

Full wwPDB X-ray Structure Validation Report (i)

Nov 25, 2024 – 07:27 PM EST

PDB ID	:	5IVK
Title	:	The alpha-esterase-7 carboxylesterase, E3, from the blowfly Lucilia cuprina: p
		hosphorylated-enzyme ensemble refinement
Authors	:	Correy, G.J.; Jackson, C.J.
Deposited on	:	2016-03-21
Resolution	:	1.53 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.21
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.004 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.53 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \textbf{Whole archive} \\ \textbf{(\#Entries)} \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$				
R _{free}	164625	3511 (1.56-1.52)				
Ramachandran outliers	177936	3720 (1.56-1.52)				
Sidechain outliers	177891	3717 (1.56-1.52)				
RSRZ outliers	164620	3510 (1.56-1.52)				

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	1-A	577	87%	10%	•••
1	10-A	577	88%	9%	•••
1	11-A	577	89%	8%	•••
1	12-A	577	90%	7%	••
1	13-A	577	87%	10%	•••
1	14-A	577	89%	8%	•••
1	15-A	577	86%	11%	••

Mol	Chain	Length	Quality of chain	
1	16-A	577	88%	9% ••
1	17-A	577	86%	10% ••
1	18-A	577	87%	9% ••
1	19-A	577	86%	11% ••
1	2-A	577	88%	9% ••
1	20-A	577	86%	11% ••
1	21-A	577	85%	12% ••
1	22-A	577	87%	10% ••
1	23-A	577	87%	10% ••
1	24-A	577	86%	11% ••
1	25-A	577	85%	12% ••
1	26-A	577	86%	11% ••
1	27-A	577	88%	9%
1	28-A	577	87%	10%
1	29-A	577	87%	10%
1	3-A	577	800/	8%
1	30-A	577	900/	0%
1	31_A	577	03%	10%
1	32 A	577	0/%	10% ••
1	32-A	577	00%	10% • •
1	24 A	577	87%	10% ••
1	04-A	577	86%	10% ••
	35-A	5/7	88%	9% ••
	36-A	577	88%	9% ••
1	37-A	577	89%	7% ••
1	38-A	577	88%	8% ••

Mol	Chain	Length	Quality of chain		
1	39-A	577	86%	10%	•••
1	4-A	577	87%	10%	•••
1	40-A	577	86%	11%	••
1	41-A	577	87%	9%	•••
1	42-A	577	87%	10%	••
1	43-A	577	86%	11%	••
1	5-A	577	86%	11%	·
1	6-A	577	89%	9%	·
1	7-A	577	89%	8%	•••
1	8-A	577	89%	8%	•
1	9-A	577	88%	9%	•••

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 405539 atoms, of which 192984 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Atom	s			ZeroOcc	AltConf	Trace
1	1-A	566	Total	C 2011	H 4478	N 766	0 846	S 34	0	0	0
1	2-A	566	Total 9035	C 2911 2911	H 4478	N 766	040 0 846	S 34	0	0	0
1	3-A	566	Total 9035	C 2911	H 4478	N 766	010 0 846	S 34	0	0	0
1	4-A	566	Total 9035	C 2911	Н 4478	N 766	0 846	S 34	0	0	0
1	5-A	566	Total 9035	C 2911	Н 4478	N 766	0 846	S 34	0	0	0
1	6-A	566	Total 9035	C 2911	Н 4478	N 766	0 846	S 34	0	0	0
1	7-A	566	Total 9035	C 2911	Н 4478	N 766	0 846	S 34	0	0	0
1	8-A	566	Total 9035	C 2911	Н 4478	N 766	O 846	S 34	0	0	0
1	9-A	566	Total 9035	C 2911	Н 4478	N 766	O 846	S 34	0	0	0
1	10-A	566	Total 9035	C 2911	Н 4478	N 766	O 846	S 34	0	0	0
1	11-A	566	Total 9035	C 2911	Н 4478	N 766	O 846	S 34	0	0	0
1	12-A	566	Total 9035	C 2911	Н 4478	N 766	O 846	S 34	0	0	0
1	13-A	566	Total 9035	C 2911	Н 4478	N 766	O 846	S 34	0	0	0
1	14-A	566	Total 9035	C 2911	Н 4478	N 766	O 846	S 34	0	0	0
1	15-A	566	Total 9035	С 2911	Н 4478	N 766	0 846	S 34	0	0	0
1	16-A	566	Total 9035	C 2911	Н 4478	N 766	0 846	S 34	0	0	0

• Molecule 1 is a protein called Carboxylic ester hydrolase.

Continued from previous page...

Mol	Chain	Residues			Atom	S			ZeroOcc	AltConf	Trace
1	17 1	FCC	Total	С	Η	Ν	Ο	S	0	0	0
	1 <i>(</i> -A	006	9035	2911	4478	766	846	34	0	0	0
1	10 1	FCC	Total	С	Η	Ν	0	S	0	0	0
	18-A	006	9035	2911	4478	766	846	34	0	0	0
1	10 1	566	Total	С	Η	Ν	0	S	0	0	0
	19-A	500	9035	2911	4478	766	846	34	0	0	0
1	20 1	566	Total	С	Η	Ν	0	S	0	0	0
	20-A	500	9035	2911	4478	766	846	34	0	0	0
1	21 A	566	Total	С	Η	Ν	0	S	0	0	0
	21-7	500	9035	2911	4478	766	846	34	0	0	0
1	22 A	566	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
	22-A	500	9035	2911	4478	766	846	34	0	0	0
1	23 A	566	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
	20-A	500	9035	2911	4478	766	846	34	0	0	0
1	24 4	566	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
	24-11	500	9035	2911	4478	766	846	34	0	0	0
1	25 A	566	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
	20-A	500	9035	2911	4478	766	846	34	0	0	0
1	26 A	566	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0
	20-A	500	9035	2911	4478	766	846	34	0	0	0
1	27 Δ	566	Total	\mathbf{C}	Η	Ν	0	\mathbf{S}	0	0	0
1	21-A	500	9035	2911	4478	766	846	34	0	0	0
1	28 1	566	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
	20-A	500	9035	2911	4478	766	846	34	0	0	0
1	20 1	566	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
1	29-A	500	9035	2911	4478	766	846	34	0	0	0
1	30 \	566	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
1	-30-A	500	9035	2911	4478	766	846	34	0	0	0
1	21 A	566	Total	С	Η	Ν	0	S	0	0	0
	51-A	500	9035	2911	4478	766	846	34	0	0	0
1	30 A	566	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
1	52-A	500	9035	2911	4478	766	846	34	0	0	0
1	33 A	566	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
	-00-A	500	9035	2911	4478	766	846	34	0	0	0
1	34 1	566	Total	С	Η	Ν	0	S	0	0	0
1	-04-A	500	9035	2911	4478	766	846	34	0	0	0
1	25 4	566	Total	С	H	Ν	Ο	S	0	0	0
1	-00-A	500	9035	2911	4478	766	846	34		0	0
1	1 96 A	566	Total	С	Η	Ν	Ο	\mathbf{S}	0	0	0
	50-A	500	9035	2911	4478	766	846	34		0	
1	37 \	566	Total	С	Η	Ν	0	S	0	0	0
	JI-A	500	9035	2911	4478	766	846	34		0	

Mol	Chain	Residues			Atom	IS			ZeroOcc	AltConf	Trace
1	20 A	566	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
1	1 50-11	500	9035	2911	4478	766	846	34	0	0	0
1	20 1	566	Total	С	Η	Ν	0	S	0	0	0
	39-A	500	9035	2911	4478	766	846	34	0	0	0
1	1 40 4	566	Total	С	Η	Ν	0	S	0	0	0
1	40-A		9035	2911	4478	766	846	34	0	0	0
1	41 A	566	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
1	41-7	500	9035	2911	4478	766	846	34	0	0	0
1	49 A	566	Total	С	Η	Ν	0	\mathbf{S}	0	0	0
1	1 42-A	500	9035	2911	4478	766	846	34	0	0	0
1	1 43-A	566	Total	С	Н	Ν	0	S	0	0	0
		500	9035	2911	4478	766	846	34		0	0

Continued from previous page...

There are 13 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-6	MET	-	initiating methionine	UNP Q25252
А	-5	HIS	- expression tag		UNP Q25252
А	-4	HIS	-	expression tag	UNP Q25252
А	-3	HIS	-	expression tag	UNP Q25252
А	-2	HIS	-	expression tag	UNP Q25252
А	-1	HIS	-	expression tag	UNP Q25252
А	0	HIS	-	expression tag	UNP Q25252
А	364	LEU	MET	conflict	UNP Q25252
А	419	PHE	ILE	conflict	UNP Q25252
А	472	THR	ALA	conflict	UNP Q25252
А	505	THR	ILE	conflict	UNP Q25252
А	530	GLU	LYS	conflict	UNP Q25252
А	554	GLY	ASP	conflict	UNP Q25252

• Molecule 2 is DIETHYL HYDROGEN PHOSPHATE (three-letter code: DPF) (formula: $C_4H_{11}O_4P$).

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf								
0	1 1	1	Total	С	Η	Ο	Р	0	0								
2	1-A	1	18	4	10	3	1	0	0								
0	2.4	1	Total	С	Η	0	Р	0	0								
	<i>2</i> -A	L	18	4	10	3	1	0	0								
9	3 1	1	Total	С	Η	0	Р	0	0								
	2 0 11	T	18	4	10	3	1	0	0								
2	Λ_Δ	1	Total	С	Η	Ο	Р	0	0								
	4-11	T	18	4	10	3	1	0	0								
2	5-A	1	Total	С	Η	Ο	Р	0	0								
	0-11	I	18	4	10	3	1	0	0								
2	6-A	1	Total	С	Η	Ο	Р	0	0								
	0 11	T	18	4	10	3	1	0	0								
2	7-A	7-A	7-A	7-A	7-A	7_Δ	7 Δ	$7_{-}\Delta$	7-A	1	Total	С	Η	Ο	Р	0	0
				T	18	4	10	3	1	0	0						
2	8-A	1	Total	С	Η	Ο	Р	0	0								
	0.11	*	18	4	10	3	1	Ŭ									
2	9_ A	1	Total	С	Η	Ο	Р	0	0								
	0 11	1	18	4	10	3	1	Ŭ									
2	10-A	1	Total	С	Η	Ο	Р	0	0								
	1011	-	18	4	10	3	1	Ŭ									
2	11-A	1	Total	С	Η	Ο	Р	0	0								
		-	18	4	10	3	1	Ŭ									
2	12-A	1	Total	С	Η	0	Р	0	0								
	2 12-A	-	18	4	10	3	1	Ŭ									
2 13-A	1	Total	С	Н	0	Р	0	0									
		-	18	4	10	3	1	Ŭ	, in the second								
2	14-A	1	Total	С	Η	Ο	Р	0	0								
-	14-A	-	18	4	10	- 3	1	Ĭ	Ĭ								

Continued from previous page...

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	
0	1 5 1	1	Total	С	Н	Ο	Р	0	0	
2	15-A	1	18	4	10	3	1	0	0	
0	16 A	1	Total	С	Η	0	Р	0	0	
	10-A	1	18	4	10	3	1	0	0	
9	17 \	1	Total	С	Η	0	Р	0	0	
2	11-1	1	18	4	10	3	1	0	0	
2	18-A	1	Total	С	Η	Ο	Р	0	0	
	10 11	1	18	4	10	3	1	0	0	
2	19-A	1	Total	С	Η	Ο	Р	0	0	
		-	18	4	10	3	1	Ŭ		
2	20-A	1	Total	С	Н	0	Р	0	0	
			18	4	10	3	1		_	
2	21-A	1	Total	C	H	0	P	0	0	
			18	4	10	3				
2	22-A	1	Total	C	H 10	0	P 1	0	0	
			18 Tetal	$\frac{4}{C}$	10	3 0				
2	23-A	1			П 10	0 9	Р 1	0	0	
			Total	$\frac{4}{C}$	<u>10</u> П	$\frac{3}{0}$	1 D			
2	24-A	1	10tai 18		11 10	2	1	0	0	
			Total	$\frac{4}{C}$	H	$\frac{3}{0}$	P			
2	25-A	1	18	$\frac{0}{4}$	10	3	1	0	0	
			Total	$\frac{1}{C}$	-10 H	$\overline{0}$	P			
2	26-A	1	18	4	10	3	1	0	0	
			Total	C	H	0	P			
2	27-A	1	18	4	10	3	1	0	0	
	20.4		Total	С	Н	0	Р		0	
2	28-A	1	18	4	10	3	1	0	0	
0	20.4	1	Total	С	Н	0	Р	0	0	
2	29-A	1	18	4	10	3	1	0	0	
0	20 1	1	Total	С	Η	0	Р	0	0	
	30-A	1	18	4	10	3	1	0	0	
9	31 A	1	Total	С	Η	Ο	Р	0	0	
2	91-A	1	18	4	10	3	1	0	0	
2	32-A	1	Total	С	Η	Ο	Р	0	0	
	32-A	1	18	4	10	3	1	0	0	
2	2 33-A	1	Total	С	Η	Ο	Р	0	0	
		1	18	4	10	3	1			
2	34-A	34-A 1	1	Total	С	Η	0	Р	0	0
	~ • • •	-	18	4	10	3	1			
2	35-A	1	Total	С	Н	0	Р	0	0	
2 00-A	_ *	18	4	10	3	1				

5IV	Κ
-----	---

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf
9	26 1	1	Total	С	Η	Ο	Р	0	0
	30-A	L	18	4	10	3	1	0	0
2	37 1	1	Total	С	Η	0	Р	0	0
	51-A	I	18	4	10	3	1	0	0
2	38 A	1	Total	С	Η	0	Р	0	0
	30-A	I	18	4	10	3	1	0	U
2	30 A	1	Total	С	Η	0	Р	0	0
	39-A	I	18	4	10	3	1	0	0
2	40 A	1	Total	С	Η	Ο	Р	0	0
	40-A	T	18	4	10	3	1	0	0
2	A1 A	1	Total	С	Η	Ο	Р	0	0
	41-7	T	18	4	10	3	1	0	0
2	42 A	1	Total	С	Η	Ο	Р	0	0
	4 2 -A	I	18	4	10	3	1	0	0
2	43 A	1	Total	С	Η	0	Р	0	0
	40-A		18	4	10	3	1	0	0

Continued from previous page...

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	1-A	399	Total O 399 399	0	0
3	2-A	380	Total O 380 380	0	0
3	3-A	356	Total O 356 356	0	0
3	4-A	389	Total O 389 389	0	0
3	5-A	386	Total O 386 386	0	0
3	6-A	379	Total O 379 379	0	0
3	7-A	375	Total O 375 375	0	0
3	8-A	365	Total O 365 365	0	0
3	9-A	373	Total O 373 373	0	0
3	10-A	365	Total O 365 365	0	0
3	11-A	360	Total O 360 360	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	12-A	396	Total O 396 396	0	0
3	13-A	406	Total O 406 406	0	0
3	14-A	378	Total O 378 378	0	0
3	15-A	374	Total O 374 374	0	0
3	16-A	386	Total O 386 386	0	0
3	17-A	357	Total O 357 357	0	0
3	18-A	353	Total O 353 353	0	0
3	19-A	363	Total O 363 363	0	0
3	20-A	399	Total O 399 399	0	0
3	21-A	389	Total O 389 389	0	0
3	22-A	380	Total O 380 380	0	0
3	23-A	376	Total O 376 376	0	0
3	24-A	381	Total O 381 381	0	0
3	25-A	359	Total O 359 359	0	0
3	26-A	362	Total O 362 362	0	0
3	27-A	379	Total O 379 379	0	0
3	28-A	389	Total O 389 389	0	0
3	29-A	377	Total O 377 377	0	0
3	30-A	363	Total O 363 363	0	0
3	31-A	365	Total O 365 365	0	0
3	32-A	393	Total O 393 393	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	33-A	378	Total O 378 378	0	0
3	34-A	384	Total O 384 384	0	0
3	35-A	383	Total O 383 383	0	0
3	36-A	390	Total O 390 390	0	0
3	37-A	358	Total O 358 358	0	0
3	38-A	377	Total O 377 377	0	0
3	39-A	393	Total O 393 393	0	0
3	40-A	388	Total O 388 388	0	0
3	41-A	390	Total O 390 390	0	0
3	42-A	390	Total O 390 390	0	0
3	43-A	377	Total O 377 377	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Carboxylic ester hydrolase Chain 8-A: 89% 8% MET HIS HIS HIS HIS HIS HIS MET ASN • Molecule 1: Carboxylic ester hydrolase Chain 9-A: 88% 9% MET HIS HIS HIS HIS HIS HIS MET ASN ASN • Molecule 1: Carboxylic ester hydrolase Chain 10-A: 88% 9% MET HIS HIS HIS HIS ASN ASN 543 643 E4E D4E • Molecule 1: Carboxylic ester hydrolase Chain 11-A: 89% 8% • • MET HIS HIS HIS HIS HIS HIS MET ASN ASN • Molecule 1: Carboxylic ester hydrolase Chain 12-A: 90% 7% MET HIS HIS HIS HIS HIS HIS HIS MET MET

• Molecule 1: Carboxylic ester hydrolase Chain 13-A: 87% 10% MET HIS HIS HIS HIS HIS HIS HIS MET MET • Molecule 1: Carboxylic ester hydrolase Chain 14-A: 89% 8% •• MET HIS HIS HIS HIS HIS HIS MET ASN PHE • Molecule 1: Carboxylic ester hydrolase Chain 15-A: 86% 11% MET HIS HIS HIS HIS HIS HIS MET ASN PHE ASN • Molecule 1: Carboxylic ester hydrolase Chain 16-A: 88% 9% MET HIS HIS HIS HIS HIS HIS HIS MET ASN • Molecule 1: Carboxylic ester hydrolase

Chain 17-A:

10%

86%

E524 MET MET IIS3 E280 MET D533 K286 MET K537 K286 MET K537 K286 MET K537 K286 MET K537 F287 MET K537 L300 ME K546 L300 ME K367 L300 ME K366 MA ME K366 MA ME K366 MA ME K366 MA MA K366 MA MA M460 MA MA M504 MA

• Molecule 1: Carboxylic ester hydrolase

• Molecule 1: Carboxylic ester hydrolase

Chain 20-A: 86% 11% • 11% •</

D568 L569 F570

• Molecule 1: Carboxylic ester hydrolase

• Molecule 1: Carboxylic ester hydrolase

D543 E544

• Molecule 1: Carboxylic ester hydrolase

Chain 37-A: 89% 7% MET HIS HIS HIS HIS HIS HIS MET ASN ASN Y514 S515 N515 N516 E517 E517 E519 **G520** M521 E522 N523 N51

• Molecule 1: Carboxylic ester hydrolase

• Molecule 1: Carboxylic ester hydrolase

Chain 39-A:	86%	10% ••
MET HIS HIS HIS HIS HIS MET MIS ASN MET ASN MET ASN MIS MIS MIS MIS MIS MIS MIS MIS MIS MIS	1100 1102 1102 1102 1102 1102 1102 1102	K265 L266 K270 K286 K292
8301 8301 8301 8301 8301 8301 8318 8378 8378 8378 8378 8378 8378 837	443 444 444 444 445 445 445 445 445 445	6511 8513 9513 9514 8515 8515 8515 8515 8515 8515 8515 8
M521 E522 N523 V524 E530 E530 E544 F570		

• Molecule 1: Carboxylic ester hydrolase

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 2 2 21	Depositor
Cell constants	51.82Å 101.25Å 225.82Å	Dopositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution (Å)	42.01 - 1.53	Depositor
Resolution (A)	42.01 - 1.53	EDS
% Data completeness	$100.0 \ (42.01 - 1.53)$	Depositor
(in resolution range)	95.8(42.01-1.53)	EDS
R_{merge}	(Not available)	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.27 (at 1.53 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.10.1_2155	Depositor
P. P.	0.181 , 0.220	Depositor
Λ, Λ_{free}	0.193 , 0.235	DCC
R_{free} test set	4499 reflections (5.01%)	wwPDB-VP
Wilson B-factor $(Å^2)$	14.7	Xtriage
Anisotropy	0.400	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.01 , 23.8	EDS
L-test for twinning ²	$ < L >=0.41, < L^2>=0.24$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.89	EDS
Total number of atoms	405539	wwPDB-VP
Average B, all atoms $(Å^2)$	18.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.58% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: DPF

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	Bond lengths		Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1-A	0.63	2/4672~(0.0%)	0.78	5/6320~(0.1%)
1	2-A	0.57	0/4672	0.73	2/6320~(0.0%)
1	3-A	0.62	0/4672	0.76	7/6320~(0.1%)
1	4-A	0.65	2/4672~(0.0%)	0.78	7/6320~(0.1%)
1	5-A	0.62	2/4672~(0.0%)	0.74	0/6320
1	6-A	0.58	2/4672~(0.0%)	0.74	3/6320~(0.0%)
1	7-A	0.60	0/4672	0.75	4/6320~(0.1%)
1	8-A	0.59	1/4672~(0.0%)	0.73	2/6320~(0.0%)
1	9-A	0.62	3/4672~(0.1%)	0.76	5/6320~(0.1%)
1	10-A	0.62	3/4672~(0.1%)	0.78	3/6320~(0.0%)
1	11-A	0.59	3/4672~(0.1%)	0.75	3/6320~(0.0%)
1	12-A	0.61	3/4672~(0.1%)	0.79	7/6320~(0.1%)
1	13-A	0.65	6/4672~(0.1%)	0.79	4/6320~(0.1%)
1	14-A	0.61	2/4672~(0.0%)	0.77	6/6320~(0.1%)
1	15-A	0.62	3/4672~(0.1%)	0.80	7/6320~(0.1%)
1	16-A	0.62	1/4672~(0.0%)	0.79	3/6320~(0.0%)
1	17-A	0.63	2/4672~(0.0%)	0.78	7/6320~(0.1%)
1	18-A	0.61	0/4672	0.78	8/6320~(0.1%)
1	19-A	0.60	0/4672	0.79	8/6320~(0.1%)
1	20-A	0.64	1/4672~(0.0%)	0.80	8/6320~(0.1%)
1	21-A	0.61	2/4672~(0.0%)	0.77	5/6320~(0.1%)
1	22-A	0.60	2/4672~(0.0%)	0.78	5/6320~(0.1%)
1	23-A	0.65	1/4672~(0.0%)	0.79	9/6320~(0.1%)
1	24-A	0.61	3/4672~(0.1%)	0.78	3/6320~(0.0%)
1	25-A	0.59	1/4672~(0.0%)	0.77	2/6320~(0.0%)
1	26-A	0.61	2/4672~(0.0%)	0.78	3/6320~(0.0%)
1	27-A	0.63	4/4672~(0.1%)	0.78	$4/\overline{6320}~(0.1\%)$
1	28-A	0.63	1/4672~(0.0%)	0.77	3/6320~(0.0%)
1	29-A	0.62	3/4672~(0.1%)	0.77	6/6320~(0.1%)
1	30-A	0.64	5/4672(0.1%)	0.77	5/6320 $(0.1%)$
1	31-A	0.63	5/4672(0.1%)	0.77	$1/6320\ (0.0\%)$
1	32-A	0.69	4/4672~(0.1%)	0.81	10/6320~(0.2%)

5IVK

Mal	Chain	B	ond lengths	I	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	33-A	0.60	4/4672~(0.1%)	0.77	7/6320~(0.1%)
1	34-A	0.64	4/4672~(0.1%)	0.78	4/6320~(0.1%)
1	35-A	0.61	1/4672~(0.0%)	0.75	0/6320
1	36-A	0.59	1/4672~(0.0%)	0.78	3/6320~(0.0%)
1	37-A	0.58	0/4672	0.77	1/6320~(0.0%)
1	38-A	0.60	2/4672~(0.0%)	0.77	3/6320~(0.0%)
1	39-A	0.61	2/4672~(0.0%)	0.76	5/6320~(0.1%)
1	40-A	0.61	4/4672~(0.1%)	0.77	0/6320
1	41-A	0.60	3/4672~(0.1%)	0.77	7/6320~(0.1%)
1	42-A	0.63	4/4672~(0.1%)	0.79	5/6320~(0.1%)
1	43-A	0.62	4/4672~(0.1%)	0.77	2/6320~(0.0%)
All	All	0.62	98/200896~(0.0%)	0.77	192/271760~(0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	1-A	0	3
1	2-A	0	3
1	3-A	0	3
1	4-A	0	2
1	5-A	0	1
1	7-A	0	1
1	8-A	0	1
1	9-A	0	3
1	10-A	0	5
1	11-A	0	3
1	12-A	0	4
1	13-A	0	3
1	14-A	0	1
1	15-A	0	5
1	16-A	0	4
1	17-A	0	5
1	18-A	0	5
1	19-A	0	3
1	20-A	0	4
1	21-A	0	7
1	22-A	0	5
1	23-A	0	6
1	24-A	0	1

Mol	Chain	#Chirality outliers	#Planarity outliers
1	25-A	0	1
1	26-A	0	4
1	27-A	0	5
1	28-A	0	2
1	29-A	0	2
1	30-A	0	2
1	31-A	0	1
1	32-A	0	3
1	33-A	0	2
1	34-A	0	5
1	35-A	0	6
1	36-A	0	3
1	37-A	0	4
1	38-A	0	5
1	39-A	0	3
1	40-A	0	6
1	41-A	0	2
1	42-A	0	4
1	43-A	0	5
All	All	0	143

All (98) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	32-A	125	THR	C-N	21.17	1.82	1.34
1	9-A	89	CYS	CB-SG	11.56	2.01	1.82
1	23-A	106	CYS	CB-SG	11.46	2.01	1.82
1	13-A	126	LYS	C-N	11.18	1.59	1.34
1	34-A	126	LYS	C-N	10.49	1.58	1.34
1	28-A	126	LYS	C-N	10.16	1.57	1.34
1	30-A	89	CYS	CB-SG	9.78	1.98	1.82
1	20-A	89	CYS	CB-SG	-9.45	1.66	1.82
1	24-A	126	LYS	C-N	9.35	1.55	1.34
1	8-A	126	LYS	C-N	8.86	1.54	1.34
1	10-A	126	LYS	C-N	8.00	1.52	1.34
1	13-A	17	CYS	CB-SG	-7.99	1.68	1.82
1	34-A	370	GLU	CB-CG	7.87	1.67	1.52
1	31-A	498	GLU	CB-CG	7.69	1.66	1.52
1	35-A	126	LYS	C-N	7.60	1.51	1.34
1	11-A	17	CYS	CB-SG	-7.59	1.69	1.82
1	29-A	331	GLU	CB-CG	7.45	1.66	1.52
1	40-A	295	GLU	CB-CG	7.44	1.66	1.52

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	15-A	126	LYS	C-N	7.31	1.50	1.34
1	34-A	384	GLU	CB-CG	7.16	1.65	1.52
1	38-A	66	PRO	C-N	-7.14	1.20	1.34
1	40-A	126	LYS	C-N	7.14	1.50	1.34
1	26-A	534	GLU	CB-CG	6.98	1.65	1.52
1	42-A	147	MET	CB-CG	6.96	1.73	1.51
1	38-A	106	CYS	CB-SG	6.86	1.94	1.82
1	33-A	126	LYS	C-N	6.73	1.49	1.34
1	15-A	17	CYS	CB-SG	6.65	1.93	1.82
1	31-A	70	GLU	CB-CG	6.57	1.64	1.52
1	43-A	126	LYS	C-N	6.55	1.49	1.34
1	9-A	379	GLU	CG-CD	6.49	1.61	1.51
1	12-A	106	CYS	CB-SG	-6.41	1.71	1.82
1	42-A	66	PRO	C-N	-6.40	1.22	1.34
1	21-A	142	GLU	CB-CG	6.37	1.64	1.52
1	33-A	524	VAL	CB-CG1	-6.35	1.39	1.52
1	4-A	530	GLU	CB-CG	6.28	1.64	1.52
1	25-A	89	CYS	CB-SG	-6.26	1.71	1.82
1	40-A	295	GLU	CG-CD	6.16	1.61	1.51
1	24-A	295	GLU	CG-CD	-6.13	1.42	1.51
1	31-A	331	GLU	CG-CD	6.13	1.61	1.51
1	29-A	66	PRO	C-N	-6.13	1.22	1.34
1	5-A	124	GLU	CB-CG	6.11	1.63	1.52
1	27-A	126	LYS	C-N	6.11	1.48	1.34
1	1-A	362	MET	CG-SD	6.10	1.97	1.81
1	10-A	327	LYS	CB-CG	6.08	1.69	1.52
1	30-A	498	GLU	CB-CG	6.05	1.63	1.52
1	39-A	66	PRO	C-N	-6.01	1.22	1.34
1	27-A	217	GLU	CB-CG	6.00	1.63	1.52
1	30-A	451	GLU	CB-CG	5.96	1.63	1.52
1	11-A	126	LYS	C-N	5.95	1.47	1.34
1	17-A	537	LYS	CD-CE	-5.92	1.36	1.51
1	15-A	526	TRP	C-N	5.82	1.47	1.34
1	10-A	17	CYS	CB-SG	-5.78	1.72	1.81
1	6-A	126	LYS	C-N	5.77	1.47	1.34
1	14-A	66	PRO	C-N	-5.77	1.23	1.34
1	29-A	526	TRP	C-N	-5.75	1.20	1.34
1	43-A	295	GLU	CB-CG	5.74	1.63	1.52
1	12-A	308	MET	CB-CG	-5.72	1.33	1.51
1	31-A	451	GLU	CB-CG	5.71	1.62	1.52
1	32-A	462	SER	CB-OG	5.62	1.49	1.42
1	13-A	295	GLU	CB-CG	5.61	1.62	1.52

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
1	9-A	379	GLU	CB-CG	5.58	1.62	1.52
1	40-A	66	PRO	C-N	-5.54	1.23	1.34
1	39-A	295	GLU	CB-CG	5.53	1.62	1.52
1	41-A	17	CYS	CB-SG	5.51	1.91	1.82
1	24-A	564	GLU	CB-CG	5.47	1.62	1.52
1	41-A	490	GLU	CB-CG	5.46	1.62	1.52
1	27-A	89	CYS	CB-SG	-5.45	1.73	1.81
1	21-A	66	PRO	C-N	-5.45	1.24	1.34
1	43-A	295	GLU	CG-CD	5.42	1.60	1.51
1	1-A	36	GLU	CB-CG	5.41	1.62	1.52
1	36-A	393	MET	CG-SD	-5.41	1.67	1.81
1	27-A	66	PRO	C-N	-5.31	1.24	1.34
1	11-A	384	GLU	CB-CG	5.31	1.62	1.52
1	26-A	526	TRP	C-N	5.28	1.46	1.34
1	33-A	124	GLU	CB-CG	5.26	1.62	1.52
1	42-A	396	LYS	CG-CD	-5.23	1.34	1.52
1	16-A	66	PRO	C-N	-5.22	1.24	1.34
1	22-A	384	GLU	CB-CG	5.22	1.62	1.52
1	33-A	331	GLU	CB-CG	5.22	1.62	1.52
1	6-A	66	PRO	C-N	-5.21	1.24	1.34
1	22-A	331	GLU	CB-CG	5.20	1.62	1.52
1	13-A	66	PRO	C-N	-5.18	1.24	1.34
1	30-A	376	VAL	CB-CG1	-5.18	1.42	1.52
1	32-A	147	MET	CB-CG	5.15	1.67	1.51
1	30-A	301	GLU	CB-CG	5.14	1.61	1.52
1	17-A	66	PRO	C-N	-5.13	1.24	1.34
1	12-A	126	LYS	C-N	5.12	1.45	1.34
1	43-A	308	MET	CB-CG	5.11	1.67	1.51
1	13-A	498	GLU	CB-CG	5.11	1.61	1.52
1	32-A	451	GLU	CB-CG	5.10	1.61	1.52
1	34-A	568	ASP	CB-CG	5.08	1.62	1.51
1	41-A	147	MET	CB-CG	5.08	1.67	1.51
1	5-A	124	GLU	CG-CD	5.06	1.59	1.51
1	13-A	5	VAL	CB-CG1	-5.06	1.42	1.52
1	31-A	217	GLU	CB-CG	5.04	1.61	1.52
1	14-A	89	CYS	CB-SG	-5.03	1.73	1.81
1	4-A	544	GLU	CB-CG	5.02	1.61	1.52
1	42-A	147	MET	CG-SD	5.01	1.94	1.81

All (192) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
Mol	Chain	Res	Type	Atoms	Z	Observed $(^{o})$	Ideal(°)
1	22-A	130	LEU	CA-CB-CG	13.13	145.50	115.30
1	15-A	17	CYS	CA-CB-SG	12.26	136.07	114.00
1	42-A	157	ASP	CB-CG-OD2	-9.89	109.40	118.30
1	17-A	147	MET	CG-SD-CE	-9.52	84.96	100.20
1	1-A	179	ASP	CB-CG-OD2	-8.96	110.23	118.30
1	34-A	86	ARG	NE-CZ-NH1	8.73	124.66	120.30
1	29-A	179	ASP	CB-CG-OD2	-8.36	110.78	118.30
1	13-A	308	MET	CG-SD-CE	-8.23	87.03	100.20
1	20-A	300	LEU	CB-CG-CD2	8.14	124.84	111.00
1	15-A	99	ASP	CB-CG-OD2	8.08	125.58	118.30
1	3-A	78	ARG	NE-CZ-NH1	-8.07	116.26	120.30
1	26-A	89	CYS	CA-CB-SG	-7.84	99.89	114.00
1	30-A	289	ASP	CB-CG-OD1	-7.78	111.30	118.30
1	10-A	362	MET	CB-CG-SD	-7.70	89.31	112.40
1	12-A	308	MET	CG-SD-CE	-7.70	87.88	100.20
1	1-A	179	ASP	CB-CG-OD1	7.68	125.22	118.30
1	10-A	486	ARG	NE-CZ-NH2	-7.59	116.51	120.30
1	13-A	521	MET	CG-SD-CE	7.56	112.30	100.20
1	29-A	157	ASP	CB-CG-OD2	7.49	125.04	118.30
1	9-A	89	CYS	CA-CB-SG	7.42	127.36	114.00
1	30-A	89	CYS	CA-CB-SG	7.42	127.36	114.00
1	29-A	179	ASP	CB-CG-OD1	7.36	124.92	118.30
1	4-A	147	MET	CG-SD-CE	-7.35	88.44	100.20
1	17-A	458	ARG	NE-CZ-NH2	-7.33	116.64	120.30
1	36-A	89	CYS	CA-CB-SG	7.17	126.91	114.00
1	20-A	78	ARG	NE-CZ-NH2	7.16	123.88	120.30
1	27-A	146	ASP	CB-CA-C	-7.13	96.14	110.40
1	12-A	475	LEU	CA-CB-CG	7.12	131.66	115.30
1	4-A	544	GLU	OE1-CD-OE2	-7.09	114.80	123.30
1	43-A	308	MET	CB-CG-SD	7.08	133.65	112.40
1	27-A	300	LEU	CA-CB-CG	7.04	131.49	115.30
1	16-A	458	ARG	NE-CZ-NH1	6.99	123.80	120.30
1	32-A	460	MET	CB-CG-SD	6.93	133.21	112.40
1	12-A	499	ARG	NE-CZ-NH2	-6.92	116.84	120.30
1	16-A	460	MET	CG-SD-CE	-6.88	89.20	100.20
1	17-A	93	ASP	CB-CG-OD2	-6.85	112.14	118.30
1	32-A	93	ASP	CB-CG-OD1	-6.85	112.14	118.30
1	18-A	78	ARG	NE-CZ-NH2	6.82	123.71	120.30
1	15-A	86	ARG	NE-CZ-NH1	6.79	123.69	120.30
1	36-A	393	MET	CA-CB-CG	-6.78	101.77	113.30
1	27-A	362	MET	CA-CB-CG	6.69	124.68	113.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	34-A	385	ARG	NE-CZ-NH2	-6.69	116.95	120.30
1	30-A	327	LYS	CD-CE-NZ	-6.67	96.36	111.70
1	32-A	147	MET	CB-CG-SD	6.64	132.33	112.40
1	23-A	93	ASP	CB-CG-OD1	-6.64	112.33	118.30
1	27-A	89	CYS	CA-CB-SG	-6.59	102.13	114.00
1	33-A	460	MET	CG-SD-CE	6.58	110.73	100.20
1	3-A	461	ARG	NE-CZ-NH2	-6.57	117.02	120.30
1	19-A	300	LEU	CA-CB-CG	6.55	130.38	115.30
1	4-A	92	LYS	CD-CE-NZ	6.52	126.70	111.70
1	19-A	78	ARG	NE-CZ-NH1	6.51	123.55	120.30
1	17-A	93	ASP	CB-CG-OD1	6.48	124.14	118.30
1	21-A	300	LEU	CA-CB-CG	6.47	130.19	115.30
1	41-A	147	MET	CA-CB-CG	6.47	124.31	113.30
1	17-A	460	MET	CB-CG-SD	6.44	131.71	112.40
1	2-A	362	MET	CB-CG-SD	-6.43	93.12	112.40
1	4-A	236	LEU	CA-CB-CG	6.41	130.03	115.30
1	24-A	308	MET	CA-CB-CG	-6.39	102.43	113.30
1	32-A	303	ARG	NE-CZ-NH1	6.39	123.49	120.30
1	15-A	99	ASP	CB-CG-OD1	-6.38	112.55	118.30
1	3-A	486	ARG	NE-CZ-NH1	6.36	123.48	120.30
1	7-A	86	ARG	NE-CZ-NH2	-6.34	117.13	120.30
1	18-A	300	LEU	CA-CB-CG	6.30	129.79	115.30
1	39-A	460	MET	CB-CG-SD	-6.29	93.52	112.40
1	14-A	570	PHE	N-CA-C	-6.29	94.02	111.00
1	6-A	289	ASP	CB-CG-OD2	-6.27	112.66	118.30
1	20-A	147	MET	CG-SD-CE	6.26	110.22	100.20
1	9-A	146	ASP	CB-CG-OD2	6.24	123.92	118.30
1	33-A	126	LYS	C-N-CA	-6.23	106.12	121.70
1	17-A	537	LYS	CD-CE-NZ	6.21	125.99	111.70
1	41-A	93	ASP	CB-CG-OD1	6.20	123.88	118.30
1	33-A	460	MET	CA-CB-CG	6.18	123.81	113.30
1	26-A	322	ASP	CB-CG-OD2	6.14	123.83	118.30
1	14-A	53	ASP	CB-CG-OD1	-6.13	112.78	118.30
1	32-A	8	MET	CB-CG-SD	6.12	130.74	112.40
1	20-A	100	PHE	CB-CG-CD2	6.10	125.07	120.80
1	7-A	464	ARG	NE-CZ-NH1	6.08	123.34	120.30
1	23-A	300	LEU	CA-CB-CG	6.07	129.27	115.30
1	18-A	521	MET	CG-SD-CE	6.06	109.90	100.20
1	11-A	78	ARG	NE-CZ-NH1	6.05	123.33	120.30
1	12-A	567	ARG	NE-CZ-NH1	6.04	123.32	120.30
1	22-A	461	ARG	NE-CZ-NH2	-6.03	117.28	120.30
1	34-A	86	ARG	NE-CZ-NH2	-6.03	117.28	120.30

Continued from previous page...

Mol	Chain	Res	Type	Atoms Z		$Observed(^{o})$	$Ideal(^{o})$
1	31-A	334	LYS	CD-CE-NZ	-6.01	97.87	111.70
1	9-A	289	ASP	CB-CG-OD2	6.00	123.70	118.30
1	20-A	78	ARG	NE-CZ-NH1	-5.98	117.31	120.30
1	1-A	379	GLU	CA-CB-CG	5.97	126.54	113.40
1	17-A	385	ARG	NE-CZ-NH2	-5.96	117.32	120.30
1	4-A	147	MET	CB-CG-SD	5.95	130.24	112.40
1	3-A	127	ARG	NE-CZ-NH2	-5.91	117.34	120.30
1	21-A	127	ARG	NE-CZ-NH2	-5.90	117.35	120.30
1	7-A	147	MET	CB-CG-SD	5.89	130.08	112.40
1	25-A	567	ARG	NE-CZ-NH1	5.89	123.25	120.30
1	6-A	100	PHE	CB-CG-CD1	5.89	124.92	120.80
1	10-A	486	ARG	NE-CZ-NH1	5.88	123.24	120.30
1	32-A	460	MET	CG-SD-CE	5.87	109.59	100.20
1	18-A	521	MET	CA-CB-CG	5.86	123.27	113.30
1	41-A	514	TYR	CA-CB-CG	5.86	124.53	113.40
1	22-A	300	LEU	CB-CG-CD1	5.86	120.96	111.00
1	32-A	453	LEU	CA-CB-CG	5.85	128.75	115.30
1	21-A	125	THR	CA-C-N	-5.83	104.37	117.20
1	39-A	147	MET	CB-CG-SD	5.83	129.89	112.40
1	28-A	393	MET	CG-SD-CE	5.80	109.48	100.20
1	14-A	52	ASP	CB-CG-OD2	5.80	123.52	118.30
1	32-A	127	ARG	NE-CZ-NH2	-5.77	117.42	120.30
1	8-A	86	ARG	NE-CZ-NH1	5.73	123.17	120.30
1	23-A	93	ASP	CB-CG-OD2	5.71	123.44	118.30
1	42-A	147	MET	CB-CG-SD	5.71	129.52	112.40
1	23-A	300	LEU	CB-CG-CD1	5.70	120.69	111.00
1	41-A	93	ASP	CB-CG-OD2	-5.66	113.20	118.30
1	30-A	289	ASP	CB-CG-OD2	5.65	123.39	118.30
1	33-A	147	MET	CB-CG-SD	5.65	129.34	112.40
1	24-A	308	MET	CB-CG-SD	-5.62	95.55	112.40
1	14-A	362	MET	CB-CG-SD	-5.61	95.58	112.40
1	41-A	453	LEU	CA-CB-CG	5.60	128.18	115.30
1	20-A	89	CYS	CA-CB-SG	-5.58	103.97	114.00
1	26-A	289	ASP	CB-CG-OD2	5.57	123.31	118.30
1	39-A	514	TYR	CA-CB-CG	5.57	123.98	113.40
1	23-A	$32\overline{2}$	ASP	$CB-CG-\overline{OD1}$	-5.56	113.30	118.30
1	38-A	300	LEU	CA-CB-CG	-5.55	102.53	115.30
1	29-A	303	ARG	NE-CZ-NH1	5.54	123.07	120.30
1	34-A	236	LEU	CA-CB-CG	5.54	128.04	115.30
1	3-A	521	MET	CB-CG-SD	-5.54	95.78	112.40
1	38-A	87	ASP	CB-CG-OD1	5.53	123.28	118.30
1	12-A	499	ARG	NE-CZ-NH1	5.53	123.07	120.30

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	15-A	461	ARG	NE-CZ-NH2	-5.53	117.53	120.30
1	41-A	514	TYR	CB-CG-CD1	5.53	124.32	121.00
1	25-A	385	ARG	NE-CZ-NH2	-5.52	117.54	120.30
1	19-A	78	ARG	NE-CZ-NH2	-5.52	117.54	120.30
1	42-A	157	ASP	CB-CG-OD1	5.51	123.26	118.30
1	39-A	362	MET	CG-SD-CE	5.49	108.98	100.20
1	22-A	382	ASP	CB-CG-OD1	5.47	123.22	118.30
1	33-A	460	MET	CB-CG-SD	5.47	128.81	112.40
1	19-A	521	MET	CG-SD-CE	5.46	108.93	100.20
1	21-A	106	CYS	CA-CB-SG	5.45	123.80	114.00
1	1-A	43	LYS	CD-CE-NZ	5.44	124.22	111.70
1	36-A	385	ARG	NE-CZ-NH2	-5.43	117.58	120.30
1	18-A	87	ASP	CB-CG-OD2	5.42	123.18	118.30
1	15-A	78	ARG	NE-CZ-NH2	-5.41	117.59	120.30
1	18-A	487	MET	CG-SD-CE	5.41	108.86	100.20
1	13-A	8	MET	CG-SD-CE	5.41	108.85	100.20
1	24-A	568	ASP	CB-CG-OD1	5.40	123.16	118.30
1	14-A	487	MET	CG-SD-CE	-5.39	91.58	100.20
1	11-A	514	TYR	CA-CB-CG	5.39	123.64	113.40
1	41-A	487	MET	CG-SD-CE	5.38	108.80	100.20
1	29-A	362	MET	CG-SD-CE	5.37	108.79	100.20
1	32-A	385	ARG	NE-CZ-NH1	5.37	122.98	120.30
1	28-A	567	ARG	CG-CD-NE	-5.36	100.54	111.80
1	23-A	322	ASP	CB-CG-OD2	5.36	123.13	118.30
1	43-A	514	TYR	CA-CB-CG	5.34	123.55	113.40
1	22-A	365	LEU	CA-CB-CG	5.34	127.58	115.30
1	23-A	308	MET	CB-CG-SD	-5.34	96.38	112.40
1	19-A	147	MET	CG-SD-CE	5.32	108.72	100.20
1	37-A	393	MET	CA-CB-CG	5.30	122.31	113.30
1	19-A	499	ARG	NE-CZ-NH2	-5.29	117.65	120.30
1	9-A	385	ARG	NE-CZ-NH2	-5.27	117.66	120.30
1	7-A	432	ARG	NE-CZ-NH1	5.26	122.93	120.30
1	11-A	384	GLU	CB-CA-C	5.25	120.91	110.40
1	9-A	147	MET	CB-CG-SD	5.24	128.11	112.40
1	33-A	453	LEU	CA-CB-CG	5.23	127.33	115.30
1	18-A	449	ASP	$CB-\overline{CG}-\overline{OD2}$	-5.22	113.60	118.30
1	38-A	452	ASP	CB-CG-OD2	5.20	122.98	118.30
1	14-A	210	ASP	$CB-CG-\overline{OD2}$	-5.18	113.63	118.30
1	2-A	147	MET	CG-SD-CE	-5.18	91.91	100.20
1	16-A	52	ASP	CB-CG-OD1	5.18	122.97	118.30
1	39-A	106	CYS	CA-CB-SG	5.18	123.33	114.00
1	15-A	52	ASP	CB-CG-OD2	5.17	122.96	118.30

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type	Atoms Z		$Observed(^{o})$	$Ideal(^{o})$
1	1-A	276	LYS	CD-CE-NZ	5.15	123.55	111.70
1	19-A	300	LEU	CB-CG-CD2	5.15	119.76	111.00
1	30-A	106	CYS	CA-CB-SG	-5.15	104.73	114.00
1	12-A	104	LYS	CA-CB-CG	5.15	124.72	113.40
1	13-A	300	LEU	CA-CB-CG	5.13	127.11	115.30
1	4-A	385	ARG	NE-CZ-NH2	-5.13	117.73	120.30
1	19-A	89	CYS	CA-CB-SG	-5.13	104.76	114.00
1	42-A	236	LEU	CA-CB-CG	5.12	127.08	115.30
1	32-A	126	LYS	C-N-CA	5.12	134.50	121.70
1	20-A	458	ARG	NE-CZ-NH1	5.12	122.86	120.30
1	28-A	100	PHE	CB-CG-CD1	5.12	124.38	120.80
1	6-A	458	ARG	NE-CZ-NH2	-5.11	117.75	120.30
1	33-A	486	ARG	NE-CZ-NH2	-5.10	117.75	120.30
1	23-A	521	MET	CA-CB-CG	5.10	121.97	113.30
1	20-A	498	GLU	OE1-CD-OE2	-5.09	117.19	123.30
1	23-A	425	MET	CG-SD-CE	5.09	108.35	100.20
1	4-A	385	ARG	NE-CZ-NH1	5.09	122.85	120.30
1	42-A	385	ARG	NE-CZ-NH2	-5.09	117.75	120.30
1	3-A	125	THR	O-C-N	5.07	130.82	122.70
1	3-A	461	ARG	NE-CZ-NH1	5.04	122.82	120.30
1	18-A	449	ASP	CB-CG-OD1	5.03	122.83	118.30
1	12-A	307	VAL	C-N-CA	5.02	134.25	121.70
1	21-A	157	ASP	CB-CG-OD1	5.02	122.82	118.30
1	29-A	78	ARG	NE-CZ-NH1	5.01	122.81	120.30
1	8-A	385	ARG	NE-CZ-NH1	5.01	122.80	120.30

Continued from previous page...

There are no chirality outliers.

All (143) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	1-A	518	ILE	Peptide
1	1-A	520	GLY	Peptide
1	1-A	522	GLU	Peptide
1	10-A	327	LYS	Peptide
1	10-A	384	GLU	Peptide
1	10-A	438	GLY	Peptide
1	10-A	521	MET	Peptide
1	10-A	99	ASP	Peptide
1	11-A	101	ILE	Peptide
1	11-A	383	ALA	Peptide
1	11-A	521	MET	Peptide
1	12-A	101	ILE	Peptide

Mol	Chain	Res	Type	Group
1	12-A	102	THR	Peptide
1	12-A	103	GLY	Peptide
1	12-A	99	ASP	Peptide
1	13-A	100	PHE	Peptide
1	13-A	463	GLY	Peptide
1	13-A	517	GLU	Peptide
1	14-A	100	PHE	Peptide
1	15-A	384	GLU	Peptide
1	15-A	520	GLY	Peptide
1	15-A	521	MET	Peptide
1	15-A	89	CYS	Peptide
1	15-A	90	ASN	Peptide
1	16-A	437	SER	Peptide
1	16-A	514	TYR	Peptide
1	16-A	532	SER	Peptide
1	16-A	533	ASP	Peptide
1	17-A	125	THR	Peptide
1	17-A	146	ASP	Peptide
1	17-A	384	GLU	Peptide
1	17-A	437	SER	Peptide
1	17-A	523	ASN	Peptide
1	18-A	383	ALA	Peptide
1	18-A	384	GLU	Peptide
1	18-A	436	THR	Peptide
1	18-A	437	SER	Peptide
1	18-A	523	ASN	Peptide
1	19-A	384	GLU	Peptide
1	19-A	519	GLU	Peptide
1	19-A	520	GLY	Peptide
1	2-A	517	GLU	Peptide
1	2-A	518	ILE	Peptide
1	2-A	520	GLY	Peptide
1	20-A	384	GLU	Peptide
1	20-A	470	SER	Peptide
1	20-A	517	GLU	Peptide
1	20-A	523	ASN	Peptide
1	21-A	125	THR	Mainchain
1	21-A	382	ASP	Peptide
1	21-A	384	GLU	Peptide
1	21-A	438	GLY	Peptide
1	21-A	5	VAL	Peptide
1	21-A	522	GLU	Peptide

Continued from previous page...

Mol	Chain	Res	Type	Group
1	21-A	523	ASN	Peptide
1	22-A	382	ASP	Peptide
1	22-A	384	GLU	Peptide
1	22-A	523	ASN	Peptide
1	22-A	524	VAL	Peptide
1	22-A	525	SER	Peptide
1	23-A	382	ASP	Peptide
1	23-A	517	GLU	Peptide
1	23-A	520	GLY	Peptide
1	23-A	523	ASN	Peptide
1	23-A	524	VAL	Peptide
1	23-A	525	SER	Peptide
1	24-A	518	ILE	Peptide
1	25-A	438	GLY	Peptide
1	26-A	145	ARG	Peptide
1	26-A	383	ALA	Peptide
1	26-A	516	ASN	Peptide
1	26-A	517	GLU	Peptide
1	27-A	381	ALA	Peptide
1	27-A	383	ALA	Peptide
1	27-A	438	GLY	Peptide
1	27-A	522	GLU	Peptide
1	27-A	525	SER	Peptide
1	28-A	124	GLU	Peptide
1	28-A	522	GLU	Peptide
1	29-A	103	GLY	Peptide
1	29-A	124	GLU	Peptide
1	3-A	517	GLU	Peptide
1	3-A	518	ILE	Peptide
1	3-A	521	MET	Peptide
1	30-A	518	ILE	Peptide
1	30-A	521	MET	Peptide
1	31-A	519	GLU	Peptide
1	32-A	318	TYR	Peptide
1	32-A	382	ASP	Peptide
1	32-A	520	GLY	Peptide
1	33-A	126	LYS	Peptide
1	33-A	514	TYR	Peptide
1	34-A	382	ASP	Peptide
1	34-A	519	GLU	Peptide
1	34-A	521	MET	Peptide
1	34-A	89	CYS	Peptide

Continued from previous page...

Mol	Chain	Res	Type	Group
1	34-A	90	ASN	Peptide
1	35-A	124	GLU	Peptide
1	35-A	382	ASP	Peptide
1	35-A	384	GLU	Peptide
1	35-A	517	GLU	Peptide
1	35-A	518	ILE	Peptide
1	35-A	521	MET	Peptide
1	36-A	514	TYR	Peptide
1	36-A	518	ILE	Peptide
1	36-A	520	GLY	Peptide
1	37-A	102	THR	Peptide
1	37-A	384	GLU	Peptide
1	37-A	515	SER	Peptide
1	37-A	522	GLU	Peptide
1	38-A	103	GLY	Peptide
1	38-A	104	LYS	Peptide
1	38-A	386	THR	Peptide
1	38-A	522	GLU	Peptide
1	38-A	523	ASN	Peptide
1	39-A	461	ARG	Peptide
1	39-A	518	ILE	Peptide
1	39-A	523	ASN	Peptide
1	4-A	386	THR	Peptide
1	4-A	522	GLU	Peptide
1	40-A	103	GLY	Peptide
1	40-A	382	ASP	Peptide
1	40-A	435	HIS	Peptide
1	40-A	519	GLU	Peptide
1	40-A	521	MET	Peptide
1	40-A	523	ASN	Peptide
1	41-A	435	HIS	Peptide
1	41-A	531	LYS	Peptide
1	42-A	382	ASP	Peptide
1	42-A	385	ARG	Peptide
1	42-A	515	SER	Peptide
1	42-A	524	VAL	Peptide
1	43-A	125	THR	Peptide
1	43-A	380	LEU	Peptide
1	43-A	384	GLU	Peptide
1	43-A	438	GLY	Peptide
1	43-A	525	SER	Peptide
1	5-A	438	GLY	Peptide

Continued from previous page...

	5	1	1 5	
Mol	Chain	Res	Type	Group
1	7-A	516	ASN	Peptide
1	8-A	126	LYS	Peptide
1	9-A	100	PHE	Peptide
1	9-A	381	ALA	Peptide
1	9-A	521	MET	Peptide

Continued from previous page...

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	1-A	4557	4478	4476	0	0
1	2-A	4557	4478	4476	0	0
1	3-A	4557	4478	4476	0	0
1	4-A	4557	4478	4476	0	0
1	5-A	4557	4478	4476	0	0
1	6-A	4557	4478	4476	0	0
1	7-A	4557	4478	4476	0	0
1	8-A	4557	4478	4476	0	0
1	9-A	4557	4478	4476	0	0
1	10-A	4557	4478	4476	0	0
1	11-A	4557	4478	4476	0	0
1	12-A	4557	4478	4476	0	0
1	13-A	4557	4478	4476	0	0
1	14-A	4557	4478	4476	0	0
1	15-A	4557	4478	4476	0	0
1	16-A	4557	4478	4476	0	0
1	17-A	4557	4478	4476	0	0
1	18-A	4557	4478	4476	0	0
1	19-A	4557	4478	4475	0	0
1	20-A	4557	4478	4476	0	0
1	21-A	4557	4478	4476	0	0
1	22-A	4557	4478	4476	0	0
1	23-A	4557	4478	4476	0	0
1	24-A	4557	4478	4476	0	0
1	25-A	4557	4478	4476	0	0
1	26-A	4557	4478	4476	0	0
1	27-A	4557	4478	4476	0	0
1	28-A	4557	4478	4476	0	0

5IVK	
------	--

		Non T	puye	TT(addad)	Clashar	Comment Clashes
	Chain	NON-H	H(model)	H(added)	Clasnes	Symm-Clasnes
	29-A	4557	4478	4476	0	0
	30-A	4557	4478	4476	0	0
	31-A	4557	4478	4476	0	0
	32-A	4557	4478	4475	0	0
	33-A	4557	4478	4476	0	0
1	34-A	4557	4478	4476	0	0
1	35-A	4557	4478	4476	0	0
1	36-A	4557	4478	4476	0	0
1	37-A	4557	4478	4476	0	0
1	38-A	4557	4478	4476	0	0
1	39-A	4557	4478	4476	0	0
1	40-A	4557	4478	4476	0	0
1	41-A	4557	4478	4476	0	0
1	42-A	4557	4478	4476	0	0
1	43-A	4557	4478	4476	0	0
2	1-A	8	10	10	0	0
2	2-A	8	10	10	0	0
2	3-A	8	10	10	0	0
2	4-A	8	10	10	0	0
2	5-A	8	10	10	0	0
2	6-A	8	10	10	0	0
2	7-A	8	10	10	0	0
2	8-A	8	10	10	0	0
2	9-A	8	10	10	0	0
2	10-A	8	10	10	0	0
2	11-A	8	10	10	0	0
2	12-A	8	10	10	0	0
2	13-A	8	10	10	0	0
2	14-A	8	10	10	0	0
2	15-A	8	10	10	0	0
2	16-A	8	10	10	0	0
2	17-A	8	10	10	0	0
2	18-A	8	10	10	0	0
2	19-A	8	10	10	0	0
2	20-A	8	10	10	0	0
2	21-A	8	10	10	0	0
2	22-A	8	10	10	0	0
2	23-A	8	10	10	0	0
2	24-A	8	10	10	0	0
2	25-A	8	10	10	0	0
2	26-A	8	10	10	0	0
2	27-A	8	10	10	0	0

Contir d fr

5IVK

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	28-A	8	10	10	0	0
2	20 M	8	10	10	0	0
2	30-A	8	10	10	0	0
2	31-A	8	10	10	0	0
2	32-A	8	10	10	0	0
2	33-A	8	10	10	0	0
2	34-A	8	10	10	0	0
2	35-A	8	10	10	0	0
2	36-A	8	10	10	0	0
2	37-A	8	10	10	0	0
2	38-A	8	10	10	0	0
2	39-A	8	10	10	0	0
2	40-A	8	10	10	0	0
2	41-A	8	10	10	0	0
2	42-A	8	10	10	0	0
2	43-A	8	10	10	0	0
3	1-A	399	0	0	0	0
3	2-A	380	0	0	0	0
3	3-A	356	0	0	0	0
3	4-A	389	0	0	0	0
3	5-A	386	0	0	0	0
3	6-A	379	0	0	0	0
3	7-A	375	0	0	0	0
3	8-A	365	0	0	0	0
3	9-A	373	0	0	0	0
3	10-A	365	0	0	0	0
3	11-A	360	0	0	0	0
3	12-A	396	0	0	0	0
3	13-A	406	0	0	0	0
3	14-A	378	0	0	0	0
3	15-A	374	0	0	0	0
<u>う</u>	10-A	380	0	0	0	0
<u>う</u>	1(-A	357	0	0	0	0
う - 2	18-A	303 262	0	0	0	0
う 	19-A	303	0	0	0	0
0 9	20-A	- <u>-</u>	0	0	0	0
2 2	21-A 22 A	309	0	0	0	0
2 2	22-A 23 A	376	0	0	0	0
2	20-A 24 A	381	0	0	0	0
3	24-A	350	0	0	0	0
3	20-A	362	0	0	0	0
<u> </u>	20-A	502	U	U	U	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	27-A	379	0	0	0	0
3	28-A	389	0	0	0	0
3	29-A	377	0	0	0	0
3	30-A	363	0	0	0	0
3	31-A	365	0	0	0	0
3	32-A	393	0	0	0	0
3	33-A	378	0	0	0	0
3	34-A	384	0	0	0	0
3	35-A	383	0	0	0	0
3	36-A	390	0	0	0	0
3	37-A	358	0	0	0	0
3	38-A	377	0	0	0	0
3	39-A	393	0	0	0	0
3	40-A	388	0	0	0	0
3	41-A	390	0	0	0	0
3	42-A	390	0	0	0	0
3	43-A	377	0	0	0	0
All	All	212555	192984	192896	0	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). Clashscore could not be calculated for this entry.

There are no clashes within the asymmetric unit.

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	1-A	564/577~(98%)	531 (94%)	27 (5%)	6 (1%)	12 2
1	2-A	564/577~(98%)	524 (93%)	34 (6%)	6 (1%)	12 2
1	3-A	564/577~(98%)	528 (94%)	29 (5%)	7 (1%)	11 1
1	4-A	564/577~(98%)	533 (94%)	27 (5%)	4 (1%)	19 4

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
1	5-A	564/577~(98%)	529 (94%)	28~(5%)	7 (1%)	11	1
1	6-A	564/577~(98%)	528 (94%)	30~(5%)	6 (1%)	12	2
1	7-A	564/577~(98%)	527 (93%)	31 (6%)	6 (1%)	12	2
1	8-A	564/577~(98%)	528 (94%)	28 (5%)	8 (1%)	9	1
1	9-A	564/577~(98%)	531 (94%)	26 (5%)	7 (1%)	11	1
1	10-A	564/577~(98%)	538~(95%)	20 (4%)	6 (1%)	12	2
1	11-A	564/577~(98%)	528 (94%)	30 (5%)	6 (1%)	12	2
1	12-A	564/577~(98%)	528 (94%)	28 (5%)	8 (1%)	9	1
1	13-A	564/577~(98%)	532 (94%)	27 (5%)	5 (1%)	14	3
1	14-A	564/577~(98%)	531 (94%)	25 (4%)	8 (1%)	9	1
1	15-A	564/577~(98%)	523 (93%)	32 (6%)	9 (2%)	8	1
1	16-A	564/577~(98%)	531 (94%)	24 (4%)	9 (2%)	8	1
1	17-A	564/577~(98%)	532 (94%)	23 (4%)	9(2%)	8	1
1	18-A	564/577~(98%)	529 (94%)	26 (5%)	9 (2%)	8	1
1	19-A	564/577~(98%)	530 (94%)	29~(5%)	5 (1%)	14	3
1	20-A	564/577~(98%)	525~(93%)	30~(5%)	9(2%)	8	1
1	21-A	564/577~(98%)	523~(93%)	34~(6%)	7~(1%)	11	1
1	22-A	564/577~(98%)	525~(93%)	29~(5%)	10 (2%)	7	1
1	23-A	564/577~(98%)	521 (92%)	31~(6%)	12 (2%)	5	0
1	24-A	564/577~(98%)	530 (94%)	30 (5%)	4 (1%)	19	4
1	25-A	564/577~(98%)	524 (93%)	32~(6%)	8 (1%)	9	1
1	26-A	564/577~(98%)	527~(93%)	28~(5%)	9~(2%)	8	1
1	27-A	564/577~(98%)	519 (92%)	34~(6%)	11 (2%)	6	0
1	28-A	564/577~(98%)	527~(93%)	25~(4%)	12 (2%)	5	0
1	29-A	564/577~(98%)	530 (94%)	24 (4%)	10 (2%)	7	1
1	30-A	564/577~(98%)	531 (94%)	29~(5%)	4 (1%)	19	4
1	31-A	564/577~(98%)	530 (94%)	22 (4%)	12 (2%)	5	0
1	32-A	564/577~(98%)	534 (95%)	17 (3%)	13 (2%)	5	0
1	33-A	564/577~(98%)	520 (92%)	36 (6%)	8 (1%)	9	1
1	34-A	564/577~(98%)	518 (92%)	34 (6%)	12 (2%)	5	0
1	35-A	564/577~(98%)	517 (92%)	39 (7%)	8 (1%)	9	1

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	36-A	564/577~(98%)	524 (93%)	27~(5%)	13 (2%)	5	0
1	37-A	564/577~(98%)	519~(92%)	31 (6%)	14 (2%)	4	0
1	38-A	564/577~(98%)	522~(93%)	30~(5%)	12 (2%)	5	0
1	39-A	564/577~(98%)	523~(93%)	28 (5%)	13 (2%)	5	0
1	40-A	564/577~(98%)	530~(94%)	22 (4%)	12 (2%)	5	0
1	41-A	564/577~(98%)	524 (93%)	27 (5%)	13 (2%)	5	0
1	42-A	564/577~(98%)	525~(93%)	28~(5%)	11 (2%)	6	0
1	43-A	564/577~(98%)	526 (93%)	23 (4%)	15 (3%)	4	0
All	All	24252/24811 (98%)	22655 (93%)	1214 (5%)	383 (2%)	8	1

Continued from previous page...

All (383) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	1-A	515	SER
1	1-A	522	GLU
1	2-A	564	GLU
1	3-A	123	PRO
1	3-A	518	ILE
1	3-A	521	MET
1	3-A	564	GLU
1	4-A	123	PRO
1	4-A	124	GLU
1	5-A	123	PRO
1	5-A	434	ASN
1	5-A	439	THR
1	5-A	523	ASN
1	6-A	288	GLN
1	6-A	385	ARG
1	7-A	385	ARG
1	7-A	405	GLU
1	8-A	381	ALA
1	8-A	383	ALA
1	8-A	516	ASN
1	9-A	100	PHE
1	9-A	385	ARG
1	9-A	437	SER
1	10-A	437	SER
1	11-A	100	PHE
1	11-A	104	LYS

Mol	Chain	Res	Type
1	11-A	518	ILE
1	11-A	520	GLY
1	12-A	101	ILE
1	12-A	516	ASN
1	12-A	519	GLU
1	13-A	518	ILE
1	14-A	99	ASP
1	14-A	100	PHE
1	14-A	383	ALA
1	14-A	518	ILE
1	15-A	122	ASN
1	15-A	124	GLU
1	15-A	125	THR
1	15-A	362	MET
1	15-A	519	GLU
1	16-A	122	ASN
1	16-A	383	ALA
1	16-A	436	THR
1	16-A	521	MET
1	16-A	532	SER
1	16-A	533	ASP
1	17-A	122	ASN
1	17-A	126	LYS
1	17-A	520	GLY
1	18-A	124	GLU
1	18-A	383	ALA
1	18-A	437	SER
1	19-A	105	VAL
1	19-A	106	CYS
1	19-A	434	ASN
1	20-A	122	ASN
1	20-A	383	ALA
1	20-A	518	ILE
1	20-A	519	GLU
1	21-A	516	ASN
1	21-A	517	GLU
1	21-A	519	GLU
1	21-A	523	ASN
1	22-A	384	GLU
1	22-A	525	SER
1	22-A	526	TRP
1	23-A	383	ALA

Mol	Chain	Res	Type
1	23-A	385	ARG
1	23-A	452	ASP
1	23-A	518	ILE
1	23-A	523	ASN
1	23-A	525	SER
1	24-A	524	VAL
1	25-A	518	ILE
1	25-A	519	GLU
1	25-A	523	ASN
1	26-A	385	ARG
1	26-A	519	GLU
1	26-A	523	ASN
1	27-A	384	GLU
1	27-A	523	ASN
1	27-A	526	TRP
1	28-A	125	THR
1	28-A	384	GLU
1	28-A	521	MET
1	28-A	523	ASN
1	29-A	102	THR
1	29-A	105	VAL
1	29-A	125	THR
1	29-A	384	GLU
1	30-A	123	PRO
1	30-A	384	GLU
1	30-A	518	ILE
1	30-A	519	GLU
1	31-A	126	LYS
1	31-A	384	GLU
1	31-A	452	ASP
1	31-A	517	GLU
1	31-A	518	ILE
1	31-A	522	GLU
1	32-A	123	PRO
1	32-A	125	THR
1	32-A	126	LYS
1	32-A	127	ARG
1	32-A	382	ASP
1	32-A	518	ILE
1	33-A	123	PRO
1	33-A	518	ILE
1	34-A	122	ASN

Mol	Chain	Res	Type
1	34-A	123	PRO
1	34-A	124	GLU
1	34-A	126	LYS
1	34-A	437	SER
1	34-A	519	GLU
1	34-A	524	VAL
1	34-A	525	SER
1	35-A	123	PRO
1	35-A	437	SER
1	35-A	518	ILE
1	35-A	524	VAL
1	36-A	104	LYS
1	36-A	385	ARG
1	36-A	387	ALA
1	36-A	438	GLY
1	36-A	518	ILE
1	36-A	524	VAL
1	37-A	100	PHE
1	37-A	519	GLU
1	37-A	523	ASN
1	37-A	524	VAL
1	38-A	100	PHE
1	38-A	101	ILE
1	38-A	381	ALA
1	38-A	383	ALA
1	38-A	518	ILE
1	38-A	524	VAL
1	39-A	385	ARG
1	39-A	437	SER
1	39-A	462	SER
1	39-A	521	MET
1	39-A	522	GLU
1	39-A	524	VAL
1	40-A	124	GLU
1	40-A	388	PRO
1	40-A	519	GLU
1	40-A	521	MET
1	40-A	522	GLU
1	41-A	103	GLY
1	41-A	382	ASP
1	41-A	519	GLU
1	41-A	521	MET

Mol	Chain	Res	Type
1	41-A	522	GLU
1	41-A	524	VAL
1	42-A	381	ALA
1	42-A	383	ALA
1	42-A	388	PRO
1	42-A	436	THR
1	42-A	516	ASN
1	42-A	524	VAL
1	43-A	125	THR
1	43-A	381	ALA
1	43-A	516	ASN
1	43-A	519	GLU
1	43-A	523	ASN
1	43-A	524	VAL
1	43-A	525	SER
1	43-A	535	VAL
1	2-A	21	LYS
1	2-A	438	GLY
1	2-A	462	SER
1	2-A	517	GLU
1	2-A	521	MET
1	6-A	387	ALA
1	6-A	517	GLU
1	6-A	523	ASN
1	7-A	516	ASN
1	8-A	382	ASP
1	8-A	384	GLU
1	8-A	437	SER
1	9-A	101	ILE
1	9-A	516	ASN
1	10-A	101	ILE
1	10-A	518	ILE
1	10-A	519	GLU
1	11-A	101	ILE
1	11-A	516	ASN
1	12-A	124	GLU
1	14-A	102	THR
1	15-A	533	ASP
1	16-A	100	PHE
1	16-A	102	THR
1	17-A	438	GLY
1	17-A	521	MET

Mol	Chain	Res	Type
1	18-A	519	GLU
1	18-A	521	MET
1	19-A	518	ILE
1	20-A	101	ILE
1	20-A	515	SER
1	21-A	384	GLU
1	21-A	518	ILE
1	22-A	521	MET
1	22-A	523	ASN
1	23-A	519	GLU
1	23-A	520	GLY
1	23-A	526	TRP
1	24-A	523	ASN
1	25-A	356	THR
1	25-A	383	ALA
1	25-A	522	GLU
1	26-A	384	GLU
1	27-A	386	THR
1	27-A	438	GLY
1	27-A	518	ILE
1	27-A	519	GLU
1	27-A	524	VAL
1	28-A	87	ASP
1	28-A	126	LYS
1	28-A	526	TRP
1	29-A	101	ILE
1	29-A	383	ALA
1	29-A	516	ASN
1	29-A	518	ILE
1	31-A	453	LEU
1	31-A	524	VAL
1	32-A	384	GLU
1	32-A	522	GLU
1	32-A	525	SER
1	33-A	381	ALA
1	33-A	383	ALA
1	34-A	381	ALA
1	35-A	381	ALA
1	35-A	383	ALA
1	35-A	521	MET
1	35-A	525	SER
1	36-A	522	GLU

Mol	Chain	Res	Type
1	36-A	532	SER
1	37-A	124	GLU
1	37-A	381	ALA
1	37-A	525	SER
1	38-A	438	GLY
1	38-A	519	GLU
1	38-A	523	ASN
1	39-A	383	ALA
1	39-A	384	GLU
1	40-A	386	THR
1	41-A	92	LYS
1	41-A	386	THR
1	42-A	125	THR
1	42-A	386	THR
1	42-A	534	GLU
1	43-A	452	ASP
1	1-A	517	GLU
1	1-A	520	GLY
1	3-A	100	PHE
1	4-A	509	THR
1	5-A	304	THR
1	5-A	453	LEU
1	7-A	384	GLU
1	8-A	434	ASN
1	10-A	520	GLY
1	12-A	452	ASP
1	13-A	100	PHE
1	13-A	104	LYS
1	14-A	321	ALA
1	14-A	519	GLU
1	15-A	102	THR
1	15-A	523	ASN
1	17-A	100	PHE
1	17-A	383	ALA
1	18-A	100	PHE
1	20-A	521	MET
1	22-A	518	ILE
1	23-A	300	LEU
1	23-A	490	GLU
1	24-A	383	ALA
1	24-A	452	ASP
1	27-A	146	ASP

Mol	Chain	Res	Type
1	28-A	88	CYS
1	28-A	122	ASN
1	29-A	124	GLU
1	31-A	381	ALA
1	32-A	122	ASN
1	32-A	319	GLN
1	33-A	126	LYS
1	33-A	437	SER
1	33-A	522	GLU
1	34-A	384	GLU
1	34-A	518	ILE
1	37-A	387	ALA
1	37-A	522	GLU
1	38-A	385	ARG
1	39-A	386	THR
1	39-A	438	GLY
1	40-A	382	ASP
1	40-A	524	VAL
1	41-A	90	ASN
1	41-A	438	GLY
1	41-A	515	SER
1	43-A	364	LEU
1	43-A	384	GLU
1	1-A	521	MET
1	3-A	385	ARG
1	5-A	81	PRO
1	7-A	388	PRO
1	7-A	521	MET
1	10-A	521	MET
1	12-A	294	GLU
1	13-A	464	ARG
1	15-A	438	GLY
1	18-A	518	ILE
1	19-A	519	GLU
1	21-A	525	SER
1	22-A	383	ALA
1	22-A	438	GLY
1	23-A	524	VAL
1	26-A	146	ASP
1	26-A	383	ALA
1	26-A	516	ASN
1	27-A	462	SER

Mol	Chain	Res	Type
1	27-A	525	SER
1	28-A	524	VAL
1	31-A	521	MET
1	32-A	381	ALA
1	34-A	382	ASP
1	36-A	106	CYS
1	36-A	386	THR
1	36-A	388	PRO
1	36-A	464	ARG
1	37-A	385	ARG
1	37-A	386	THR
1	37-A	518	ILE
1	37-A	521	MET
1	38-A	386	THR
1	39-A	102	THR
1	39-A	123	PRO
1	40-A	438	GLY
1	42-A	385	ARG
1	43-A	534	GLU
1	6-A	362	MET
1	9-A	453	LEU
1	12-A	100	PHE
1	12-A	103	GLY
1	13-A	484	ALA
1	14-A	385	ARG
1	16-A	386	THR
1	17-A	387	ALA
1	17-A	437	SER
1	20-A	91	HIS
1	22-A	524	VAL
1	25-A	521	MET
1	31-A	525	SER
1	39-A	461	ARG
1	40-A	584	GLU
1	41-A	516	ASN
1	42-A	100	
1	43-A	513	PKO
1	I-A	516	ASN
1	8-A	100	PHE
1	26-A	126	
1	26-A	524	VAL
1	28-A	520	GLY

Mol	Chain	Res	Type
1	32-A	524	VAL
1	36-A	515	SER
1	37-A	101	ILE
1	40-A	385	ARG
1	43-A	462	SER
1	18-A	438	GLY
1	22-A	123	PRO
1	25-A	388	PRO
1	38-A	103	GLY
1	41-A	101	ILE
1	3-A	101	ILE
1	18-A	520	GLY
1	28-A	123	PRO
1	29-A	524	VAL
1	40-A	518	ILE
1	43-A	520	GLY
1	20-A	524	VAL
1	31-A	123	PRO
1	33-A	439	THR
1	9-A	438	GLY
1	4-A	438	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	1-A	500/512~(98%)	445 (89%)	55~(11%)	5 0
1	2-A	500/512~(98%)	451 (90%)	49 (10%)	6 0
1	3-A	500/512~(98%)	456 (91%)	44 (9%)	8 0
1	4-A	500/512~(98%)	446 (89%)	54 (11%)	5 0
1	5-A	500/512~(98%)	439 (88%)	61~(12%)	4 0
1	6-A	500/512~(98%)	455 (91%)	45~(9%)	8 0
1	7-A	500/512~(98%)	455 (91%)	45~(9%)	8 0
1	8-A	500/512~(98%)	460 (92%)	40 (8%)	10 0

5IV	Κ
-----	---

$\alpha \cdot \cdot \cdot \cdot$	ſ	•	
Continuea	irom	previous	page
	J	1	I J

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	9-A	500/512~(98%)	453 (91%)	47 (9%)	7	0
1	10-A	500/512~(98%)	449 (90%)	51~(10%)	6	0
1	11-A	500/512~(98%)	452 (90%)	48 (10%)	7	0
1	12-A	500/512~(98%)	466 (93%)	34 (7%)	13	1
1	13-A	500/512~(98%)	452 (90%)	48 (10%)	7	0
1	14-A	500/512~(98%)	459 (92%)	41 (8%)	9	0
1	15-A	500/512~(98%)	444 (89%)	56 (11%)	5	0
1	16-A	500/512~(98%)	450 (90%)	50 (10%)	6	0
1	17-A	500/512~(98%)	446 (89%)	54 (11%)	5	0
1	18-A	500/512~(98%)	448 (90%)	52 (10%)	5	0
1	19-A	500/512~(98%)	441 (88%)	59 (12%)	4	0
1	20-A	500/512~(98%)	439 (88%)	61 (12%)	4	0
1	21-A	500/512~(98%)	440 (88%)	60 (12%)	4	0
1	22-A	500/512~(98%)	446 (89%)	54 (11%)	5	0
1	23-A	500/512~(98%)	454 (91%)	46 (9%)	7	0
1	24-A	500/512~(98%)	439 (88%)	61 (12%)	4	0
1	25-A	500/512~(98%)	436 (87%)	64 (13%)	3	0
1	26-A	500/512~(98%)	439 (88%)	61 (12%)	4	0
1	27-A	500/512~(98%)	452 (90%)	48 (10%)	7	0
1	28-A	500/512~(98%)	446 (89%)	54 (11%)	5	0
1	29-A	500/512~(98%)	447 (89%)	53 (11%)	5	0
1	30-A	500/512~(98%)	454 (91%)	46 (9%)	7	0
1	31-A	500/512~(98%)	448 (90%)	52 (10%)	5	0
1	32-A	500/512~(98%)	448 (90%)	52 (10%)	5	0
1	33-A	500/512~(98%)	449 (90%)	51 (10%)	6	0
1	34-A	500/512~(98%)	445 (89%)	55 (11%)	5	0
1	35-A	500/512~(98%)	449 (90%)	51 (10%)	6	0
1	36-A	500/512~(98%)	449 (90%)	51 (10%)	6	0
1	37-A	500/512~(98%)	460 (92%)	40 (8%)	10	0
1	38-A	500/512~(98%)	452 (90%)	48 (10%)	7	0
1	39-A	500/512~(98%)	442 (88%)	58 (12%)	4	0

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	40-A	500/512~(98%)	441 (88%)	59 (12%)	4 0
1	41-A	500/512~(98%)	451 (90%)	49 (10%)	6 0
1	42-A	500/512~(98%)	447 (89%)	53 (11%)	5 0
1	43-A	500/512~(98%)	450 (90%)	50 (10%)	6 0
All	All	21500/22016~(98%)	19290 (90%)	2210 (10%)	6 0

Continued from previous page...

All (2210) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	1-A	11	LEU
1	1-A	19	GLU
1	1-A	21	LYS
1	1-A	43	LYS
1	1-A	65	GLN
1	1-A	86	ARG
1	1-A	87	ASP
1	1-A	92	LYS
1	1-A	100	PHE
1	1-A	125	THR
1	1-A	126	LYS
1	1-A	142	GLU
1	1-A	146	ASP
1	1-A	151	ASP
1	1-A	157	ASP
1	1-A	199	LYS
1	1-A	248	ILE
1	1-A	253	ASN
1	1-A	284	LYS
1	1-A	286	LYS
1	1-A	292	LYS
1	1-A	296	LYS
1	1-A	319	GLN
1	1-A	322	ASP
1	1-A	334	LYS
1	1-A	350	TYR
1	1-A	361	GLN
1	1-A	362	MET
1	1-A	365	LEU
1	1-A	368	GLU
1	1-A	369	LEU
1	1-A	379	GLU

Mol	Chain	Res	Type
1	1-A	384	GLU
1	1-A	386	THR
1	1-A	389	GLU
1	1-A	451	GLU
1	1-A	462	SER
1	1-A	464	ARG
1	1-A	467	LYS
1	1-A	485	LYS
1	1-A	486	ARG
1	1-A	489	LYS
1	1-A	490	GLU
1	1-A	504	TRP
1	1-A	510	THR
1	1-A	512	ASN
1	1-A	516	ASN
1	1-A	518	ILE
1	1-A	519	GLU
1	1-A	523	ASN
1	1-A	527	ASP
1	1-A	531	LYS
1	1-A	546	LYS
1	1-A	549	ASP
1	1-A	564	GLU
1	2-A	8	MET
1	2-A	11	LEU
1	2-A	15	ILE
1	2-A	16	LYS
1	2-A	21	LYS
1	2-A	65	GLN
1	2-A	70	GLU
1	2-A	78	ARG
1	2-A	80	THR
1	2-A	93	ASP
1	2-A	100	PHE
1	2-A	104	LYS
1	2-A	142	GLU
1	2-A	146	ASP
1	2-A	147	MET
1	2-A	151	ASP
1	2-A	236	LEU
1	2-A	276	LYS
1	2-A	284	LYS

Mol	Chain	Res	Type
1	2-A	286	LYS
1	2-A	289	ASP
1	2-A	301	GLU
1	2-A	304	THR
1	2-A	319	GLN
1	2-A	340	SER
1	2-A	350	TYR
1	2-A	358	ILE
1	2-A	378	SER
1	2-A	379	GLU
1	2-A	384	GLU
1	2-A	386	THR
1	2-A	389	GLU
1	2-A	392	GLU
1	2-A	410	ASP
1	2-A	439	THR
1	2-A	441	VAL
1	2-A	451	GLU
1	2-A	485	LYS
1	2-A	486	ARG
1	2-A	489	LYS
1	2-A	490	GLU
1	2-A	504	TRP
1	2-A	510	THR
1	2-A	512	ASN
1	2-A	516	ASN
1	2-A	523	ASN
1	2-A	531	LYS
1	2-A	564	GLU
1	2-A	566	HIS
1	3-A	11	LEU
1	3-A	14	LYS
1	3-A	36	GLU
1	3-A	43	LYS
1	3-A	65	GLN
1	3-A	70	GLU
1	3-A	78	ARG
1	3-A	86	ARG
1	3-A	90	ASN
1	3-A	93	ASP
1	3-A	101	ILE
1	3-A	104	LYS

Mol	Chain	Res	Type
1	3-A	125	THR
1	3-A	142	GLU
1	3-A	151	ASP
1	3-A	155	LYS
1	3-A	178	GLU
1	3-A	217	GLU
1	3-A	288	GLN
1	3-A	289	ASP
1	3-A	293	LEU
1	3-A	295	GLU
1	3-A	301	GLU
1	3-A	306	LYS
1	3-A	350	TYR
1	3-A	357	SER
1	3-A	360	LYS
1	3-A	365	LEU
1	3-A	367	LYS
1	3-A	379	GLU
1	3-A	384	GLU
1	3-A	386	THR
1	3-A	452	ASP
1	3-A	460	MET
1	3-A	462	SER
1	3-A	464	ARG
1	3-A	485	LYS
1	3-A	486	ARG
1	3-A	489	LYS
1	3-A	504	TRP
1	3-A	515	SER
1	3-A	531	LYS
1	3-A	564	GLU
1	3-A	568	ASP
1	4-A	11	LEU
1	4-A	14	LYS
1	4-A	19	GLU
1	4-A	36	GLU
1	4-A	43	LYS
1	4-A	70	GLU
1	4-A	77	GLN
1	4-A	78	ARG
1	4-A	89	CYS
1	4-A	90	ASN

Mol	Chain	Res	Type
1	4-A	100	PHE
1	4-A	101	ILE
1	4-A	104	LYS
1	4-A	126	LYS
1	4-A	147	MET
1	4-A	151	ASP
1	4-A	179	ASP
1	4-A	181	ASN
1	4-A	199	LYS
1	4-A	236	LEU
1	4-A	254	THR
1	4-A	288	GLN
1	4-A	295	GLU
1	4-A	296	LYS
1	4-A	303	ARG
1	4-A	306	LYS
1	4-A	350	TYR
1	4-A	360	LYS
1	4-A	362	MET
1	4-A	364	LEU
1	4-A	378	SER
1	4-A	384	GLU
1	4-A	386	THR
1	4-A	392	GLU
1	4-A	393	MET
1	4-A	410	ASP
1	4-A	436	THR
1	4-A	439	THR
1	4-A	441	VAL
1	4-A	460	MET
1	4-A	470	SER
1	4-A	485	LYS
1	4-A	486	ARG
1	4-A	489	LYS
1	4-A	490	GLU
1	4-A	504	TRP
1	4-A	510	THR
1	4-A	518	ILE
1	4-A	522	GLU
1	4-A	523	ASN
1	4-A	531	LYS
1	4-A	564	GLU

Mol	Chain	Res	Type
1	4-A	565	LYS
1	4-A	568	ASP
1	5-A	7	LEU
1	5-A	8	MET
1	5-A	11	LEU
1	5-A	19	GLU
1	5-A	36	GLU
1	5-A	54	SER
1	5-A	68	VAL
1	5-A	70	GLU
1	5-A	74	LYS
1	5-A	90	ASN
1	5-A	91	HIS
1	5-A	93	ASP
1	5-A	101	ILE
1	5-A	105	VAL
1	5-A	124	GLU
1	5-A	125	THR
1	5-A	126	LYS
1	5-A	142	GLU
1	5-A	146	ASP
1	5-A	151	ASP
1	5-A	155	LYS
1	5-A	156	LYS
1	5-A	178	GLU
1	5-A	179	ASP
1	5-A	200	ASN
1	5-A	236	LEU
1	5-A	253	ASN
1	5-A	265	LYS
1	5-A	272	GLU
1	5-A	280	GLU
1	5-A	293	LEU
1	5-A	294	GLU
1	5-A	306	LYS
1	5-A	331	GLU
1	5-A	340	SER
1	5-A	350	TYR
1	5-A	358	ILE
1	5-A	360	LYS
1	5-A	362	MET
1	5-A	369	LEU

Mol	Chain	Res	Type
1	5-A	378	SER
1	5-A	382	ASP
1	5-A	384	GLU
1	5-A	392	GLU
1	5-A	405	GLU
1	5-A	437	SER
1	5-A	452	ASP
1	5-A	456	PRO
1	5-A	464	ARG
1	5-A	467	LYS
1	5-A	474	GLU
1	5-A	485	LYS
1	5-A	486	ARG
1	5-A	498	GLU
1	5-A	504	TRP
1	5-A	517	GLU
1	5-A	519	GLU
1	5-A	523	ASN
1	5-A	531	LYS
1	5-A	537	LYS
1	5-A	564	GLU
1	6-A	14	LYS
1	6-A	24	ASN
1	6-A	37	THR
1	6-A	54	SER
1	6-A	65	GLN
1	6-A	68	VAL
1	6-A	77	GLN
1	6-A	78	ARG
1	6-A	80	THR
1	6-A	86	ARG
1	6-A	93	ASP
1	6-A	100	PHE
1	6-A	101	ILE
1	6-A	125	THR
1	6-A	147	MET
1	6-A	151	ASP
1	6-A	155	LYS
1	6-A	178	GLU
1	6-A	253	ASN
1	6-A	274	ASN
1	6-A	286	LYS

Mol	Chain	Res	Type
1	6-A	293	LEU
1	6-A	295	GLU
1	6-A	306	LYS
1	6-A	350	TYR
1	6-A	357	SER
1	6-A	365	LEU
1	6-A	379	GLU
1	6-A	384	GLU
1	6-A	392	GLU
1	6-A	396	LYS
1	6-A	410	ASP
1	6-A	437	SER
1	6-A	460	MET
1	6-A	474	GLU
1	6-A	486	ARG
1	6-A	490	GLU
1	6-A	504	TRP
1	6-A	505	THR
1	6-A	521	MET
1	6-A	522	GLU
1	6-A	530	GLU
1	6-A	531	LYS
1	6-A	534	GLU
1	6-A	564	GLU
1	7-A	16	LYS
1	7-A	19	GLU
1	7-A	24	ASN
1	7-A	65	GLN
1	7-A	74	LYS
1	7-A	92	LYS
1	7-A	101	ILE
1	7-A	102	THR
1	7-A	122	ASN
1	7-A	142	GLU
1	7-A	147	MET
1	7-A	151	ASP
1	7-A	157	ASP
1	7-A	181	ASN
1	7-A	204	ASN
1	7-A	236	LEU
1	7-A	288	GLN
1	7-A	301	GLU

Mol	Chain	Res	Type
1	7-A	350	TYR
1	7-A	355	PHE
1	7-A	365	LEU
1	7-A	384	GLU
1	7-A	388	PRO
1	7-A	396	LYS
1	7-A	403	THR
1	7-A	425	MET
1	7-A	437	SER
1	7-A	439	THR
1	7-A	460	MET
1	7-A	461	ARG
1	7-A	462	SER
1	7-A	464	ARG
1	7-A	489	LYS
1	7-A	504	TRP
1	7-A	505	THR
1	7-A	514	TYR
1	7-A	518	ILE
1	7-A	519	GLU
1	7-A	521	MET
1	7-A	522	GLU
1	7-A	532	SER
1	7-A	542	SER
1	7-A	544	GLU
1	7-A	549	ASP
1	7-A	566	HIS
1	8-A	16	LYS
1	8-A	80	THR
1	8-A	86	ARG
1	8-A	90	ASN
1	8-A	92	LYS
1	8-A	101	ILE
1	8-A	106	CYS
1	8-A	124	GLU
1	8-A	142	GLU
1	8-A	151	ASP
1	8-A	177	SER
1	8-A	199	LYS
1	8-A	200	ASN
1	8-A	217	GLU
1	8-A	248	ILE

Mol	Chain	Res	Type
1	8-A	288	GLN
1	8-A	293	LEU
1	8-A	295	GLU
1	8-A	296	LYS
1	8-A	345	MET
1	8-A	350	TYR
1	8-A	361	GLN
1	8-A	367	LYS
1	8-A	379	GLU
1	8-A	452	ASP
1	8-A	467	LYS
1	8-A	474	GLU
1	8-A	495	LYS
1	8-A	504	TRP
1	8-A	505	THR
1	8-A	510	THR
1	8-A	512	ASN
1	8-A	514	TYR
1	8-A	518	ILE
1	8-A	521	MET
1	8-A	531	LYS
1	8-A	544	GLU
1	8-A	564	GLU
1	8-A	566	HIS
1	8-A	567	ARG
1	9-A	5	VAL
1	9-A	36	GLU
1	9-A	80	THR
1	9-A	86	ARG
1	9-A	89	CYS
1	9-A	92	LYS
1	9-A	100	PHE
1	9-A	101	ILE
1	9-A	122	ASN
1	9-A	125	THR
1	9-A	126	LYS
1	9-A	142	GLU
1	9-A	151	ASP
1	9-A	199	LYS
1	9-A	239	ARG
1	9-A	$28\overline{4}$	LYS
1	9-A	286	LYS

Mol	Chain	Res	Type
1	9-A	288	GLN
1	9-A	293	LEU
1	9-A	295	GLU
1	9-A	322	ASP
1	9-A	345	MET
1	9-A	350	TYR
1	9-A	357	SER
1	9-A	361	GLN
1	9-A	365	LEU
1	9-A	369	LEU
1	9-A	382	ASP
1	9-A	384	GLU
1	9-A	389	GLU
1	9-A	396	LYS
1	9-A	410	ASP
1	9-A	436	THR
1	9-A	437	SER
1	9-A	439	THR
1	9-A	486	ARG
1	9-A	495	LYS
1	9-A	504	TRP
1	9-A	515	SER
1	9-A	516	ASN
1	9-A	517	GLU
1	9-A	518	ILE
1	9-A	519	GLU
1	9-A	522	GLU
1	9-A	530	GLU
1	9-A	533	ASP
1	9-A	544	GLU
1	10-A	5	VAL
1	10-A	71	LEU
1	10-A	86	ARG
1	10-A	93	ASP
1	10-A	100	PHE
1	10-A	125	THR
1	10-A	126	LYS
1	10-A	142	GLU
1	10-A	151	ASP
1	10-A	157	ASP
1	10-A	200	ASN
1	10-A	217	GLU

Mol	Chain	Res	Type
1	10-A	236	LEU
1	10-A	254	THR
1	10-A	265	LYS
1	10-A	286	LYS
1	10-A	288	GLN
1	10-A	289	ASP
1	10-A	294	GLU
1	10-A	295	GLU
1	10-A	301	GLU
1	10-A	319	GLN
1	10-A	322	ASP
1	10-A	324	VAL
1	10-A	328	HIS
1	10-A	334	LYS
1	10-A	350	TYR
1	10-A	358	ILE
1	10-A	361	GLN
1	10-A	362	MET
1	10-A	367	LYS
1	10-A	369	LEU
1	10-A	384	GLU
1	10-A	396	LYS
1	10-A	451	GLU
1	10-A	452	ASP
1	10-A	474	GLU
1	10-A	485	LYS
1	10-A	486	ARG
1	10-A	490	GLU
1	10-A	495	LYS
1	10-A	504	TRP
1	10-A	515	SER
1	10-A	516	ASN
1	10-A	517	GLU
1	10-A	518	ILE
1	10-A	544	GLU
1	10-A	549	ASP
1	10-A	564	GLU
1	10-A	567	ARG
1	10-A	568	ASP
1	11-A	24	ASN
1	11-A	52	ASP
1	11-A	77	GLN

1 11-A 90 ASN 1 11-A 91 HIS 1 11-A 93 ASP 1 11-A 93 ASP 1 11-A 99 ASP	
1 11-A 91 HIS 1 11-A 93 ASP 1 11-A 99 ASP	
1 11-A 93 ASP 1 11-A 99 ASP	
1 11-A 99 ASP	
	_
1 11-A 100 PHE	
1 11-A 101 ILE	
$\frac{1}{1}$ 11-A 104 LYS	
1 11-A 142 GLU	
1 11-A 151 ASP	
1 11-A 155 LYS	
1 11-A 248 ILE	
1 11-A 266 LEU	
1 11-A 272 GLU	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 11-A 284 LYS	
1 11-A 288 GLN	
1 11-A 292 LYS	
1 11-A 295 GLU	
1 11-A 300 LEU	
1 11-A 327 LYS	
1 11-A 331 GLU	
1 11-A 334 LYS	
1 11-A 350 TYR	
1 11-A 360 LYS	
1 11-A 367 LYS	
1 11-A 382 ASP	
1 11-A 396 LYS	
1 11-A 434 ASN	
1 11-A 439 THR	
1 11-A 460 MET	
1 11-A 462 SER	
1 11-A 486 ARG	
1 11-A 489 LYS	
1 11-A 490 GLU	
1 11-A 504 TRP	
1 11-A 510 THR	
1 11-A 512 ASN	
1 11-A 514 TYR	
1 11-A 516 ASN	
1 11-A 517 GLU	
1 11-A 518 ILE	
1 11-A 519 GLU	

Mol	Chain	Res	Type
1	11-A	532	SER
1	11-A	543	ASP
1	11-A	567	ARG
1	12-A	11	LEU
1	12-A	52	ASP
1	12-A	77	GLN
1	12-A	90	ASN
1	12-A	100	PHE
1	12-A	101	ILE
1	12-A	151	ASP
1	12-A	179	ASP
1	12-A	288	GLN
1	12-A	295	GLU
1	12-A	296	LYS
1	12-A	305	ASN
1	12-A	306	LYS
1	12-A	327	LYS
1	12-A	328	HIS
1	12-A	331	GLU
1	12-A	334	LYS
1	12-A	343	THR
1	12-A	350	TYR
1	12-A	357	SER
1	12-A	364	LEU
1	12-A	365	LEU
1	12-A	367	LYS
1	12-A	369	LEU
1	12-A	378	SER
1	12-A	382	ASP
1	12-A	452	ASP
1	12-A	487	MET
1	12-A	489	LYS
1	12-A	504	TRP
1	12-A	518	ILE
1	12-A	523	ASN
1	12-A	544	GLU
1	12-A	567	ARG
1	13-A	14	LYS
1	13-A	36	GLU
1	13-A	43	LYS
1	13-A	53	ASP
1	13-A	90	ASN

Mol	Chain	Res	
1	13-A	91	HIS
1	13-A	99	ASP
1	13-A	105	VAL
1	13-A	126	LYS
1	13-A	120 142	GLU
1	13-A	151	ASP
1	13-A	156	LYS
1	13-A	179	ASP
1	13-A	200	ASN
1	13-A	210	ASP
1	13-A	236	LEU
1	13-A	253	ASN
1	13-A	284	LYS
1	13-A	286	LYS
1	13-A	288	GLN
1	13-A	296	LYS
1	13-A	301	GLU
1	13-A	306	LYS
1	13-A	327	LYS
1	13-A	328	HIS
1	13-A	334	LYS
1	13-A	350	TYR
1	13-A	361	GLN
1	13-A	362	MET
1	13-A	365	LEU
1	13-A	367	LYS
1	13-A	393	MET
1	13-A	439	THR
1	13-A	451	GLU
1	13-A	452	ASP
1	13-A	462	SER
1	13-A	464	ARG
1	13-A	485	LYS
1	13-A	487	MET
1	13-A	504	TRP
1	13-A	506	GLN
1	13-A	521	MET
1	13-A	530	GLU
1	13-A	533	ASP
1	13-A	534	GLU
1	13-A	537	LYS
1	13-A	544	GLU

Mol	Chain	Res	Type
1	13-A	565	LYS
1	14-A	9	GLU
1	14-A	16	LYS
1	14-A	59	GLU
1	14-A	89	CYS
1	14-A	94	LYS
1	14-A	122	ASN
1	14-A	124	GLU
1	14-A	142	GLU
1	14-A	146	ASP
1	14-A	151	ASP
1	14-A	179	ASP
1	14-A	181	ASN
1	14-A	200	ASN
1	14-A	210	ASP
1	14-A	254	THR
1	14-A	272	GLU
1	14-A	277	ASP
1	14-A	289	ASP
1	14-A	295	GLU
1	14-A	319	GLN
1	14-A	324	VAL
1	14-A	334	LYS
1	14-A	358	ILE
1	14-A	360	LYS
1	14-A	362	MET
1	14-A	367	LYS
1	14-A	384	GLU
1	14-A	437	SER
1	14-A	460	MET
1	14-A	464	ARG
1	14-A	485	LYS
1	14-A	486	ARG
1	14-A	504	TRP
1	14-A	516	ASN
1	14-A	518	ILE
1	14-A	521	MET
1	14-A	522	GLU
1	14-A	534	GLU
1	14-A	544	GLU
1	14-A	561	SER
1	14-A	565	LYS

Mol	Chain	Res	Type
1	15-A	7	LEU
1	15-A	8	MET
1	15-A	11	LEU
1	15-A	17	CYS
1	15-A	21	LYS
1	15-A	52	ASP
1	15-A	53	ASP
1	15-A	59	GLU
1	15-A	68	VAL
1	15-A	77	GLN
1	15-A	86	ARG
1	15-A	94	LYS
1	15-A	100	PHE
1	15-A	104	LYS
1	15-A	142	GLU
1	15-A	147	MET
1	15-A	151	ASP
1	15-A	155	LYS
1	15-A	179	ASP
1	15-A	181	ASN
1	15-A	286	LYS
1	15-A	300	LEU
1	15-A	319	GLN
1	15-A	327	LYS
1	15-A	334	LYS
1	15-A	350	TYR
1	15-A	361	GLN
1	15-A	365	LEU
1	15-A	367	LYS
1	15-A	379	GLU
1	15-A	384	GLU
1	15-A	396	LYS
1	15-A	405	GLU
1	15-A	410	ASP
1	15-A	424	PRO
1	15-A	436	THR
1	15-A	452	ASP
1	15-A	453	LEU
1	15-A	457	TYR
1	15-A	460	MET
1	15-A	485	LYS
1	15-A	486	ARG

Mol	Chain	Res	Type
1	15-A	490	GLU
1	15-A	498	GLU
1	15-A	504	TRP
1	15-A	516	ASN
1	15-A	518	ILE
1	15-A	519	GLU
1	15-A	522	GLU
1	15-A	527	ASP
1	15-A	530	GLU
1	15-A	532	SER
1	15-A	533	ASP
1	15-A	544	GLU
1	15-A	565	LYS
1	15-A	567	ARG
1	16-A	8	MET
1	16-A	19	GLU
1	16-A	86	ARG
1	16-A	92	LYS
1	16-A	93	ASP
1	16-A	100	PHE
1	16-A	101	ILE
1	16-A	102	THR
1	16-A	122	ASN
1	16-A	124	GLU
1	16-A	126	LYS
1	16-A	142	GLU
1	16-A	147	MET
1	16-A	151	ASP
1	16-A	199	LYS
1	16-A	234	ARG
1	16-A	253	ASN
1	16-A	254	THR
1	16-A	288	GLN
1	16-A	302	GLU
1	16-A	319	GLN
1	16-A	324	VAL
1	16-A	350	TYR
1	16-A	357	SER
1	16-A	358	ILE
1	16-A	362	MET
1	16-A	367	LYS
1	16-A	369	LEU

Mol	Chain	Res	Type
1	16-A	378	SER
1	16-A	382	ASP
1	16-A	384	GLU
1	16-A	451	GLU
1	16-A	454	ILE
1	16-A	456	PRO
1	16-A	458	ARG
1	16-A	460	MET
1	16-A	464	ARG
1	16-A	485	LYS
1	16-A	489	LYS
1	16-A	490	GLU
1	16-A	504	TRP
1	16-A	512	ASN
1	16-A	518	ILE
1	16-A	519	GLU
1	16-A	521	MET
1	16-A	530	GLU
1	16-A	533	ASP
1	16-A	534	GLU
1	16-A	565	LYS
1	16-A	568	ASP
1	17-A	8	MET
1	17-A	12	LYS
1	17-A	31	GLU
1	17-A	54	SER
1	17-A	65	GLN
1	17-A	78	ARG
1	17-A	80	THR
1	17-A	86	ARG
1	17-A	90	ASN
1	17-A	100	PHE
1	17-A	101	ILE
1	17-A	104	LYS
1	17-A	106	CYS
1	17-A	120	ASN
1	17-A	122	ASN
1	17-A	125	THR
1	17-A	126	LYS
1	17-A	151	ASP
1	17-A	179	ASP
1	17-A	236	LEU

Mol	Chain	Res	Type
1	17-A	253	ASN
1	17-A	274	ASN
1	17-A	280	GLU
1	17-A	284	LYS
1	17-A	286	LYS
1	17-A	288	GLN
1	17-A	291	ILE
1	17-A	300	LEU
1	17-A	322	ASP
1	17-A	350	TYR
1	17-A	360	LYS
1	17-A	362	MET
1	17-A	367	LYS
1	17-A	396	LYS
1	17-A	435	HIS
1	17-A	437	SER
1	17-A	454	ILE
1	17-A	464	ARG
1	17-A	467	LYS
1	17-A	486	ARG
1	17-A	504	TRP
1	17-A	505	THR
1	17-A	510	THR
1	17-A	512	ASN
1	17-A	517	GLU
1	17-A	518	ILE
1	17-A	519	GLU
1	17-A	521	MET
1	17-A	522	GLU
1	17-A	523	ASN
1	17-A	530	GLU
1	17-A	533	ASP
1	17-A	534	GLU
1	17-A	565	LYS
1	18-A	8	MET
1	18-A	14	LYS
1	18-A	19	GLU
1	18-A	37	THR
1	18-A	43	LYS
1	18-A	100	PHE
1	18-A	104	LYS
1	18-A	120	ASN

Mol	Chain	Res	Type
1	18-A	122	ASN
1	18-A	126	LYS
1	18-A	130	LEU
1	18-A	142	GLU
1	18-A	151	ASP
1	18-A	179	ASP
1	18-A	236	LEU
1	18-A	253	ASN
1	18-A	277	ASP
1	18-A	288	GLN
1	18-A	291	ILE
1	18-A	294	GLU
1	18-A	295	GLU
1	18-A	300	LEU
1	18-A	301	GLU
1	18-A	304	THR
1	18-A	319	GLN
1	18-A	334	LYS
1	18-A	350	TYR
1	18-A	362	MET
1	18-A	365	LEU
1	18-A	367	LYS
1	18-A	370	GLU
1	18-A	382	ASP
1	18-A	386	THR
1	18-A	396	LYS
1	18-A	437	SER
1	18-A	454	ILE
1	18-A	460	MET
1	18-A	464	ARG
1	18-A	485	LYS
1	18-A	487	MET
1	18-A	504	TRP
1	18-A	512	ASN
1	18-A	515	SER
1	18-A	518	ILE
1	18-A	521	MET
1	18-A	523	ASN
1	18-A	524	VAL
1	18-A	544	GLU
1	18-A	546	LYS
1	18-A	557	LYS

Mol	Chain	Res	Type
1	18-A	564	GLU
1	18-A	567	ARG
1	19-A	14	LYS
1	19-A	19	GLU
1	19-A	36	GLU
1	19-A	86	ARG
1	19-A	87	ASP
1	19-A	89	CYS
1	19-A	99	ASP
1	19-A	101	ILE
1	19-A	120	ASN
1	19-A	122	ASN
1	19-A	124	GLU
1	19-A	125	THR
1	19-A	142	GLU
1	19-A	147	MET
1	19-A	151	ASP
1	19-A	157	ASP
1	19-A	248	ILE
1	19-A	253	ASN
1	19-A	258	HIS
1	19-A	274	ASN
1	19-A	286	LYS
1	19-A	288	GLN
1	19-A	289	ASP
1	19-A	291	ILE
1	19-A	295	GLU
1	19-A	296	LYS
1	19-A	300	LEU
1	19-A	319	GLN
1	19-A	327	LYS
1	19-A	350	TYR
1	19-A	357	SER
1	19-A	360	LYS
1	19-A	361	GLN
1	19-A	362	MET
1	19-A	364	LEU
1	19-A	365	LEU
1	19-A	367	LYS
1	19-A	382	ASP
1	19-A	389	GLU
1	19-A	396	LYS

Mol	Chain	Res	Type
1	19-A	451	GLU
1	19-A	453	LEU
1	19-A	460	MET
1	19-A	464	ARG
1	19-A	486	ARG
1	19-A	489	LYS
1	19-A	504	TRP
1	19-A	516	ASN
1	19-A	517	GLU
1	19-A	518	ILE
1	19-A	522	GLU
1	19-A	524	VAL
1	19-A	525	SER
1	19-A	532	SER
1	19-A	544	GLU
1	19-A	546	LYS
1	19-A	557	LYS
1	19-A	565	LYS
1	19-A	567	ARG
1	20-A	7	LEU
1	20-A	19	GLU
1	20-A	36	GLU
1	20-A	54	SER
1	20-A	65	GLN
1	20-A	68	VAL
1	20-A	78	ARG
1	20-A	90	ASN
1	20-A	91	HIS
1	20-A	99	ASP
1	20-A	100	PHE
1	20-A	104	LYS
1	20-A	120	ASN
1	20-A	122	ASN
1	20-A	124	GLU
1	20-A	126	LYS
1	20-A	142	GLU
1	20-A	147	MET
1	20-A	151	ASP
1	20-A	177	SER
1	20-A	179	ASP
1	20-A	200	ASN
1	20-A	217	GLU

Mol	Chain	Res	Type
1	20-A	254	THR
1	20-A	291	ILE
1	20-A	292	LYS
1	20-A	294	GLU
1	20-A	296	LYS
1	20-A	300	LEU
1	20-A	301	GLU
1	20-A	308	MET
1	20-A	350	TYR
1	20-A	360	LYS
1	20-A	361	GLN
1	20-A	362	MET
1	20-A	364	LEU
1	20-A	367	LYS
1	20-A	369	LEU
1	20-A	385	ARG
1	20-A	386	THR
1	20-A	424	PRO
1	20-A	432	ARG
1	20-A	437	SER
1	20-A	451	GLU
1	20-A	453	LEU
1	20-A	464	ARG
1	20-A	489	LYS
1	20-A	504	TRP
1	20-A	510	THR
1	20-A	512	ASN
1	20-A	513	PRO
1	20-A	517	GLU
1	20-A	523	ASN
1	20-A	524	VAL
1	20-A	525	SER
1	20-A	530	GLU
1	20-A	537	LYS
1	20-A	544	GLU
1	20-A	557	LYS
1	20-A	564	GLU
1	20-A	567	ARG
1	21-A	7	LEU
1	21-A	14	LYS
1	21-A	16	LYS
1	21-A	18	ILE

Mol	Chain	Res	Type
1	21-A	20	ASN
1	21-A	36	GLU
1	21-A	41	LYS
1	21-A	70	GLU
1	21-A	78	ARG
1	21-A	91	HIS
1	21-A	93	ASP
1	21-A	100	PHE
1	21-A	105	VAL
1	21-A	120	ASN
1	21-A	122	ASN
1	21-A	124	GLU
1	21-A	125	THR
1	21-A	126	LYS
1	21-A	146	ASP
1	21-A	151	ASP
1	21-A	155	LYS
1	21-A	157	ASP
1	21-A	204	ASN
1	21-A	276	LYS
1	21-A	288	GLN
1	21-A	289	ASP
1	21-A	295	GLU
1	21-A	296	LYS
1	21-A	300	LEU
1	21-A	303	ARG
1	21-A	319	GLN
1	21-A	324	VAL
1	21-A	331	GLU
1	21-A	334	LYS
1	21-A	350	TYR
1	21-A	358	ILE
1	21-A	361	GLN
1	21-A	362	MET
1	21-A	365	LEU
1	21-A	367	LYS
1	21-A	385	ARG
1	21-A	389	GLU
1	21-A	396	LYS
1	21-A	439	THR
1	21-A	452	ASP
1	21-A	453	LEU

Mol	Chain	Res	Type
1	21-A	462	SER
1	21-A	464	ARG
1	21-A	474	GLU
1	21-A	485	LYS
1	21-A	486	ARG
1	21-A	489	LYS
1	21-A	504	TRP
1	21-A	512	ASN
1	21-A	516	ASN
1	21-A	524	VAL
1	21-A	530	GLU
1	21-A	544	GLU
1	21-A	567	ARG
1	21-A	568	ASP
1	22-A	10	LYS
1	22-A	11	LEU
1	22-A	24	ASN
1	22-A	36	GLU
1	22-A	53	ASP
1	22-A	54	SER
1	22-A	78	ARG
1	22-A	87	ASP
1	22-A	90	ASN
1	22-A	93	ASP
1	22-A	104	LYS
1	22-A	120	ASN
1	22-A	124	GLU
1	22-A	125	THR
1	22-A	126	LYS
1	22-A	151	ASP
1	22-A	156	LYS
1	22-A	253	ASN
1	22-A	276	LYS
1	22-A	284	LYS
1	22-A	289	ASP
1	22-A	300	LEU
1	22-A	301	GLU
1	22-A	319	GLN
1	22-A	331	GLU
1	22-A	334	LYS
1	22-A	350	TYR
1	22-A	360	LYS

Mol	Chain	Res	Type
1	22-A	361	GLN
1	22-A	362	MET
1	22-A	365	LEU
1	22-A	369	LEU
1	22-A	379	GLU
1	22-A	386	THR
1	22-A	389	GLU
1	22-A	393	MET
1	22-A	405	GLU
1	22-A	452	ASP
1	22-A	453	LEU
1	22-A	460	MET
1	22-A	464	ARG
1	22-A	467	LYS
1	22-A	485	LYS
1	22-A	486	ARG
1	22-A	489	LYS
1	22-A	498	GLU
1	22-A	504	TRP
1	22-A	512	ASN
1	22-A	517	GLU
1	22-A	519	GLU
1	22-A	525	SER
1	22-A	530	GLU
1	22-A	544	GLU
1	22-A	567	ARG
1	23-A	10	LYS
1	23-A	21	LYS
1	23-A	36	GLU
1	23-A	80	THR
1	23-A	87	ASP
1	23-A	90	ASN
1	23-A	92	LYS
1	23-A	100	PHE
1	23-A	101	ILE
1	23-A	104	LYS
1	23-A	105	VAL
1	23-A	120	ASN
1	23-A	124	GLU
1	23-A	125	THR
1	23-A	126	LYS
1	23-A	151	ASP

Mol	Chain	Res	Type
1	23-A	156	LYS
1	23-A	177	SER
1	23-A	181	ASN
1	23-A	199	LYS
1	23-A	276	LYS
1	23-A	277	ASP
1	23-A	284	LYS
1	23-A	286	LYS
1	23-A	288	GLN
1	23-A	289	ASP
1	23-A	300	LEU
1	23-A	319	GLN
1	23-A	350	TYR
1	23-A	362	MET
1	23-A	370	GLU
1	23-A	378	SER
1	23-A	396	LYS
1	23-A	405	GLU
1	23-A	410	ASP
1	23-A	453	LEU
1	23-A	464	ARG
1	23-A	467	LYS
1	23-A	485	LYS
1	23-A	490	GLU
1	23-A	504	TRP
1	23-A	512	ASN
1	23-A	515	SER
1	23-A	519	GLU
1	23-A	557	LYS
1	23-A	567	ARG
1	24-A	7	LEU
1	24-A	10	LYS
1	24-A	14	LYS
1	24-A	21	LYS
1	24-A	43	LYS
1	24-A	48	LEU
1	24-A	65	GLN
1	24-A	87	ASP
1	24-A	90	ASN
1	24-A	101	ILE
1	24-A	105	VAL
1	24-A	120	ASN

Mol	Chain	Res	Type
1	24-A	124	GLU
1	24-A	126	LYS
1	24-A	130	LEU
1	24-A	142	GLU
1	24-A	146	ASP
1	24-A	147	MET
1	24-A	151	ASP
1	24-A	156	LYS
1	24-A	265	LYS
1	24-A	284	LYS
1	24-A	288	GLN
1	24-A	292	LYS
1	24-A	294	GLU
1	24-A	300	LEU
1	24-A	319	GLN
1	24-A	328	HIS
1	24-A	334	LYS
1	24-A	350	TYR
1	24-A	358	ILE
1	24-A	360	LYS
1	24-A	365	LEU
1	24-A	367	LYS
1	24-A	369	LEU
1	24-A	384	GLU
1	24-A	396	LYS
1	24-A	405	GLU
1	24-A	425	MET
1	24-A	434	ASN
1	24-A	439	THR
1	24-A	453	LEU
1	24-A	460	MET
1	24-A	467	LYS
1	24-A	489	LYS
1	24-A	490	GLU
1	24-A	498	GLU
1	24-A	499	ARG
1	24-A	504	TRP
1	24-A	505	THR
1	24-A	510	THR
1	24-A	512	ASN
1	24-A	517	GLU
1	24-A	518	ILE

	Chair	D aa	Turna
1/101		res	Lype
1	24-A	521	MET
1	24-A	524	VAL
1	24-A	534	GLU
1	24-A	537	LYS
1	24-A	565	LYS
1	24-A	567	ARG
1	24-A	570	PHE
1	25-A	7	LEU
1	25-A	12	LYS
1	25-A	14	LYS
1	25-A	36	GLU
1	25-A	74	LYS
1	25-A	78	ARG
1	25-A	87	ASP
1	25-A	94	LYS
1	25-A	100	PHE
1	25-A	101	ILE
1	25-A	120	ASN
1	25-A	124	GLU
1	25-A	125	THR
1	25-A	142	GLU
1	25-A	146	ASP
1	25-A	147	MET
1	25-A	151	ASP
1	25-A	253	ASN
1	25-A	254	THR
1	25-A	265	LYS
1	25-A	280	GLU
1	25-A	284	LYS
1	25-A	288	GLN
1	25-A	292	LYS
1	25-A	295	GLU
1	25-A	300	LEU
1	25-A	301	GLU
1	25-A	308	MET
1	25-A	319	GLN
1	25-A	328	HIS
1	25-A	350	TYR
1	25-A	358	ILE
1	25-A	360	LYS
1	25-A	367	LYS
1	25-A	368	GLU
	1		

Mol	Chain	Res	Type
1	25-A	382	ASP
1	25-A	384	GLU
1	25-A	386	THR
1	25-A	392	GLU
1	25-A	393	MET
1	25-A	432	ARG
1	25-A	437	SER
1	25-A	439	THR
1	25-A	451	GLU
1	25-A	452	ASP
1	25-A	460	MET
1	25-A	462	SER
1	25-A	464	ARG
1	25-A	467	LYS
1	25-A	470	SER
1	25-A	474	GLU
1	25-A	485	LYS
1	25-A	498	GLU
1	25-A	504	TRP
1	25-A	512	ASN
1	25-A	516	ASN
1	25-A	518	ILE
1	25-A	522	GLU
1	25-A	524	VAL
1	25-A	542	SER
1	25-A	564	GLU
1	25-A	565	LYS
1	25-A	567	ARG
1	25-A	568	ASP
1	26-A	7	LEU
1	26-A	8	MET
1	26-A	12	LYS
1	26-A	65	GLN
1	26-A	70	GLU
1	26-A	89	CYS
1	26-A	90	ASN
1	26-A	93	ASP
1	26-A	100	PHE
1	26-A	101	ILE
1	26-A	105	VAL
1	26-A	121	LEU
1	26-A	124	GLU

Mol	Chain	Res	Type
1	26-A	126	LYS
1	26-A	142	GLU
1	26-A	146	ASP
1	26-A	147	MET
1	26-A	151	ASP
1	26-A	157	ASP
1	26-A	179	ASP
1	26-A	200	ASN
1	26-A	210	ASP
1	26-A	231	GLU
1	26-A	236	LEU
1	26-A	253	ASN
1	26-A	273	ASP
1	26-A	280	GLU
1	26-A	284	LYS
1	26-A	286	LYS
1	26-A	292	LYS
1	26-A	295	GLU
1	26-A	300	LEU
1	26-A	301	GLU
1	26-A	305	ASN
1	26-A	327	LYS
1	26-A	334	LYS
1	26-A	350	TYR
1	26-A	358	ILE
1	26-A	362	MET
1	26-A	365	LEU
1	26-A	368	GLU
1	26-A	369	LEU
1	26-A	386	THR
1	26-A	393	MET
1	26-A	405	GLU
1	26-A	410	ASP
1	26-A	436	THR
1	26-A	437	SER
1	26-A	451	GLU
1	26-A	453	LEU
1	26-A	460	MET
1	26-A	474	GLU
1	26-A	485	LYS
1	26-A	489	LYS
1	26-A	504	TRP

Mol	Chain	Res	Type
1	26-A	515	SER
1	26-A	516	ASN
1	26-A	518	ILE
1	26-A	522	GLU
1	26-A	524	VAL
1	26-A	544	GLU
1	27-A	12	LYS
1	27-A	21	LYS
1	27-A	43	LYS
1	27-A	65	GLN
1	27-A	70	GLU
1	27-A	78	ARG
1	27-A	87	ASP
1	27-A	89	CYS
1	27-A	93	ASP
1	27-A	104	LYS
1	27-A	126	LYS
1	27-A	146	ASP
1	27-A	147	MET
1	27-A	151	ASP
1	27-A	156	LYS
1	27-A	181	ASN
1	27-A	200	ASN
1	27-A	217	GLU
1	27-A	231	GLU
1	27-A	236	LEU
1	27-A	292	LYS
1	27-A	295	GLU
1	27-A	300	LEU
1	27-A	301	GLU
1	27-A	331	GLU
1	27-A	350	TYR
1	27-A	362	MET
1	27-A	365	LEU
1	27-A	367	LYS
1	27-A	436	THR
1	27-A	437	SER
1	27-A	439	THR
1	27-A	453	LEU
1	27-A	461	ARG
1	27-A	464	ARG
1	27-A	485	LYS

Mol	Chain	Res	Type
1	27-A	489	LYS
1	27-A	498	GLU
1	27-A	504	TRP
1	27-A	512	ASN
1	27-A	515	SER
1	27-A	517	GLU
1	27-A	518	ILE
1	27-A	524	VAL
1	27-A	530	GLU
1	27-A	532	SER
1	27-A	555	LYS
1	27-A	565	LYS
1	28-A	8	MET
1	28-A	21	LYS
1	28-A	43	LYS
1	28-A	53	ASP
1	28-A	70	GLU
1	28-A	78	ARG
1	28-A	86	ARG
1	28-A	87	ASP
1	28-A	100	PHE
1	28-A	106	CYS
1	28-A	126	LYS
1	28-A	151	ASP
1	28-A	177	SER
1	28-A	179	ASP
1	28-A	236	LEU
1	28-A	254	THR
1	28-A	289	ASP
1	28-A	291	ILE
1	28-A	295	GLU
1	28-A	296	LYS
1	28-A	303	ARG
1	28-A	322	ASP
1	28-A	327	LYS
1	28-A	350	TYR
1	28-A	361	GLN
1	28-A	364	LEU
1	28-A	365	LEU
1	28-A	367	LYS
1	28-A	370	GLU
1	28-A	391	LEU

Mol	Chain	Res	Type
1	28-A	393	MET
1	28-A	405	GLU
1	28-A	439	THR
1	28-A	453	LEU
1	28-A	464	ARG
1	28-A	474	GLU
1	28-A	485	LYS
1	28-A	489	LYS
1	28-A	504	TRP
1	28-A	505	THR
1	28-A	512	ASN
1	28-A	515	SER
1	28-A	517	GLU
1	28-A	519	GLU
1	28-A	522	GLU
1	28-A	523	ASN
1	28-A	524	VAL
1	28-A	525	SER
1	28-A	530	GLU
1	28-A	531	LYS
1	28-A	532	SER
1	28-A	555	LYS
1	28-A	564	GLU
1	28-A	568	ASP
1	29-A	11	LEU
1	29-A	14	LYS
1	29-A	21	LYS
1	29-A	53	ASP
1	29-A	54	SER
1	29-A	65	GLN
1	29-A	86	ARG
1	29-A	87	ASP
1	29-A	89	CYS
1	29-A	92	LYS
1	29-A	100	PHE
1	29-A	104	LYS
1	29-A	105	VAL
1	29-A	106	CYS
1	29-A	122	ASN
1	29-A	126	LYS
1	29-A	146	ASP
1	29-A	151	ASP

Mol	Chain	Res	Type
1	29-A	199	LYS
1	29-A	204	ASN
1	29-A	276	LYS
1	29-A	284	LYS
1	29-A	289	ASP
1	29-A	295	GLU
1	29-A	300	LEU
1	29-A	303	ARG
1	29-A	308	MET
1	29-A	319	GLN
1	29-A	322	ASP
1	29-A	331	GLU
1	29-A	362	MET
1	29-A	364	LEU
1	29-A	365	LEU
1	29-A	369	LEU
1	29-A	384	GLU
1	29-A	386	THR
1	29-A	393	MET
1	29-A	452	ASP
1	29-A	453	LEU
1	29-A	464	ARG
1	29-A	489	LYS
1	29-A	498	GLU
1	29-A	504	TRP
1	29-A	510	THR
1	29-A	519	GLU
1	29-A	522	GLU
1	29-A	524	VAL
1	29-A	530	GLU
1	29-A	543	ASP
1	29-A	544	GLU
1	29-A	546	LYS
1	29-A	555	LYS
1	29-A	568	ASP
1	30-A	8	MET
1	30-A	19	GLU
1	30-A	21	LYS
1	30-A	78	ARG
1	30-A	86	ARG
1	30-A	91	HIS
1	30-A	93	ASP

Mol	Chain	Res	Type
1	30-A	106	CYS
1	30-A	126	LYS
1	30-A	142	GLU
1	30-A	151	ASP
1	30-A	179	ASP
1	30-A	231	GLU
1	30-A	253	ASN
1	30-A	274	ASN
1	30-A	276	LYS
1	30-A	284	LYS
1	30-A	295	GLU
1	30-A	322	ASP
1	30-A	327	LYS
1	30-A	350	TYR
1	30-A	358	ILE
1	30-A	379	GLU
1	30-A	382	ASP
1	30-A	386	THR
1	30-A	410	ASP
1	30-A	432	ARG
1	30-A	439	THR
1	30-A	452	ASP
1	30-A	453	LEU
1	30-A	462	SER
1	30-A	464	ARG
1	30-A	474	GLU
1	30-A	485	LYS
1	30-A	489	LYS
1	30-A	498	GLU
1	30-A	504	TRP
1	30-A	510	THR
1	30-A	512	ASN
1	30-A	516	ASN
1	30-A	518	ILE
1	30-A	519	GLU
1	30-A	523	ASN
1	30-A	533	ASP
1	30-A	544	GLU
1	30-A	567	ARG
1	31-A	7	LEU
1	31-A	16	LYS
1	31-A	21	LYS

Mol	Chain	Res	Type
1	31-A	41	LYS
1	31-A	70	GLU
1	31-A	74	LYS
1	31-A	91	HIS
1	31-A	93	ASP
1	31-A	94	LYS
1	31-A	99	ASP
1	31-A	100	PHE
1	31-A	105	VAL
1	31-A	106	CYS
1	31-A	142	GLU
1	31-A	151	ASP
1	31-A	210	ASP
1	31-A	253	ASN
1	31-A	276	LYS
1	31-A	288	GLN
1	31-A	289	ASP
1	31-A	292	LYS
1	31-A	294	GLU
1	31-A	295	GLU
1	31-A	300	LEU
1	31-A	301	GLU
1	31-A	304	THR
1	31-A	306	LYS
1	31-A	322	ASP
1	31-A	324	VAL
1	31-A	331	GLU
1	31-A	361	GLN
1	31-A	382	ASP
1	31-A	388	PRO
1	31-A	396	LYS
1	31-A	437	SER
1	31-A	452	ASP
1	31-A	453	LEU
1	31-A	460	MET
1	31-A	464	ARG
1	31-A	467	LYS
1	31-A	498	GLU
1	31-A	504	TRP
1	31-A	512	ASN
1	31-A	515	SER
1	31-A	516	ASN

Mol	Chain	Res	Type
1	31-A	517	GLU
1	31-A	521	MET
1	31-A	523	ASN
1	31-A	525	SER
1	31-A	532	SER
1	31-A	544	GLU
1	31-A	564	GLU
1	32-A	8	MET
1	32-A	65	GLN
1	32-A	68	VAL
1	32-A	90	ASN
1	32-A	91	HIS
1	32-A	93	ASP
1	32-A	101	ILE
1	32-A	104	LYS
1	32-A	121	LEU
1	32-A	126	LYS
1	32-A	146	ASP
1	32-A	147	MET
1	32-A	151	ASP
1	32-A	177	SER
1	32-A	210	ASP
1	32-A	236	LEU
1	32-A	248	ILE
1	32-A	288	GLN
1	32-A	292	LYS
1	32-A	296	LYS
1	32-A	300	LEU
1	32-A	350	TYR
1	32-A	361	GLN
1	32-A	362	MET
1	32-A	370	GLU
1	32-A	386	THR
1	32-A	389	GLU
1	32-A	403	THR
1	32-A	410	ASP
1	32-A	437	SER
1	32-A	453	LEU
1	32-A	454	ILE
1	32-A	464	ARG
1	32-A	467	LYS
1	32-A	485	LYS

Mol	Chain	Res	Type
1	32-A	489	LYS
1	32-A	495	LYS
1	32-A	504	TRP
1	32-A	512	ASN
1	32-A	516	ASN
1	32-A	517	GLU
1	32-A	518	ILE
1	32-A	521	MET
1	32-A	525	SER
1	32-A	531	LYS
1	32-A	532	SER
1	32-A	537	LYS
1	32-A	542	SER
1	32-A	543	ASP
1	32-A	544	GLU
1	32-A	564	GLU
1	32-A	568	ASP
1	33-A	21	LYS
1	33-A	70	GLU
1	33-A	86	ARG
1	33-A	90	ASN
1	33-A	93	ASP
1	33-A	100	PHE
1	33-A	101	ILE
1	33-A	104	LYS
1	33-A	122	ASN
1	33-A	124	GLU
1	33-A	125	THR
1	33-A	146	ASP
1	33-A	151	ASP
1	33-A	210	ASP
1	33-A	236	LEU
1	33-A	284	LYS
1	33-A	288	GLN
1	33-A	292	LYS
1	33-A	295	GLU
1	33-A	331	GLU
1	33-A	350	TYR
1	33-A	362	MET
1	33-A	365	LEU
1	33-A	367	LYS
1	33-A	370	GLU

Mol	Chain	Res	Type
1	33-A	386	THR
1	33-A	392	GLU
1	33-A	405	GLU
1	33-A	410	ASP
1	33-A	453	LEU
1	33-A	454	ILE
1	33-A	456	PRO
1	33-A	459	ILE
1	33-A	460	MET
1	33-A	464	ARG
1	33-A	467	LYS
1	33-A	485	LYS
1	33-A	489	LYS
1	33-A	495	LYS
1	33-A	504	TRP
1	33-A	510	THR
1	33-A	512	ASN
1	33-A	516	ASN
1	33-A	517	GLU
1	33-A	521	MET
1	33-A	523	ASN
1	33-A	527	ASP
1	33-A	531	LYS
1	33-A	544	GLU
1	33-A	564	GLU
1	33-A	568	ASP
1	34-A	21	LYS
1	34-A	68	VAL
1	34-A	70	GLU
1	34-A	77	GLN
1	34-A	86	ARG
1	34-A	90	ASN
1	34-A	94	LYS
1	34-A	101	ILE
1	34-A	106	CYS
1	34-A	124	GLU
1	34-A	146	ASP
1	34-A	147	MET
1	34-A	$15\overline{1}$	ASP
1	34-A	156	LYS
1	34-A	177	SER
1	34-A	179	ASP

Mol	Chain	Res	Type
1	34-A	181	ASN
1	34-A	199	LYS
1	34-A	200	ASN
1	34-A	254	THR
1	34-A	272	GLU
1	34-A	288	GLN
1	34-A	289	ASP
1	34-A	292	LYS
1	34-A	295	GLU
1	34-A	308	MET
1	34-A	319	GLN
1	34-A	328	HIS
1	34-A	350	TYR
1	34-A	358	ILE
1	34-A	361	GLN
1	34-A	362	MET
1	34-A	365	LEU
1	34-A	367	LYS
1	34-A	369	LEU
1	34-A	370	GLU
1	34-A	405	GLU
1	34-A	453	LEU
1	34-A	454	ILE
1	34-A	460	MET
1	34-A	467	LYS
1	34-A	489	LYS
1	34-A	490	GLU
1	34-A	504	TRP
1	34-A	505	THR
1	34-A	506	GLN
1	34-A	510	THR
1	34-A	514	TYR
1	34-A	518	ILE
1	34-A	521	MET
1	34-A	522	GLU
1	34-A	525	SER
1	34-A	531	LYS
1	34-A	532	SER
1	34-A	567	ARG
1	35-A	10	LYS
1	35-A	12	LYS
1	35-A	43	LYS

Mol	Chain	Res	Type
1	35-A	54	SER
1	35-A	77	GLN
1	35-A	87	ASP
1	35-A	90	ASN
1	35-A	92	LYS
1	35-A	93	ASP
1	35-A	100	PHE
1	35-A	101	ILE
1	35-A	104	LYS
1	35-A	124	GLU
1	35-A	126	LYS
1	35-A	127	ARG
1	35-A	151	ASP
1	35-A	156	LYS
1	35-A	236	LEU
1	35-A	253	ASN
1	35-A	270	LYS
1	35-A	284	LYS
1	35-A	288	GLN
1	35-A	291	ILE
1	35-A	292	LYS
1	35-A	301	GLU
1	35-A	322	ASP
1	35-A	324	VAL
1	35-A	328	HIS
1	35-A	350	TYR
1	35-A	365	LEU
1	35-A	382	ASP
1	35-A	396	LYS
1	35-A	437	SER
1	35-A	451	GLU
1	35-A	453	LEU
1	35-A	454	ILE
1	35-A	456	PRO
1	35-A	467	LYS
1	35-A	486	ARG
1	35-A	489	LYS
1	35-A	495	LYS
1	35-A	504	TRP
1	35-A	505	THR
1	35-A	510	THR
1	35-A	516	ASN

Mol	Chain	Res	Type
1	35-A	518	ILE
1	35-A	521	MET
1	35-A	522	GLU
1	35-A	525	SER
1	35-A	531	LYS
1	35-A	537	LYS
1	36-A	7	LEU
1	36-A	14	LYS
1	36-A	19	GLU
1	36-A	65	GLN
1	36-A	70	GLU
1	36-A	89	CYS
1	36-A	90	ASN
1	36-A	93	ASP
1	36-A	100	PHE
1	36-A	104	LYS
1	36-A	106	CYS
1	36-A	124	GLU
1	36-A	126	LYS
1	36-A	142	GLU
1	36-A	151	ASP
1	36-A	156	LYS
1	36-A	179	ASP
1	36-A	199	LYS
1	36-A	236	LEU
1	36-A	253	ASN
1	36-A	254	THR
1	36-A	270	LYS
1	36-A	292	LYS
1	36-A	301	GLU
1	36-A	322	ASP
1	36-A	328	HIS
1	36-A	350	TYR
1	36-A	360	LYS
1	36-A	365	LEU
1	36-A	367	LYS
1	36-A	382	ASP
1	36-A	391	LEU
1	36-A	439	THR
1	36-A	452	ASP
1	36-A	453	LEU
1	36-A	454	ILE

Mol	Chain	Res	Type
1	36-A	461	ARG
1	36-A	464	ARG
1	36-A	467	LYS
1	36-A	489	LYS
1	36-A	504	TRP
1	36-A	515	SER
1	36-A	516	ASN
1	36-A	518	ILE
1	36-A	521	MET
1	36-A	527	ASP
1	36-A	530	GLU
1	36-A	532	SER
1	36-A	534	GLU
1	36-A	542	SER
1	36-A	544	GLU
1	37-A	7	LEU
1	37-A	14	LYS
1	37-A	21	LYS
1	37-A	52	ASP
1	37-A	68	VAL
1	37-A	90	ASN
1	37-A	100	PHE
1	37-A	104	LYS
1	37-A	126	LYS
1	37-A	147	MET
1	37-A	151	ASP
1	37-A	156	LYS
1	37-A	270	LYS
1	37-A	274	ASN
1	37-A	275	ASP
1	37-A	295	GLU
1	37-A	331	GLU
1	37-A	350	TYR
1	37-A	362	MET
1	37-A	365	LEU
1	37-A	382	ASP
1	37-A	384	GLU
1	37-A	393	MET
1	37-A	434	ASN
1	37-A	453	LEU
1	37-A	467	LYS
1	37-A	485	LYS

Mol	Chain	Res	Type
1	37-A	486	ARG
1	37-A	504	TRP
1	37-A	510	THR
1	37-A	512	ASN
1	37-A	514	TYR
1	37-A	515	SER
1	37-A	516	ASN
1	37-A	517	GLU
1	37-A	519	GLU
1	37-A	521	MET
1	37-A	524	VAL
1	37-A	533	ASP
1	37-A	546	LYS
1	38-A	14	LYS
1	38-A	77	GLN
1	38-A	87	ASP
1	38-A	100	PHE
1	38-A	102	THR
1	38-A	104	LYS
1	38-A	105	VAL
1	38-A	126	LYS
1	38-A	142	GLU
1	38-A	151	ASP
1	38-A	199	LYS
1	38-A	236	LEU
1	38-A	253	ASN
1	38-A	254	THR
1	38-A	265	LYS
1	38-A	270	LYS
1	38-A	289	ASP
1	38-A	292	LYS
1	38-A	301	GLU
1	38-A	319	GLN
1	38-A	331	GLU
1	38-A	340	SER
1	38-A	350	TYR
1	38-A	362	MET
1	38-A	365	LEU
1	38-A	382	ASP
1	38-A	386	THR
1	38-A	388	PRO
1	38-A	396	LYS

Mol	Chain	Res	Type
1	38-A	439	THR
1	38-A	452	ASP
1	38-A	453	LEU
1	38-A	467	LYS
1	38-A	485	LYS
1	38-A	498	GLU
1	38-A	504	TRP
1	38-A	505	THR
1	38-A	512	ASN
1	38-A	514	TYR
1	38-A	516	ASN
1	38-A	518	ILE
1	38-A	519	GLU
1	38-A	521	MET
1	38-A	524	VAL
1	38-A	533	ASP
1	38-A	544	GLU
1	38-A	557	LYS
1	38-A	568	ASP
1	39-A	12	LYS
1	39-A	19	GLU
1	39-A	21	LYS
1	39-A	43	LYS
1	39-A	65	GLN
1	39-A	70	GLU
1	39-A	80	THR
1	39-A	100	PHE
1	39-A	101	ILE
1	39-A	102	THR
1	39-A	104	LYS
1	39-A	105	VAL
1	39-A	124	GLU
1	39-A	142	GLU
1	39-A	146	ASP
1	39-A	147	MET
1	39-A	151	ASP
1	39-A	179	ASP
1	39-A	199	LYS
1	39-A	248	ILE
1	39-A	265	LYS
1	39-A	266	LEU
1	39-A	270	LYS

Mol	Chain	Res	Type
1	39-A	286	LYS
1	39-A	292	LYS
1	39-A	295	GLU
1	39-A	301	GLU
1	39-A	350	TYR
1	39-A	360	LYS
1	39-A	362	MET
1	39-A	365	LEU
1	39-A	369	LEU
1	39-A	378	SER
1	39-A	379	GLU
1	39-A	382	ASP
1	39-A	386	THR
1	39-A	389	GLU
1	39-A	393	MET
1	39-A	441	VAL
1	39-A	453	LEU
1	39-A	464	ARG
1	39-A	474	GLU
1	39-A	485	LYS
1	39-A	490	GLU
1	39-A	504	TRP
1	39-A	506	GLN
1	39-A	510	THR
1	39-A	512	ASN
1	39-A	514	TYR
1	39-A	516	ASN
1	39-A	517	GLU
1	39-A	521	MET
1	39-A	522	GLU
1	39-A	523	ASN
1	39-A	524	VAL
1	39-A	530	GLU
1	39-A	544	GLU
1	39-A	565	LYS
1	40-A	7	LEU
1	40-A	8	MET
1	40-A	12	LYS
1	40-A	21	LYS
1	40-A	23	LEU
1	40-A	65	GLN
1	40-A	70	GLU

Mol	Chain	Res	Type
1	40-A	90	ASN
1	40-A	91	HIS
1	40-A	93	ASP
1	40-A	102	THR
1	40-A	124	GLU
1	40-A	147	MET
1	40-A	151	ASP
1	40-A	156	LYS
1	40-A	157	ASP
1	40-A	179	ASP
1	40-A	253	ASN
1	40-A	270	LYS
1	40-A	276	LYS
1	40-A	277	ASP
1	40-A	286	LYS
1	40-A	288	GLN
1	40-A	305	ASN
1	40-A	308	MET
1	40-A	319	GLN
1	40-A	350	TYR
1	40-A	358	ILE
1	40-A	360	LYS
1	40-A	361	GLN
1	40-A	362	MET
1	40-A	364	LEU
1	40-A	365	LEU
1	40-A	367	LYS
1	40-A	382	ASP
1	40-A	386	THR
1	40-A	388	PRO
1	40-A	434	ASN
1	40-A	436	THR
1	40-A	451	GLU
1	40-A	452	ASP
1	40-A	453	LEU
1	40-A	486	ARG
1	40-A	489	LYS
1	40-A	490	GLU
1	40-A	495	LYS
1	40-A	504	TRP
1	40-A	505	THR
1	40-A	512	ASN

Mol	Chain	Res	Type
1	40-A	514	TYR
1	40-A	518	ILE
1	40-A	521	MET
1	40-A	524	VAL
1	40-A	531	LYS
1	40-A	534	GLU
1	40-A	544	GLU
1	40-A	565	LYS
1	40-A	566	HIS
1	40-A	567	ARG
1	41-A	7	LEU
1	41-A	19	GLU
1	41-A	21	LYS
1	41-A	37	THR
1	41-A	65	GLN
1	41-A	91	HIS
1	41-A	94	LYS
1	41-A	100	PHE
1	41-A	101	ILE
1	41-A	105	VAL
1	41-A	121	LEU
1	41-A	124	GLU
1	41-A	146	ASP
1	41-A	147	MET
1	41-A	151	ASP
1	41-A	270	LYS
1	41-A	277	ASP
1	41-A	280	GLU
1	41-A	288	GLN
1	41-A	292	LYS
1	41-A	304	THR
	41-A	305	ASN
1	41-A	308	MET
1	41-A	319	GLN
	41-A	322	ASP
1	41-A	340	SER
	41-A	350	TYR
	41-A	357	SER
	41-A	365	LEU
	41-A	367	
	41-A	382	ASP
1	41-A	386	THR

Mol	Chain	Res	Type
1	41-A	389	GLU
1	41-A	391	LEU
1	41-A	392	GLU
1	41-A	451	GLU
1	41-A	453	LEU
1	41-A	461	ARG
1	41-A	464	ARG
1	41-A	467	LYS
1	41-A	504	TRP
1	41-A	514	TYR
1	41-A	516	ASN
1	41-A	521	MET
1	41-A	524	VAL
1	41-A	525	SER
1	41-A	532	SER
1	41-A	564	GLU
1	41-A	567	ARG
1	42-A	14	LYS
1	42-A	15	ILE
1	42-A	21	LYS
1	42-A	65	GLN
1	42-A	90	ASN
1	42-A	93	ASP
1	42-A	94	LYS
1	42-A	100	PHE
1	42-A	101	ILE
1	42-A	104	LYS
1	42-A	122	ASN
1	42-A	124	GLU
1	42-A	125	THR
1	42-A	147	MET
1	42-A	151	ASP
1	42-A	156	LYS
1	42-A	157	ASP
1	42-A	177	SER
1	42-A	210	ASP
1	42-A	254	THR
1	42-A	270	LYS
1	42-A	272	GLU
1	42-A	284	LYS
1	42-A	288	GLN
1	42-A	292	LYS

Mol	Chain	Res	Type
1	42_A	300	LEU
1	42-A	306	LYS
1	42 A	308	MET
1	42 Π 42-Δ	310	GLN
1	42-M 42-A	350	TVB
1	42 A	356	THR
1	42-Λ <u>42-Λ</u>	361	GLN
1	42-A	365	LEU
1	42-A	300	CLU
1	42-A	<u> </u>	LEU
1	42-A	431	
1	42-A	450	
1	42-A	401	GLU
1	42-A	400	
1	42-A	4/4	GLU
1	42-A	489	
1	42-A	490	GLU
1	42-A	504	TRP
1	42-A	506	GLN
1	42-A	510	THR
1	42-A	514	TYR
1	42-A	515	SER
1	42-A	517	GLU
1	42-A	521	MET
1	42-A	524	VAL
1	42-A	532	SER
1	42-A	534	GLU
1	42-A	542	SER
1	42-A	567	ARG
1	43-A	10	LYS
1	43-A	14	LYS
1	43-A	21	LYS
1	43-A	65	GLN
1	43-A	80	THR
1	43-A	101	ILE
1	43-A	102	THR
1	43-A	106	CYS
1	43-A	122	ASN
1	43-A	125	THR
1	43-A	151	ASP
1	43-A	177	SER
1	43-A	210	ASP
1	43-A	253	ASN

<u> Т Т Т</u>			m
WIOI	Unain	Kes	Type
1	43-A	270	LYS
1	43-A	274	ASN
1	43-A	284	LYS
1	43-A	288	GLN
1	43-A	289	ASP
1	43-A	292	LYS
1	43-A	303	ARG
1	43-A	319	GLN
1	43-A	324	VAL
1	43-A	350	TYR
1	43-A	357	SER
1	43-A	361	GLN
1	43-A	367	LYS
1	43-A	368	GLU
1	43-A	386	THR
1	43-A	410	ASP
1	43-A	451	GLU
1	43-A	453	LEU
1	43-A	460	MET
1	43-A	462	SER
1	43-A	474	GLU
1	43-A	489	LYS
1	43-A	490	GLU
1	43-A	504	TRP
1	43-A	512	ASN
1	43-A	514	TYR
1	43-A	515	SER
1	43-A	516	ASN
1	43-A	517	GLU
1	43-A	521	MET
1	43-A	522	GLU
1	43-A	532	SER
1	43-A	544	GLU
1	43-A	555	LYS
1	43-A	567	ARG
1	43-A	568	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (364) such sidechains are listed below:

Mol	Chain	Res	Type
1	1-A	65	GLN
1	1-A	77	GLN

Mol	Chain	Res	Type
1	1-A	91	HIS
1	1-A	181	ASN
1	1-A	374	ASN
1	1-A	418	HIS
1	1-A	435	HIS
1	1-A	506	GLN
1	1-A	558	GLN
1	2-A	24	ASN
1	2-A	65	GLN
1	2-A	90	ASN
1	2-A	181	ASN
1	2-A	200	ASN
1	2-A	204	ASN
1	2-A	319	GLN
1	2-A	418	HIS
1	2-A	512	ASN
1	2-A	523	ASN
1	2-A	566	HIS
1	3-A	24	ASN
1	3-A	65	GLN
1	3-A	77	GLN
1	3-A	90	ASN
1	3-A	91	HIS
1	3-A	181	ASN
1	3-A	274	ASN
1	3-A	319	GLN
1	3-A	411	ASN
1	3-A	418	HIS
1	3-A	506	GLN
1	3-A	523	ASN
1	3-A	566	HIS
1	4-A	24	ASN
1	4-A	181	ASN
1	4-A	200	ASN
1	4-A	319	GLN
1	4-A	328	HIS
1	4-A	418	HIS
1	4-A	506	GLN
1	4-A	516	ASN
1	4-A	523	ASN
1	5-A	20	ASN
1	5-A	24	ASN

Mol	Chain	Res	Type
1	5-A	65	GLN
1	5-A	91	HIS
1	5-A	181	ASN
1	5-A	204	ASN
1	5-A	253	ASN
1	5-A	418	HIS
1	5-A	430	GLN
1	5-A	523	ASN
1	6-A	181	ASN
1	6-A	208	ASN
1	6-A	274	ASN
1	6-A	361	GLN
1	6-A	418	HIS
1	6-A	506	GLN
1	7-A	181	ASN
1	7-A	204	ASN
1	7-A	274	ASN
1	7-A	411	ASN
1	7-A	418	HIS
1	7-A	506	GLN
1	7-A	516	ASN
1	8-A	90	ASN
1	8-A	144	HIS
1	8-A	181	ASN
1	8-A	211	ASN
1	8-A	274	ASN
1	8-A	328	HIS
1	8-A	418	HIS
1	8-A	506	GLN
1	9-A	91	HIS
1	9-A	181	ASN
1	9-A	204	ASN
1	9-A	274	ASN
1	9-A	288	GLN
1	9-A	347	ASN
1	9-A	411	ASN
1	9-A	418	HIS
1	9-A	516	ASN
1	9-A	523	ASN
1	10-A	122	ASN
1	10-A	181	ASN
1	10-A	274	ASN

Mol	Chain	Res	Type
1	10-A	288	GLN
1	10-A	328	HIS
1	10-A	347	ASN
1	10-A	418	HIS
1	10-A	435	HIS
1	10-A	506	GLN
1	10-A	516	ASN
1	10-A	558	GLN
1	11-A	91	HIS
1	11-A	144	HIS
1	11-A	181	ASN
1	11-A	204	ASN
1	11-A	274	ASN
1	11-A	288	GLN
1	11-A	418	HIS
1	11-A	434	ASN
1	11-A	506	GLN
1	11-A	516	ASN
1	12-A	77	GLN
1	12-A	90	ASN
1	12-A	181	ASN
1	12-A	253	ASN
1	12-A	258	HIS
1	12-A	274	ASN
1	12-A	418	HIS
1	12-A	516	ASN
1	12-A	523	ASN
1	12-A	558	GLN
1	13-A	91	HIS
1	13-A	144	HIS
1	13-A	200	ASN
1	13-A	288	GLN
1	13-A	361	GLN
1	13-A	374	ASN
1	13-A	418	HIS
1	13-A	516	ASN
1	13-A	558	GLN
1	14-A	253	ASN
1	14-A	319	GLN
1	14-A	328	HIS
1	14-A	418	HIS
1	15-A	91	HIS

Mol	Chain	Res	Type
1	15-A	144	HIS
1	15-A	181	ASN
1	15-A	258	HIS
1	15-A	411	ASN
1	15-A	418	HIS
1	15-A	506	GLN
1	15-A	512	ASN
1	16-A	181	ASN
1	16-A	204	ASN
1	16-A	347	ASN
1	16-A	418	HIS
1	16-A	506	GLN
1	16-A	512	ASN
1	17-A	20	ASN
1	17-A	65	GLN
1	17-A	91	HIS
1	17-A	120	ASN
1	17-A	122	ASN
1	17-A	181	ASN
1	17-A	253	ASN
1	17-A	418	HIS
1	17-A	482	GLN
1	17-A	512	ASN
1	18-A	91	HIS
1	18-A	120	ASN
1	18-A	122	ASN
1	18-A	418	HIS
1	18-A	506	GLN
1	18-A	558	GLN
1	19-A	120	ASN
1	19-A	181	ASN
1	19-A	319	GLN
1	19-A	361	GLN
1	19-A	418	HIS
1	19-A	512	ASN
1	20-A	90	ASN
1	20-A	120	ASN
1	20-A	122	ASN
1	20-A	181	ASN
1	20-A	319	GLN
1	20-A	347	ASN
1	20-A	418	HIS

Mol	Chain	Res	Type
1	20-A	512	ASN
1	20-A	566	HIS
1	21-A	20	ASN
1	21-A	90	ASN
1	21-A	91	HIS
1	21-A	120	ASN
1	21-A	319	GLN
1	21-A	418	HIS
1	21-A	506	GLN
1	21-A	512	ASN
1	21-A	516	ASN
1	21-A	523	ASN
1	22-A	91	HIS
1	22-A	120	ASN
1	22-A	122	ASN
1	22-A	181	ASN
1	22-A	418	HIS
1	22-A	512	ASN
1	22-A	523	ASN
1	23-A	77	GLN
1	23-A	91	HIS
1	23-A	120	ASN
1	23-A	181	ASN
1	23-A	288	GLN
1	23-A	328	HIS
1	23-A	418	HIS
1	23-A	506	GLN
1	23-A	512	ASN
1	23-A	566	HIS
1	24-A	77	GLN
1	24-A	90	ASN
1	24-A	91	HIS
1	24-A	120	ASN
1	24-A	176	ASN
1	24-A	181	ASN
1	24-A	211	ASN
1	24-A	319	GLN
1	24-A	418	HIS
1	24-A	$51\overline{2}$	ASN
1	25-A	20	ASN
1	$25-\overline{\mathrm{A}}$	65	GLN
1	25-A	77	GLN

Mol	Chain	Res	Type
1	25-A	181	ASN
1	25-A	347	ASN
1	25-A	374	ASN
1	25-A	418	HIS
1	26-A	77	GLN
1	26-A	90	ASN
1	26-A	200	ASN
1	26-A	328	HIS
1	26-A	418	HIS
1	26-A	506	GLN
1	27-A	91	HIS
1	27-A	144	HIS
1	27-A	181	ASN
1	27-A	418	HIS
1	27-A	506	GLN
1	27-A	512	ASN
1	27-A	516	ASN
1	28-A	77	GLN
1	28-A	90	ASN
1	28-A	181	ASN
1	28-A	253	ASN
1	28-A	328	HIS
1	28-A	361	GLN
1	28-A	411	ASN
1	28-A	418	HIS
1	28-A	512	ASN
1	29-A	20	ASN
1	29-A	65	GLN
1	29-A	91	HIS
1	29-A	181	ASN
1	29-A	253	ASN
1	29-A	361	GLN
1	29-A	418	HIS
1	29-A	506	GLN
1	29-A	512	ASN
1	29-A	523	ASN
1	30-A	20	ASN
1	30-A	122	ASN
1	30-A	144	HIS
1	30-A	181	ASN
1	30-A	200	ASN
1	30-A	328	HIS

Mol	Mol Chain		Type		
1	30-A	418	HIS		
1	30-A	512	ASN		
1	31-A	418	HIS		
1	31-A	506	GLN		
1	31-A	512	ASN		
1	31-A	516	ASN		
1	31-A	523	ASN		
1	32-A	20	ASN		
1	32-A	91	HIS		
1	32-A	181	ASN		
1	32-A	411	ASN		
1	32-A	418	HIS		
1	32-A	516	ASN		
1	32-A	523	ASN		
1	33-A	90	ASN		
1	33-A	91	HIS		
1	33-A	181	ASN		
1	33-A	200	ASN		
1	33-A	418	HIS		
1	33-A	506	GLN		
1	33-A	512	ASN		
1	33-A	516	ASN		
1	33-A	523	ASN		
1	33-A	558	GLN		
1	34-A	181	ASN		
1	34-A	200	ASN		
1	34-A	328	HIS		
1	34-A	361	GLN		
1	34-A	418	HIS		
1	34-A	506	GLN		
1	34-A	512	ASN		
1	34-A	558	GLN		
1	35-A	77	GLN		
1	35-A	90	ASN		
1	35-A	91	HIS		
1	35-A	144	HIS		
1	35-A	328	HIS		
1	35-A	418	HIS		
1	35-A	506	GLN		
1	35-A	516	ASN		
1	35-A	523	ASN		
1	35-A	558	GLN		

Mol	Chain	Res	Type
1	36-A	65	GLN
1	36-A	91	HIS
1	36-A	181	ASN
1	36-A	319	GLN
1	36-A	328	HIS
1	36-A	411	ASN
1	36-A	418	HIS
1	36-A	558	GLN
1	37-A	181	ASN
1	37-A	418	HIS
1	37-A	434	ASN
1	37-A	506	GLN
1	37-A	516	ASN
1	38-A	20	ASN
1	38-A	77	GLN
1	38-A	181	ASN
1	38-A	253	ASN
1	38-A	274	ASN
1	38-A	411	ASN
1	38-A	418	HIS
1	38-A	434	ASN
1	38-A	506	GLN
1	39-A	91	HIS
1	39-A	181	ASN
1	39-A	319	GLN
1	39-A	361	GLN
1	39-A	418	HIS
1	39-A	434	ASN
1	39-A	506	GLN
1	39-A	523	ASN
1	39-A	558	GLN
1	40-A	91	HIS
1	40-A	181	ASN
1	40-A	274	ASN
1	40-A	288	GLN
1	40-A	319	GLN
1	40-A	418	HIS
1	40-A	434	ASN
1	40-A	$52\overline{3}$	ASN
1	40-A	558	GLN
1	40-A	566	HIS
1	41-A	181	ASN

Mol	Chain	Res	Type
1	41-A	208	ASN
1	41-A	274	ASN
1	41-A	418	HIS
1	41-A	434	ASN
1	41-A	506	GLN
1	41-A	516	ASN
1	41-A	523	ASN
1	42-A	65	GLN
1	42-A	181	ASN
1	42-A	274	ASN
1	42-A	288	GLN
1	42-A	319	GLN
1	42-A	418	HIS
1	42-A	434	ASN
1	42-A	558	GLN
1	43-A	65	GLN
1	43-A	122	ASN
1	43-A	181	ASN
1	43-A	274	ASN
1	43-A	288	GLN
1	43-A	418	HIS
1	43-A	434	ASN
1	43-A	506	GLN
1	43-A	512	ASN
1	43-A	558	GLN
1	43-A	566	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

43 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bond lengths		Bond angles		gles	
WIOI	Type	Ullaili	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	DPF	38-A	601	1	4,7,8	0.93	0	2,7,10	0.68	0
2	DPF	25-A	601	1	4,7,8	0.91	0	2,7,10	0.66	0
2	DPF	5-A	601	1	4,7,8	0.79	0	2,7,10	0.19	0
2	DPF	9-A	601	1	4,7,8	1.10	0	2,7,10	0.35	0
2	DPF	31-A	601	1	4,7,8	0.74	0	2,7,10	0.09	0
2	DPF	26-A	601	1	4,7,8	0.74	0	2,7,10	0.58	0
2	DPF	21-A	601	1	4,7,8	0.99	0	2,7,10	0.13	0
2	DPF	34-A	601	1	4,7,8	0.93	0	2,7,10	0.44	0
2	DPF	3-A	601	1	4,7,8	1.04	0	2,7,10	0.30	0
2	DPF	11-A	601	1	4,7,8	1.09	0	2,7,10	0.64	0
2	DPF	6-A	601	1	4,7,8	1.10	0	2,7,10	0.97	0
2	DPF	2-A	601	1	4,7,8	1.12	0	2,7,10	0.72	0
2	DPF	15-A	601	1	4,7,8	1.44	1 (25%)	2,7,10	0.97	0
2	DPF	18-A	601	1	4,7,8	1.00	0	2,7,10	0.90	0
2	DPF	22-A	601	1	4,7,8	1.19	1 (25%)	2,7,10	0.64	0
2	DPF	24-A	601	1	4,7,8	0.97	0	2,7,10	0.39	0
2	DPF	19-A	601	1	4,7,8	0.89	0	2,7,10	0.79	0
2	DPF	20-A	601	1	4,7,8	1.02	0	2,7,10	0.30	0
2	DPF	43-A	601	1	4,7,8	0.98	0	2,7,10	0.60	0
2	DPF	41-A	601	1	4,7,8	0.79	0	2,7,10	0.26	0
2	DPF	42-A	601	1	4,7,8	0.78	0	2,7,10	0.38	0
2	DPF	39-A	601	1	4,7,8	0.89	0	2,7,10	0.34	0
2	DPF	4-A	601	1	4,7,8	0.86	0	2,7,10	1.12	0
2	DPF	28-A	601	1	4,7,8	0.90	0	2,7,10	0.09	0
2	DPF	36-A	601	1	4,7,8	0.82	0	2,7,10	0.19	0
2	DPF	40-A	601	1	4,7,8	1.00	0	2,7,10	0.28	0
2	DPF	12-A	601	1	4,7,8	1.01	0	2,7,10	0.74	0
2	DPF	17-A	601	1	4,7,8	0.98	0	2,7,10	0.06	0
2	DPF	37-A	601	1	4,7,8	0.88	0	2,7,10	0.68	0
2	DPF	35-A	601	1	4,7,8	1.03	0	2,7,10	0.57	0
2	DPF	1-A	601	1	4,7,8	1.24	1(25%)	2,7,10	0.42	0

Mal	Turne	Chain	Dec	Tink	B	ond leng	$_{ m gths}$	E	Bond ang	gles
INIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	DPF	32-A	601	1	4,7,8	0.56	0	2,7,10	0.38	0
2	DPF	33-A	601	1	4,7,8	1.08	0	2,7,10	1.09	0
2	DPF	23-A	601	1	4,7,8	0.92	0	2,7,10	0.38	0
2	DPF	29-A	601	1	4,7,8	0.98	0	2,7,10	0.52	0
2	DPF	8-A	601	1	4,7,8	0.94	0	2,7,10	0.37	0
2	DPF	13-A	601	1	4,7,8	1.15	0	2,7,10	0.43	0
2	DPF	27-A	601	1	4,7,8	0.99	0	2,7,10	0.59	0
2	DPF	14-A	601	1	4,7,8	0.97	0	2,7,10	0.23	0
2	DPF	30-A	601	1	4,7,8	1.06	0	2,7,10	0.58	0
2	DPF	7-A	601	1	4,7,8	1.00	0	2,7,10	0.53	0
2	DPF	16-A	601	1	4,7,8	0.98	0	2,7,10	0.64	0
2	DPF	10-A	601	1	4,7,8	0.87	0	2,7,10	0.70	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	DPF	38-A	601	1	-	0/2/6/8	-
2	DPF	25-A	601	1	-	1/2/6/8	-
2	DPF	5-A	601	1	-	0/2/6/8	-
2	DPF	9-A	601	1	-	1/2/6/8	-
2	DPF	31-A	601	1	-	0/2/6/8	-
2	DPF	26-A	601	1	-	1/2/6/8	-
2	DPF	21-A	601	1	-	0/2/6/8	-
2	DPF	34-A	601	1	-	1/2/6/8	-
2	DPF	3-A	601	1	-	0/2/6/8	-
2	DPF	11-A	601	1	-	2/2/6/8	-
2	DPF	6-A	601	1	-	1/2/6/8	-
2	DPF	2-A	601	1	-	0/2/6/8	-
2	DPF	15-A	601	1	-	1/2/6/8	-
2	DPF	18-A	601	1	-	0/2/6/8	-
2	DPF	22-A	601	1	-	1/2/6/8	-
2	DPF	24-A	601	1	-	0/2/6/8	-
2	DPF	19-A	601	1	-	0/2/6/8	-
2	DPF	20-A	601	1	-	0/2/6/8	-
2	DPF	43-A	601	1	-	0/2/6/8	-
2	DPF	41-A	601	1	-	0/2/6/8	-
2	DPF	42-A	601	1	-	0/2/6/8	-
2	DPF	39-A	601	1	-	1/2/6/8	-
2	DPF	4-A	601	1	-	0/2/6/8	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	DPF	28-A	601	1	-	1/2/6/8	-
2	DPF	36-A	601	1	-	0/2/6/8	-
2	DPF	40-A	601	1	-	0/2/6/8	-
2	DPF	12-A	601	1	-	1/2/6/8	-
2	DPF	17-A	601	1	-	0/2/6/8	-
2	DPF	37-A	601	1	-	0/2/6/8	-
2	DPF	35-A	601	1	-	0/2/6/8	-
2	DPF	1-A	601	1	-	2/2/6/8	-
2	DPF	32-A	601	1	-	0/2/6/8	-
2	DPF	33-A	601	1	-	1/2/6/8	-
2	DPF	23-A	601	1	-	0/2/6/8	-
2	DPF	29-A	601	1	-	0/2/6/8	-
2	DPF	8-A	601	1	-	0/2/6/8	-
2	DPF	13-A	601	1	-	2/2/6/8	-
2	DPF	27-A	601	1	-	0/2/6/8	-
2	DPF	14-A	601	1	-	1/2/6/8	-
2	DPF	30-A	601	1	-	1/2/6/8	-
2	DPF	7-A	601	1	-	0/2/6/8	-
2	DPF	16-A	601	1	-	0/2/6/8	-
2	DPF	10-A	601	1	-	0/2/6/8	-

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	15-A	601	DPF	O1-C2	-2.23	1.37	1.44
2	1-A	601	DPF	O1-C2	-2.05	1.38	1.44
2	22-A	601	DPF	O1-C2	-2.02	1.38	1.44

There are no bond angle outliers.

There are no chirality outliers.

All (19) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	1-A	601	DPF	C4-C1-O3-P1
2	1-A	601	DPF	C3-C2-O1-P1
2	6-A	601	DPF	C4-C1-O3-P1
2	9-A	601	DPF	C4-C1-O3-P1
2	11-A	601	DPF	C4-C1-O3-P1
2	11-A	601	DPF	C3-C2-O1-P1
2	12-A	601	DPF	C3-C2-O1-P1
2	13-A	601	DPF	C4-C1-O3-P1

Mol	Chain	Res	Type	Atoms
2	13-A	601	DPF	C3-C2-O1-P1
2	14-A	601	DPF	C4-C1-O3-P1
2	15-A	601	DPF	C4-C1-O3-P1
2	22-A	601	DPF	C3-C2-O1-P1
2	25-A	601	DPF	C4-C1-O3-P1
2	26-A	601	DPF	C4-C1-O3-P1
2	28-A	601	DPF	C4-C1-O3-P1
2	30-A	601	DPF	C4-C1-O3-P1
2	33-A	601	DPF	C4-C1-O3-P1
2	34-A	601	DPF	C4-C1-O3-P1
2	39-A	601	DPF	C4-C1-O3-P1

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	32-A	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
32	А	125:THR	С	126:LYS	Ν	1.82

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Warning: The R factor obtained from EDS is 0.2977, which does not match the depositor's R factor of 0.181. Please interpret the results in this section carefully.

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	$\mathbf{Q}{<}0.9$
1	1-A	566/577~(98%)	1.63	171 (30%) 1 1	0, 0, 0, 0	566 (100%)
1	2-A	0/577	-	-	-	-
1	3-A	0/577	-	-	-	-
1	4-A	0/577	-	-	-	-
1	5-A	0/577	-	-	-	-
1	6-A	0/577	-	-	-	-
1	7-A	0/577	-	-	-	-
1	8-A	0/577	-	-	-	-
1	9-A	0/577	-	-	-	-
1	10-A	0/577	-	-	-	-
1	11-A	0/577	-	-	-	-
1	12-A	0/577	-	-	-	-
1	13-A	0/577	-	-	-	-
1	14-A	0/577	-	-	-	-
1	15-A	0/577	-	-	-	-
1	16-A	0/577	-	-	-	-
1	17-A	0/577	-	-	-	-
1	18-A	0/577	-	-	-	-
1	19-A	0/577	-	-	-	-
1	20-A	0/577	-	-	-	-
1	21-A	0/577	-	-	-	-
1	22-A	0/577	-	-	-	-
1	23-A	0/577	-	-	-	-
1	24-A	0/577	-	-	-	-
1	25-A	0/577	-	-	-	
1	26-A	0/577	-	-	-	-
1	27-A	0/577	-	-	-	_
1	28-A	0/577	-	-	-	-
1	29-A	0/577	-	-	-	-

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	$\mathbf{Q}{<}0.9$
1	30-A	0/577	-	-	-	-
1	31-A	0/577	-	-	-	-
1	32-A	0/577	-	-	-	-
1	33-A	0/577	-	-	-	-
1	34-A	0/577	-	-	-	-
1	35-A	0/577	-	-	-	-
1	36-A	0/577	-	-	-	-
1	37-A	0/577	-	-	-	-
1	38-A	0/577	-	-	-	-
1	39-A	0/577	-	-	-	-
1	40-A	0/577	-	-	-	-
1	41-A	0/577	-	-	-	-
1	42-A	0/577	-	-	-	-
1	43-A	0/577	-	-	-	-
All	All	566/24811 (2%)	1.63	171 (30%) 1 1	0, 0, 0, 0	566 (100%)

All (171) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	1-A	515	SER	8.0
1	1-A	514	TYR	7.7
1	1-A	100	PHE	7.5
1	1-A	519	GLU	7.1
1	1-A	518	ILE	6.6
1	1-A	520	GLY	6.6
1	1-A	521	MET	6.6
1	1-A	381	ALA	6.2
1	1-A	383	ALA	6.1
1	1-A	517	GLU	6.0
1	1-A	522	GLU	5.8
1	1-A	124	GLU	5.7
1	1-A	384	GLU	5.7
1	1-A	361	GLN	5.6
1	1-A	362	MET	4.9
1	1-A	532	SER	4.8
1	1-A	451	GLU	4.7
1	1-A	319	GLN	4.6
1	1-A	104	LYS	4.5
1	1-A	513	PRO	4.5
1	1-A	179	ASP	4.4
1	1-A	382	ASP	4.3
1	1-A	102	THR	4.3

Mol	Chain	Res	Type	RSRZ
1	1-A	90	ASN	4.1
1	1-A	295	GLU	4.1
1	1-A	392	GLU	4.1
1	1-A	36	GLU	4.0
1	1-A	122	ASN	4.0
1	1-A	360	LYS	4.0
1	1-A	101	ILE	3.9
1	1-A	25	TYR	3.9
1	1-A	516	ASN	3.9
1	1-A	92	LYS	3.9
1	1-A	301	GLU	3.8
1	1-A	125	THR	3.8
1	1-A	460	MET	3.7
1	1-A	77	GLN	3.7
1	1-A	537	LYS	3.7
1	1-A	527	ASP	3.6
1	1-A	355	PHE	3.6
1	1-A	396	LYS	3.6
1	1-A	466	VAL	3.5
1	1-A	23	LEU	3.4
1	1-A	461	ARG	3.4
1	1-A	280	GLU	3.4
1	1-A	12	LYS	3.4
1	1-A	31	GLU	3.4
1	1-A	486	ARG	3.4
1	1-A	22	PHE	3.3
1	1-A	248	ILE	3.3
1	1-A	386	THR	3.2
1	1-A	523	ASN	3.1
1	1-A	284	LYS	3.1
1	1-A	433	PHE	3.1
1	1-A	549	ASP	3.1
1	1-A	322	ASP	3.1
1	1-A	431	LEU	3.1
1	1-A	564	GLU	3.1
1	1-A	334	LYS	3.1
1	1-A	505	THR	3.1
1	1-A	87	ASP	3.1
1	1-A	105	VAL	3.1
1	1-A	289	ASP	3.0
1	1-A	405	GLU	3.0
1	1-A	450	SER	3.0

5Γ	V	K

Mol	Chain	Res	Type	RSRZ
1	1-A	465	GLY	3.0
1	1-A	389	GLU	3.0
1	1-A	534	GLU	3.0
1	1-A	236	LEU	3.0
1	1-A	365	LEU	3.0
1	1-A	441	VAL	3.0
1	1-A	359	LEU	3.0
1	1-A	489	LYS	2.9
1	1-A	364	LEU	2.9
1	1-A	91	HIS	2.9
1	1-A	13	TRP	2.9
1	1-A	544	GLU	2.9
1	1-A	103	GLY	2.9
1	1-A	531	LYS	2.9
1	1-A	24	ASN	2.9
1	1-A	5	VAL	2.8
1	1-A	292	LYS	2.8
1	1-A	490	GLU	2.8
1	1-A	7	LEU	2.8
1	1-A	200	ASN	2.8
1	1-A	510	THR	2.8
1	1-A	434	ASN	2.7
1	1-A	470	SER	2.7
1	1-A	80	THR	2.7
1	1-A	303	ARG	2.7
1	1-A	452	ASP	2.7
1	1-A	14	LYS	2.7
1	1-A	357	SER	2.7
1	1-A	78	ARG	2.7
1	1-A	16	LYS	2.6
1	1-A	52	ASP	2.6
1	1-A	253	ASN	2.6
1	1-A	459	ILE	2.6
1	1-A	261	PHE	2.6
1	1-A	530	GLU	2.6
1	1-A	420	TYR	2.5
1	1-A	290	LEU	2.5
1	1-A	157	ASP	2.5
1	1-A	294	GLU	2.5
1	1-A	368	GLU	2.5
1	1-A	18	ILE	2.5
1	1-A	126	LYS	2.5

Mol	Chain	Res	Type	RSRZ
1	1-A	435	HIS	2.5
1	1-A	437	SER	2.5
1	1-A	8	MET	2.5
1	1-A	464	ARG	2.5
1	1-A	358	ILE	2.4
1	1-A	85	VAL	2.4
1	1-A	276	LYS	2.4
1	1-A	123	PRO	2.4
1	1-A	363	PRO	2.4
1	1-A	278	VAL	2.4
1	1-A	375	PHE	2.4
1	1-A	529	ILE	2.4
1	1-A	68	VAL	2.4
1	1-A	70	GLU	2.4
1	1-A	565	LYS	2.3
1	1-A	34	VAL	2.3
1	1-A	204	ASN	2.3
1	1-A	412	PHE	2.3
1	1-A	273	ASP	2.3
1	1-A	568	ASP	2.3
1	1-A	403	THR	2.3
1	1-A	175	LEU	2.3
1	1-A	345	MET	2.3
1	1-A	367	LYS	2.3
1	1-A	526	TRP	2.2
1	1-A	406	THR	2.2
1	1-A	215	PHE	2.2
1	1-A	354	PHE	2.2
1	1-A	387	ALA	2.2
1	1-A	93	ASP	2.2
1	1-A	269	TYR	2.2
1	1-A	146	ASP	2.2
1	1-A	570	PHE	2.2
1	1-A	89	CYS	2.2
1	1-A	457	TYR	2.2
1	1-A	286	LYS	2.2
1	1-A	296	LYS	2.2
1	1-A	366	VAL	2.1
1	1-A	281	PHE	2.1
1	1-A	17	CYS	2.1
1	1-A	494	TYR	2.1
1	1-A	543	ASP	2.1

Mol	Chain	Res	Type	RSRZ
1	1-A	304	THR	2.1
1	1-A	65	GLN	2.1
1	1-A	267	ALA	2.1
1	1-A	180	LEU	2.1
1	1-A	266	LEU	2.1
1	1-A	369	LEU	2.1
1	1-A	393	MET	2.1
1	1-A	528	PRO	2.1
1	1-A	469	VAL	2.1
1	1-A	20	ASN	2.1
1	1-A	141	GLY	2.1
1	1-A	463	GLY	2.1
1	1-A	480	TRP	2.1
1	1-A	19	GLU	2.1
1	1-A	331	GLU	2.1
1	1-A	533	ASP	2.0
1	1-A	27	LEU	2.0
1	1-A	394	GLY	2.0
1	1-A	542	SER	2.0
1	1-A	98	VAL	2.0
1	1-A	535	VAL	2.0
1	1-A	86	ARG	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

LIGAND-RSR INFOmissingINFO

6.5 Other polymers (i)

There are no such residues in this entry.

