

Full wwPDB X-ray Structure Validation Report (i)

Jun 18, 2024 – 10:41 AM EDT

:	4N0F
:	Human FcRn complexed with human serum albumin
:	Oganesyan, V.; Wu, H.; Dall'Acqua, W.F.
:	2013-10-01
:	3.02 Å(reported)
	::

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity		4 02h-467
Vtria na (Dhanim)	·	1.025 101
Atriage (Phenix)	:	1.20.1
EDS	:	2.37.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.02 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	Similar resolution (#Entries, resolution range(Å))
R _{free}	130704	2399 (3.04-3.00)
Clashscore	141614	2734 (3.04-3.00)
Ramachandran outliers	138981	2640 (3.04-3.00)
Sidechain outliers	138945	2643 (3.04-3.00)
RSRZ outliers	127900	2287 (3.04-3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	271	77%	18%	·	·
1	Е	271	74%	20%	•	
1	Н	271	73%	20%	• •	
1	K	271	76%	18%	•	•
2	В	99	82%	16%		•

Mol	Chain	Length	Quality of chain		
2	F	99	78%	21%	•
2	Ι	99	% 	11%	•
2	L	99	86%	12%	•
3	D	585	80%	17%	•
3	G	585	78%	19%	•
3	J	585	78%	19%	•
3	М	585	81%	16%	•

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 30181 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Δ	264	Total	С	Ν	0	\mathbf{S}	0	0	0
	A	204	2079	1330	360	381	8	0	0	0
1	Б	264	Total	С	Ν	0	S	0	0	0
	Ľ	204	2079	1330	360	381	8	0	0	0
1	Ц	264	Total	С	Ν	0	S	0	0	0
		П 204	2079	1330	360	381	8	0	0	0
1	1 V	264	Total	С	Ν	0	\mathbf{S}	0	0	0
	204	2079	1330	360	381	8		0	U	

• Molecule 1 is a protein called IgG receptor FcRn large subunit p51.

• Molecule 2 is a protein called Beta-2-microglobulin.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
0	D	00	Total	С	Ν	0	\mathbf{S}	0	0	0
	D	99	828	528	140	157	3	0	0	0
0	Б	00	Total	С	Ν	0	S	0	0	0
	Г	99	828	528	140	157	3	0	0	0
9	Т	00	Total	С	Ν	Ο	S	0	0	0
	1	1 99	828	528	140	157	3	0	0	0
0	<u>о</u> т	00	Total	С	Ν	0	S	0	0	0
	99	829	528	140	158	3	0	0	0	

• Molecule 3 is a protein called Serum albumin.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
2	Л	592	Total	С	Ν	0	\mathbf{S}	0	0	0
J	D	909	4638	2929	784	884	41	0	0	0
2	C	592	Total	С	Ν	0	S	0	0	0
J	G	909	4638	2929	784	884	41	0	0	U
9	т	502	Total	С	Ν	0	S	0	0	0
3	J	J 583	4638	2929	784	884	41	0	0	0
2	2 M	592	Total	С	Ν	0	S	0	0	0
3 M	583	4638	2929	784	884	41	0	0	0	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: IgG receptor FcRn large subunit p51

H4 15 15 15 16 110 111 111 121 121 121 121 123 121 123 123	45 45 45 45 45 45 45 45 45 45 68 68 68 68 68 68 68 68 68 68 68 68 68	1100 1103 1103 1103 1115 1115 1127 1127 1137 8138
R133 N1440 N1440 0142 0144 0144 0144 0144 0144 0144	1221 1221 1221 1221 1221 1221 1221 122	LTS SER SER
• Molecule 2: Beta-2-microglob	oulin	
Chain B:	82%	16% •
11 24 25 25 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	X 83 X 94 X 94 X 96 X 99 X 99 X 99 X 99 X 91 X 92 X 93 X 93 X 94 X 94 X 94 X 95 X 94 X 95 X 95	
• Molecule 2: Beta-2-microglob	oulin	
Chain F:	78%	21%
11 17 17 17 17 17 17 17 12 12 12 12 12 12 12 12 12 12 12 12 12	F70 E74 W82 W83 H84 W85 K94 K94 K94 K94	
• Molecule 2: Beta-2-microglob	oulin	
Chain I:	88%	11% •
11 12 833 833 833 17 17 17 17 17 17 17 17 17 17 17 17 17		
• Molecule 2: Beta-2-microglob	oulin	
Chain L:	86%	12% •
11 N2 4 83 3 83 3 83 3 83 3 76 77 76 77 8 76 8 8 8 8 8 8 8 8 8 8 8	0 6 8	
• Molecule 3: Serum albumin		
Chain D:	80%	17% •
ASP ALA H3 H3 H3 H3 C2 C2 H3 C2 H3 C2 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3	660 860 860 860 862 863 863 873 872 872 872 872 872 872 872 873 877 888 888 888	009 492 897 898 899 8100 8100 8100 8100 81103 81111 81111
P1 13 D1 29 D1 29 P1 33 P1 33 P1 33 P1 33 P1 35 P1 52 P1 52 P1 52 P1 52 P1 52 P1 52 P1 52 P1 52 P1 52 P1 53 P1 39 P1 33 P1 33	K212 K214 V214 A215 V216 A217 R215 R223 F223 F224 F224 F224 C245 F224 C245 F224 F224 C255 F224 F224 F224 F224 F226 F226 F226 F226	P282 P282 L283 E294 E294 E294 F303 K317 K317 K317 K337 K334
A335 R336 R336 R336 R336 F336 E383 E383 E383 E383 E384 E384 E386 E386 E396 E396 E396 E396 E396 E396 E396 E39	1425 1426 1426 1433 8435 8435 8435 8435 1463 1465 1463 1468 1488 1488	0494 2496 71496 71496 71496 71496 71496 71499 71499 71499 7199 7199 7199 7199 7

• Molecule 3: Serum albumin

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	136.47Å 115.92Å 186.24Å	Depositor
a, b, c, α , β , γ	90.00° 104.47° 90.00°	Depositor
Bosolution (Å)	20.00 - 3.02	Depositor
Resolution (A)	44.26 - 3.02	EDS
% Data completeness	99.1 (20.00-3.02)	Depositor
(in resolution range)	99.2 (44.26-3.02)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.69 (at 3.01 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.6.0117	Depositor
P. P.	0.223 , 0.260	Depositor
II, II, <i>free</i>	0.228 , 0.263	DCC
R_{free} test set	5501 reflections (5.00%)	wwPDB-VP
Wilson B-factor $(Å^2)$	40.4	Xtriage
Anisotropy	0.693	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.32 , 28.5	EDS
L-test for $twinning^2$	$ < L >=0.46, < L^2>=0.29$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.93	EDS
Total number of atoms	30181	wwPDB-VP
Average B, all atoms $(Å^2)$	38.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 48.74 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 8.2461e-05. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bond angles			
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	А	0.79	1/2145~(0.0%)	0.81	0/2915		
1	Ε	0.80	3/2145~(0.1%)	0.81	0/2915		
1	Н	0.79	2/2145~(0.1%)	0.79	1/2915~(0.0%)		
1	Κ	0.80	1/2145~(0.0%)	0.78	0/2915		
2	В	0.72	1/851~(0.1%)	0.76	1/1152~(0.1%)		
2	F	0.68	0/851	0.73	0/1152		
2	Ι	0.63	0/851	0.71	0/1152		
2	L	0.65	0/852	0.69	0/1152		
3	D	0.63	0/4728	0.77	1/6377~(0.0%)		
3	G	0.65	0/4728	0.77	1/6377~(0.0%)		
3	J	0.63	0/4728	0.76	1/6377~(0.0%)		
3	М	0.62	0/4728	0.77	$4/\overline{6377}~(0.1\%)$		
All	All	0.69	$8/3\overline{0897}\ (0.0\%)$	0.77	9/41776~(0.0%)		

All (8) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	Е	151	GLU	CD-OE2	6.67	1.32	1.25
1	А	151	GLU	CD-OE2	6.43	1.32	1.25
1	Н	127	TRP	CD2-CE2	5.40	1.47	1.41
1	Н	176	TRP	CD2-CE2	5.29	1.47	1.41
2	В	95	TRP	CD2-CE2	5.28	1.47	1.41
1	Е	127	TRP	CD2-CE2	5.05	1.47	1.41
1	Κ	127	TRP	CD2-CE2	5.02	1.47	1.41
1	Е	176	TRP	CD2-CE2	5.00	1.47	1.41

All (9) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
3	J	340	ASP	CB-CG-OD2	7.52	125.07	118.30
2	В	45	ARG	NE-CZ-NH1	6.60	123.60	120.30
1	Н	190	SER	CB-CA-C	5.77	121.06	110.10
3	М	63	ASP	CB-CG-OD2	5.68	123.42	118.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	М	63	ASP	CB-CG-OD1	-5.56	113.29	118.30
3	G	218	ARG	NE-CZ-NH1	5.42	123.01	120.30
3	М	218	ARG	NE-CZ-NH1	5.30	122.95	120.30
3	D	218	ARG	NE-CZ-NH1	5.23	122.92	120.30
3	М	340	ASP	CB-CG-OD1	5.06	122.85	118.30

Continued from previous page...

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	${ m H}({ m model})$	H(added)	Clashes	Symm-Clashes
1	А	2079	0	1990	40	0
1	Е	2079	0	1990	41	0
1	Н	2079	0	1990	51	0
1	K	2079	0	1990	39	0
2	В	828	0	794	8	0
2	F	828	0	794	8	0
2	Ι	828	0	794	7	0
2	L	829	0	794	6	0
3	D	4638	0	4563	75	0
3	G	4638	0	4563	75	0
3	J	4638	0	4563	78	0
3	М	4638	0	4563	63	0
All	All	30181	0	29388	459	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (459) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:D:33:GLN:HE21	3:D:112:LEU:CD1	1.59	1.16
3:M:112:LEU:HD23	3:M:113:PRO:HD2	1.29	1.08
3:J:33:GLN:HE21	3:J:112:LEU:CD1	1.71	1.03

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:11:LEU:CD1	1:A:94:LEU:HD13	1.91	1.00
3:D:33:GLN:HE21	3:D:112:LEU:HD11	1.29	0.97
3:J:33:GLN:NE2	3:J:112:LEU:HD11	1.79	0.96
3:J:33:GLN:HE21	3:J:112:LEU:HD11	1.30	0.96
3:J:115:LEU:HB2	3:J:145:ARG:HH12	1.28	0.95
1:A:11:LEU:HD13	1:A:94:LEU:HD13	1.50	0.94
3:G:430:LEU:HD23	3:G:456:VAL:HG11	1.54	0.87
3:J:33:GLN:NE2	3:J:112:LEU:CD1	2.35	0.87
1:A:57:VAL:HG11	3:D:111:ASN:HB3	1.58	0.84
3:M:112:LEU:HD23	3:M:113:PRO:CD	2.08	0.83
3:D:430:LEU:HD23	3:D:456:VAL:HG11	1.58	0.83
3:D:33:GLN:NE2	3:D:112:LEU:CD1	2.41	0.82
3:J:115:LEU:CB	3:J:145:ARG:HH12	1.93	0.81
3:G:33:GLN:HE21	3:G:112:LEU:CD1	1.93	0.81
2:B:83:ASN:HD22	2:B:84:HIS:H	1.27	0.79
3:M:151:ALA:HB3	3:M:152:PRO:HD3	1.65	0.78
2:L:83:ASN:HD22	2:L:84:HIS:H	1.32	0.75
1:A:36:LEU:HD23	1:A:37:SER:N	2.02	0.74
1:A:44:GLU:HG3	3:D:417:GLN:NE2	2.03	0.74
3:J:151:ALA:HB3	3:J:152:PRO:HD3	1.70	0.74
1:H:8:LEU:HD23	1:H:95:GLY:HA3	1.68	0.74
3:J:194:ALA:HB1	3:J:455:VAL:CG1	2.17	0.74
1:K:144:GLN:O	1:K:146:LYS:N	2.21	0.74
3:J:77:VAL:O	3:J:80:LEU:HG	1.89	0.73
3:D:33:GLN:HE21	3:D:112:LEU:HD12	1.51	0.73
3:G:151:ALA:HB3	3:G:152:PRO:HD3	1.69	0.73
3:J:115:LEU:HB2	3:J:145:ARG:NH1	2.03	0.73
3:D:77:VAL:O	3:D:80:LEU:HG	1.89	0.73
3:M:77:VAL:O	3:M:80:LEU:HG	1.89	0.72
3:D:151:ALA:HB3	3:D:152:PRO:HD3	1.72	0.72
1:E:144:GLN:O	1:E:146:LYS:N	2.22	0.72
1:A:144:GLN:O	1:A:146:LYS:N	2.22	0.72
1:A:18:ALA:O	1:A:21:THR:HB	1.91	0.70
3:J:430:LEU:HD23	3:J:456:VAL:HG11	1.72	0.70
3:G:430:LEU:CD2	3:G:456:VAL:HG11	2.22	0.69
3:G:77:VAL:O	3:G:80:LEU:HG	1.92	0.69
2:L:83:ASN:HD22	2:L:84:HIS:N	1.89	0.69
1:H:78:ALA:HB1	1:H:137:ILE:HD13	1.73	0.69
3:D:33:GLN:NE2	3:D:112:LEU:HD11	2.06	0.68
1:H:144:GLN:O	1:H:146:LYS:N	2.23	0.68
2:I:2:GLN:HE22	2:I:85:VAL:HG11	1.58	0.68

	t i c	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:I:83:ASN:HD22	2:I:84:HIS:H	1.40	0.67
3:M:194:ALA:HB1	3:M:455:VAL:CG1	2.24	0.67
3:J:33:GLN:HE21	3:J:112:LEU:HD13	1.55	0.67
1:E:18:ALA:O	1:E:21:THR:HB	1.95	0.66
3:G:33:GLN:NE2	3:G:112:LEU:CD1	2.58	0.66
1:H:18:ALA:O	1:H:21:THR:HB	1.96	0.66
1:K:18:ALA:O	1:K:21:THR:HB	1.96	0.66
1:A:11:LEU:HD13	1:A:94:LEU:CD1	2.25	0.66
1:E:241:THR:O	1:E:242:VAL:HG23	1.97	0.65
3:M:430:LEU:HD23	3:M:456:VAL:HG11	1.78	0.65
1:H:11:LEU:HD12	1:H:11:LEU:H	1.61	0.65
2:B:83:ASN:HD22	2:B:84:HIS:N	1.95	0.65
1:A:36:LEU:HD23	1:A:36:LEU:C	2.17	0.65
1:K:57:VAL:HG11	3:M:111:ASN:HB3	1.78	0.64
1:E:36:LEU:HD23	1:E:37:SER:N	2.12	0.64
3:M:81:ARG:NH2	3:M:89:ASP:OD2	2.31	0.64
1:K:36:LEU:HD23	1:K:37:SER:N	2.12	0.64
3:G:36:PHE:O	3:G:40:VAL:HG23	1.97	0.63
3:D:216:VAL:HG22	3:D:235:VAL:HG21	1.80	0.63
3:J:81:ARG:NH2	3:J:89:ASP:OD2	2.31	0.63
3:D:33:GLN:NE2	3:D:112:LEU:HD12	2.12	0.63
1:E:57:VAL:HG11	3:G:111:ASN:HB3	1.80	0.63
1:E:57:VAL:HG11	3:G:111:ASN:CG	2.19	0.62
3:J:415:VAL:O	3:J:415:VAL:CG1	2.48	0.62
3:G:540:THR:H	3:G:543:GLN:HE21	1.48	0.62
1:K:44:GLU:CD	3:M:469:VAL:HG22	2.20	0.62
3:D:430:LEU:CD2	3:D:456:VAL:HG11	2.30	0.62
3:D:81:ARG:NH2	3:D:89:ASP:OD2	2.32	0.62
3:D:415:VAL:CG1	3:D:415:VAL:O	2.48	0.62
3:M:347:LEU:HB2	3:M:482:VAL:HG21	1.82	0.62
3:J:415:VAL:HG13	3:J:418:VAL:HG23	1.82	0.62
1:K:47:PRO:HB3	1:K:61:TRP:CZ2	2.35	0.62
3:G:81:ARG:NH2	3:G:89:ASP:OD2	2.32	0.61
3:M:79:THR:O	3:M:81:ARG:N	2.34	0.61
1:H:47:PRO:HB3	1:H:61:TRP:CZ2	2.36	0.61
2:L:24:ASN:HB3	2:L:65:LEU:HD11	1.83	0.61
3:J:34:CYS:N	3:J:84:TYR:OH	2.34	0.61
3:G:415:VAL:HG13	3:G:418:VAL:HG23	1.82	0.61
3:G:347:LEU:HB2	3:G:482:VAL:HG21	1.83	0.61
1:H:11:LEU:CD1	1:H:94:LEU:HD12	2.29	0.61
3:J:540:THR:H	3:J:543:GLN:HE21	1.49	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:182:MET:CE	1:H:254:VAL:HB	2.31	0.60
1:K:57:VAL:HG11	3:M:111:ASN:CB	2.30	0.60
3:M:415:VAL:CG1	3:M:415:VAL:O	2.50	0.60
1:E:11:LEU:HD12	1:E:11:LEU:H	1.66	0.60
3:M:34:CYS:N	3:M:84:TYR:OH	2.35	0.60
3:D:79:THR:O	3:D:81:ARG:N	2.34	0.59
3:J:541:LYS:NZ	3:J:545:LYS:HE3	2.17	0.59
3:D:540:THR:H	3:D:543:GLN:HE21	1.51	0.59
3:J:216:VAL:CG2	3:J:235:VAL:HG21	2.32	0.59
3:J:216:VAL:HG22	3:J:235:VAL:HG21	1.84	0.59
1:E:57:VAL:HG11	3:G:111:ASN:CB	2.32	0.59
3:J:79:THR:O	3:J:81:ARG:N	2.36	0.59
2:F:83:ASN:HD22	2:F:84:HIS:H	1.49	0.59
1:K:93:LEU:O	1:K:94:LEU:HD23	2.02	0.59
1:A:57:VAL:HG11	3:D:111:ASN:CB	2.30	0.58
3:D:60:GLU:O	3:D:61:ASN:HB2	2.02	0.58
1:E:47:PRO:HB3	1:E:61:TRP:CZ2	2.38	0.58
1:K:11:LEU:H	1:K:11:LEU:HD12	1.68	0.58
3:J:194:ALA:HB1	3:J:455:VAL:HG11	1.84	0.58
3:M:194:ALA:HB1	3:M:455:VAL:HG13	1.86	0.58
1:E:21:THR:HG23	1:E:22:PRO:HD2	1.86	0.58
3:G:79:THR:O	3:G:81:ARG:N	2.36	0.58
3:G:33:GLN:NE2	3:G:112:LEU:HD11	2.18	0.58
3:G:34:CYS:N	3:G:84:TYR:OH	2.36	0.58
1:A:47:PRO:HB3	1:A:61:TRP:CZ2	2.39	0.58
3:D:34:CYS:N	3:D:84:TYR:OH	2.35	0.58
3:G:218:ARG:HH11	3:G:218:ARG:HG2	1.69	0.58
1:H:36:LEU:HD23	1:H:37:SER:N	2.18	0.58
3:D:218:ARG:HG2	3:D:218:ARG:HH11	1.69	0.57
1:H:182:MET:HE2	1:H:254:VAL:HG11	1.85	0.57
3:J:194:ALA:HB1	3:J:455:VAL:HG13	1.84	0.57
3:G:541:LYS:HZ2	3:G:545:LYS:HE3	1.68	0.57
1:E:78:ALA:HB1	1:E:137:ILE:HD13	1.86	0.57
3:D:293:VAL:HG22	3:D:294:GLU:H	1.69	0.57
3:M:60:GLU:O	3:M:61:ASN:HB2	2.05	0.57
3:M:218:ARG:HG2	3:M:218:ARG:HH11	1.68	0.56
3:G:531:GLU:O	3:G:535:HIS:HD2	1.88	0.56
1:K:57:VAL:HG12	1:K:58:SER:O	2.05	0.56
2:I:2:GLN:HE22	2:I:85:VAL:CG1	2.18	0.56
1:E:71:LYS:NZ	1:E:151:GLU:OE1	2.28	0.56
3:D:415:VAL:HG13	3:D:418:VAL:HG23	1.88	0.56

	lo us puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:57:VAL:HG11	3:J:111:ASN:HB3	1.87	0.56
1:E:57:VAL:HG12	1:E:58:SER:N	2.21	0.56
1:H:11:LEU:HD11	1:H:94:LEU:HD12	1.88	0.56
1:K:33:GLN:NE2	1:K:174:LEU:HD23	2.20	0.56
3:J:80:LEU:O	3:J:84:TYR:N	2.39	0.55
3:J:159:LYS:CE	3:J:284:LEU:HD12	2.36	0.55
3:G:216:VAL:HG22	3:G:235:VAL:HG21	1.87	0.55
3:G:388:ILE:HD13	3:G:449:ALA:CB	2.36	0.55
3:M:80:LEU:O	3:M:84:TYR:N	2.40	0.55
3:D:417:GLN:HA	3:D:417:GLN:OE1	2.05	0.55
1:K:214:ARG:HG3	1:K:250:TYR:CZ	2.42	0.55
3:G:33:GLN:HE21	3:G:112:LEU:HD11	1.69	0.55
3:J:293:VAL:HG22	3:J:294:GLU:H	1.71	0.54
2:B:24:ASN:HB3	2:B:65:LEU:HD11	1.89	0.54
3:M:531:GLU:O	3:M:535:HIS:HD2	1.90	0.54
3:D:80:LEU:O	3:D:84:TYR:N	2.40	0.54
3:G:60:GLU:O	3:G:61:ASN:HB2	2.07	0.54
3:J:347:LEU:HB2	3:J:482:VAL:HG21	1.89	0.54
1:K:190:SER:OG	1:K:191:PRO:HD2	2.08	0.54
3:D:347:LEU:HB2	3:D:482:VAL:HG21	1.88	0.54
3:G:541:LYS:NZ	3:G:545:LYS:HE3	2.23	0.54
1:K:21:THR:HG23	1:K:22:PRO:HD2	1.89	0.54
1:A:203:PHE:CZ	1:A:208:LEU:HD13	2.43	0.54
2:F:2:GLN:NE2	2:F:85:VAL:HG11	2.23	0.54
1:H:182:MET:HE2	1:H:254:VAL:CG1	2.38	0.54
3:D:531:GLU:O	3:D:535:HIS:HD2	1.91	0.53
3:J:48:GLU:O	3:J:52:THR:HG23	2.07	0.53
1:A:190:SER:OG	1:A:191:PRO:HD2	2.09	0.53
3:J:60:GLU:O	3:J:61:ASN:HB2	2.08	0.53
1:E:190:SER:OG	1:E:191:PRO:HD2	2.08	0.53
1:K:208:LEU:C	1:K:208:LEU:HD23	2.29	0.53
1:A:21:THR:HG23	1:A:22:PRO:HD2	1.91	0.53
3:G:80:LEU:O	3:G:84:TYR:N	2.40	0.53
3:D:214:TRP:CD1	3:D:343:VAL:HG11	2.44	0.53
3:G:194:ALA:HB1	3:G:455:VAL:CG1	2.38	0.53
1:E:134:ALA:O	1:E:138:SER:HB2	2.09	0.53
1:H:190:SER:OG	1:H:191:PRO:HD2	2.09	0.53
1:H:221:THR:HG22	1:H:238:SER:OG	2.08	0.53
3:M:48:GLU:O	3:M:52:THR:HG23	2.07	0.53
3:M:282:PRO:HG2	3:M:285:GLU:HG3	1.91	0.53
3:D:112:LEU:HD21	3:D:144:ARG:NH1	2.24	0.52

	lous page	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
3:J:282:PRO:HG2	3:J:285:GLU:HG3	1.91	0.52
3:G:424:VAL:HG12	3:G:425:GLU:N	2.23	0.52
3:G:159:LYS:HE2	3:G:284:LEU:HD12	1.91	0.52
1:A:134:ALA:O	1:A:138:SER:HB2	2.10	0.52
3:J:531:GLU:O	3:J:535:HIS:HD2	1.93	0.52
2:L:37:VAL:HB	2:L:66:TYR:CE1	2.45	0.52
3:M:224:PRO:O	3:M:336:ARG:NH1	2.42	0.52
1:H:182:MET:HE2	1:H:254:VAL:HB	1.92	0.52
1:E:36:LEU:HD23	1:E:36:LEU:C	2.31	0.51
1:K:134:ALA:O	1:K:138:SER:HB2	2.10	0.51
3:J:224:PRO:O	3:J:336:ARG:NH1	2.43	0.51
3:M:216:VAL:HG22	3:M:235:VAL:HG21	1.92	0.51
3:G:282:PRO:HG2	3:G:285:GLU:HG3	1.92	0.51
3:G:415:VAL:HG13	3:G:418:VAL:CG2	2.40	0.51
1:H:134:ALA:O	1:H:138:SER:HB2	2.10	0.51
1:K:221:THR:HG22	1:K:238:SER:OG	2.10	0.51
1:A:214:ARG:HG3	1:A:250:TYR:CZ	2.46	0.51
1:A:241:THR:O	1:A:242:VAL:HG23	2.11	0.51
3:J:388:ILE:HD13	3:J:449:ALA:CB	2.39	0.51
3:M:216:VAL:CG2	3:M:235:VAL:HG21	2.41	0.51
3:D:99:ASN:HD21	3:D:103:LEU:HD11	1.76	0.51
2:I:37:VAL:HB	2:I:66:TYR:CE1	2.46	0.51
3:D:224:PRO:O	3:D:336:ARG:NH1	2.44	0.51
3:J:383:GLU:HB3	3:J:384:PRO:HD3	1.93	0.51
3:M:383:GLU:HB3	3:M:384:PRO:HD3	1.93	0.51
3:J:231:VAL:O	3:J:235:VAL:HG23	2.11	0.51
3:G:408:LEU:HD11	3:G:530:VAL:CG2	2.41	0.50
1:H:36:LEU:HD23	1:H:36:LEU:C	2.31	0.50
3:D:415:VAL:HG13	3:D:418:VAL:CG2	2.41	0.50
2:F:37:VAL:HB	2:F:66:TYR:CE1	2.46	0.50
3:G:48:GLU:O	3:G:52:THR:HG23	2.12	0.50
3:G:224:PRO:O	3:G:336:ARG:NH1	2.44	0.50
1:H:190:SER:CB	1:H:191:PRO:CD	2.89	0.50
1:K:203:PHE:CZ	1:K:208:LEU:HD13	2.47	0.50
3:M:108:ASP:OD1	3:M:466:LYS:NZ	2.44	0.50
3:D:415:VAL:O	3:D:415:VAL:HG13	2.11	0.50
1:H:182:MET:HE2	1:H:254:VAL:CB	2.40	0.50
3:M:293:VAL:HG22	3:M:294:GLU:H	1.76	0.50
1:H:11:LEU:HD13	1:H:94:LEU:HD12	1.94	0.50
1:A:8:LEU:HD23	1:A:95:GLY:HA3	1.92	0.50
3:G:159:LYS:CE	3:G:284:LEU:HD12	2.42	0.50

	• • • • •	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:D:32:GLN:HE22	3:D:107:ASP:H	1.60	0.49
3:J:303:PRO:O	3:J:337:ARG:NH1	2.45	0.49
1:K:36:LEU:HD23	1:K:36:LEU:C	2.33	0.49
1:A:221:THR:HG22	1:A:238:SER:OG	2.12	0.49
2:I:2:GLN:NE2	2:I:85:VAL:HG11	2.27	0.49
1:A:11:LEU:CD1	1:A:94:LEU:CD1	2.77	0.49
3:G:397:GLN:O	3:G:398:LEU:HD23	2.12	0.49
3:M:540:THR:H	3:M:543:GLN:HE21	1.60	0.49
3:M:303:PRO:O	3:M:337:ARG:NH1	2.45	0.49
3:G:383:GLU:HB3	3:G:384:PRO:HD3	1.94	0.49
1:H:182:MET:HE1	1:H:254:VAL:HG21	1.93	0.49
3:J:36:PHE:O	3:J:40:VAL:HG23	2.12	0.49
1:A:59:TRP:NE1	3:D:463:LEU:HD13	2.28	0.49
3:D:303:PRO:O	3:D:337:ARG:NH1	2.46	0.49
3:J:159:LYS:HE2	3:J:284:LEU:HD12	1.95	0.49
1:H:167:LEU:HD23	1:H:174:LEU:CD1	2.42	0.49
3:D:383:GLU:HB3	3:D:384:PRO:HD3	1.94	0.48
1:E:208:LEU:HD23	1:E:208:LEU:C	2.33	0.48
3:J:135:LEU:HD21	3:J:162:LYS:HB2	1.95	0.48
1:E:203:PHE:CE2	1:E:208:LEU:HD13	2.48	0.48
1:H:57:VAL:HG11	3:J:111:ASN:CB	2.42	0.48
3:J:71:GLY:O	3:J:72:ASP:C	2.51	0.48
1:H:214:ARG:HG3	1:H:250:TYR:CZ	2.49	0.48
2:I:83:ASN:HD22	2:I:84:HIS:N	2.08	0.48
3:J:32:GLN:HE22	3:J:107:ASP:H	1.62	0.48
3:G:112:LEU:HD21	3:G:144:ARG:NH1	2.28	0.48
3:M:71:GLY:O	3:M:72:ASP:C	2.52	0.48
3:J:21:ALA:HB1	3:J:139:LEU:HD21	1.95	0.48
1:K:57:VAL:HG12	1:K:58:SER:N	2.28	0.48
1:K:203:PHE:CE2	1:K:208:LEU:HD13	2.48	0.48
1:E:214:ARG:NH1	1:E:215:ASN:HD22	2.11	0.48
3:G:303:PRO:O	3:G:337:ARG:NH1	2.46	0.48
1:H:197:THR:HG21	2:I:99:MET:HG2	1.96	0.48
1:E:214:ARG:HG3	1:E:250:TYR:CZ	2.49	0.48
1:H:214:ARG:NH1	1:H:215:ASN:HD22	2.12	0.48
1:K:44:GLU:OE1	3:M:469:VAL:HG22	2.14	0.48
1:K:241:THR:O	1:K:242:VAL:HG23	2.14	0.48
3:D:216:VAL:CG2	3:D:235:VAL:HG21	2.44	0.48
3:G:518:GLU:OE1	3:G:518:GLU:HA	2.14	0.48
3:M:494:ASP:OD1	3:M:496:THR:HB	2.14	0.48
3:D:71:GLY:O	3:D:72:ASP:C	2.51	0.47

	to do pago	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:H:57:VAL:HG11	3:J:111:ASN:CG	2.34	0.47
1:A:208:LEU:C	1:A:208:LEU:HD23	2.35	0.47
3:J:85:GLY:O	3:J:87:MET:N	2.47	0.47
3:G:71:GLY:O	3:G:72:ASP:C	2.52	0.47
1:H:182:MET:HE1	1:H:254:VAL:CG2	2.43	0.47
1:K:57:VAL:HG11	3:M:111:ASN:CG	2.34	0.47
3:M:518:GLU:HA	3:M:518:GLU:OE1	2.13	0.47
3:D:99:ASN:ND2	3:D:103:LEU:HD11	2.28	0.47
3:J:31:LEU:HG	3:J:74:LEU:HD22	1.96	0.47
3:J:415:VAL:HG13	3:J:418:VAL:CG2	2.43	0.47
1:H:78:ALA:HB1	1:H:137:ILE:CD1	2.44	0.47
1:H:182:MET:CE	1:H:254:VAL:CB	2.92	0.47
1:K:8:LEU:HD23	1:K:95:GLY:HA3	1.95	0.47
3:M:34:CYS:HB3	3:M:39:HIS:NE2	2.30	0.47
3:M:85:GLY:O	3:M:87:MET:N	2.47	0.47
1:E:254:VAL:CG1	1:E:263:LEU:HB3	2.45	0.47
1:H:77:GLU:HG2	1:H:140:ARG:NH1	2.30	0.47
1:K:44:GLU:OE2	3:M:469:VAL:HG22	2.15	0.47
3:D:194:ALA:HB1	3:D:455:VAL:CG1	2.44	0.47
1:E:99:GLY:N	1:E:103:THR:O	2.44	0.47
1:E:203:PHE:CZ	1:E:208:LEU:HD13	2.50	0.47
3:G:293:VAL:HG22	3:G:294:GLU:H	1.80	0.47
1:H:254:VAL:O	1:H:254:VAL:HG13	2.14	0.47
3:J:214:TRP:CD1	3:J:343:VAL:HG11	2.49	0.47
3:J:494:ASP:OD1	3:J:496:THR:HB	2.15	0.47
3:D:48:GLU:O	3:D:52:THR:HG23	2.15	0.47
3:D:518:GLU:OE1	3:D:518:GLU:HA	2.15	0.47
1:H:80:LYS:HD2	1:H:140:ARG:HH12	1.80	0.47
3:G:194:ALA:HB1	3:G:455:VAL:HG13	1.97	0.47
3:J:513:ILE:HG22	3:J:516:LEU:HD11	1.97	0.46
3:D:34:CYS:HB3	3:D:39:HIS:NE2	2.31	0.46
3:J:518:GLU:HA	3:J:518:GLU:OE1	2.14	0.46
3:M:223:PHE:N	3:M:224:PRO:CD	2.79	0.46
3:J:223:PHE:N	3:J:224:PRO:CD	2.79	0.46
1:K:53:TRP:CZ3	3:M:527:THR:HG22	2.51	0.46
3:G:85:GLY:O	3:G:87:MET:N	2.48	0.46
3:G:472:ARG:NH2	3:G:492:GLU:O	2.49	0.46
1:K:93:LEU:C	1:K:94:LEU:HD23	2.36	0.46
2:B:2:GLN:NE2	2:B:85:VAL:HG11	2.31	0.46
3:D:42:LEU:O	3:D:46:VAL:HG23	2.16	0.46
1:K:99:GLY:O	1:K:100:PRO:C	2.55	0.46

	lo uo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:G:572:GLY:O	3:G:576:VAL:HG23	2.15	0.45
1:E:221:THR:HG22	1:E:238:SER:OG	2.16	0.45
1:H:17:PRO:HB2	1:H:21:THR:HG22	1.99	0.45
3:J:541:LYS:HZ2	3:J:545:LYS:HE3	1.82	0.45
1:A:187:ARG:NH1	2:B:96:ASP:OD1	2.49	0.45
3:D:422:THR:O	3:D:426:VAL:HG23	2.16	0.45
1:E:93:LEU:HD12	1:E:93:LEU:HA	1.73	0.45
3:G:494:ASP:OD1	3:G:496:THR:HB	2.16	0.45
3:D:73:LYS:O	3:D:76:THR:HB	2.17	0.45
2:F:34:ASP:O	2:F:84:HIS:HD2	2.00	0.45
3:G:33:GLN:HE21	3:G:112:LEU:HD13	1.76	0.45
3:M:185:LEU:HA	3:M:185:LEU:HD12	1.61	0.45
1:A:56:GLN:NE2	1:A:57:VAL:H	2.15	0.45
1:H:112:LEU:HD12	1:H:113:ASN:H	1.82	0.45
1:H:242:VAL:HG22	1:H:250:TYR:CZ	2.51	0.45
1:E:42:ARG:NH1	3:G:498:VAL:O	2.50	0.45
3:G:223:PHE:N	3:G:224:PRO:CD	2.79	0.45
3:D:194:ALA:HB1	3:D:455:VAL:HG13	1.99	0.45
1:E:59:TRP:NE1	3:G:463:LEU:HD13	2.32	0.45
1:A:56:GLN:HE21	1:A:57:VAL:H	1.64	0.44
3:D:99:ASN:O	3:D:103:LEU:HD12	2.16	0.44
3:D:223:PHE:N	3:D:224:PRO:CD	2.79	0.44
1:H:99:GLY:O	1:H:100:PRO:C	2.56	0.44
1:A:99:GLY:O	1:A:100:PRO:C	2.55	0.44
3:D:85:GLY:O	3:D:87:MET:N	2.50	0.44
1:E:57:VAL:CG1	1:E:58:SER:N	2.80	0.44
3:G:349:LEU:HD22	3:G:377:PHE:CG	2.52	0.44
1:K:57:VAL:CG1	1:K:58:SER:N	2.80	0.44
3:M:112:LEU:O	3:M:113:PRO:C	2.55	0.44
3:J:281:LYS:HB3	3:J:282:PRO:HD2	2.00	0.44
3:D:54:VAL:HG12	2:F:88:SER:HB3	1.99	0.44
1:H:11:LEU:HD12	1:H:11:LEU:N	2.30	0.44
1:H:57:VAL:HG12	1:H:58:SER:N	2.33	0.44
1:H:190:SER:CB	1:H:191:PRO:HD2	2.48	0.44
3:M:32:GLN:HE22	3:M:107:ASP:H	1.66	0.44
1:H:254:VAL:CG1	1:H:263:LEU:HB3	2.48	0.44
1:E:112:LEU:HD12	1:E:113:ASN:H	1.82	0.44
1:K:99:GLY:N	1:K:103:THR:O	2.42	0.44
3:M:415:VAL:HG13	3:M:418:VAL:HG23	1.99	0.44
2:B:37:VAL:HB	2:B:66:TYR:CE1	2.52	0.44
1:E:99:GLY:O	1:E:100:PRO:C	2.55	0.44

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:J:415:VAL:O	3:J:415:VAL:HG12	2.16	0.44	
3:M:151:ALA:HB2	3:M:250:LEU:HD22	1.99	0.44	
3:D:112:LEU:O	3:D:113:PRO:C	2.56	0.44	
3:G:32:GLN:HE22	3:G:107:ASP:H	1.65	0.44	
3:J:112:LEU:O	3:J:113:PRO:C	2.56	0.44	
3:D:551:PHE:O	3:D:554:PHE:HB3	2.18	0.44	
3:G:34:CYS:HB3	3:G:39:HIS:NE2	2.33	0.44	
1:H:241:THR:O	1:H:242:VAL:HG23	2.18	0.44	
3:J:349:LEU:HD22	3:J:377:PHE:CG	2.53	0.44	
1:K:214:ARG:HB2	1:K:250:TYR:CE2	2.52	0.43	
1:A:42:ARG:NH1	3:D:498:VAL:O	2.52	0.43	
3:D:135:LEU:HD21	3:D:162:LYS:HB2	1.99	0.43	
3:G:551:PHE:O	3:G:554:PHE:HB3	2.18	0.43	
3:M:347:LEU:CB	3:M:482:VAL:HG21	2.48	0.43	
1:E:68:LEU:HD23	1:E:68:LEU:HA	1.81	0.43	
1:E:106:PRO:HG3	1:E:122:LEU:HD22	2.00	0.43	
2:F:7:ILE:HD13	2:F:82:VAL:CG2	2.49	0.43	
1:K:197:THR:HG21	2:L:99:MET:HG2	2.00	0.43	
3:M:472:ARG:NH2	3:M:492:GLU:O	2.52	0.43	
3:M:551:PHE:O	3:M:554:PHE:HB3	2.19	0.43	
1:A:26:VAL:HG21	1:A:68:LEU:HD13	1.99	0.43	
1:H:99:GLY:N	1:H:103:THR:O	2.42	0.43	
1:H:203:PHE:CE2	1:H:208:LEU:HD13	2.53	0.43	
1:K:83:GLY:O	1:K:84:GLY:O	2.37	0.43	
1:A:94:LEU:HD12	1:A:94:LEU:N	2.33	0.43	
1:A:214:ARG:HB2	1:A:250:TYR:CE2	2.54	0.43	
3:D:44:ASN:O	3:D:48:GLU:HG3	2.19	0.43	
3:G:112:LEU:O	3:G:113:PRO:C	2.57	0.43	
3:M:133:THR:O	3:M:136:LYS:N	2.52	0.43	
3:D:133:THR:O	3:D:136:LYS:N	2.52	0.43	
3:D:212:LYS:O	3:D:216:VAL:HG23	2.18	0.43	
1:H:42:ARG:NH1	3:J:498:VAL:O	2.52	0.43	
1:A:44:GLU:CD	3:D:469:VAL:HG22	2.39	0.43	
1:A:203:PHE:CE2	1:A:208:LEU:HD13	2.54	0.43	
1:H:126:THR:HA	1:H:142:GLN:HE22	1.84	0.43	
1:E:59:TRP:CD1	3:G:463:LEU:HD13	2.54	0.42	
1:E:83:GLY:O	1:E:84:GLY:O	2.36	0.42	
1:H:56:GLN:NE2	1:H:57:VAL:H	2.17	0.42	
3:J:397:GLN:O	3:J:398:LEU:HD23	2.19	0.42	
1:K:78:ALA:HB1	1:K:137:ILE:HD13	2.01	0.42	
2:B:39:LEU:C	2:B:40:LEU:HD23	2.40	0.42	

	in a second s	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:M:281:LYS:HB3	3:M:282:PRO:HD2	2.01	0.42	
3:D:526:GLN:O	3:D:530:VAL:HG23	2.19	0.42	
3:G:97:GLU:HA	3:G:100:GLU:HG3	2.01	0.42	
3:G:415:VAL:O	3:G:415:VAL:CG1	2.68	0.42	
3:J:572:GLY:O	3:J:576:VAL:HG23	2.19	0.42	
3:D:172:ALA:HB2	3:J:293:VAL:O	2.18	0.42	
3:D:281:LYS:HB3	3:D:282:PRO:HD2	2.00	0.42	
1:E:122:LEU:HD12	1:E:122:LEU:H	1.84	0.42	
3:J:497:TYR:O	3:J:499:PRO:HD3	2.20	0.42	
3:G:231:VAL:O	3:G:235:VAL:HG23	2.20	0.42	
3:M:326:PHE:HA	3:M:329:MET:HE2	2.01	0.42	
1:E:53:TRP:CZ3	3:G:527:THR:HG22	2.54	0.42	
3:G:21:ALA:HB1	3:G:139:LEU:HD21	2.02	0.42	
3:G:317:LYS:O	3:G:321:GLU:HG2	2.20	0.42	
3:M:214:TRP:CD1	3:M:343:VAL:HG11	2.54	0.42	
1:E:167:LEU:HD23	1:E:174:LEU:CD1	2.49	0.42	
3:J:551:PHE:O	3:J:554:PHE:HB3	2.20	0.42	
1:H:56:GLN:HE21	1:H:57:VAL:H	1.67	0.42	
3:M:33:GLN:HE21	3:M:112:LEU:HG	1.83	0.42	
3:M:497:TYR:O	3:M:499:PRO:HD3	2.20	0.42	
1:E:11:LEU:HD12	1:E:11:LEU:N	2.34	0.42	
2:F:24:ASN:HB3	2:F:65:LEU:HD11	2.00	0.42	
3:G:216:VAL:CG2	3:G:235:VAL:HG21	2.50	0.42	
3:G:472:ARG:CZ	3:G:491:LEU:HD22	2.49	0.42	
3:G:525:LYS:O	3:G:548:MET:HE1	2.19	0.42	
3:M:133:THR:O	3:M:134:PHE:C	2.58	0.42	
1:E:59:TRP:CE3	1:E:62:GLU:HG3	2.55	0.42	
3:M:97:GLU:HA	3:M:100:GLU:HG3	2.01	0.42	
3:G:430:LEU:HD22	3:G:453:LEU:HD23	2.01	0.41	
3:J:34:CYS:HB3	3:J:39:HIS:NE2	2.35	0.41	
1:K:11:LEU:CD2	1:K:71:LYS:HG2	2.50	0.41	
3:D:89:ASP:O	3:D:92:ALA:HB3	2.19	0.41	
3:D:412:THR:OG1	3:D:423:LEU:HD13	2.20	0.41	
3:M:575:LEU:HD12	3:M:575:LEU:O	2.21	0.41	
3:D:317:LYS:O	3:D:321:GLU:HG2	2.21	0.41	
3:J:525:LYS:O	3:J:548:MET:HE1	2.20	0.41	
3:M:532:LEU:HD13	3:M:547:VAL:HG11	2.02	0.41	
1:A:44:GLU:OE2	3:D:469:VAL:HG22	2.20	0.41	
1:A:78:ALA:HB1	1:A:137:ILE:HD13	2.02	0.41	
3:G:290:ILE:HD13	3:G:290:ILE:HG21	1.88	0.41	
3:G:497:TYR:O	3:G:499:PRO:HD3	2.21	0.41	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:H:59:TRP:CE3	1:H:62:GLU:HG3	2.54	0.41	
3:J:347:LEU:CB	3:J:482:VAL:HG21	2.49	0.41	
1:A:44:GLU:HG3	3:D:417:GLN:HE21	1.83	0.41	
3:G:194:ALA:HB1	3:G:455:VAL:HG11	2.01	0.41	
3:J:133:THR:O	3:J:136:LYS:N	2.53	0.41	
1:K:59:TRP:CE3	1:K:62:GLU:HG3	2.54	0.41	
3:M:119:GLU:O	3:M:122:VAL:HG13	2.20	0.41	
3:D:97:GLU:HA	3:D:100:GLU:HG3	2.02	0.41	
3:D:494:ASP:OD1	3:D:496:THR:HB	2.21	0.41	
3:D:497:TYR:O	3:D:499:PRO:HD3	2.21	0.41	
3:G:388:ILE:HD13	3:G:449:ALA:HB2	2.02	0.41	
1:K:126:THR:HA	1:K:142:GLN:HE22	1.85	0.41	
3:M:349:LEU:HD22	3:M:377:PHE:CG	2.56	0.41	
3:M:415:VAL:O	3:M:415:VAL:HG12	2.19	0.41	
2:F:27:VAL:HG21	2:F:37:VAL:HG21	2.01	0.41	
3:J:42:LEU:HD22	3:J:73:LYS:HG3	2.01	0.41	
3:J:408:LEU:HD11	3:J:530:VAL:CG2	2.51	0.41	
3:J:415:VAL:O	3:J:415:VAL:HG13	2.21	0.41	
1:K:5:LEU:HD23	1:K:5:LEU:HA	1.92	0.41	
3:D:71:GLY:HA3	3:D:98:ARG:NH1	2.36	0.41	
3:G:293:VAL:HG22	3:G:294:GLU:N	2.36	0.41	
3:J:388:ILE:HD13	3:J:449:ALA:HB2	2.02	0.41	
2:B:84:HIS:O	2:B:85:VAL:C	2.59	0.41	
1:E:78:ALA:HB1	1:E:137:ILE:CD1	2.51	0.41	
1:H:21:THR:HG23	1:H:22:PRO:HD2	2.03	0.41	
3:J:112:LEU:HA	3:J:112:LEU:HD12	1.84	0.41	
3:M:71:GLY:HA3	3:M:98:ARG:NH1	2.36	0.41	
1:A:83:GLY:O	1:A:84:GLY:O	2.38	0.41	
3:M:217:ALA:HB3	3:M:343:VAL:HG13	2.03	0.41	
3:M:25:ILE:O	3:M:26:ALA:C	2.58	0.40	
1:A:44:GLU:OE2	3:D:417:GLN:HG3	2.21	0.40	
3:J:343:VAL:O	3:J:344:VAL:C	2.60	0.40	
1:A:59:TRP:CE3	1:A:62:GLU:HG3	2.56	0.40	
3:D:99:ASN:ND2	3:D:103:LEU:CD1	2.84	0.40	
1:E:8:LEU:HD23	1:E:95:GLY:HA3	2.04	0.40	
3:G:133:THR:O	3:G:136:LYS:N	2.54	0.40	
3:G:518:GLU:O	3:G:519:LYS:C	2.60	0.40	
3:J:472:ARG:NH1	3:J:491:LEU:HD22	2.37	0.40	
1:A:106:PRO:HG2	1:A:122:LEU:HD13	2.03	0.40	
3:D:518:GLU:O	3:D:519:LYS:C	2.59	0.40	
3:G:412:THR:OG1	3:G:423:LEU:HD13	2.22	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
3:J:541:LYS:NZ	3:J:545:LYS:CE	2.84	0.40
1:A:126:THR:HA	1:A:142:GLN:HE22	1.86	0.40
3:J:97:GLU:HA	3:J:100:GLU:HG3	2.02	0.40
3:J:541:LYS:HZ3	3:J:545:LYS:HE3	1.83	0.40
2:L:89:GLN:O	2:L:90:PRO:C	2.60	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	262/271~(97%)	238 (91%)	19 (7%)	5(2%)	8	34
1	Е	262/271~(97%)	235~(90%)	22 (8%)	5(2%)	8	34
1	Н	262/271~(97%)	235~(90%)	21 (8%)	6(2%)	6	29
1	K	262/271~(97%)	235~(90%)	22 (8%)	5(2%)	8	34
2	В	97/99~(98%)	91 (94%)	6~(6%)	0	100	100
2	F	97/99~(98%)	91 (94%)	6 (6%)	0	100	100
2	Ι	97/99~(98%)	91 (94%)	6 (6%)	0	100	100
2	L	97/99~(98%)	90~(93%)	7 (7%)	0	100	100
3	D	581/585~(99%)	534 (92%)	42 (7%)	5 (1%)	17	53
3	G	581/585~(99%)	539~(93%)	37~(6%)	5 (1%)	17	53
3	J	581/585~(99%)	536 (92%)	40 (7%)	5 (1%)	17	53
3	М	581/585~(99%)	541 (93%)	35~(6%)	5 (1%)	17	53
All	All	$\overline{3760/3820}\ (98\%)$	3456 (92%)	263 (7%)	41 (1%)	14	48

All (41) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	145	ASP
1	А	191	PRO
3	D	80	LEU
3	D	129	ASP
3	D	442	GLU
1	Е	145	ASP
1	Е	191	PRO
3	G	80	LEU
3	G	129	ASP
3	G	442	GLU
1	Н	145	ASP
1	Н	190	SER
1	Н	191	PRO
3	J	80	LEU
3	J	129	ASP
3	J	442	GLU
1	K	145	ASP
1	K	191	PRO
3	М	80	LEU
3	М	129	ASP
3	М	442	GLU
1	А	84	GLY
1	Е	84	GLY
1	Н	84	GLY
1	K	84	GLY
1	А	100	PRO
3	D	113	PRO
1	Е	100	PRO
1	Н	100	PRO
1	K	100	PRO
3	М	86	GLU
3	D	86	GLU
3	G	86	GLU
3	J	86	GLU
3	J	113	PRO
3	М	113	PRO
1	А	190	SER
1	Е	190	SER
3	G	113	PRO
1	K	190	SER
1	Н	228	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	218/224~(97%)	203~(93%)	15 (7%)	15	46
1	Ε	218/224~(97%)	202~(93%)	16 (7%)	14	43
1	Н	218/224~(97%)	202~(93%)	16 (7%)	14	43
1	Κ	218/224~(97%)	203~(93%)	15 (7%)	15	46
2	В	94/94~(100%)	87~(93%)	7 (7%)	13	42
2	F	94/94~(100%)	84 (89%)	10 (11%)	6	25
2	Ι	94/94~(100%)	88 (94%)	6 (6%)	17	49
2	L	94/94~(100%)	87~(93%)	7 (7%)	13	42
3	D	510/511~(100%)	478 (94%)	32~(6%)	18	49
3	G	510/511~(100%)	477 (94%)	33~(6%)	17	48
3	J	510/511~(100%)	476 (93%)	34~(7%)	16	47
3	М	510/511~(100%)	478 (94%)	32~(6%)	18	49
All	All	3288/3316~(99%)	3065~(93%)	223 (7%)	16	46

All (223) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	10	HIS
1	А	27	SER
1	А	36	LEU
1	А	116	GLU
1	А	140	ARG
1	А	177	LYS
1	А	190	SER
1	А	194	SER
1	А	214	ARG
1	А	221	THR
1	А	237	SER
1	А	242	VAL
1	А	244	SER
1	А	255	GLN

Mol	Chain	Res	Type
1	А	261	GLN
2	В	1	ILE
2	В	33	SER
2	В	45	ARG
2	В	70	PHE
2	В	74	GLU
2	В	83	ASN
2	В	94	LYS
3	D	3	HIS
3	D	6	GLU
3	D	34	CYS
3	D	60	GLU
3	D	63	ASP
3	D	76	THR
3	D	79	THR
3	D	98	ARG
3	D	100	GLU
3	D	139	LEU
3	D	193	SER
3	D	222	ARG
3	D	245	CYS
3	D	253	CYS
3	D	257	ARG
3	D	268	GLN
3	D	283	LEU
3	D	292	GLU
3	D	293	VAL
3	D	334	TYR
3	D	337	ARG
3	D	390	GLN
3	D	396	GLU
3	D	433	VAL
3	D	435	SER
3	D	455	VAL
3	D	469	VAL
3	D	484	ARG
3	D	543	GLN
3	D	564	LYS
3	D	565	GLU
3	D	585	LEU
1	Е	5	LEU
1	Е	10	HIS

Mol	Chain	Res	Type
1	Е	27	SER
1	Е	36	LEU
1	Е	44	GLU
1	Е	116	GLU
1	Е	117	PHE
1	Е	140	ARG
1	Е	190	SER
1	Е	194	SER
1	Е	214	ARG
1	Е	221	THR
1	Е	237	SER
1	Е	242	VAL
1	Е	244	SER
1	Е	261	GLN
2	F	1	ILE
2	F	9	VAL
2	F	33	SER
2	F	44	GLU
2	F	47	GLU
2	F	70	PHE
2	F	74	GLU
2	F	83	ASN
2	F	89	GLN
2	F	94	LYS
3	G	3	HIS
3	G	6	GLU
3	G	7	VAL
3	G	34	CYS
3	G	60	GLU
3	G	63	ASP
3	G	79	THR
3	G	98	ARG
3	G	100	GLU
3	G	139	LEU
3	G	193	SER
3	G	204	GLN
3	G	222	ARG
3	G	245	CYS
3	G	253	CYS
3	G	257	ARG
3	G	268	GLN
3	G	334	TYR

Mol	Chain	Res	Type
3	G	337	ARG
3	G	390	GLN
3	G	396	GLU
3	G	415	VAL
3	G	417	GLN
3	G	424	VAL
3	G	433	VAL
3	G	435	SER
3	G	469	VAL
3	G	478	THR
3	G	484	ARG
3	G	543	GLN
3	G	564	LYS
3	G	565	GLU
3	G	585	LEU
1	Н	5	LEU
1	Н	10	HIS
1	Н	21	THR
1	Н	27	SER
1	Н	36	LEU
1	Н	44	GLU
1	Н	116	GLU
1	Н	117	PHE
1	Н	140	ARG
1	Н	194	SER
1	Н	214	ARG
1	Н	221	THR
1	Н	241	THR
1	Н	242	VAL
1	Η	244	SER
1	Н	261	GLN
2	Ι	1	ILE
2	Ι	33	SER
2	Ι	70	PHE
2	Ι	74	GLU
2	Ι	83	ASN
2	Ι	94	LYS
3	J	3	HIS
3	J	6	GLU
3	J	34	CYS
3	J	60	GLU
3	J	63	ASP

Mol	Chain	Res	Type
3	J	79	THR
3	J	98	ARG
3	J	100	GLU
3	J	139	LEU
3	J	193	SER
3	J	204	GLN
3	J	222	ARG
3	J	245	CYS
3	J	253	CYS
3	J	257	ARG
3	J	268	GLN
3	J	283	LEU
3	J	285	GLU
3	J	292	GLU
3	J	293	VAL
3	J	334	TYR
3	J	337	ARG
3	J	390	GLN
3	J	396	GLU
3	J	415	VAL
3	J	433	VAL
3	J	435	SER
3	J	469	VAL
3	J	482	VAL
3	J	484	ARG
3	J	543	GLN
3	J	564	LYS
3	J	565	GLU
3	J	585	LEU
1	K	10	HIS
1	K	27	SER
1	K	36	LEU
1	K	116	GLU
1	К	117	PHE
1	Κ	140	ARG
1	К	177	LYS
1	К	190	SER
1	K	194	SER
1	К	214	ARG
1	Κ	221	THR
1	К	237	SER
1	Κ	242	VAL

Mol	Chain	Res	Type
1	K	244	SER
1	K	261	GLN
2	L	1	ILE
2	L	33	SER
2	L	70	PHE
2	L	74	GLU
2	L	83	ASN
2	L	89	GLN
2	L	94	LYS
3	М	3	HIS
3	М	6	GLU
3	М	60	GLU
3	М	79	THR
3	М	98	ARG
3	М	100	GLU
3	М	112	LEU
3	М	139	LEU
3	М	193	SER
3	М	204	GLN
3	М	222	ARG
3	М	245	CYS
3	М	253	CYS
3	М	257	ARG
3	М	268	GLN
3	М	285	GLU
3	М	293	VAL
3	М	334	TYR
3	М	337	ARG
3	М	390	GLN
3	М	396	GLU
3	М	415	VAL
3	M	417	GLN
3	М	433	VAL
3	М	435	SER
3	М	446	MET
3	М	469	VAL
3	М	482	VAL
3	М	484	ARG
3	M	543	GLN
3	М	564	LYS
3	М	565	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (38)

such sidechains are listed below:

Mol	Chain	Res	Type
1	А	33	GLN
1	А	56	GLN
1	А	215	ASN
1	А	255	GLN
1	А	261	GLN
2	В	83	ASN
3	D	33	GLN
3	D	99	ASN
3	D	146	HIS
3	D	535	HIS
3	D	543	GLN
1	Е	4	HIS
1	Е	56	GLN
1	Е	215	ASN
1	Е	261	GLN
2	F	83	ASN
3	G	33	GLN
3	G	94	GLN
3	G	535	HIS
3	G	543	GLN
1	Н	33	GLN
1	Н	56	GLN
1	Н	144	GLN
1	Н	215	ASN
1	Н	261	GLN
2	Ι	2	GLN
2	Ι	83	ASN
3	J	33	GLN
3	J	535	HIS
3	J	543	GLN
1	K	33	GLN
1	K	56	GLN
1	K	261	GLN
2	L	83	ASN
3	М	33	GLN
3	М	170	GLN
3	М	535	HIS
3	М	543	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	264/271~(97%)	-0.48	0 100 100	12, 27, 64, 98	0
1	Е	264/271~(97%)	-0.48	0 100 100	12, 28, 63, 87	0
1	Н	264/271~(97%)	-0.35	1 (0%) 92 78	15, 34, 70, 104	0
1	Κ	264/271~(97%)	-0.43	1 (0%) 92 78	13,31,70,95	0
2	В	99/99~(100%)	-0.49	0 100 100	15, 31, 57, 71	0
2	F	99/99~(100%)	-0.40	0 100 100	16, 38, 70, 92	0
2	Ι	99/99~(100%)	-0.14	1 (1%) 82 58	18,51,83,98	0
2	L	99/99~(100%)	-0.17	0 100 100	16, 49, 79, 96	0
3	D	583/585~(99%)	-0.45	0 100 100	10, 35, 69, 97	0
3	G	583/585~(99%)	-0.47	2 (0%) 94 83	14, 34, 71, 97	0
3	J	583/585~(99%)	-0.45	1 (0%) 95 87	14, 38, 75, 112	0
3	М	583/585~(99%)	-0.43	2 (0%) 94 83	11, 35, 77, 105	0
All	All	3784/3820~(99%)	-0.43	8 (0%) 95 87	10, 34, 73, 112	0

All (8) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
3	J	60	GLU	2.8
3	М	116	VAL	2.7
1	Κ	102	ASN	2.6
3	М	60	GLU	2.5
2	Ι	73	THR	2.3
3	G	78	ALA	2.1
1	Н	187	ARG	2.1
3	G	562	ASP	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

