

Full wwPDB X-ray Structure Validation Report (i)

Dec 15, 2024 - 08:01 AM EST

PDB ID	:	4FIR
Title	:	Crystal structure of pyridoxal biosynthesis lyase PdxS from Pyrococcus
Authors	:	Matsuura, A.; Yoon, J.Y.; Yoon, H.J.; Lee, H.H.; Suh, S.W.
Deposited on	:	2012-06-11
Resolution	:	3.10 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.21
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.004 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	164625	1351 (3.10-3.10)
Clashscore	180529	1454 (3.10-3.10)
Ramachandran outliers	177936	1391 (3.10-3.10)
Sidechain outliers	177891	1391 (3.10-3.10)
RSRZ outliers	164620	1351 (3.10-3.10)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	335	72%	23%	•••
1	В	335	70%	24%	5% ••
1	С	335	71%	24%	5% •
1	D	335	72%	23%	• •
1	Е	335	72%	23%	• ••

Mol	Chain	Length	Quality of chain		
1	F	335	71%	25%	•••

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
2	R5P	F	401	-	-	Х	-

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 15269 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Λ	222	Total	С	Ν	0	\mathbf{S}	0	0	0
1	Л	000	2520	1600	442	460	18	0	0	0
1	В	222	Total	С	Ν	0	S	0	0	Ο
1	D	000	2519	1599	442	460	18	0	0	U
1	С	222	Total	С	Ν	0	S	0	0	Ο
1	U	000	2520	1600	442	460	18	0	0	0
1	Л	222	Total	С	Ν	0	S	0	0	0
1	D	000	2520	1600	442	460	18	0	0	U
1	F	222	Total	С	Ν	0	S	0	0	0
1	Ľ	000	2520	1600	442	460	18	0	0	0
1	Б	222	Total	С	Ν	0	S	0	0	0
	Г	ააა	2520	1600	442	460	18	0	U	0

• Molecule 1 is a protein called Pyridoxal biosynthesis lyase pdxS.

• Molecule 2 is RIBOSE-5-PHOSPHATE (three-letter code: R5P) (formula: $C_5H_{11}O_8P$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf	
2	Δ	1	Total	С	0	Р	0	0	
2	Л	T	13	5	$\overline{7}$	1	0	0	
2	В	1	Total	С	Ο	Р	0	0	
2	D	T	13	5	7	1	0	0	
2	С	1	Total	С	Ο	Р	0	0	
2	U	I	13	5	7	1	0	0	
2	Л	1	Total	С	Ο	Р	0	0	
2	D	I	13	5	7	1	0	0	
2	E	1	Total	С	Ο	Р	0	0	
2	Ľ	I	13	5	7	1	0		
2	F	1	Total	С	0	Р	0	0	
	T,	L	13	5	7	1	0		

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	14	Total O 14 14	0	0
3	В	7	Total O 7 7	0	0
3	С	8	Total O 8 8	0	0
3	D	13	Total O 13 13	0	0
3	Ε	14	Total O 14 14	0	0
3	\mathbf{F}	16	$\begin{array}{cc} \text{Total} & \text{O} \\ 16 & 16 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Pyridoxal biosynthesis lyase pdxS

4FIR

 \bullet Molecule 1: Pyridoxal biosynthesis lyase pdxS

• Molecule 1: Pyridoxal biosynthesis lyase pdxS

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	59.16Å 179.06Å 109.36Å	Depositor
a, b, c, α , β , γ	90.00° 102.53° 90.00°	Depositor
Bosolution (Å)	29.84 - 3.10	Depositor
	29.84 - 3.10	EDS
% Data completeness	98.2 (29.84-3.10)	Depositor
(in resolution range)	98.0 (29.84-3.10)	EDS
R_{merge}	0.07	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$5.77 (at 3.11 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.7.3_928	Depositor
R R.	0.185 , 0.227	Depositor
Π, Π_{free}	0.180 , 0.222	DCC
R_{free} test set	1983 reflections (5.02%)	wwPDB-VP
Wilson B-factor $(Å^2)$	57.7	Xtriage
Anisotropy	0.521	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.31 , 49.7	EDS
L-test for $twinning^2$	$ < L >=0.49, < L^2>=0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.94	EDS
Total number of atoms	15269	wwPDB-VP
Average B, all atoms $(Å^2)$	54.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.55% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: $\operatorname{R5P}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	B	ond angles
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.61	1/2559~(0.0%)	0.76	0/3450
1	В	0.61	0/2558	0.80	5/3448~(0.1%)
1	С	0.59	0/2559	0.78	2/3450~(0.1%)
1	D	0.61	0/2559	0.83	4/3450~(0.1%)
1	Е	0.65	1/2559~(0.0%)	0.79	1/3450~(0.0%)
1	F	0.61	2/2559~(0.1%)	0.79	3/3450~(0.1%)
All	All	0.61	4/15353~(0.0%)	0.79	15/20698~(0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	4
1	В	0	2
1	D	0	4
1	Е	0	3
All	All	0	13

All (4) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	Е	317	PRO	CA-CB	-7.17	1.39	1.53
1	А	313	GLU	CB-CG	5.51	1.62	1.52
1	F	316	GLU	CB-CG	5.30	1.62	1.52
1	F	316	GLU	CG-CD	5.20	1.59	1.51

All (15) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	D	14	ARG	NE-CZ-NH1	11.76	126.18	120.30
1	С	317	PRO	N-CA-CB	8.21	113.15	103.30
1	F	317	PRO	N-CA-CB	7.89	112.77	103.30
1	D	14	ARG	NE-CZ-NH2	-7.55	116.52	120.30
1	В	317	PRO	N-CA-CB	7.23	111.97	103.30
1	В	250	VAL	CG1-CB-CG2	6.97	122.05	110.90
1	Е	317	PRO	N-CA-CB	6.13	110.65	103.30
1	С	14	ARG	NE-CZ-NH1	6.00	123.30	120.30
1	D	15	LEU	CB-CG-CD2	-5.92	100.94	111.00
1	F	318	MET	C-N-CA	-5.34	108.36	121.70
1	F	256	GLY	N-CA-C	5.25	126.22	113.10
1	В	202	LEU	CB-CG-CD2	5.20	119.84	111.00
1	В	14	ARG	NE-CZ-NH1	5.17	122.88	120.30
1	D	317	PRO	N-CA-CB	5.13	109.46	103.30
1	В	311	SER	N-CA-CB	-5.06	102.92	110.50

There are no chirality outliers.

All	(13)	planarity	outliers	are	listed	below:
-----	------	-----------	----------	-----	--------	--------

Mol	Chain	Res	Type	Group
1	А	300	HIS	Mainchain
1	А	327	GLN	Mainchain
1	А	331	GLU	Mainchain
1	А	332	GLU	Mainchain
1	В	319	ARG	Peptide
1	В	66	ARG	Peptide
1	D	315	GLY	Mainchain,Peptide
1	D	316	GLU	Peptide
1	D	321	GLN	Peptide
1	Е	316	GLU	Peptide
1	Е	318	MET	Peptide
1	E	327	GLN	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2520	0	2551	56	0

4FIR	
-	

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	2519	0	2550	69	0
1	С	2520	0	2552	66	0
1	D	2520	0	2551	65	0
1	Е	2520	0	2552	51	1
1	F	2520	0	2553	63	0
2	А	13	0	8	1	0
2	В	13	0	8	1	0
2	С	13	0	8	1	0
2	D	13	0	8	1	0
2	Е	13	0	8	1	0
2	F	13	0	8	7	0
3	А	14	0	0	0	0
3	В	7	0	0	0	0
3	С	8	0	0	1	0
3	D	13	0	0	0	0
3	Е	14	0	0	0	0
3	F	16	0	0	3	0
All	All	15269	0	15357	353	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 12.

All (353) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:286:ASN:N	1:D:316:GLU:OE1	1.91	1.02
1:C:1:MET:SD	1:C:2:ASP:N	2.43	0.92
1:D:138:LEU:HB3	1:D:176:ASN:HD22	1.34	0.91
1:B:138:LEU:HB3	1:B:176:ASN:HD22	1.37	0.89
1:D:14:ARG:HG2	1:D:14:ARG:HH11	1.40	0.87
1:A:138:LEU:HB3	1:A:176:ASN:HD22	1.41	0.85
1:D:285:SER:H	1:D:316:GLU:HG2	1.40	0.84
1:B:14:ARG:HG2	1:B:14:ARG:HH11	1.39	0.84
1:A:227:THR:HG22	1:A:230:GLU:H	1.46	0.81
1:B:227:THR:HG22	1:B:230:GLU:H	1.44	0.80
1:E:227:THR:HG22	1:E:230:GLU:H	1.48	0.78
1:E:14:ARG:HG2	1:E:14:ARG:HH11	1.48	0.78
1:D:227:THR:HG22	1:D:230:GLU:H	1.50	0.77
1:F:14:ARG:HG2	1:F:14:ARG:HH11	1.48	0.77
1:F:227:THR:HG22	1:F:230:GLU:H	1.50	0.77
1:B:318:MET:CB	1:C:66:ARG:HH22	1.98	0.77

	loub page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:256:GLY:HA2	2:F:401:R5P:H51	1.65	0.76
1:B:121:HIS:CD2	1:B:144:ARG:NH1	2.54	0.75
1:C:70:VAL:HG13	1:C:102:LEU:HD21	1.69	0.74
1:A:14:ARG:HG2	1:A:14:ARG:HH11	1.52	0.74
1:C:316:GLU:HG2	3:C:507:HOH:O	1.88	0.73
1:D:70:VAL:HG13	1:D:102:LEU:HD21	1.71	0.73
1:C:227:THR:HG22	1:C:230:GLU:H	1.52	0.72
1:C:14:ARG:HH11	1:C:14:ARG:HG2	1.54	0.72
1:B:121:HIS:HD2	1:B:144:ARG:NH1	1.88	0.72
1:B:70:VAL:HG13	1:B:102:LEU:HD21	1.73	0.70
1:A:204:PHE:HB3	1:A:214:LYS:HD3	1.74	0.69
1:F:70:VAL:HG13	1:F:102:LEU:HD21	1.75	0.69
1:C:8:MET:O	1:C:12:THR:OG1	2.11	0.68
1:D:168:ARG:HB2	1:E:118:PRO:HG3	1.74	0.67
1:A:138:LEU:HB3	1:A:176:ASN:ND2	2.09	0.67
1:D:315:GLY:N	1:D:316:GLU:HG3	2.09	0.67
1:A:168:ARG:HB2	1:B:118:PRO:HG3	1.75	0.67
1:E:70:VAL:HG13	1:E:102:LEU:HD21	1.76	0.67
1:E:138:LEU:HB3	1:E:176:ASN:HD22	1.60	0.66
1:B:168:ARG:HB2	1:C:118:PRO:HG3	1.77	0.66
1:E:204:PHE:HB3	1:E:214:LYS:HD3	1.76	0.66
1:B:204:PHE:HB3	1:B:214:LYS:HD3	1.77	0.66
1:D:138:LEU:HB3	1:D:176:ASN:ND2	2.10	0.65
1:A:70:VAL:HG13	1:A:102:LEU:HD21	1.78	0.65
1:C:97:ARG:HG2	1:C:127:PHE:CE1	2.32	0.65
1:F:183:MET:HE2	1:F:187:GLU:HB3	1.77	0.65
1:B:23:VAL:HG22	1:B:46:VAL:HG23	1.80	0.64
1:F:138:LEU:HB3	1:F:176:ASN:HD22	1.63	0.63
1:A:118:PRO:HG3	1:F:168:ARG:HB2	1.80	0.63
1:E:313:GLU:O	1:E:314:ILE:HG23	1.97	0.63
1:C:168:ARG:HB2	1:D:118:PRO:HG3	1.79	0.63
1:D:285:SER:N	1:D:316:GLU:HG2	2.13	0.63
1:B:138:LEU:HB3	1:B:176:ASN:ND2	2.11	0.62
1:F:204:PHE:HB3	1:F:214:LYS:HD3	1.81	0.62
1:B:30:ASP:HB2	1:B:278:GLY:HA2	1.79	0.62
1:D:204:PHE:HB3	1:D:214:LYS:HD3	1.81	0.62
1:D:315:GLY:C	1:D:316:GLU:HG3	2.19	0.62
1:F:254:ALA:HB2	1:F:272:MET:HG3	1.80	0.62
1:E:259:ALA:HB1	1:E:317:PRO:CB	2.29	0.62
1:B:97:ARG:HG2	1:B:127:PHE:CE1	2.35	0.62
1:C:183:MET:HE2	1:C:187:GLU:HB3	1.81	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:284:SER:HB2	1:D:316:GLU:HB3	1.81	0.61
1:B:73:ILE:O	1:B:77:MET:HG3	2.00	0.61
1:A:23:VAL:HG22	1:A:46:VAL:HG23	1.82	0.61
1:F:73:ILE:O	1:F:77:MET:HG3	2.00	0.61
1:C:23:VAL:HG22	1:C:46:VAL:HG23	1.82	0.61
1:E:97:ARG:HG2	1:E:127:PHE:CE1	2.36	0.60
1:F:87:LYS:NZ	2:F:401:R5P:O2	2.33	0.60
1:A:254:ALA:HB2	1:A:272:MET:HG3	1.83	0.60
1:D:73:ILE:O	1:D:77:MET:HG3	2.01	0.60
1:B:121:HIS:CD2	1:B:144:ARG:CZ	2.85	0.60
1:A:26:GLY:HA3	1:A:46:VAL:HG11	1.84	0.60
1:C:138:LEU:HB3	1:C:176:ASN:HD22	1.67	0.59
1:B:90:ILE:HG23	1:B:121:HIS:ND1	2.17	0.59
1:D:23:VAL:HG22	1:D:46:VAL:HG23	1.84	0.59
1:C:316:GLU:OE1	1:C:316:GLU:N	2.35	0.59
1:E:285:SER:H	1:E:316:GLU:HB2	1.68	0.59
1:E:30:ASP:HB2	1:E:278:GLY:HA2	1.84	0.59
1:C:284:SER:HB2	1:C:316:GLU:HB2	1.83	0.58
1:D:30:ASP:HB2	1:D:278:GLY:HA2	1.84	0.58
1:A:14:ARG:HG2	1:A:14:ARG:NH1	2.19	0.58
1:D:290:MET:HB2	1:D:316:GLU:OE2	2.04	0.58
1:C:204:PHE:HB3	1:C:214:LYS:HD3	1.86	0.58
1:F:136:ARG:NH1	1:F:140:GLU:OE2	2.37	0.58
1:E:8:MET:SD	1:E:8:MET:N	2.77	0.57
1:F:157:GLU:OE2	1:F:329:ARG:N	2.36	0.57
1:A:30:ASP:HB2	1:A:278:GLY:HA2	1.85	0.57
1:E:254:ALA:HB2	1:E:272:MET:HG3	1.86	0.57
1:A:179:LEU:O	1:A:183:MET:HG3	2.04	0.57
1:B:124:LYS:HG2	1:B:131:PHE:CD2	2.39	0.57
1:E:73:ILE:O	1:E:77:MET:HG3	2.04	0.57
1:A:136:ARG:NH1	1:A:140:GLU:OE2	2.38	0.57
1:E:136:ARG:NH1	1:E:140:GLU:OE2	2.38	0.57
1:D:14:ARG:HG2	1:D:14:ARG:NH1	2.10	0.56
1:E:168:ARG:HB2	1:F:118:PRO:HG3	1.86	0.56
1:C:73:ILE:O	1:C:77:MET:HG3	2.06	0.56
1:C:133:CYS:HB3	1:C:144:ARG:HG3	1.87	0.56
1:F:97:ARG:HG2	1:F:127:PHE:CE1	2.41	0.56
1:A:73:ILE:O	1:A:77:MET:HG3	2.04	0.56
1:B:313:GLU:O	1:B:314:ILE:HG23	2.05	0.56
1:D:313:GLU:O	1:D:314:ILE:HG23	2.06	0.56
1:E:14:ARG:HG2	1:E:14:ARG:NH1	2.19	0.56

	lo ao pagom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:30:ASP:HB2	1:C:278:GLY:HA2	1.88	0.56
1:C:136:ARG:NH1	1:C:140:GLU:OE2	2.39	0.56
1:C:313:GLU:O	1:C:314:ILE:HG23	2.06	0.55
1:D:179:LEU:O	1:D:183:MET:HG3	2.06	0.55
1:C:254:ALA:HB2	1:C:272:MET:HG3	1.88	0.55
1:B:151:MET:HA	1:B:250:VAL:HG13	1.88	0.55
1:B:179:LEU:O	1:B:183:MET:HG3	2.07	0.55
1:A:55:PRO:HG2	2:A:401:R5P:H51	1.88	0.55
1:B:193:GLU:HA	1:B:232:VAL:HG22	1.88	0.55
1:F:313:GLU:O	1:F:314:ILE:HG23	2.07	0.55
1:A:97:ARG:HG2	1:A:127:PHE:CE1	2.42	0.54
1:E:133:CYS:HB3	1:E:144:ARG:HG3	1.89	0.54
1:C:133:CYS:CB	1:C:144:ARG:HG3	2.37	0.54
1:F:279:SER:N	2:F:401:R5P:O2P	2.36	0.54
1:A:77:MET:HA	1:A:84:VAL:HG21	1.89	0.54
1:C:290:MET:HE3	1:C:316:GLU:HB3	1.90	0.54
1:B:136:ARG:NH1	1:B:140:GLU:OE2	2.41	0.54
1:C:318:MET:CB	1:D:66:ARG:HH22	2.21	0.54
1:B:157:GLU:OE2	1:B:329:ARG:N	2.39	0.54
1:A:133:CYS:HB3	1:A:144:ARG:HG3	1.90	0.54
1:D:77:MET:HA	1:D:84:VAL:HG21	1.90	0.54
1:B:254:ALA:HB2	1:B:272:MET:HG3	1.89	0.53
1:B:30:ASP:HB2	1:B:278:GLY:CA	2.37	0.53
1:D:2:ASP:HB3	1:D:4:LEU:H	1.72	0.53
1:E:193:GLU:HA	1:E:232:VAL:HG22	1.90	0.53
1:B:133:CYS:CB	1:B:144:ARG:HG3	2.39	0.53
1:B:183:MET:HE2	1:B:187:GLU:HB3	1.90	0.53
1:C:77:MET:HA	1:C:84:VAL:HG21	1.90	0.53
1:D:254:ALA:HB2	1:D:272:MET:HG3	1.90	0.53
1:B:14:ARG:HG2	1:B:14:ARG:NH1	2.16	0.53
1:C:138:LEU:HB3	1:C:176:ASN:ND2	2.24	0.53
1:C:193:GLU:HA	1:C:232:VAL:HG22	1.90	0.53
1:E:77:MET:HA	1:E:84:VAL:HG21	1.91	0.52
1:B:316:GLU:OE2	1:B:316:GLU:N	2.40	0.52
1:D:133:CYS:HB3	1:D:144:ARG:HG3	1.92	0.52
1:F:14:ARG:HG2	1:F:14:ARG:NH1	2.17	0.52
1:E:23:VAL:HG22	1:E:46:VAL:HG23	1.92	0.52
1:F:26:GLY:HA3	1:F:46:VAL:HG11	1.92	0.52
1:F:133:CYS:HB3	1:F:144:ARG:HG3	1.92	0.52
1:A:133:CYS:CB	1:A:144:ARG:HG3	2.38	0.52
1:D:133:CYS:CB	1:D:144:ARG:HG3	2.39	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:284:SER:OG	1:D:316:GLU:CD	2.49	0.52
1:F:23:VAL:HG11	1:F:28:ILE:HD11	1.92	0.52
1:D:256:GLY:HA2	2:D:401:R5P:H51	1.92	0.51
1:F:77:MET:HA	1:F:84:VAL:HG21	1.92	0.51
1:F:87:LYS:HZ1	2:F:401:R5P:C2	2.23	0.51
1:D:97:ARG:HG2	1:D:127:PHE:CE1	2.45	0.51
1:F:193:GLU:HA	1:F:232:VAL:HG22	1.92	0.51
1:F:23:VAL:HG22	1:F:46:VAL:HG23	1.91	0.51
1:F:30:ASP:HB2	1:F:278:GLY:HA2	1.91	0.51
1:D:26:GLY:HA3	1:D:46:VAL:HG11	1.91	0.51
1:A:1:MET:O	1:A:5:LYS:HB2	2.10	0.51
1:D:4:LEU:O	1:D:8:MET:HB3	2.10	0.51
1:E:183:MET:HE2	1:E:187:GLU:HB3	1.93	0.51
1:D:315:GLY:C	1:D:316:GLU:CG	2.78	0.51
1:E:26:GLY:HA3	1:E:46:VAL:HG11	1.92	0.51
1:C:284:SER:HB2	1:C:316:GLU:CB	2.41	0.50
1:D:157:GLU:OE2	1:D:329:ARG:N	2.44	0.50
1:F:133:CYS:CB	1:F:144:ARG:HG3	2.41	0.50
1:D:136:ARG:NH1	1:D:140:GLU:OE2	2.44	0.50
1:D:193:GLU:HA	1:D:232:VAL:HG22	1.93	0.50
1:E:138:LEU:HB3	1:E:176:ASN:ND2	2.24	0.50
1:A:26:GLY:HA3	1:A:46:VAL:CG1	2.40	0.50
1:A:124:LYS:HG2	1:A:131:PHE:CD2	2.47	0.50
1:F:325:GLU:O	3:F:511:HOH:O	2.18	0.50
1:B:3:LYS:HG3	1:B:4:LEU:HD22	1.93	0.50
1:D:315:GLY:H	1:D:316:GLU:HG3	1.76	0.50
1:E:30:ASP:HB2	1:E:278:GLY:CA	2.42	0.50
1:A:313:GLU:O	1:A:314:ILE:HG23	2.11	0.49
1:F:138:LEU:HB3	1:F:176:ASN:ND2	2.25	0.49
1:C:2:ASP:O	1:C:6:ILE:HG12	2.12	0.49
1:E:179:LEU:O	1:E:183:MET:HG3	2.13	0.49
1:B:133:CYS:HB3	1:B:144:ARG:HG3	1.93	0.49
1:B:284:SER:HA	1:B:316:GLU:HB2	1.94	0.49
1:C:9:GLU:HA	1:C:12:THR:OG1	2.13	0.49
1:F:256:GLY:CA	2:F:401:R5P:H51	2.37	0.49
1:B:14:ARG:HH11	1:B:14:ARG:CG	2.19	0.49
1:C:26:GLY:HA3	1:C:46:VAL:HG11	1.95	0.49
1:C:181:GLN:HA	1:C:243:LYS:HG3	1.95	0.49
1:C:183:MET:HE3	1:D:212:LEU:HD11	1.95	0.49
1:D:30:ASP:HB2	1:D:278:GLY:CA	2.43	0.49
1:E:133:CYS:CB	1:E:144:ARG:HG3	2.43	0.49

	lo uo pugom	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:181:GLN:HA	1:D:243:LYS:HG3	1.94	0.48	
1:B:23:VAL:HG11	1:B:28:ILE:HD11	1.96	0.48	
1:C:97:ARG:HG2	1:C:127:PHE:CZ	2.47	0.48	
1:F:124:LYS:HG2	1:F:131:PHE:CD2	2.49	0.48	
1:F:176:ASN:ND2	3:F:516:HOH:O	2.45	0.48	
1:A:30:ASP:HB2	1:A:278:GLY:CA	2.44	0.48	
1:C:3:LYS:O	1:C:7:ILE:HD13	2.13	0.48	
1:D:155:LYS:HZ3	1:D:332:GLU:CB	2.27	0.48	
1:F:285:SER:H	1:F:316:GLU:HB2	1.79	0.48	
1:B:77:MET:HA	1:B:84:VAL:HG21	1.93	0.48	
1:D:284:SER:HB2	1:D:316:GLU:CB	2.43	0.48	
1:C:124:LYS:HG2	1:C:131:PHE:CD2	2.48	0.48	
1:D:315:GLY:CA	1:D:316:GLU:HG3	2.44	0.48	
1:E:202:LEU:O	1:E:203:ALA:C	2.50	0.48	
1:A:52:HIS:HD2	1:A:69:PRO:HD3	1.78	0.48	
1:F:181:GLN:HA	1:F:243:LYS:HG3	1.95	0.48	
1:C:14:ARG:HG2	1:C:14:ARG:NH1	2.25	0.48	
1:C:179:LEU:O	1:C:183:MET:HG3	2.14	0.48	
1:A:212:LEU:HD11	1:F:183:MET:HE3	1.95	0.47	
1:C:30:ASP:HB2	1:C:278:GLY:CA	2.44	0.47	
1:B:30:ASP:CG	2:B:401:R5P:HO3	2.16	0.47	
1:D:10:LYS:O	1:D:10:LYS:HD3	2.14	0.47	
1:F:26:GLY:HA3	1:F:46:VAL:CG1	2.44	0.47	
1:D:283:LYS:HD3	1:D:283:LYS:HA	1.66	0.47	
1:D:290:MET:HE2	1:D:316:GLU:OE2	2.15	0.47	
1:E:2:ASP:OD2	1:E:2:ASP:N	2.47	0.47	
1:B:284:SER:HB2	1:B:316:GLU:HB2	1.97	0.47	
1:B:283:LYS:HA	1:B:283:LYS:HD3	1.63	0.47	
1:C:121:HIS:CD2	1:C:144:ARG:HD2	2.49	0.47	
1:E:313:GLU:O	1:E:314:ILE:HD13	2.14	0.47	
1:B:275:VAL:HG12	1:B:277:VAL:HG12	1.97	0.47	
1:E:26:GLY:HA3	1:E:46:VAL:CG1	2.45	0.47	
1:A:5:LYS:HE2	1:A:9:GLU:OE2	2.15	0.46	
1:B:144:ARG:HA	1:B:144:ARG:HD3	1.59	0.46	
1:E:180:ILE:HA	1:E:180:ILE:HD13	1.71	0.46	
1:E:181:GLN:HA	1:E:243:LYS:HG3	1.97	0.46	
1:E:4:LEU:HG	1:E:8:MET:CE	2.45	0.46	
1:B:26:GLY:HA3	1:B:46:VAL:HG11	1.97	0.46	
1:E:99:LEU:HD23	1:E:99:LEU:HA	1.79	0.46	
1:F:30:ASP:HB2	1:F:278:GLY:CA	2.46	0.46	
1:F:155:LYS:HZ3	1:F:332:GLU:CB	2.27	0.46	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:144:ARG:HD3	1:D:144:ARG:HA	1.55	0.46	
1:A:155:LYS:HZ1	1:A:332:GLU:CB	2.29	0.46	
1:A:193:GLU:HA	1:A:232:VAL:HG22	1.98	0.46	
1:B:312:ARG:HH12	1:C:74:GLN:HG2	1.81	0.46	
1:F:313:GLU:O	1:F:314:ILE:HD13	2.16	0.46	
1:B:52:HIS:HD2	1:B:69:PRO:HD3	1.81	0.46	
1:C:5:LYS:HA	1:C:5:LYS:HD3	1.62	0.46	
1:F:144:ARG:HA	1:F:144:ARG:HD3	1.50	0.46	
1:B:139:GLY:HA2	1:B:195:PHE:CD2	2.51	0.45	
1:B:181:GLN:HA	1:B:243:LYS:HG3	1.98	0.45	
1:B:313:GLU:O	1:B:314:ILE:HD13	2.16	0.45	
1:B:183:MET:HE3	1:C:212:LEU:HD11	1.98	0.45	
1:C:119:PHE:CD2	1:C:202:LEU:HB2	2.51	0.45	
1:D:26:GLY:HA3	1:D:46:VAL:CG1	2.47	0.45	
1:D:108:ASP:OD1	1:D:153:ARG:NH1	2.48	0.45	
1:B:71:GLU:H	1:B:71:GLU:HG3	1.50	0.45	
1:B:108:ASP:OD1	1:B:153:ARG:NH1	2.47	0.45	
1:C:283:LYS:HA	1:C:283:LYS:HD3	1.68	0.45	
1:D:52:HIS:HD2	1:D:69:PRO:HD3	1.82	0.45	
1:A:312:ARG:HH12	1:B:74:GLN:HG2	1.81	0.45	
1:E:90:ILE:HA	1:E:109:GLU:HG2	1.99	0.45	
1:C:275:VAL:HG12	1:C:277:VAL:HG12	1.99	0.45	
1:B:26:GLY:HA3	1:B:46:VAL:CG1	2.46	0.45	
1:B:97:ARG:HG2	1:B:127:PHE:CZ	2.51	0.45	
1:B:143:ARG:HD3	1:B:195:PHE:O	2.17	0.44	
1:C:52:HIS:HD2	1:C:69:PRO:HD3	1.82	0.44	
1:F:179:LEU:O	1:F:183:MET:HG3	2.17	0.44	
1:F:71:GLU:H	1:F:71:GLU:HG3	1.42	0.44	
1:A:71:GLU:H	1:A:71:GLU:HG3	1.47	0.44	
1:A:97:ARG:NH2	1:A:127:PHE:HA	2.32	0.44	
1:A:275:VAL:HG12	1:A:277:VAL:HG12	1.99	0.44	
1:B:97:ARG:NH2	1:B:127:PHE:HA	2.33	0.44	
1:D:119:PHE:CD2	1:D:202:LEU:HB2	2.52	0.44	
1:A:289:LYS:HE3	1:A:313:GLU:OE1	2.18	0.44	
1:C:26:GLY:HA3	1:C:46:VAL:CG1	2.47	0.44	
1:C:180:ILE:HD13	1:C:180:ILE:HA	1.76	0.44	
1:E:71:GLU:H	1:E:71:GLU:HG3	1.48	0.44	
1:E:283:LYS:HA	1:E:283:LYS:HD3	1.65	0.44	
1:A:182:ARG:NH1	1:B:220:GLU:HG3	2.32	0.44	
1:C:90:ILE:HA	$1:\overline{\text{C:109:GLU:HG2}}$	2.00	0.44	
1:F:255:ALA:HB1	2:F:401:R5P:HC4	1.99	0.44	

	bus page	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlan (Å)
1·A·286·ASN·HB3	1.A.314.ILE.HG22	2.00	0.44
1:A:283:LYS:HA	1:A:283:LYS:HD3	1.66	0.44
1.B.3.LYS.O	1.B.6.ILE.HG13	2.18	0.44
1·A·90·ILE·HA	1·A·109·GLU·HG2	2.00	0.43
1.D.23.VAL.HG11	1.D.28.ILE.HD11	1.99	0.43
1.C.312.ABG.HH12	1.D.74.GLN.HG2	1.86	0.43
1.D.90.ILE.HA	1.D.109.GLU.HG2	2.00	0.43
1:E:284:SEB:HA	1·E·316·GLU·CB	2.48	0.43
1:E:144:ABG:HA	1:E:144:ARG:HD3	1.50	0.43
1:F:108:ASP:OD1	1:F:153:ARG:NH1	2.48	0.43
1.B.99.LEU.HD23	1.B.99.LEU.HA	1.80	0.43
1:C:23:VAL:HG11	1.C.28.ILE.HD11	2.00	0.43
1:A:111:GLU:OE1	1:A:153:ABG:NH2	2.52	0.43
1:B:23:VAL:HG22	1:B:46:VAL:CG2	2.47	0.43
1:C:139:GLY:HA2	1·C·195·PHE·CD2	2.54	0.43
1·F·201·ABG·HH11	$1 \cdot F \cdot 201 \cdot ABG \cdot HD3$	1 61	0.43
1:F:119:PHE:CD2	1:F:202:LEU:HB2	2.54	0.43
1:A:144:ABG:HA	1.A.144.ABG.HD3	1.55	0.42
1·D·227·THR·HG23	1.D.229.ABG.H	1.83	0.42
1.F.283.LYS.HA	1.F.283.LYS.HD3	1.61	0.42
1:D:193:GLU:HA	1:D:232:VAL:CG2	2.49	0.42
1:E:2:ASP:0	1:E:6:ILE:HG13	2.20	0.42
1.D.97.ARG.HG2	1:D:127:PHE:CZ	2.54	0.42
1:B:154:THR:HG21	1:B:170:VAL:HG23	2.00	0.42
1:F:279:SER:O	1:F:283:LYS:HB2	2.19	0.42
1:A:23:VAL:HG11	1:A:28:ILE:HD11	2.01	0.42
1:A:143:ARG:HD3	1:A:195:PHE:O	2.20	0.42
1:D:180:ILE:HD13	1:D:180:ILE:HA	1.77	0.42
1:F:87:LYS:CE	2:F:401:R5P:O2	2.67	0.42
1:B:291:ALA:O	1:B:295:VAL:HG23	2.19	0.42
1:D:208:GLU:HB2	1:D:214:LYS:HE3	2.01	0.42
1:E:52:HIS:HD2	1:E:69:PRO:HD3	1.83	0.42
1:D:284:SER:CB	1:D:316:GLU:HB3	2.49	0.42
1:E:121:HIS:CD2	1:E:144:ARG:HD2	2.55	0.42
1:E:275:VAL:HG12	1:E:277:VAL:HG12	2.02	0.42
1:B:7:ILE:H	1:B:7:ILE:HG12	1.61	0.42
1:C:23:VAL:HG22	1:C:46:VAL:CG2	2.48	0.42
1:E:284:SER:HA	1:E:316:GLU:HB3	2.02	0.42
1:C:286:ASN:HB3	1:C:314:ILE:HG22	2.01	0.42
1:E:154:THR:HG21	1:E:170:VAL:HG23	2.01	0.42
1:F:1:MET:H1	1:F:5:LYS:HD3	1.86	0.41

	boue page	Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
1:F:143:ARG:HD3	1:F:195:PHE:O	2.20	0.41	
1:E:279:SER:N	2:E:401:R5P:O1P	2.52	0.41	
1:F:189:TYR:HA	1:F:236:TYR:CD1	2.55	0.41	
1:C:189:TYR:HA	1:C:236:TYR:CD1	2.55	0.41	
1:F:90:ILE:HA	1:F:109:GLU:HG2	2.02	0.41	
1:F:180:ILE:HD13	1:F:180:ILE:HA	1.76	0.41	
1:B:239:LEU:HD23	1:B:239:LEU:HA	1.87	0.41	
1:D:121:HIS:CD2	1:D:144:ARG:HD2	2.55	0.41	
1:C:143:ARG:HD3	1:C:195:PHE:O	2.20	0.41	
1:A:46:VAL:O	1:A:83:PRO:HD2	2.21	0.41	
1:A:240:LEU:HD23	1:A:240:LEU:HA	1.84	0.41	
1:A:316:GLU:H	1:A:317:PRO:HA	1.85	0.41	
1:C:144:ARG:HD3	1:C:144:ARG:HA	1.53	0.41	
1:D:22:MET:HE3	1:D:22:MET:HB3	1.86	0.41	
1:F:227:THR:HG21	3:F:503:HOH:O	2.20	0.41	
1:D:286:ASN:HB3	1:D:314:ILE:HG22	2.02	0.41	
1:A:22:MET:HE3	1:A:22:MET:HB3	1.86	0.41	
1:A:74:GLN:HG2	1:F:312:ARG:HH12	1.86	0.41	
1:B:90:ILE:HA	1:B:109:GLU:HG2	2.03	0.41	
1:B:205:SER:O	1:B:209:ILE:HG13	2.21	0.41	
1:B:227:THR:HG22	1:B:230:GLU:HG3	2.03	0.41	
1:B:289:LYS:HG2	1:B:313:GLU:O	2.21	0.41	
1:D:143:ARG:HD3	1:D:195:PHE:O	2.21	0.41	
1:E:253:PHE:CZ	1:E:274:GLY:HA3	2.56	0.41	
1:A:289:LYS:HG2	1:A:313:GLU:O	2.21	0.41	
1:B:193:GLU:HA	1:B:232:VAL:CG2	2.50	0.41	
1:C:153:ARG:HA	1:C:253:PHE:O	2.21	0.41	
1:F:1:MET:N	1:F:5:LYS:HD3	2.36	0.41	
1:F:132:VAL:HA	1:F:151:MET:O	2.21	0.41	
1:A:23:VAL:HG22	1:A:46:VAL:CG2	2.49	0.40	
1:A:36:GLN:HG2	1:A:282:PHE:CE1	2.55	0.40	
1:A:313:GLU:C	1:A:314:ILE:HD13	2.42	0.40	
1:C:140:GLU:HG2	1:C:143:ARG:NH2	2.37	0.40	
1:A:313:GLU:O	1:A:314:ILE:HD13	2.20	0.40	
1:E:163:ILE:HD12	1:E:163:ILE:HA	1.97	0.40	
1:F:2:ASP:HB3	1:F:3:LYS:H	1.68	0.40	
1:C:205:SER:O	1:C:209:ILE:HG13	2.22	0.40	
1:E:312:ARG:HH12	1:F:74:GLN:HG2	1.86	0.40	
1:B:111:GLU:OE1	1:B:153:ARG:NH2	2.54	0.40	
1:C:189:TYR:HA	1:C:236:TYR:HD1	1.87	0.40	
1:C:279:SER:N	2:C:401:R5P:O1P	2.41	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:108:ASP:OD1	1:A:153:ARG:NH1	2.52	0.40
1:A:220:GLU:HA	1:A:221:PRO:HD3	1.91	0.40
1:C:22:MET:HE3	1:C:22:MET:HB3	1.88	0.40
1:C:201:ARG:HH11	1:C:201:ARG:HD3	1.65	0.40
1:D:290:MET:HE3	1:D:316:GLU:HB2	2.03	0.40
1:E:108:ASP:OD1	1:E:153:ARG:NH1	2.48	0.40
1:F:99:LEU:HD23	1:F:99:LEU:HA	1.76	0.40
1:F:162:ASN:OD1	1:F:164:ILE:HG22	2.21	0.40
1:F:315:GLY:O	1:F:316:GLU:CB	2.70	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:E:38:ARG:NH1	$1:E:218:GLU:OE1[1_655]$	2.17	0.03

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	331/335~(99%)	318 (96%)	9 (3%)	4 (1%)	11	38
1	В	331/335~(99%)	321 (97%)	8 (2%)	2 (1%)	22	53
1	С	331/335~(99%)	320 (97%)	10 (3%)	1 (0%)	37	68
1	D	331/335~(99%)	314 (95%)	14 (4%)	3 (1%)	14	45
1	Е	331/335~(99%)	314 (95%)	13 (4%)	4 (1%)	11	38
1	F	331/335~(99%)	319 (96%)	9 (3%)	3 (1%)	14	45
All	All	1986/2010 (99%)	1906 (96%)	63 (3%)	17 (1%)	14	45

All (17) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	67	MET
1	D	317	PRO
1	D	322	ALA
1	Е	317	PRO
1	F	316	GLU
1	F	317	PRO
1	А	317	PRO
1	А	332	GLU
1	Е	318	MET
1	А	316	GLU
1	В	328	VAL
1	С	328	VAL
1	D	328	VAL
1	F	328	VAL
1	Е	320	GLY
1	А	328	VAL
1	Е	328	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Pe	erc	entiles
1	А	251/267~(94%)	221~(88%)	30 (12%)		4	16
1	В	251/267~(94%)	218~(87%)	33~(13%)		3	14
1	С	251/267~(94%)	223~(89%)	28 (11%)		5	20
1	D	251/267~(94%)	223~(89%)	28 (11%)		5	20
1	Ε	251/267~(94%)	221 (88%)	30 (12%)		4	16
1	F	251/267~(94%)	224 (89%)	27 (11%)		5	21
All	All	1506/1602~(94%)	1330 (88%)	176 (12%)		4	18

All (176) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	2	ASP
1	А	3	LYS

Mol	Chain	Res	Type
1	А	4	LEU
1	А	5	LYS
1	А	9	GLU
1	А	10	LYS
1	А	12	THR
1	А	15	LEU
1	А	17	ARG
1	А	23	VAL
1	А	51	LEU
1	А	54	VAL
1	А	71	GLU
1	А	90	ILE
1	А	97	ARG
1	А	112	VAL
1	А	113	LEU
1	A	144	ARG
1	А	152	ILE
1	А	153	ARG
1	А	164	ILE
1	А	216	VAL
1	А	227	THR
1	А	241	GLU
1	А	244	LYS
1	А	277	VAL
1	А	284	SER
1	А	289	LYS
1	А	311	SER
1	А	314	ILE
1	В	2	ASP
1	В	3	LYS
1	В	4	LEU
1	В	6	ILE
1	B	7	ILE
1	B	10	LYS
1	B	12	THR
1	В	14	ARG
1	В	15	LEU
1	В	17	ARG
1	B	51	LEU
1	В	54	VAL
1	В	71	GLU
1	В	90	ILE

1 B 97 ARG 1 B 112 VAL 1 B 113 LEU 1 B 140 GLU 1 B 140 GLU 1 B 144 ARG 1 B 164 ILE 1 B 202 LEU 1 B 202 LEU 1 B 202 LEU 1 B 216 VAL 1 B 227 THR 1 B 244 LYS 1 B 244 LYS 1 B 284 SER 1 B 311 SER 1 B 314 ILE 1 B 314 ILE 1 C 1 MET 1 C 7 ILE 1 C 71	Mol	Chain	Res	Type
1 B 112 VAL 1 B 113 LEU 1 B 140 GLU 1 B 144 ARG 1 B 152 ILE 1 B 164 ILE 1 B 202 LEU 1 B 216 VAL 1 B 227 THR 1 B 241 GLU 1 B 244 LYS 1 B 244 SER 1 B 250 VAL 1 B 284 SER 1 B 311 SER 1 B 314 ILE 1 B 316 GLU 1 C 1 MET 1 C 1 MET 1 C 1 MET 1 C 1 MET 1 C 1 ILE 1 C <td>1</td> <td>В</td> <td>97</td> <td>ARG</td>	1	В	97	ARG
1 B 113 LEU 1 B 140 GLU 1 B 144 ARG 1 B 152 ILE 1 B 164 ILE 1 B 202 LEU 1 B 202 LEU 1 B 227 THR 1 B 241 GLU 1 B 244 LYS 1 B 250 VAL 1 B 260 VAL 1 B 277 VAL 1 B 284 SER 1 B 314 ILE 1 B 314 ILE 1 B 316 GLU 1 C 5 LYS 1 C 1 MET 1 C 1 MET 1 C 1 ILE 1 C 1 ILE 1 C <td>1</td> <td>В</td> <td>112</td> <td>VAL</td>	1	В	112	VAL
1 B 140 GLU 1 B 144 ARG 1 B 152 ILE 1 B 164 ILE 1 B 202 LEU 1 B 202 THR 1 B 227 THR 1 B 241 GLU 1 B 244 LYS 1 B 250 VAL 1 B 277 VAL 1 B 284 SER 1 B 289 LYS 1 B 314 ILE 1 B 316 GLU 1 C 1 MET 1 C 3 LYS 1 C 1 MET 1 C 15 LEU 1 C 17 ARG 1 C 11	1	В	113	LEU
1 B 144 ARG 1 B 152 ILE 1 B 164 ILE 1 B 202 LEU 1 B 216 VAL 1 B 227 THR 1 B 241 GLU 1 B 244 LYS 1 B 250 VAL 1 B 277 VAL 1 B 284 SER 1 B 289 LYS 1 B 314 ILE 1 B 314 ILE 1 B 316 GLU 1 C 1 MET 1 C 3 LYS 1 C 7 ILE 1 C 15 LEU 1 C 17 ARG 1 C 113	1	В	140	GLU
1 B 152 ILE 1 B 164 ILE 1 B 202 LEU 1 B 216 VAL 1 B 227 THR 1 B 241 GLU 1 B 244 LYS 1 B 244 LYS 1 B 277 VAL 1 B 284 SER 1 B 289 LYS 1 B 314 ILE 1 B 314 ILE 1 B 314 ILE 1 C 1 MET 1 C 3 LYS 1 C 3 LYS 1 C 5 LYS 1 C 17 ARG 1 C 17 ARG 1 C 117	1	В	144	ARG
1 B 164 ILE 1 B 202 LEU 1 B 216 VAL 1 B 227 THR 1 B 241 GLU 1 B 244 LYS 1 B 250 VAL 1 B 277 VAL 1 B 284 SER 1 B 289 LYS 1 B 311 SER 1 B 314 ILE 1 B 314 ILE 1 C 1 MET 1 C 3 LYS 1 C 7 ILE 1 C 7 ILE 1 C 15 LEU 1 C 54 VAL 1 C 112 VAL 1 C 113	1	В	152	ILE
1 B 202 LEU 1 B 216 VAL 1 B 227 THR 1 B 241 GLU 1 B 244 LYS 1 B 250 VAL 1 B 277 VAL 1 B 277 VAL 1 B 284 SER 1 B 311 SER 1 B 314 ILE 1 B 314 ILE 1 B 314 ILE 1 C 1 MET 1 C 3 LYS 1 C 3 LYS 1 C 3 LYS 1 C 1 MET 1 C 15 LEU 1 C 17 ARG 1 C 12	1	В	164	ILE
1 B 216 VAL 1 B 227 THR 1 B 241 GLU 1 B 244 LYS 1 B 250 VAL 1 B 277 VAL 1 B 277 VAL 1 B 284 SER 1 B 289 LYS 1 B 314 ILE 1 B 316 GLU 1 C 1 MET 1 C 3 LYS 1 C 3 LYS 1 C 5 LYS 1 C 7 ILE 1 C 12 THR 1 C 15 LEU 1 C 54 VAL 1 C 97 ARG 1 C 12 <t< td=""><td>1</td><td>В</td><td>202</td><td>LEU</td></t<>	1	В	202	LEU
1 B 227 THR 1 B 241 GLU 1 B 244 LYS 1 B 250 VAL 1 B 277 VAL 1 B 277 VAL 1 B 284 SER 1 B 311 SER 1 B 314 ILE 1 B 316 GLU 1 C 1 MET 1 C 3 LYS 1 C 3 LYS 1 C 3 LYS 1 C 7 ILE 1 C 7 ILE 1 C 17 ARG 1 C 17 ARG 1 C 54 VAL 1 C 13 LEU 1 C 140 <td< td=""><td>1</td><td>В</td><td>216</td><td>VAL</td></td<>	1	В	216	VAL
1 B 241 GLU 1 B 244 LYS 1 B 250 VAL 1 B 277 VAL 1 B 284 SER 1 B 289 LYS 1 B 311 SER 1 B 314 ILE 1 B 316 GLU 1 C 1 MET 1 C 3 LYS 1 C 3 LYS 1 C 5 LYS 1 C 5 LYS 1 C 7 ILE 1 C 12 THR 1 C 15 LEU 1 C 54 VAL 1 C 71 GLU 1 C 13 LEU 1 C 140	1	В	227	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	241	GLU
1 B 250 VAL 1 B 277 VAL 1 B 284 SER 1 B 289 LYS 1 B 311 SER 1 B 314 ILE 1 B 316 GLU 1 C 1 MET 1 C 3 LYS 1 C 3 LYS 1 C 5 LYS 1 C 7 ILE 1 C 7 ILE 1 C 12 THR 1 C 15 LEU 1 C 17 ARG 1 C 51 LEU 1 C 71 GLU 1 C 90 ILE 1 C 113 LEU 1 C 140 GLU 1 C 152 ILE 1 C	1	В	244	LYS
1 B 277 VAL 1 B 284 SER 1 B 311 SER 1 B 311 SER 1 B 311 SER 1 B 314 ILE 1 B 316 GLU 1 C 1 MET 1 C 3 LYS 1 C 3 LYS 1 C 5 LYS 1 C 7 ILE 1 C 7 ILE 1 C 15 LEU 1 C 15 LEU 1 C 51 LEU 1 C 71 GLU 1 C 90 ILE 1 C 113 LEU 1 C 140 GLU 1 C 152 ILE 1 C 164 ILE 1 <t< td=""><td>1</td><td>В</td><td>250</td><td>VAL</td></t<>	1	В	250	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	277	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	284	SER
1 B 311 SER 1 B 314 ILE 1 B 316 GLU 1 C 1 MET 1 C 3 LYS 1 C 5 LYS 1 C 7 ILE 1 C 9 GLU 1 C 15 LEU 1 C 15 LEU 1 C 51 LEU 1 C 54 VAL 1 C 90 ILE 1 C 97 ARG 1 C 113 LEU 1 C 140 GLU 1 C 144 ARG 1 C 152 ILE 1 C 152 ILE 1 C 164 ILE 1 C 216 VAL 1 C 227 THR 1 C	1	В	289	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	311	SER
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	314	ILE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	316	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	1	MET
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	3	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	5	LYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	7	ILE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	9	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	12	THR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	15	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	17	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	51	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	54	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	71	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	90	ILE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	97	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	112	VAL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	113	LEU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	140	GLU
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	144	ARG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	152	ILE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	164	ILE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	С	216	VAL
$\begin{array}{c ccccc} 1 & C & 241 & GLU \\ \hline 1 & C & 277 & VAL \end{array}$	1	С	227	THR
1 C 277 VAL	1	С	241	GLU
	1	С	277	VAL

Mol	Chain	Res	Type
1	С	284	SER
1	С	289	LYS
1	С	311	SER
1	С	314	ILE
1	С	316	GLU
1	D	3	LYS
1	D	7	ILE
1	D	10	LYS
1	D	12	THR
1	D	14	ARG
1	D	15	LEU
1	D	17	ARG
1	D	51	LEU
1	D	54	VAL
1	D	71	GLU
1	D	90	ILE
1	D	97	ARG
1	D	112	VAL
1	D	113	LEU
1	D	140	GLU
1	D	144	ARG
1	D	152	ILE
1	D	164	ILE
1	D	216	VAL
1	D	227	THR
1	D	232	VAL
1	D	241	GLU
1	D	244	LYS
1	D	277	VAL
1	D	284	SER
1	D	289	LYS
1	D	311	SER
1	D	314	ILE
1	E	1	MET
1	E	5	LYS
1	E	7	ILE
1	E	8	MET
1	E	9	GLU
1	E	12	THR
1	E	15	LEU
1	E	17	ARG
1	Е	51	LEU

Mol	Chain	Res	Type
1	Е	54	VAL
1	Е	71	GLU
1	Е	90	ILE
1	Е	97	ARG
1	Е	112	VAL
1	Е	113	LEU
1	Е	140	GLU
1	Е	144	ARG
1	Е	152	ILE
1	Е	153	ARG
1	Е	164	ILE
1	Е	216	VAL
1	Е	227	THR
1	Е	241	GLU
1	Е	244	LYS
1	E	277	VAL
1	Е	284	SER
1	Е	289	LYS
1	Е	311	SER
1	Е	314	ILE
1	Ε	316	GLU
1	F	3	LYS
1	F	6	ILE
1	F	7	ILE
1	F	12	THR
1	F	15	LEU
1	F	17	ARG
1	F	51	LEU
1	F	54	VAL
1	F	71	GLU
1	F	90	ILE
1	F	97	ARG
1	F	112	VAL
1	F	113	LEU
1	F	144	ARG
1	F	152	ILE
1	F	153	ARG
1	F	164	ILE
1	F	216	VAL
1	F	227	THR
1	F	241	GLU
1	F	244	LYS

Continued from previous page...

Mol	Chain	Res	Type
1	F	277	VAL
1	F	284	SER
1	F	289	LYS
1	F	311	SER
1	F	314	ILE
1	F	316	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (7) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	176	ASN
1	В	121	HIS
1	В	176	ASN
1	С	176	ASN
1	D	176	ASN
1	Е	176	ASN
1	F	176	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

6 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mal	Mol Type Chain I		n Pos Link		Bond lengths			Bond angles		
	intor Type Cha	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	R5P	А	401	1	12,12,13	0.68	0	16,17,18	2.21	8 (50%)
2	R5P	С	401	1	12,12,13	0.77	0	16,17,18	1.21	1 (6%)
2	R5P	Е	401	1	12,12,13	0.68	0	16,17,18	1.66	4 (25%)
2	R5P	В	401	1	12,12,13	0.54	0	16,17,18	2.03	6 (37%)
2	R5P	F	401	-	12,12,13	0.98	0	16,17,18	2.82	5 (31%)
2	R5P	D	401	1	12,12,13	0.63	0	16,17,18	1.98	4 (25%)

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	R5P	А	401	1	-	9/14/14/16	-
2	R5P	С	401	1	-	9/14/14/16	-
2	R5P	Е	401	1	-	6/14/14/16	-
2	R5P	В	401	1	-	6/14/14/16	-
2	R5P	F	401	-	-	11/14/14/16	-
2	R5P	D	401	1	-	7/14/14/16	-

There are no bond length outliers.

All (28) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	F	401	R5P	O2-C2-C3	-7.95	96.60	109.77
2	F	401	R5P	C5-C4-C3	-4.77	103.23	112.22
2	А	401	R5P	C5-C4-C3	-4.51	103.70	112.22
2	D	401	R5P	O2-C2-C3	-4.43	102.44	109.77
2	D	401	R5P	C1-C2-C3	3.77	116.74	112.11
2	В	401	R5P	C1-C2-C3	-3.47	107.87	112.11
2	В	401	R5P	C5-C4-C3	-3.43	105.75	112.22
2	Ε	401	R5P	O5-C5-C4	3.34	118.28	109.36
2	А	401	R5P	O3P-P-O5	-3.22	98.28	106.67
2	D	401	R5P	C4-C3-C2	-3.19	107.56	112.48
2	А	401	R5P	O3-C3-C2	-3.16	103.12	109.14
2	F	401	R5P	O2P-P-O5	-3.13	98.50	106.67

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	А	401	R5P	O2-C2-C3	-2.96	104.87	109.77
2	F	401	R5P	C4-C3-C2	-2.92	107.98	112.48
2	В	401	R5P	C4-C3-C2	2.90	116.94	112.48
2	В	401	R5P	O5-C5-C4	2.81	116.85	109.36
2	Е	401	R5P	O3-C3-C2	-2.48	104.42	109.14
2	F	401	R5P	C1-C2-C3	2.35	114.99	112.11
2	А	401	R5P	O3P-P-O2P	2.34	116.57	107.80
2	А	401	R5P	C1-C2-C3	-2.29	109.31	112.11
2	А	401	R5P	O4-C4-C3	2.29	114.61	109.25
2	В	401	R5P	O5-P-O1P	-2.28	100.29	106.44
2	Е	401	R5P	O4-C4-C5	2.25	114.94	109.99
2	А	401	R5P	C4-C3-C2	2.16	115.81	112.48
2	D	401	R5P	O5-P-O1P	-2.07	100.84	106.44
2	С	401	R5P	C1-C2-C3	-2.06	109.59	112.11
2	В	401	R5P	O4-C4-C5	2.04	114.49	109.99
2	Е	401	R5P	O5-P-O1P	-2.04	100.92	106.44

There are no chirality outliers.

Mol	Chain	\mathbf{Res}	Type	Atoms
2	А	401	R5P	C5-O5-P-O2P
2	А	401	R5P	C5-O5-P-O3P
2	В	401	R5P	C1-C2-C3-O3
2	В	401	R5P	C1-C2-C3-C4
2	В	401	R5P	O2-C2-C3-O3
2	В	401	R5P	O2-C2-C3-C4
2	В	401	R5P	C3-C4-C5-O5
2	В	401	R5P	O4-C4-C5-O5
2	С	401	R5P	C1-C2-C3-C4
2	С	401	R5P	O2-C2-C3-O3
2	С	401	R5P	O2-C2-C3-C4
2	С	401	R5P	C3-C4-C5-O5
2	С	401	R5P	O4-C4-C5-O5
2	С	401	R5P	C5-O5-P-O2P
2	С	401	R5P	C5-O5-P-O3P
2	D	401	R5P	C2-C3-C4-C5
2	D	401	R5P	O3-C3-C4-O4
2	D	401	R5P	O3-C3-C4-C5
2	D	401	R5P	C5-O5-P-O1P
2	D	401	R5P	C5-O5-P-O2P
2	D	401	R5P	C5-O5-P-O3P

All (48) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	Е	401	R5P	C3-C4-C5-O5
2	Е	401	R5P	O4-C4-C5-O5
2	Е	401	R5P	C5-O5-P-O1P
2	Е	401	R5P	C5-O5-P-O2P
2	F	401	R5P	C1-C2-C3-O3
2	F	401	R5P	C1-C2-C3-C4
2	F	401	R5P	O2-C2-C3-O3
2	F	401	R5P	O2-C2-C3-C4
2	F	401	R5P	C3-C4-C5-O5
2	F	401	R5P	O4-C4-C5-O5
2	С	401	R5P	C1-C2-C3-O3
2	D	401	R5P	C2-C3-C4-O4
2	А	401	R5P	O3-C3-C4-C5
2	F	401	R5P	C2-C3-C4-O4
2	А	401	R5P	O3-C3-C4-O4
2	А	401	R5P	C3-C4-C5-O5
2	F	401	R5P	O3-C3-C4-O4
2	F	401	R5P	O3-C3-C4-C5
2	А	401	R5P	C5-O5-P-O1P
2	С	401	R5P	C5-O5-P-O1P
2	F	401	R5P	C2-C3-C4-C5
2	Е	401	R5P	C5-O5-P-O3P
2	F	401	R5P	C5-O5-P-O1P
2	А	401	R5P	C2-C3-C4-O4
2	Е	401	R5P	O3-C3-C4-O4
2	А	401	R5P	O4-C4-C5-O5
2	А	401	R5P	O2-C2-C3-C4

Continued from previous page...

There are no ring outliers.

6 monomers are involved in 12 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	А	401	R5P	1	0
2	С	401	R5P	1	0
2	Е	401	R5P	1	0
2	В	401	R5P	1	0
2	F	401	R5P	7	0
2	D	401	R5P	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	А	333/335~(99%)	-0.73	1 (0%) 90 81	30, 49, 83, 121	0
1	В	333/335~(99%)	-0.60	0 100 100	31, 51, 94, 148	0
1	С	333/335~(99%)	-0.60	0 100 100	31, 52, 85, 118	0
1	D	333/335~(99%)	-0.65	0 100 100	30, 49, 87, 147	0
1	Ε	333/335~(99%)	-0.66	1 (0%) 90 81	28, 46, 79, 116	0
1	F	333/335~(99%)	-0.72	0 100 100	30, 48, 86, 144	0
All	All	1998/2010 (99%)	-0.66	2 (0%) 92 87	28, 49, 85, 148	0

All (2) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	320	GLY	3.4
1	Е	218	GLU	2.3

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
2	R5P	Е	401	13/14	0.94	0.09	$35,\!53,\!62,\!83$	0
2	R5P	F	401	13/14	0.94	0.09	28,48,61,63	0
2	R5P	А	401	13/14	0.95	0.08	41,50,66,71	0
2	R5P	D	401	13/14	0.95	0.09	$32,\!51,\!77,\!77$	0
2	R5P	С	401	13/14	0.96	0.07	49,66,75,75	0
2	R5P	В	401	13/14	0.96	0.07	44,57,65,68	0

6.5 Other polymers (i)

There are no such residues in this entry.

