:HG23	2.06	0.56
8:D:11:TYR:CD1	11:G:12:LEU:HD21	2.41	0.56
18:O:230:THR:HG21	21:S:117:HIS:ND1	2.21	0.56
20:R:31:ARG:N	20:R:32:PRO:CD	2.68	0.56
6:A:172:ILE:HD13	6:A:625:LEU:HB3	1.88	0.55
6:A:521:SER:HB2	6:A:682:ASP:HA	1.88	0.55
6:A:1417:GLN:HG2	6:A:1418:THR:HG23	1.88	0.55
13:J:277:VAL:HG13	13:J:278:ASP:N	2.20	0.55
17:N:106:ASN:HD21	18:O:208:GLY:HA2	1.71	0.55
6:A:137:GLU:CD	15:L:30:LEU:HG	2.26	0.55
15:L:94:LYS:HD2	15:L:109:ILE:HD11	1.87	0.55
6:A:1000:TRP:CZ2	6:A:1510:ILE:HG21	2.41	0.55

	h i a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:B:1795:SER:O	7:B:1798:GLY:N	2.39	0.55
18:O:37:ALA:HB2	18:O:45:ALA:HA	1.88	0.55
6:A:724:ARG:O	6:A:728:ASN:HB2	2.07	0.55
10:C:472:VAL:HB	10:C:575:ALA:HB3	1.88	0.55
16:M:163:VAL:HG23	16:M:164:PHE:HD1	1.71	0.55
6:A:168:LEU:N	6:A:169:PRO:CD	2.69	0.55
6:A:588:LEU:HD13	6:A:591:LEU:CD2	2.37	0.55
20:R:28:ASN:O	20:R:32:PRO:HD2	2.04	0.55
32:Q:587:PHE:O	32:Q:591:TYR:N	2.39	0.55
6:A:168:LEU:HD21	6:A:626:LEU:HD21	1.89	0.55
6:A:1209:LYS:HA	6:A:1212:ARG:HG2	1.89	0.55
6:A:424:PHE:CE1	10:C:893:LYS:HB3	2.42	0.54
6:A:1542:TYR:O	6:A:1546:VAL:HG23	2.07	0.54
17:N:106:ASN:HB2	18:O:213:TYR:CG	2.42	0.54
1:U:45:A:C2	1:U:74:U:O4	2.54	0.54
6:A:628:MET:HE3	6:A:660:ILE:HG23	1.88	0.54
2:E:-5:G:HO2'	2:E:-4:A:H8	1.55	0.54
6:A:228:LYS:HD2	6:A:695:LEU:HD11	1.90	0.54
6:A:2364:THR:CA	32:Q:521:PRO:N	2.70	0.54
17:N:17:LEU:CD2	17:N:23:ILE:HD12	2.37	0.54
20:R:31:ARG:N	20:R:32:PRO:HD2	2.23	0.54
6:A:1562:PHE:O	6:A:1565:THR:OG1	2.24	0.54
17:N:29:PRO:HA	17:N:42:THR:HG22	1.90	0.54
18:O:211:ILE:HD13	21:S:44:ARG:HG3	1.89	0.54
21:S:99:ILE:N	21:S:100:PRO:CD	2.70	0.54
30:W:121:PRO:O	30:W:122:ARG:CB	2.56	0.54
18:O:16:VAL:HG22	18:O:152:LEU:HD21	1.88	0.54
6:A:141:LYS:HG3	15:L:52:ILE:HD11	1.90	0.54
1:U:92:U:O2	20:R:12:LYS:NZ	2.39	0.54
1:U:103:A:O2'	1:U:104:G:O4'	2.24	0.54
6:A:880:THR:OG1	14:K:207:ALA:HB1	2.08	0.54
6:A:1335:TRP:CH2	6:A:1364:GLU:HG2	2.42	0.54
6:A:1756:PHE:CE1	6:A:1760:THR:HG21	2.43	0.54
10:C:861:ILE:HD11	10:C:938:ARG:HB2	1.89	0.54
10:C:138:VAL:HG23	10:C:236:LEU:HB2	1.90	0.53
10:C:265:PHE:HB2	10:C:311:ILE:HD13	1.89	0.53
1:U:102:C:OP1	6:A:675:HIS:NE2	2.42	0.53
10:C:191:ILE:HG23	10:C:221:PHE:CE2	2.44	0.53
5:V:35:A:C8	15:L:41:LEU:HD13	2.43	0.53
10:C:241:VAL:HG22	10:C:267:ILE:CG2	2.38	0.53
17:N:64:CYS:SG	17:N:114:SER:HB2	2.48	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:U:45:A:N6	1:U:74:U:N3	2.55	0.53
6:A:674:MET:CE	6:A:1621:VAL:HG11	2.38	0.53
6:A:929:LEU:HD11	6:A:1590:LEU:HD23	1.91	0.53
6:A:2060:LEU:HD21	6:A:2078:GLU:HG3	1.89	0.53
13:J:277:VAL:HG11	13:J:321:PHE:HZ	1.71	0.53
10:C:864:VAL:HG22	10:C:930:LEU:HD23	1.90	0.53
6:A:882:ILE:HD11	6:A:1065:LEU:HD21	1.90	0.53
13:J:306:HIS:CE1	14:K:147:LEU:HD11	2.44	0.53
6:A:210:GLU:O	6:A:214:THR:HG23	2.09	0.53
6:A:588:LEU:HD13	6:A:591:LEU:HD22	1.91	0.53
8:D:101:PRO:HB2	9:F:23:VAL:HG21	1.90	0.53
13:J:142:VAL:HG11	13:J:423:ILE:HG23	1.91	0.53
6:A:161:PHE:HA	6:A:198:ALA:HB1	1.91	0.53
6:A:308:MET:HG3	6:A:479:LEU:HD11	1.89	0.53
10:C:201:THR:HG22	10:C:207:SER:HB3	1.90	0.53
7:B:1502:LEU:O	7:B:1503:GLU:C	2.47	0.53
10:C:126:MET:SD	10:C:132:ARG:NH2	2.82	0.53
6:A:937:LEU:HD22	6:A:1590:LEU:CD2	2.39	0.52
7:B:1928:LEU:O	7:B:1931:GLN:N	2.40	0.52
11:G:55:SER:O	11:G:58:ILE:HG22	2.10	0.52
1:U:32:G:H3'	1:U:33:U:C5'	2.38	0.52
10:C:836:SER:O	10:C:840:PRO:HD2	2.09	0.52
13:J:341:LEU:HD23	13:J:342:LEU:N	2.24	0.52
22:T:119:ALA:HB1	22:T:128:ILE:CA	2.39	0.52
6:A:937:LEU:HD22	6:A:1590:LEU:HD22	1.91	0.52
6:A:1375:LEU:HD12	6:A:1383:PHE:CE1	2.44	0.52
1:U:45:A:N3	1:U:45:A:H2'	2.24	0.52
14:K:201:PHE:CD2	18:O:80:LEU:HD21	2.45	0.52
6:A:1339:LEU:HD11	6:A:1360:LEU:HD22	1.92	0.52
7:B:1163:SER:N	32:Q:497:ARG:O	2.42	0.52
13:J:335:GLY:H	13:J:342:LEU:HD13	1.74	0.52
6:A:1207:TRP:O	6:A:1212:ARG:NH1	2.42	0.52
6:A:730:ILE:HD12	6:A:731:THR:N	2.25	0.52
6:A:785:HIS:NE2	14:K:168:ALA:HB2	2.24	0.52
6:A:1090:ILE:HD11	6:A:1104:ILE:CD1	2.40	0.52
6:A:1393:GLU:O	6:A:1394:LEU:HD23	2.10	0.52
6:A:1974:LEU:O	6:A:1977:VAL:HG22	2.10	0.52
10:C:539:VAL:HG13	10:C:564:ILE:HG23	1.92	0.52
6:A:1654:TRP:CZ3	6:A:1779:LEU:HD12	2.45	0.51
21:S:199:MET:SD	21:S:246:LEU:HD22	2.50	0.51
32:Q:673:LEU:O	32:Q:958:MET:CB	2.58	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
6:A:212:VAL:HG22	6:A:311:LEU:HD11	1.92	0.51
6:A:718:THR:O	6:A:719:ILE:C	2.48	0.51
6:A:808:ILE:HG21	14:K:165:ILE:HD12	1.91	0.51
10:C:626:SER:HB3	10:C:634:ILE:HD12	1.91	0.51
12:H:333:SER:HA	12:H:343:TYR:CE2	2.46	0.51
3:I:2:U:O4	4:Z:37:G:H1'	2.10	0.51
10:C:664:ALA:HB1	10:C:666:ILE:CD1	2.39	0.51
10:C:664:ALA:HB1	10:C:666:ILE:HD12	1.92	0.51
12:H:347:SER:O	12:H:351:ILE:HG12	2.09	0.51
18:O:16:VAL:CG2	18:O:152:LEU:HD21	2.40	0.51
6:A:249:LEU:HD12	6:A:249:LEU:O	2.11	0.51
7:B:2036:SER:O	7:B:2039:ALA:HB3	2.11	0.51
6:A:660:ILE:HG21	6:A:711:TRP:CH2	2.45	0.51
22:T:420:SER:O	22:T:421:ALA:C	2.49	0.51
6:A:172:ILE:HG23	6:A:629:MET:HG2	1.93	0.51
6:A:1047:ALA:HB3	6:A:1251:TYR:HB3	1.92	0.51
6:A:1375:LEU:HD12	6:A:1383:PHE:HE1	1.76	0.51
7:B:1399:ASN:O	7:B:1448:THR:HA	2.10	0.51
10:C:255:GLN:HG2	10:C:598:ILE:HD12	1.92	0.51
13:J:206:VAL:CG1	13:J:241:THR:HG21	2.40	0.51
3:I:2:U:H3'	6:A:607:THR:OG1	2.11	0.51
10:C:963:SER:O	10:C:967:VAL:HG23	2.10	0.51
22:T:299:PRO:O	22:T:300:ASP:C	2.49	0.51
32:Q:425:LEU:O	32:Q:429:VAL:CB	2.59	0.51
6:A:458:PHE:CZ	10:C:336:ILE:HD11	2.45	0.51
6:A:1329:THR:HG21	6:A:1601:ILE:HB	1.93	0.51
10:C:872:LEU:HD13	10:C:922:THR:CG2	2.41	0.51
12:H:326:VAL:O	12:H:330:ILE:HG12	2.10	0.51
13:J:275:THR:OG1	13:J:279:PRO:O	2.29	0.51
5:V:27:U:O2'	15:L:124:VAL:HA	2.11	0.50
6:A:350:PRO:HD3	6:A:526:LEU:HD13	1.92	0.50
6:A:741:ILE:CD1	13:J:224:LEU:HD22	2.41	0.50
21:S:172:PHE:CD2	21:S:188:ILE:HD13	2.46	0.50
21:S:332:GLU:CB	21:S:335:PRO:CA	2.87	0.50
6:A:659:HIS:O	6:A:660:ILE:C	2.49	0.50
6:A:713:ASN:O	6:A:716:ARG:HB3	2.11	0.50
6:A:1893:ILE:HD12	6:A:1978:VAL:HG22	1.92	0.50
10:C:139:ILE:HG12	10:C:225:THR:HG23	1.93	0.50
1:U:71:A:N3	1:U:116:U:O2'	2.33	0.50
3:I:3:A:OP2	11:G:3:ARG:HA	2.11	0.50
32:Q:840:SER:HA	32:Q:968:THR:HA	1.94	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:Z:4:A:H2'	4:Z:5:A:H5'	1.91	0.50
6:A:249:LEU:HD11	6:A:637:VAL:HG11	1.93	0.50
10:C:493:LEU:HD22	10:C:542:ILE:HD11	1.93	0.50
6:A:912:LEU:HD22	6:A:951:LEU:HG	1.94	0.50
10:C:615:LEU:N	10:C:616:PRO:HD2	2.26	0.50
10:C:617:LYS:HB3	10:C:666:ILE:HD11	1.94	0.50
6:A:175:LEU:HD23	6:A:564:TRP:CZ2	2.46	0.50
6:A:182:PRO:HG2	6:A:220:THR:HG21	1.94	0.50
6:A:410:ILE:N	6:A:410:ILE:HD12	2.27	0.50
6:A:674:MET:CE	6:A:674:MET:HA	2.42	0.50
10:C:133:ILE:HG23	10:C:209:MET:SD	2.52	0.50
10:C:864:VAL:HG22	10:C:930:LEU:CD2	2.42	0.50
18:O:230:THR:HG21	21:S:117:HIS:CE1	2.47	0.50
32:Q:433:ILE:O	32:Q:877:ASP:CB	2.60	0.50
6:A:1344:THR:HG21	6:A:1537:TRP:CD2	2.46	0.50
16:M:108:VAL:CG1	17:N:59:LEU:CD2	2.90	0.50
13:J:156:ILE:HG22	13:J:166:VAL:HG22	1.93	0.50
13:J:200:VAL:CG2	13:J:227:VAL:HB	2.41	0.50
10:C:231:ALA:HB2	10:C:473:LEU:HD13	1.93	0.49
5:V:35:A:C8	16:M:75:PHE:CZ	3.00	0.49
6:A:138:HIS:NE2	6:A:142:ILE:HD11	2.27	0.49
1:U:32:G:C6	1:U:34:C:C4	3.01	0.49
4:Z:4:A:C2'	4:Z:5:A:H5'	2.42	0.49
16:M:108:VAL:HG22	17:N:75:MET:HG3	1.91	0.49
6:A:793:TRP:CZ2	6:A:820:ALA:HB1	2.48	0.49
6:A:1309:ILE:CG2	6:A:1359:ILE:HD12	2.42	0.49
18:O:230:THR:HG22	21:S:114:CYS:SG	2.53	0.49
11:G:28:ASP:OD1	11:G:28:ASP:N	2.44	0.49
12:H:291:PHE:CE1	12:H:317:ILE:HG21	2.47	0.49
6:A:937:LEU:HD13	6:A:1590:LEU:HD11	1.93	0.49
9:F:27:GLU:O	9:F:31:ILE:HG12	2.13	0.49
10:C:116:THR:HG21	10:C:118:TYR:CZ	2.47	0.49
10:C:544:LEU:HD23	10:C:562:VAL:HG12	1.94	0.49
13:J:145:VAL:HG22	13:J:157:THR:HG22	1.94	0.49
6:A:137:GLU:CD	15:L:52:ILE:HG23	2.33	0.49
6:A:1400:ILE:HG22	6:A:1400:ILE:O	2.12	0.49
10:C:137:GLY:O	10:C:139:ILE:HD12	2.13	0.49
18:O:20:ILE:HD11	18:O:152:LEU:HD22	1.95	0.49
21:S:99:ILE:HD11	21:S:132:VAL:HG11	1.95	0.49
5:V:52:G:H2'	5:V:53:A:C8	2.47	0.49
6:A:1795:LYS:N	6:A:1796:PRO:CD	2.75	0.49

	t i a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
13:J:150:VAL:HG13	13:J:151:ASP:HB3	1.95	0.49
22:T:332:GLN:CB	22:T:342:ILE:CB	2.91	0.49
10:C:607:LEU:HD11	10:C:644:ILE:HD11	1.96	0.48
18:O:24:ALA:O	18:O:28:TYR:N	2.37	0.48
6:A:1557:LEU:HD13	6:A:1562:PHE:CD2	2.48	0.48
7:B:479:GLU:CA	7:B:498:SER:CB	2.86	0.48
10:C:213:LEU:HD11	10:C:561:ILE:HD13	1.95	0.48
12:H:427:LEU:HD23	12:H:436:LEU:HD11	1.95	0.48
6:A:724:ARG:CD	19:P:31:LEU:HD11	2.43	0.48
5:V:41:A:H2'	5:V:42:A:O4'	2.14	0.48
12:H:368:ASN:ND2	12:H:384:LEU:HD11	2.29	0.48
32:Q:430:GLY:HA3	32:Q:438:VAL:O	2.14	0.48
6:A:1669:LEU:HB3	6:A:1681:VAL:HG21	1.95	0.48
13:J:277:VAL:HG22	13:J:278:ASP:H	1.79	0.48
6:A:708:TRP:CE2	6:A:712:LEU:HD11	2.49	0.48
6:A:1223:GLY:CA	6:A:1248:VAL:HG11	2.43	0.48
13:J:147:ILE:HG22	13:J:155:PHE:HB3	1.94	0.48
17:N:65:ALA:O	17:N:69:ASN:N	2.47	0.48
13:J:272:VAL:HG13	13:J:272:VAL:O	2.14	0.48
10:C:241:VAL:HG23	10:C:268:ASN:O	2.14	0.48
17:N:17:LEU:HD21	17:N:23:ILE:HD12	1.96	0.48
6:A:522:TYR:CZ	6:A:686:ILE:HD12	2.48	0.48
6:A:1028:TRP:CZ3	6:A:1162:THR:HG22	2.49	0.48
15:L:22:THR:HG21	15:L:62:TYR:CE1	2.49	0.48
5:V:32:U:C4	17:N:28:ILE:HG21	2.49	0.48
16:M:137:LEU:HD21	16:M:192:ALA:HB1	1.96	0.48
18:O:218:VAL:HB	21:S:89:GLU:HB3	1.96	0.48
6:A:857:ILE:CD1	6:A:969:ILE:HD11	2.44	0.47
10:C:273:LEU:HD12	10:C:274:ILE:N	2.29	0.47
10:C:625:ILE:HG22	10:C:634:ILE:HD11	1.95	0.47
21:S:140:LEU:HD22	21:S:156:TYR:CE2	2.49	0.47
6:A:1222:LEU:O	6:A:1226:VAL:HG23	2.15	0.47
10:C:229:LEU:HB3	10:C:259:ASN:HD21	1.79	0.47
14:K:41:ASP:HA	14:K:44:ILE:HD12	1.96	0.47
10:C:211:ASN:N	10:C:211:ASN:HD22	2.12	0.47
10:C:873:LEU:HD21	10:C:891:THR:HG21	1.94	0.47
12:H:355:ARG:O	12:H:359:THR:HG23	2.14	0.47
18:O:33:TRP:HA	18:O:36:VAL:HG12	1.96	0.47
21:S:112:VAL:HG13	21:S:114:CYS:HB2	1.96	0.47
22:T:119:ALA:HB1	22:T:128:ILE:HA	1.94	0.47
6:A:522:TYR:CE2	6:A:686:ILE:HD12	2.50	0.47

	Jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:A:1066:LEU:HD11	6:A:1113:ILE:HG23	1.95	0.47
10:C:136:VAL:O	10:C:234:LEU:O	2.33	0.47
13:J:341:LEU:HD22	14:K:45:PRO:HB3	1.96	0.47
18:O:564:TYR:C	18:O:566:TYR:H	2.18	0.47
6:A:628:MET:CE	6:A:664:THR:HB	2.45	0.47
2:E:-5:G:O2'	2:E:-4:A:H8	1.98	0.47
6:A:1234:VAL:HG11	6:A:1239:THR:HG22	1.95	0.47
6:A:1347:ARG:HD2	6:A:1447:TRP:CE2	2.49	0.47
6:A:1388:PHE:CD1	6:A:1397:LEU:HD12	2.50	0.47
10:C:193:LEU:HD12	10:C:213:LEU:HB3	1.97	0.47
10:C:504:THR:HG23	10:C:574:SER:O	2.15	0.47
21:S:229:VAL:HG11	21:S:243:VAL:CG2	2.45	0.47
32:Q:465:ASP:C	32:Q:467:TYR:H	2.18	0.47
7:B:990:ASP:O	7:B:994:ASP:N	2.45	0.47
6:A:687:ILE:HD11	6:A:706:PRO:HG3	1.97	0.47
8:D:23:LEU:HG	11:G:18:GLN:HE22	1.80	0.47
13:J:144:CYS:SG	13:J:187:ASP:HA	2.55	0.47
21:S:225:ALA:O	21:S:228:THR:HG22	2.15	0.47
6:A:468:LEU:HD22	6:A:469:ILE:HG23	1.97	0.46
6:A:1345:TYR:HD1	6:A:1345:TYR:O	1.98	0.46
7:B:496:THR:O	7:B:497:THR:CB	2.63	0.46
14:K:104:LEU:HD12	14:K:113:GLU:HA	1.97	0.46
18:O:541:CYS:O	18:O:544:LEU:O	2.33	0.46
21:S:193:VAL:HG11	21:S:202:TRP:CZ2	2.50	0.46
32:Q:401:VAL:O	32:Q:402:VAL:CB	2.62	0.46
6:A:876:PRO:HA	14:K:204:LEU:HD22	1.97	0.46
6:A:1417:GLN:CG	6:A:1418:THR:HG23	2.45	0.46
7:B:1105:ALA:O	7:B:1106:GLY:C	2.54	0.46
13:J:269:ILE:HA	13:J:285:SER:HA	1.97	0.46
6:A:319:ARG:O	6:A:321:GLU:N	2.48	0.46
8:D:31:LEU:HD11	11:G:31:ARG:NH2	2.30	0.46
20:R:36:GLN:C	20:R:40:GLN:CB	2.82	0.46
10:C:312:ILE:HD13	10:C:435:LEU:HG	1.98	0.46
18:O:25:VAL:HG11	18:O:52:TRP:CH2	2.50	0.46
18:O:214:ASN:HB2	18:O:217:ILE:HD11	1.97	0.46
5:V:71:G:H21	5:V:75:A:H2	1.62	0.46
6:A:1881:THR:HG21	6:A:1920:LEU:CD2	2.46	0.46
13:J:144:CYS:SG	13:J:145:VAL:N	2.89	0.46
32:Q:706:THR:C	32:Q:708:LYS:N	2.69	0.46
6:A:286:LEU:HD13	6:A:287:GLU:N	2.30	0.46
7:B:781:LEU:O	7:B:785:ALA:N	2.41	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
12:H:369:TYR:CE1	12:H:420:ILE:HD11	2.51	0.46
12:H:465:PHE:CB	12:H:473:LEU:HD23	2.46	0.46
16:M:17:GLU:HB2	16:M:18:LEU:HD13	1.97	0.46
5:V:32:U:O4	17:N:28:ILE:HG21	2.16	0.46
6:A:929:LEU:HD11	6:A:1590:LEU:CD2	2.45	0.46
6:A:1350:ILE:HD13	6:A:1356:LEU:CD2	2.46	0.46
10:C:493:LEU:CD2	10:C:539:VAL:HG21	2.45	0.46
15:L:94:LYS:CD	15:L:109:ILE:HD11	2.45	0.46
10:C:873:LEU:N	10:C:874:PRO:CD	2.79	0.46
10:C:928:CYS:SG	10:C:929:GLN:N	2.89	0.46
13:J:248:ILE:HG13	13:J:262:LEU:HD12	1.98	0.46
18:O:230:THR:HG21	21:S:117:HIS:CG	2.51	0.46
12:H:334:LEU:HD21	12:H:384:LEU:HD12	1.98	0.46
16:M:99:ILE:HD13	16:M:188:TYR:CD2	2.51	0.46
18:O:530:VAL:O	18:O:533:LEU:N	2.48	0.46
1:U:119:U:C2	1:U:120:G:C8	3.04	0.45
6:A:1020:ILE:HB	6:A:1022:PRO:HD2	1.98	0.45
6:A:1357:LEU:HD11	12:H:303:LEU:HD22	1.98	0.45
10:C:501:ILE:CD1	10:C:567:ILE:HG23	2.46	0.45
1:U:47:U:H2'	1:U:48:G:C8	2.52	0.45
6:A:1354:GLU:N	6:A:1355:PRO:CD	2.78	0.45
10:C:837:GLN:HE21	10:C:837:GLN:HA	1.81	0.45
12:H:351:ILE:HG21	12:H:395:GLU:HG3	1.98	0.45
13:J:144:CYS:SG	13:J:188:VAL:N	2.88	0.45
13:J:284:SER:OG	13:J:311:VAL:O	2.35	0.45
6:A:783:LEU:HD12	6:A:783:LEU:O	2.16	0.45
10:C:492:LEU:HD12	10:C:492:LEU:O	2.16	0.45
12:H:330:ILE:HG22	12:H:334:LEU:CD2	2.46	0.45
21:S:169:TRP:CE3	21:S:192:TYR:HB2	2.51	0.45
32:Q:435:PHE:CB	32:Q:874:ARG:C	2.85	0.45
2:E:-4:A:H2'	2:E:-3:A:C8	2.51	0.45
6:A:1282:ASP:C	12:H:345:ILE:HD11	2.36	0.45
6:A:1286:TRP:CD1	6:A:1448:GLU:HB2	2.52	0.45
6:A:210:GLU:N	6:A:211:PRO:HD2	2.32	0.45
10:C:274:ILE:HG21	10:C:385:PHE:CD2	2.51	0.45
10:C:470:ALA:HB1	10:C:486:VAL:HG12	1.98	0.45
10:C:936:ILE:HG23	10:C:936:ILE:O	2.16	0.45
17:N:216:GLU:O	17:N:220:THR:HG23	2.17	0.45
6:A:1461:TYR:CE1	6:A:1494:LEU:HD13	2.51	0.45
7:B:1343:PHE:O	7:B:1345:PHE:N	2.49	0.45
12:H:312:LEU:CD1	12:H:329:ILE:HD11	2.47	0.45

	the second se	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:Z:5:A:H2'	4:Z:6:U:O4'	2.16	0.45
6:A:507:LEU:HD21	6:A:529:TYR:CE2	2.52	0.45
6:A:583:ILE:HG23	6:A:588:LEU:HD12	1.98	0.45
6:A:1049:LEU:CB	6:A:1258:LEU:HD11	2.47	0.45
13:J:229:THR:HG21	13:J:271:GLN:HA	1.98	0.45
13:J:161:ASP:O	13:J:162:THR:HB	2.17	0.45
21:S:202:TRP:CZ2	21:S:228:THR:HG21	2.52	0.45
5:V:63:G:H2'	5:V:64:U:H6	1.82	0.45
6:A:889:TRP:CH2	6:A:893:ARG:HD3	2.52	0.45
6:A:1214:ARG:N	6:A:1255:ASN:OD1	2.50	0.45
6:A:1657:ILE:CD1	6:A:1815:LEU:HD22	2.47	0.45
10:C:862:TYR:CE2	10:C:908:VAL:HG13	2.51	0.45
16:M:81:CYS:SG	16:M:91:HIS:CE1	3.10	0.45
6:A:1560:THR:HG21	6:A:1609:TRP:NE1	2.32	0.44
21:S:140:LEU:HD23	21:S:152:VAL:HG22	1.99	0.44
6:A:173:LEU:HA	6:A:715:LEU:HD13	1.98	0.44
6:A:639:PHE:CG	6:A:649:LEU:HD22	2.52	0.44
7:B:479:GLU:HA	7:B:498:SER:CA	2.46	0.44
17:N:16:CYS:HB2	17:N:71:CYS:SG	2.57	0.44
7:B:1382:LEU:O	7:B:1385:LEU:N	2.50	0.44
10:C:241:VAL:CG1	10:C:273:LEU:HD23	2.46	0.44
10:C:808:LEU:HD22	10:C:944:VAL:HG21	1.99	0.44
17:N:12:ILE:HG23	17:N:16:CYS:SG	2.57	0.44
1:U:39:U:H2'	1:U:40:C:O4'	2.18	0.44
6:A:264:ILE:HD11	6:A:647:PHE:N	2.33	0.44
6:A:1090:ILE:HD11	6:A:1104:ILE:HD11	1.99	0.44
6:A:1336:ASN:HB3	6:A:1400:ILE:HD12	1.99	0.44
6:A:1820:ARG:O	6:A:1824:GLN:N	2.50	0.44
10:C:223:ASP:OD1	10:C:224:GLU:N	2.50	0.44
11:G:18:GLN:HG3	11:G:19:GLN:N	2.32	0.44
12:H:292:LYS:CD	12:H:328:ILE:HD11	2.47	0.44
6:A:458:PHE:CE2	10:C:336:ILE:HD11	2.52	0.44
6:A:719:ILE:HB	6:A:720:PRO:CD	2.47	0.44
6:A:724:ARG:HD3	19:P:31:LEU:HD11	1.99	0.44
10:C:444:GLN:N	10:C:445:PRO:CD	2.81	0.44
6:A:687:ILE:HD11	6:A:706:PRO:CG	2.48	0.44
10:C:905:GLN:NE2	10:C:936:ILE:HD13	2.32	0.44
13:J:248:ILE:HD13	13:J:272:VAL:HG21	2.00	0.44
2:E:-4:A:H2'	2:E:-3:A:H8	1.83	0.44
6:A:759:ARG:CD	6:A:783:LEU:HD13	2.41	0.44
6:A:1371:VAL:HG11	6:A:1397:LEU:HD11	1.98	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
10:C:708:ILE:HD12	10:C:708:ILE:N	2.33	0.44
6:A:189:VAL:CG2	6:A:202:VAL:HG13	2.48	0.44
6:A:588:LEU:HD22	6:A:613:SER:HA	2.00	0.44
16:M:114:ARG:NE	16:M:127:ILE:HG21	2.32	0.44
16:M:173:ILE:HG12	16:M:184:VAL:HG13	1.99	0.44
21:S:140:LEU:CD2	21:S:155:LEU:HD22	2.48	0.44
21:S:160:CYS:HB3	21:S:169:TRP:CH2	2.53	0.44
6:A:1372:LYS:HD2	6:A:1378:LYS:HA	2.00	0.43
6:A:1944:LEU:HD23	6:A:1956:ILE:HG23	2.00	0.43
10:C:658:ASP:HB3	10:C:663:TYR:CE2	2.52	0.43
16:M:74:LEU:HA	16:M:112:PHE:CE1	2.53	0.43
17:N:125:ILE:HG21	17:N:135:ILE:CD1	2.45	0.43
6:A:268:LEU:HD13	6:A:277:LYS:CB	2.47	0.43
6:A:2278:SER:O	6:A:2282:ALA:HB2	2.18	0.43
13:J:129:TRP:HB2	13:J:385:GLN:HE22	1.83	0.43
13:J:156:ILE:HD11	13:J:188:VAL:HG21	2.00	0.43
13:J:277:VAL:HG13	13:J:279:PRO:HD2	2.00	0.43
21:S:229:VAL:HG22	21:S:238:TRP:CZ2	2.50	0.43
6:A:1021:PRO:O	6:A:1025:VAL:HG23	2.17	0.43
6:A:1409:ALA:HB3	6:A:1424:HIS:O	2.18	0.43
8:D:43:LEU:HD21	8:D:86:ILE:CD1	2.47	0.43
10:C:862:TYR:CG	10:C:908:VAL:HG22	2.53	0.43
13:J:142:VAL:HG12	13:J:142:VAL:O	2.18	0.43
17:N:91:ILE:CD1	17:N:125:ILE:HD12	2.48	0.43
21:S:193:VAL:HG11	21:S:202:TRP:CH2	2.54	0.43
21:S:467:GLN:CB	21:S:471:LEU:CB	2.93	0.43
4:Z:34:G:H21	6:A:1325:SER:HG	1.59	0.43
6:A:239:PHE:CE1	6:A:656:ILE:HD11	2.53	0.43
6:A:796:ASN:HD22	6:A:858:LYS:HG3	1.82	0.43
6:A:1375:LEU:CD1	6:A:1614:ILE:HD13	2.49	0.43
10:C:225:THR:HG21	10:C:252:LEU:CD2	2.48	0.43
14:K:35:ALA:CB	21:S:158:LYS:HE3	2.48	0.43
17:N:67:GLN:HB3	17:N:120:LEU:HD23	2.00	0.43
10:C:335:SER:HB2	10:C:336:ILE:HD12	1.99	0.43
17:N:71:CYS:HB3	17:N:74:CYS:HB2	2.00	0.43
1:U:79:C:H3'	1:U:80:G:C5'	2.49	0.43
6:A:1085:LYS:O	6:A:1088:VAL:HG13	2.18	0.43
12:H:381:LEU:HD21	12:H:419:PHE:CA	2.49	0.43
6:A:834:ILE:CD1	6:A:845:VAL:HG23	2.49	0.43
8:D:11:TYR:CE1	11:G:12:LEU:HD21	2.54	0.43
10:C:888:ILE:HG23	10:C:902:VAL:HG23	2.00	0.43

	as pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
15:L:73:ILE:HG23	15:L:77:LEU:HD23	2.00	0.43
16:M:250:MET:SD	17:N:139:LEU:HD21	2.59	0.43
6:A:954:ILE:HG23	6:A:991:THR:HG23	2.00	0.43
16:M:247:LEU:HA	16:M:250:MET:HG2	1.99	0.43
18:O:211:ILE:O	21:S:83:ARG:NH2	2.52	0.43
6:A:136:PRO:HB3	6:A:562:ILE:HD13	2.01	0.43
7:B:1163:SER:O	32:Q:367:GLN:CB	2.67	0.43
10:C:94:VAL:HG12	13:J:154:TRP:CZ2	2.54	0.43
10:C:905:GLN:HE22	10:C:936:ILE:HD13	1.84	0.43
21:S:72:ALA:HB1	21:S:88:PHE:CZ	2.54	0.43
6:A:849:LEU:HD13	6:A:849:LEU:C	2.40	0.43
6:A:1347:ARG:HD2	6:A:1447:TRP:CD2	2.54	0.43
6:A:1387:VAL:HG12	6:A:1610:TRP:CD2	2.53	0.43
10:C:78:MET:SD	10:C:78:MET:N	2.92	0.43
10:C:242:VAL:HG22	10:C:277:LEU:HD11	2.01	0.43
10:C:381:LEU:HA	10:C:384:ILE:HD12	1.99	0.43
14:K:127:VAL:HG13	17:N:31:GLY:O	2.18	0.43
1:U:105:A:H2'	1:U:106:A:C8	2.54	0.42
4:Z:26:G:C2	5:V:59:A:C5	3.07	0.42
6:A:305:LEU:HD22	10:C:390:SER:HA	2.01	0.42
6:A:785:HIS:CE1	14:K:168:ALA:HB2	2.54	0.42
6:A:1737:GLN:HE21	6:A:1737:GLN:HA	1.84	0.42
10:C:861:ILE:HA	10:C:907:PRO:HA	2.01	0.42
18:O:211:ILE:HD12	21:S:48:ARG:CZ	2.49	0.42
6:A:556:TYR:CG	14:K:120:ASP:HB3	2.54	0.42
6:A:1089:VAL:HG22	6:A:1098:VAL:HG22	2.01	0.42
7:B:1182:ALA:O	32:Q:496:ARG:CA	2.59	0.42
10:C:599:THR:HG23	10:C:599:THR:O	2.18	0.42
1:U:74:U:O2	1:U:78:A:C2	2.72	0.42
6:A:139:LEU:HD13	6:A:193:TYR:CD2	2.55	0.42
6:A:852:LEU:HD23	6:A:978:ILE:HD11	2.01	0.42
6:A:1921:VAL:HG21	6:A:1948:MET:HE1	2.00	0.42
6:A:2388:ARG:O	6:A:2389:PRO:C	2.57	0.42
10:C:104:THR:HG23	10:C:105:ILE:HG23	2.00	0.42
10:C:791:TYR:O	10:C:791:TYR:CG	2.72	0.42
11:G:51:LYS:O	11:G:54:VAL:HG12	2.19	0.42
13:J:200:VAL:HG22	13:J:227:VAL:HB	2.01	0.42
17:N:88:ASP:O	17:N:91:ILE:HG23	2.20	0.42
18:O:211:ILE:CD1	21:S:48:ARG:HB2	2.49	0.42
20:R:13:GLY:O	20:R:15:SER:N	2.52	0.42
10:C:710:VAL:HG22	10:C:820:LEU:HD23	2.01	0.42

	h h o	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
15:L:119:THR:HG22	15:L:120:CYS:N	2.34	0.42	
17:N:67:GLN:HA	17:N:119:LYS:HA	2.02	0.42	
22:T:119:ALA:HB1	22:T:128:ILE:CB	2.50	0.42	
1:U:30:A:H2'	1:U:31:G:O4'	2.20	0.42	
5:V:86:G:C2	5:V:87:U:H1'	2.54	0.42	
6:A:172:ILE:HG23	6:A:629:MET:CG	2.49	0.42	
6:A:783:LEU:HD12	6:A:783:LEU:C	2.39	0.42	
10:C:605:ILE:HD12	10:C:652:MET:HG3	2.01	0.42	
1:U:23:C:O2	1:U:23:C:O4'	2.37	0.42	
5:V:55:G:N7	18:O:35:LYS:HB3	2.35	0.42	
6:A:376:ARG:HG3	10:C:909:ILE:HG21	2.01	0.42	
6:A:719:ILE:HB	6:A:720:PRO:HD2	2.01	0.42	
6:A:1342:LEU:HD23	6:A:1360:LEU:HD21	2.02	0.42	
6:A:1357:LEU:HD11	12:H:303:LEU:CD2	2.49	0.42	
10:C:470:ALA:HB2	10:C:488:ILE:HA	2.02	0.42	
10:C:472:VAL:HG21	10:C:567:ILE:HG21	2.01	0.42	
2:E:-3:A:H2'	2:E:-2:A:O4'	2.19	0.42	
4:Z:38:U:OP2	6:A:1643:ILE:HD11	2.20	0.42	
6:A:1064:THR:HG22	18:O:81:PRO:HD2	2.02	0.42	
6:A:1369:ASN:O	6:A:1373:LEU:N	2.46	0.42	
13:J:114:ARG:HB3	14:K:48:GLN:HE22	1.85	0.42	
6:A:218:SER:O	6:A:221:TRP:HB3	2.20	0.42	
6:A:644:VAL:HG22	6:A:648:GLN:HB2	2.02	0.42	
17:N:259:GLY:O	17:N:263:VAL:HG23	2.20	0.42	
14:K:120:ASP:OD2	14:K:123:LEU:HD13	2.20	0.42	
16:M:249:MET:SD	17:N:86:LEU:HD13	2.60	0.42	
18:O:564:TYR:CB	18:O:566:TYR:H	2.33	0.42	
5:V:36:U:O2	5:V:36:U:C2'	2.68	0.42	
6:A:929:LEU:HD12	6:A:1589:LYS:CG	2.50	0.42	
10:C:400:LEU:HD12	10:C:408:LEU:HD21	2.02	0.42	
16:M:114:ARG:CD	16:M:127:ILE:HG21	2.50	0.42	
18:O:22:LYS:HB2	18:O:56:LEU:HD12	2.02	0.42	
20:R:32:PRO:HB3	20:R:35:SER:CB	2.50	0.42	
6:A:756:LEU:CD1	19:P:12:ARG:HD3	2.50	0.41	
10:C:418:GLN:HB3	10:C:419:PRO:HD3	2.02	0.41	
13:J:334:TRP:CD1	13:J:334:TRP:N	2.88	0.41	
17:N:16:CYS:CB	17:N:71:CYS:SG	3.08	0.41	
17:N:25:MET:HB3	17:N:46:PHE:HB3	2.01	0.41	
21:S:140:LEU:HD21	21:S:155:LEU:HD22	2.01	0.41	
1:U:38:A:H2'	1:U:39:U:O4'	2.20	0.41	
5:V:61:C:H2'	5:V:62:A:O4'	2.19	0.41	

	t i c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
6:A:756:LEU:HD11	19:P:12:ARG:HD3	2.03	0.41
10:C:225:THR:HG21	10:C:252:LEU:HD21	2.02	0.41
10:C:608:GLN:HE21	10:C:641:GLU:HG2	1.85	0.41
13:J:276:PRO:HB2	14:K:63:ILE:HD12	2.02	0.41
16:M:48:VAL:HG22	16:M:220:GLY:N	2.36	0.41
16:M:247:LEU:HA	16:M:250:MET:CG	2.51	0.41
21:S:332:GLU:HA	21:S:334:PHE:CB	2.50	0.41
5:V:74:U:C5	13:J:221:TYR:CD2	3.07	0.41
6:A:168:LEU:N	6:A:169:PRO:HD2	2.35	0.41
22:T:397:ASN:O	22:T:400:ALA:HB3	2.20	0.41
7:B:1610:LEU:O	7:B:1660:ALA:O	2.38	0.41
10:C:273:LEU:HA	10:C:277:LEU:HD12	2.02	0.41
10:C:621:ALA:CB	10:C:664:ALA:HB2	2.48	0.41
32:Q:916:ALA:HB3	32:Q:951:VAL:H	1.85	0.41
6:A:565:VAL:CG1	6:A:637:VAL:HG22	2.51	0.41
6:A:1316:ILE:HD13	6:A:1316:ILE:HA	1.94	0.41
6:A:1749:SER:O	6:A:1752:VAL:HG22	2.20	0.41
12:H:334:LEU:HD12	12:H:380:GLN:HB3	2.02	0.41
6:A:252:GLU:HA	6:A:255:ILE:HD12	2.02	0.41
12:H:330:ILE:HD12	12:H:387:PHE:HE2	1.86	0.41
32:Q:603:ILE:C	32:Q:605:ASP:H	2.24	0.41
6:A:1609:TRP:CE3	6:A:1823:LEU:HD13	2.56	0.41
10:C:314:ALA:CB	10:C:321:THR:HG22	2.50	0.41
12:H:292:LYS:HD3	12:H:328:ILE:HD11	2.01	0.41
16:M:156:ILE:HG21	16:M:175:TYR:CE1	2.55	0.41
6:A:480:TYR:OH	10:C:318:LEU:HD21	2.20	0.41
6:A:562:ILE:HG22	6:A:563:ASP:O	2.21	0.41
6:A:666:ILE:HG22	6:A:673:VAL:HG21	2.03	0.41
6:A:758:LEU:HD23	6:A:759:ARG:N	2.36	0.41
6:A:831:ARG:CD	6:A:848:ASN:HD21	2.34	0.41
6:A:937:LEU:HD13	6:A:1590:LEU:HD21	2.01	0.41
6:A:976:GLN:HG3	6:A:1310:LYS:HB3	2.02	0.41
6:A:1014:LYS:N	6:A:1015:PRO:CD	2.84	0.41
10:C:287:LYS:HE3	10:C:291:ILE:HD11	2.03	0.41
17:N:82:ILE:HG22	17:N:86:LEU:HB2	2.02	0.41
5:V:22:G:H2'	5:V:23:G:O4'	2.21	0.41
6:A:370:ILE:HD12	6:A:1418:THR:OG1	2.21	0.40
6:A:390:LEU:N	10:C:653:ASP:OD1	2.54	0.40
6:A:831:ARG:HD3	6:A:848:ASN:HD21	1.86	0.40
6:A:1011:ASN:HD22	6:A:1144:PHE:HA	1.86	0.40
10:C:152:LEU:HD11	10:C:319:GLY:HA2	2.02	0.40

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
10:C:632:VAL:HG12	10:C:634:ILE:HG13	2.03	0.40
10:C:677:PHE:HB3	10:C:857:LEU:HD22	2.03	0.40
21:S:189:TYR:O	21:S:192:TYR:HB3	2.21	0.40
1:U:45:A:N6	1:U:74:U:H3	2.19	0.40
6:A:1620:TYR:CD2	6:A:1621:VAL:HG13	2.56	0.40
10:C:223:ASP:O	10:C:227:VAL:HG23	2.21	0.40
10:C:749:LYS:O	10:C:753:THR:HG23	2.21	0.40
18:O:211:ILE:CD1	21:S:44:ARG:HG3	2.50	0.40
1:U:45:A:OP1	10:C:108:GLN:O	2.40	0.40
6:A:1756:PHE:CZ	6:A:1760:THR:HG21	2.56	0.40
7:B:1795:SER:O	7:B:1796:PRO:C	2.60	0.40
10:C:234:LEU:HD13	10:C:439:ILE:HG23	2.03	0.40
10:C:264:CYS:SG	10:C:312:ILE:HD11	2.61	0.40
10:C:561:ILE:O	10:C:562:VAL:HG13	2.22	0.40
14:K:75:GLN:HA	14:K:78:VAL:HG12	2.03	0.40
4:Z:1102:C:O2	4:Z:1102:C:C2'	2.69	0.40
5:V:86:G:C2	21:S:57:TYR:CE2	3.10	0.40
6:A:175:LEU:HD22	6:A:629:MET:CE	2.52	0.40
6:A:766:ILE:HG21	6:A:782:ILE:HD13	2.04	0.40
6:A:1223:GLY:HA2	6:A:1248:VAL:HG11	2.02	0.40
6:A:1392:LYS:HB3	6:A:1601:ILE:HD11	2.03	0.40
6:A:1603:ASN:HD22	6:A:1604:ARG:N	2.19	0.40
6:A:1881:THR:HG21	6:A:1920:LEU:HD23	2.02	0.40
7:B:833:THR:O	7:B:834:LEU:C	2.58	0.40
7:B:960:ILE:O	7:B:964:GLY:N	2.54	0.40
10:C:241:VAL:HG22	10:C:267:ILE:HG23	2.04	0.40
13:J:345:PHE:CE2	13:J:364:LEU:HD22	2.57	0.40
20:R:31:ARG:O	20:R:33:GLN:N	2.47	0.40
6:A:1054:LEU:HD13	6:A:1121:ILE:HG21	2.03	0.40
6:A:1491:ILE:HD13	6:A:1491:ILE:HA	1.97	0.40
13:J:198:PHE:CD1	13:J:239:ILE:HD13	2.57	0.40
13:J:321:PHE:CE1	13:J:336:LEU:CD2	3.05	0.40
16:M:109:LEU:HA	16:M:116:LYS:HG2	2.03	0.40
17:N:84:ILE:O	17:N:87:ARG:HG3	2.21	0.40
18:O:148:GLU:O	18:O:152:LEU:HD23	2.21	0.40
18:O:211:ILE:HD12	21:S:48:ARG:NE	2.36	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
6	А	2160/2413~(90%)	1997~(92%)	152 (7%)	11 (0%)	25	64
7	В	1704/2163~(79%)	1585~(93%)	111 (6%)	8 (0%)	25	64
8	D	112/278~(40%)	93~(83%)	17 (15%)	2(2%)	7	35
9	F	44/179~(25%)	41 (93%)	3 (7%)	0	100	100
10	С	872/1008~(86%)	777 (89%)	82 (9%)	13 (2%)	8	40
11	G	95/235~(40%)	89 (94%)	5 (5%)	1 (1%)	12	47
12	Н	389/591~(66%)	362 (93%)	23 (6%)	4 (1%)	13	49
13	J	322/451~(71%)	263 (82%)	47 (15%)	12 (4%)	2	20
14	Κ	155/379~(41%)	146 (94%)	8 (5%)	1 (1%)	22	60
15	L	153/157~(98%)	136 (89%)	15 (10%)	2(1%)	10	43
16	М	250/339~(74%)	228 (91%)	19 (8%)	3 (1%)	11	44
17	Ν	195/364~(54%)	178 (91%)	14 (7%)	3(2%)	8	40
18	Ο	277/590~(47%)	248 (90%)	24 (9%)	5 (2%)	7	35
19	Р	34/175~(19%)	28 (82%)	5 (15%)	1 (3%)	3	23
20	R	93/135~(69%)	81 (87%)	11 (12%)	1 (1%)	12	47
21	S	432/687~(63%)	416 (96%)	14 (3%)	2 (0%)	25	64
22	Т	536/859~(62%)	506 (94%)	21 (4%)	9 (2%)	7	37
23	b	76/196~(39%)	70 (92%)	6 (8%)	0	100	100
23	k	76/196~(39%)	65~(86%)	9 (12%)	2(3%)	4	26
24	d	80/101~(79%)	72 (90%)	7 (9%)	1 (1%)	10	43
24	n	80/101~(79%)	66 (82%)	14 (18%)	0	100	100
25	е	71/94~(76%)	68 (96%)	3 (4%)	0	100	100
25	р	71/94~(76%)	63 (89%)	7 (10%)	1 (1%)	9	41
26	f	$\overline{70/86}$ (81%)	66 (94%)	3 (4%)	1 (1%)	9	41
26	q	70/86~(81%)	61 (87%)	9 (13%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
27	g	65/77~(84%)	64 (98%)	1 (2%)	0	100	100
27	r	65/77~(84%)	55~(85%)	9 (14%)	1 (2%)	8	40
28	h	78/146~(53%)	74 (95%)	4 (5%)	0	100	100
28	1	75/146~(51%)	63~(84%)	10 (13%)	2(3%)	4	25
29	j	92/110~(84%)	87~(95%)	5 (5%)	0	100	100
29	m	92/110~(84%)	84 (91%)	8 (9%)	0	100	100
30	W	160/238~(67%)	117 (73%)	35 (22%)	8 (5%)	1	16
31	Y	82/111 (74%)	77 (94%)	5 (6%)	0	100	100
32	Q	609/1071~(57%)	486 (80%)	73 (12%)	50 (8%)	1	9
33	t	426/503~(85%)	417 (98%)	9 (2%)	0	100	100
33	u	425/503~(84%)	413 (97%)	12 (3%)	0	100	100
33	v	412/503~(82%)	403 (98%)	6 (2%)	3 (1%)	19	57
33	W	423/503~(84%)	414 (98%)	7 (2%)	2(0%)	25	64
34	S	106/175~(61%)	92 (87%)	8 (8%)	6 (6%)	1	14
All	All	$115\overline{27/16230}~(71\%)$	10551 (92%)	821 (7%)	155 (1%)	13	43

All (155) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
6	А	320	ASP
6	А	737	ARG
7	В	766	ILE
12	Н	414	PRO
16	М	127	ILE
17	N	120	LEU
20	R	14	SER
22	Т	421	ALA
22	Т	477	PRO
22	Т	481	ILE
22	Т	616	PRO
30	W	76	ILE
28	1	98	PRO
27	r	68	ILE
32	Q	370	VAL
32	Q	380	THR
32	Q	399	SER
32	Q	400	ILE

Mol	Chain	Res	Type
32	Q	401	VAL
32	Q	440	ASP
32	Q	443	CYS
32	Q	466	LYS
32	Q	470	VAL
32	Q	471	ILE
32	Q	478	ARG
32	Q	502	ILE
32	Q	503	ILE
32	Q	546	GLU
32	Q	653	VAL
32	Q	654	ILE
32	Q	655	ASP
32	Q	707	PHE
32	Q	737	THR
32	Q	748	LYS
32	Q	749	PRO
32	Q	799	ASN
32	Q	836	PHE
32	Q	917	LYS
32	Q	925	VAL
32	Q	948	PRO
34	s	94	LYS
34	s	111	VAL
34	s	133	PRO
6	А	588	LEU
6	А	1424	HIS
6	А	1639	PRO
6	А	1763	ASN
7	В	1693	HIS
10	С	76	VAL
10	С	172	TRP
10	С	269	LYS
10	С	432	GLN
10	C	535	PRO
10	С	901	GLU
12	Н	469	GLY
13	J	162	THR
13	J	245	ASP
13	J	277	VAL
13	J	328	THR
16	М	23	PRO

Mol	Chain	Res	Type
18	0	81	PRO
19	Р	9	LEU
30	W	122	ARG
23	k	81	VAL
32	Q	369	VAL
32	Q	374	GLU
32	Q	395	ASP
32	Q	856	ASN
32	Q	857	PHE
32	Q	894	ILE
32	Q	896	SER
32	Q	942	HIS
33	V	109	LEU
34	s	105	PRO
34	S	136	VAL
6	А	1593	ALA
7	В	492	PRO
7	В	1936	ARG
8	D	76	LEU
10	С	574	SER
12	Н	445	LEU
13	J	442	TRP
15	L	38	SER
17	Ν	30	GLN
17	Ν	54	ASN
18	0	214	ASN
18	0	546	HIS
21	S	238	TRP
30	W	95	PRO
28	1	25	VAL
32	Q	451	ASP
32	Q	604	ASN
32	Q	644	SER
32	Q	746	ILE
32	Q	824	ARG
32	Q	929	THR
32	Q	944	LEU
33	V	20	ARG
6	A	660	ILE
7	В	1555	GLU
7	В	1968	ASN
18	0	206	LYS

Mol	Chain	Res	Type
21	S	112	VAL
22	Т	479	PRO
22	Т	615	PHE
30	W	68	PRO
30	W	94	LEU
30	W	129	LEU
23	k	6	VAL
32	Q	504	THR
32	Q	738	ASP
32	Q	839	LYS
32	Q	927	LEU
33	W	20	ARG
34	s	119	SER
6	А	457	ASP
6	A	1491	ILE
8	D	34	MET
10	С	100	LEU
10	С	459	PRO
11	G	41	VAL
13	J	310	SER
13	J	444	PRO
16	М	4	TRP
18	0	216	ASP
22	Т	443	PRO
32	Q	541	VAL
32	Q	704	GLU
32	Q	708	LYS
33	W	17	PRO
7	В	622	LEU
10	С	137	GLY
10	С	807	PRO
12	Н	303	LEU
13	J	226	GLY
$\overline{22}$	Т	391	LEU
32	Q	821	PRO
13	J	137	GLY
32	Q	750	PRO
7	B	791	PRO
10	C	185	ILE
10	C	301	GLY
13	J	279	PRO
14	K	146	VAL

Mol	Chain	Res	Type
15	L	117	GLY
26	f	15	PRO
25	р	74	GLY
13	J	443	ASN
22	Т	37	ILE
30	W	56	ILE
30	W	98	VAL
33	V	36	GLY
6	А	774	ILE
13	J	272	VAL
24	d	82	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
6	А	1701/2182~(78%)	$1580 \ (93\%)$	121 (7%)	12	32
8	D	100/256~(39%)	91 (91%)	9~(9%)	8	24
9	F	26/163~(16%)	25~(96%)	1 (4%)	28	49
10	С	722/910~(79%)	659~(91%)	63~(9%)	8	25
11	G	89/216~(41%)	81 (91%)	8 (9%)	8	24
12	Н	185/552~(34%)	164 (89%)	21 (11%)	4	16
13	J	283/397~(71%)	250~(88%)	33 (12%)	4	16
14	Κ	143/328~(44%)	115 (80%)	28 (20%)	1	7
15	L	138/141~(98%)	129 (94%)	9~(6%)	14	35
16	М	213/296~(72%)	189~(89%)	24 (11%)	4	17
17	Ν	194/332~(58%)	175~(90%)	19 (10%)	6	21
18	Ο	174/525~(33%)	152 (87%)	22 (13%)	3	14
19	Р	26/152~(17%)	21 (81%)	5 (19%)	1	7
20	R	23/121~(19%)	19 (83%)	4 (17%)	1	9
21	S	208/633~(33%)	181 (87%)	27 (13%)	3	14

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
23	b	70/176~(40%)	70 (100%)	0	100	100
24	d	69/89~(78%)	66~(96%)	3~(4%)	25	46
25	е	65/83~(78%)	60~(92%)	5 (8%)	10	30
26	f	63/77~(82%)	61~(97%)	2(3%)	34	53
27	g	58/66~(88%)	57~(98%)	1 (2%)	56	72
28	h	77/129~(60%)	77~(100%)	0	100	100
29	j	79/103~(77%)	76~(96%)	3(4%)	28	49
All	All	4706/7927~(59%)	4298 (91%)	408 (9%)	11	25

All (408) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
6	А	128	TYR
6	А	145	THR
6	А	149	MET
6	А	153	MET
6	А	165	LEU
6	А	173	LEU
6	А	175	LEU
6	А	192	LEU
6	А	204	GLU
6	А	205	THR
6	А	225	ARG
6	А	228	LYS
6	А	244	ASP
6	А	257	ASN
6	А	261	LEU
6	А	265	ASN
6	А	282	ASP
6	А	284	ARG
6	А	286	LEU
6	А	296	THR
6	А	297	SER
6	А	310	ASN
6	А	319	ARG
6	А	326	ASN
6	А	353	GLU
6	А	355	LEU
6	А	405	ASN
6	А	412	GLN

Mol	Chain	Res	Type
6	А	425	ASP
6	А	479	LEU
6	А	493	MET
6	А	514	TYR
6	А	555	LYS
6	А	571	LEU
6	А	572	CYS
6	А	591	LEU
6	А	600	LYS
6	А	605	LEU
6	А	615	LEU
6	А	630	LYS
6	A	631	LEU
6	A	663	LEU
6	А	674	MET
6	A	690	LYS
6	А	705	GLN
6	А	728	ASN
6	А	737	ARG
6	А	743	LYS
6	А	749	ARG
6	А	751	ASP
6	А	753	TYR
6	А	755	ASP
6	А	758	LEU
6	А	760	ASN
6	А	770	MET
6	А	775	ARG
6	А	778	LYS
6	A	783	LEU
6	A	785	HIS
6	A	811	ILE
6	A	821	ASP
6	A	832	GLU
6	A	846	LYS
6	A	852	LEU
6	A	919	LEU
6	A	922	VAL
6	A	944	TYR
6	A	968	ASP
6	A	971	MET
6	A	972	MET

Mol	Chain	Res	Type
6	А	1004	ASP
6	А	1019	GLU
6	А	1020	ILE
6	А	1024	LEU
6	А	1078	ILE
6	А	1099	ASN
6	А	1103	LEU
6	А	1165	LEU
6	А	1167	ARG
6	А	1168	ILE
6	А	1212	ARG
6	А	1217	ARG
6	А	1277	GLU
6	А	1282	ASP
6	А	1288	LEU
6	А	1315	ARG
6	А	1317	ARG
6	А	1323	SER
6	А	1326	THR
6	А	1327	THR
6	А	1338	SER
6	А	1345	TYR
6	А	1346	PHE
6	А	1347	ARG
6	А	1354	GLU
6	А	1373	LEU
6	А	1378	LYS
6	А	1379	MET
6	А	1382	ARG
6	A	1429	MET
6	A	1433	ASP
6	А	1434	GLU
6	A	1436	LEU
6	A	1515	LYS
6	А	1520	GLU
6	A	1543	ARG
6	A	1574	PHE
6	A	1589	LYS
6	А	1598	LEU
6	A	1600	GLN
6	A	1603	ASN
6	А	1644	SER

Mol	Chain	Res	Type
6	А	1647	GLN
6	А	1668	ILE
6	А	1707	HIS
6	А	1708	GLU
6	А	1737	GLN
6	А	1742	ASP
6	А	1803	ARG
6	А	1806	MET
6	А	2048	TRP
8	D	3	GLU
8	D	8	ASN
8	D	25	ARG
8	D	47	PHE
8	D	49	MET
8	D	71	LEU
8	D	79	ILE
8	D	99	THR
8	D	114	ARG
9	F	20	ARG
10	С	92	GLU
10	С	100	LEU
10	С	103	HIS
10	С	109	LEU
10	С	124	LEU
10	С	132	ARG
10	С	139	ILE
10	С	153	LEU
10	С	156	ASP
10	С	206	LYS
10	С	211	ASN
10	С	219	VAL
10	С	233	ASP
10	С	234	LEU
10	С	255	GLN
10	С	272	ARG
10	C	273	LEU
10	С	283	ASP
10	С	315	SER
10	С	347	ARG
10	С	358	ASN
10	С	359	PHE
10	С	362	LYS

Mol	Chain	Res	Type
10	С	381	LEU
10	С	400	LEU
10	С	401	ARG
10	С	431	GLN
10	С	447	GLU
10	С	453	THR
10	С	458	ILE
10	С	468	LEU
10	С	469	TRP
10	С	471	HIS
10	С	474	LYS
10	С	475	THR
10	С	534	THR
10	С	545	LEU
10	С	562	VAL
10	С	576	THR
10	С	590	LYS
10	С	602	VAL
10	С	610	LEU
10	С	673	PRO
10	С	758	ASP
10	С	768	PHE
10	С	774	LEU
10	С	784	SER
10	С	791	TYR
10	С	794	GLN
10	С	799	PHE
10	С	803	VAL
10	С	830	ASN
10	С	837	GLN
10	С	851	LEU
10	C	861	ILE
10	C	902	VAL
10	С	927	MET
10	C	933	TRP
10	С	965	ASP
10	С	970	THR
10	С	971	ARG
10	С	989	LEU
10	С	992	TYR
11	G	4	ASN
11	G	18	GLN

Mol	Chain	Res	Type
11	G	28	ASP
11	G	31	ARG
11	G	33	GLN
11	G	74	GLN
11	G	78	LEU
11	G	94	TRP
12	Н	256	ASP
12	Н	297	LEU
12	Н	307	GLU
12	Н	313	LEU
12	Н	314	LYS
12	Н	334	LEU
12	Н	348	GLU
12	Н	357	TRP
12	Н	363	GLU
12	Н	367	GLN
12	Н	373	ILE
12	Н	391	LEU
12	Н	396	PHE
12	Н	399	MET
12	Н	419	PHE
12	Н	421	LYS
12	Н	440	LEU
12	Н	444	LYS
12	Н	468	ILE
12	Н	470	LEU
12	Н	473	LEU
13	J	139	LEU
13	J	143	ARG
13	J	148	ASP
13	J	151	ASP
13	J	156	ILE
13	J	161	ASP
13	J	183	MET
13	J	194	HIS
13	J	202	GLU
13	J	215	GLN
13	J	218	ARG
13	J	224	LEU
13	J	247	VAL
13	J	248	ILE
13	J	257	ILE

Mol	Chain	Res	Type
13	J	269	ILE
13	J	274	CYS
13	J	275	THR
13	J	284	SER
13	J	286	THR
13	J	290	VAL
13	J	295	VAL
13	J	314	THR
13	J	329	ASP
13	J	332	ARG
13	J	334	TRP
13	J	336	LEU
13	J	356	LEU
13	J	377	ASP
13	J	387	LEU
13	J	389	THR
13	J	396	LEU
13	J	402	VAL
14	K	33	GLN
14	K	36	LYS
14	K	40	LEU
14	K	47	ARG
14	K	48	GLN
14	K	52	GLU
14	K	62	GLU
14	K	66	CYS
14	K	77	LEU
14	Κ	81	LYS
14	K	87	ASN
14	K	105	LEU
14	K	106	LEU
14	K	111	HIS
14	K	112	ILE
14	K	132	ARG
14	Κ	147	LEU
14	K	172	TRP
14	K	178	TYR
14	K	182	LEU
14	K	183	GLU
14	К	197	ILE
14	Κ	202	MET
14	K	203	LYS

Mol	Chain	Res	Type
14	K	204	LEU
14	K	213	LYS
14	Κ	217	GLN
14	K	218	GLU
15	L	3	ARG
15	L	37	LYS
15	L	54	GLN
15	L	59	ARG
15	L	61	ARG
15	L	85	LYS
15	L	123	ARG
15	L	139	GLN
15	L	142	PHE
16	М	5	ARG
16	М	10	LYS
16	М	18	LEU
16	М	26	THR
16	М	33	TRP
16	М	38	SER
16	М	44	ASN
16	М	109	LEU
16	М	111	CYS
16	М	114	ARG
16	М	116	LYS
16	М	127	ILE
16	М	132	LYS
16	М	135	LYS
16	М	136	THR
16	М	149	LYS
16	М	172	ARG
16	М	181	CYS
16	М	187	LYS
16	М	191	ASN
16	М	216	ARG
16	М	236	LYS
16	М	245	GLU
16	М	251	VAL
17	N	19	ASP
17	N	22	ASN
17	N	30	GLN
17	N	32	SER
17	N	35	LYS

Mol	Chain	Res	Type
17	N	39	LEU
17	N	48	THR
17	N	54	ASN
17	N	55	ILE
17	N	87	ARG
17	N	91	ILE
17	N	93	LEU
17	Ν	94	VAL
17	N	109	MET
17	N	117	ASN
17	N	135	ILE
17	N	216	GLU
17	N	254	GLN
17	N	321	GLN
18	0	27	LYS
18	0	35	LYS
18	0	40	LEU
18	0	44	THR
18	0	46	ARG
18	0	53	ASN
18	0	65	PHE
18	0	73	LEU
18	0	91	MET
18	0	93	ARG
18	0	156	ARG
18	0	158	ARG
18	0	170	LYS
18	0	175	MET
18	0	184	GLU
18	0	188	ARG
18	0	192	LYS
18	0	196	ILE
18	0	204	LYS
18	0	205	LYS
18	0	206	LYS
18	0	247	LYS
19	Р	8	GLN
19	P	9	LEU
19	Р	16	LYS
19	P	29	ARG
19	P	40	ARG
$\overline{20}$	R	6	ILE

Mol	Chain	Res	Type
20	R	8	LEU
20	R	15	SER
20	R	16	THR
21	S	60	ARG
21	S	67	GLN
21	S	71	TYR
21	S	77	GLU
21	S	78	GLN
21	S	86	SER
21	S	92	LEU
21	S	117	HIS
21	S	139	TYR
21	S	143	GLU
21	S	144	GLU
21	S	152	VAL
21	S	156	TYR
21	S	158	LYS
21	S	173	VAL
21	S	188	ILE
21	S	189	TYR
21	S	192	TYR
21	S	209	GLU
21	S	216	GLU
21	S	224	LEU
21	S	226	ILE
21	S	234	ASN
21	S	257	GLN
21	S	260	TYR
21	S	263	SER
21	S	266	LEU
$\overline{24}$	d	10	LEU
24	d	20	SER
24	d	76	ASP
$\overline{25}$	е	16	CYS
25	е	18	PHE
$\overline{25}$	е	25	THR
$\overline{25}$	е	79	LYS
25	е	81	LEU
$\overline{26}$	f	36	THR
26	f	79	LEU
27	g	18	ASN
29	j	24	PHE

Continued from previous page...

Mol	Chain	Res	Type
29	j	49	ARG
29	j	82	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (49) such sidechains are listed below:

Mol	Chain	Res	Type
6	А	194	HIS
6	А	216	GLN
6	А	310	ASN
6	А	326	ASN
6	А	344	ASN
6	А	412	GLN
6	А	508	GLN
6	А	733	GLN
6	А	760	ASN
6	А	848	ASN
6	А	948	HIS
6	А	1368	GLN
6	А	1449	ASN
6	А	1568	ASN
6	А	1603	ASN
6	А	1737	GLN
6	А	2018	ASN
10	С	158	HIS
10	С	260	ASN
10	С	289	ASN
10	С	358	ASN
10	С	418	GLN
10	С	608	GLN
10	С	776	ASN
10	С	837	GLN
11	G	9	ASN
11	G	33	GLN
13	J	273	GLN
14	K	33	GLN
14	К	174	ASN
14	К	210	ASN
16	М	25	GLN
16	М	44	ASN
17	Ν	22	ASN
18	0	82	ASN
21	S	61	ASN

Mol	Chain	Res	Type
21	S	78	GLN
21	S	79	HIS
21	S	200	GLN
21	S	214	ASN
21	S	234	ASN
21	S	236	GLN
24	d	41	ASN
25	е	15	ASN
25	е	34	GLN
26	f	24	ASN
27	g	18	ASN
27	g	66	ASN
28	h	86	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	U	138/179~(77%)	66~(47%)	13 (9%)
2	Е	15/16~(93%)	10 (66%)	2(13%)
3	Ι	31/76~(40%)	15 (48%)	0
4	Ζ	162/1175~(13%)	58~(35%)	11 (6%)
5	V	96/112~(85%)	35~(36%)	6~(6%)
All	All	442/1558~(28%)	184 (41%)	32~(7%)

All (184) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	U	13	А
1	U	14	G
1	U	15	А
1	U	16	U
1	U	18	А
1	U	20	U
1	U	22	G
1	U	23	С
1	U	24	G
1	U	25	G
1	U	26	А
1	U	27	G
1	U	28	G
1	U	31	G

Mol	Chain	Res	Type
1	U	33	U
1	U	34	С
1	U	36	A
1	U	40	С
1	U	42	A
1	U	43	G
1	U	44	А
1	U	48	G
1	U	50	G
1	U	53	С
1	U	63	С
1	U	65	U
1	U	67	U
1	U	68	A
1	U	70	А
1	U	71	А
1	U	74	U
1	U	75	А
1	U	76	U
1	U	77	А
1	U	78	А
1	U	79	С
1	U	80	G
1	U	81	А
1	U	82	А
1	U	84	А
1	U	87	G
1	U	89	U
1	U	92	U
1	U	94	С
1	U	96	U
1	U	97	U
1	U	101	С
1	U	104	G
1	U	107	С
1	U	108	С
1	U	109	A
1	U	112	С
1	U	113	G
1	U	115	G
1	U	116	U
1	U	119	U

Mol	Chain	Res	Type
1	U	121	U
1	U	126	А
1	U	130	А
1	U	133	С
1	U	134	А
1	U	135	G
1	U	145	U
1	U	170	U
1	U	171	U
1	U	173	U
2	Е	-14	А
2	Е	-11	G
2	Е	-10	А
2	Е	-9	U
2	Е	-8	С
2	Е	-7	U
2	Е	-6	А
2	Ε	-5	G
2	Е	-4	А
2	Е	-1	G
3	Ι	3	А
3	Ι	6	U
3	Ι	9	А
3	Ι	10	А
3	Ι	56	G
3	Ι	58	U
3	Ι	61	U
3	Ι	62	А
3	Ι	63	U
3	Ι	65	U
3	Ι	66	A
3	Ι	69	А
3	Ι	71	С
3	Ι	73	А
3	Ι	74	A
4	Ζ	5	A
4	Z	15	С
4	Z	16	U
4	Z	17	U
4	Ζ	18	U
4	Ζ	19	U
4	Z	20	G

Mol	Chain	Res	Type
4	Z	21	G
4	Z	25	А
4	Z	30	A
4	Z	32	G
4	Z	33	U
4	Z	37	G
4	Ζ	40	U
4	Z	43	G
4	Z	46	С
4	Z	47	U
4	Z	63	U
4	Z	64	G
4	Z	67	A
4	Ζ	68	U
4	Z	81	С
4	Ζ	106	A
4	Z	108	А
4	Z	110	А
4	Z	112	А
4	Z	113	U
4	Z	114	U
4	Z	115	U
4	Z	116	U
4	Z	117	U
4	Z	119	G
4	Z	120	G
4	Z	141	А
4	Z	1094	G
4	Z	1096	С
4	Ζ	1098	С
4	Z	1099	G
4	Z	1100	A
4	Z	1101	С
4	Z	1102	С
4	Z	1103	C
4	Ζ	1104	U
4	Z	1106	G
4	Z	1107	С
4	Z	1108	A
4	Z	1120	G
4	Z	1123	С
4	Z	1124	U

Mol	Chain	Res	Type
4	Z	1125	U
4	Ζ	1126	G
4	Ζ	1139	G
4	Z	1144	U
4	Ζ	1145	U
4	Ζ	1146	G
4	Ζ	1149	G
4	Ζ	1152	U
4	Ζ	1166	G
5	V	3	U
5	V	5	G
5	V	10	G
5	V	17	U
5	V	22	G
5	V	27	U
5	V	28	U
5	V	31	G
5	V	34	А
5	V	35	А
5	V	36	U
5	V	37	U
5	V	40	А
5	V	41	А
5	V	42	А
5	V	43	С
5	V	52	G
5	V	54	U
5	V	62	А
5	V	66	С
5	V	68	С
5	V	73	A
5	V	74	U
5	V	75	A
5	V	76	А
5	V	80	U
5	V	81	G
5	V	84	С
5	V	85	С
5	V	88	U
5	V	89	U
5	V	91	А
5	V	92	С

Continued from previous page...

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type
5	V	93	А
5	V	99	А

All (32) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	U	23	С
1	U	24	G
1	U	26	А
1	U	27	G
1	U	33	U
1	U	39	U
1	U	43	G
1	U	45	А
1	U	64	С
1	U	76	U
1	U	78	А
1	U	96	U
1	U	172	U
2	Ε	-10	А
2	Е	-9	U
4	Ζ	16	U
4	Ζ	19	U
4	Ζ	20	G
4	Ζ	32	G
4	Ζ	112	А
4	Ζ	114	U
4	Ζ	115	U
4	Z	118	U
4	Z	1123	C
4	Z	1124	U
4	Ζ	1145	U
5	V	16	C
5	V	53	A
5	V	60	G
5	V	74	U
5	V	84	С
5	V	92	C

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 9 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Ros Linl		Bo	ond leng	$_{\rm ths}$	B	ond ang	les
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
38	GTP	С	1101	-	26,34,34	0.88	1 (3%)	32,54,54	1.64	5 (15%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
38	GTP	С	1101	-	-	6/18/38/38	0/3/3/3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
38	С	1101	GTP	C6-N1	-2.35	1.34	1.37

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
38	С	1101	GTP	PB-O3B-PG	-4.90	116.03	132.83
38	С	1101	GTP	PA-O3A-PB	-3.58	120.56	132.83
38	С	1101	GTP	C5-C6-N1	2.89	119.06	113.95
38	С	1101	GTP	O6-C6-C5	-2.72	119.07	124.37
38	С	1101	GTP	C8-N7-C5	2.53	107.81	102.99

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
38	С	1101	GTP	C5'-O5'-PA-O3A
38	С	1101	GTP	C5'-O5'-PA-O1A
38	С	1101	GTP	C3'-C4'-C5'-O5'
38	С	1101	GTP	O4'-C4'-C5'-O5'
38	С	1101	GTP	C4'-C5'-O5'-PA
38	С	1101	GTP	C5'-O5'-PA-O2A

All (6) torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
35	Х	4

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Х	54:UNK	С	55:UNK	N	111.76
1	Х	110:UNK	С	111:UNK	N	53.94
1	Х	36:UNK	С	37:UNK	N	49.39
1	Х	87:UNK	С	88:UNK	N	31.03

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-4057. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 206

Y Index: 206

Z Index: 206

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 228

Y Index: 196

Z Index: 221

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.006. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 4018 $\rm nm^3;$ this corresponds to an approximate mass of 3629 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.100 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.100 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)				
Resolution estimate (A)	0.143	0.5	Half-bit			
Reported by author	10.00	-	-			
Author-provided FSC curve	9.95	21.10	10.32			
Unmasked-calculated*	-	-	_			

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-4057 and PDB model 5LJ5. Per-residue inclusion information can be found in section 3 on page 12.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.006 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.006).

9.4 Atom inclusion (i)

At the recommended contour level, 95% of all backbone atoms, 96% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.006) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.9600	0.1140
А	0.9820	0.1130
В	0.9520	0.0430
С	0.9890	0.1230
D	0.9820	0.1110
Е	1.0000	0.1490
F	0.9910	0.1550
G	0.9910	0.1270
Н	0.9960	0.1600
Ι	1.0000	0.1410
J	0.9900	0.1030
K	0.9870	0.1390
L	0.9990	0.1210
М	0.9880	0.1220
N	0.9910	0.1370
О	0.9600	0.1170
Р	0.9890	0.0910
Q	0.9970	0.0980
R	0.9980	0.2170
S	0.9940	0.1570
Т	1.0000	0.2110
U	1.0000	0.1590
V	1.0000	0.1670
W	0.9990	0.1180
Y	1.0000	0.1230
Z	1.0000	0.1350
b	1.0000	0.1000
d	1.0000	0.1240
e	1.0000	0.1180
f	0.9980	0.1080
g	0.9940	0.1040
h	0.9980	0.1150
j	0.9990	0.1240
k	1.0000	0.1330
1	1.0000	0.1610

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
m	1.0000	0.1750
n	1.0000	0.1600
р	1.0000	0.1770
q	1.0000	0.1890
r	0.9970	0.1630
S	0.9640	0.0670
t	0.7890	0.0310
u	0.4930	0.0330
V	0.9440	0.0720
W	0.6830	0.0100
X	1.0000	0.2770

