

Full wwPDB X-ray Structure Validation Report (i)

May 23, 2024 – 10:24 AM EDT

PDB ID	:	3U8N
Title	:	Crystal structure of the acetylcholine binding protein (AChBP) from Lymnaea
		stagnalis in complex with NS3950 (1-(6-bromo-5-ethoxypyridin-3-yl)-1,4-diaz
		epane)
Authors	:	Rohde, L.A.H.; Ahring, P.K.; Jensen, M.L.; Nielsen, E.O.; Peters, D.; Hel-
		gstrand, C.; Krintel, C.; Harpsoe, K.; Gajhede, M.; Kastrup, J.S.; Balle, T.
Deposited on	:	2011-10-17
Resolution	:	2.35 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	FAILED
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.35 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	Similar resolution
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
Clashscore	141614	$1232 \ (2.36-2.36)$
Ramachandran outliers	138981	1211 (2.36-2.36)
Sidechain outliers	138945	1212 (2.36-2.36)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS failed to run properly.

Mol	Chain	Length	Quality of chain	
1	А	210	87%	10% •
1	В	210	83%	14% •
1	С	210	88%	9% •
1	D	210	85%	12% ·
1	Е	210	80%	15% ••
1	F	210	83%	13% ••
1	G	210	86%	9% • •
1	Н	210	86%	9% • •

Mol	Chain	Length	Quality of chain	
1	Ι	210	85%	11% •
1	J	210	84%	11% • •
1	K	210	88%	9% •
1	L	210	83%	12% 5%
1	М	210	84%	12% •
1	Ν	210	84%	10% • 6%
1	0	210	85%	10% •
1	Р	210	83%	14% •
1	Q	210	85%	12% •
1	R	210	83%	12% 5%
1	S	210	86%	10% •
1	Т	210	84%	10% • •

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 34660 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
1	Λ	202	Total	С	Ν	0	S	0	1	0
	A	202	1616	1013	276	321	6	0	1	0
1	В	203	Total	С	Ν	0	S	0	2	0
	D	203	1626	1018	278	323	7	0	2	0
1	С	204	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0
	0	204	1635	1023	279	327	6	0	T	0
1	Л	205	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	2	0
	D	200	1642	1027	280	328	7	0		0
1	E	201	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	4	0
		201	1625	1019	278	321	7	0	1	0
1	F	204	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	2	0
1	Ľ	204	1641	1027	284	324	6	0	2	0
1	G	201	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0
	G	201	1609	1009	275	319	6	0	T	0
1	н	201	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0
1	11	201	1609	1009	275	319	6	0	T	0
1	T	203	Total	С	Ν	Ο	\mathbf{S}	0	3	0
	L	200	1637	1025	283	322	7	0	5	0
1	T	201	Total	С	Ν	Ο	\mathbf{S}	0	1	0
L	0	201	1609	1009	275	319	6	0	T	0
1	K	204	Total	С	Ν	Ο	\mathbf{S}	0	1	0
1	IX	204	1633	1022	281	324	6	0	T	0
1	T	200	Total	С	Ν	0	\mathbf{S}	0	9	0
	Ľ	200	1608	1009	274	318	7	0	2	0
1	М	202	Total	С	Ν	0	S	0	2	0
	111	202	1628	1020	282	320	6	0	2	0
1	Ν	108	Total	С	Ν	0	\mathbf{S}	0	2	0
1	11	190	1590	1000	272	311	7	0	2	0
1	0	201	Total	С	Ν	0	S	0	1	0
		201	1609	1009	275	319	6			
1	D	203	Total	С	Ν	0	S	0	1	0
	1	200	1626	1018	280	322	6	U		0

• Molecule 1 is a protein called Acetylcholine-binding protein.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
1	0	202	Total	С	Ν	0	S	0	1	0
1	Q	203	1626	1018	280	322	6	0	1	0
1	D	200	Total	С	Ν	0	S	0	1	0
1	n	200	1605	1007	274	318	6	0	1	0
1	C	202	Total	С	Ν	0	S	0	ე	0
1	a	203	1629	1020	280	322	7	0	Z	0
1	т	201	Total	С	Ν	0	S	0	2	0
	1	201	1620	1016	278	319	$\overline{7}$	0	0	U

Continued from previous page...

• Molecule 2 is 1-(6-bromo-5-ethoxypyridin-3-yl)-1,4-diazepane (three-letter code: 09S) (formula: $C_{12}H_{18}BrN_3O$).

Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf
0	٨	1	Total	Br	С	Ν	0	0	0
	A	1	17	1	12	3	1	0	0
0	р	1	Total	Br	С	Ν	Ο	0	0
	D	1	17	1	12	3	1	0	0
0	С	1	Total	Br	С	Ν	Ο	0	0
	C	1	17	1	12	3	1	0	0
0	р	1	Total	Br	С	Ν	0	0	0
	D	1	17	1	12	3	1	0	0
0	Б	1	Total	Br	С	Ν	0	0	0
	Ľ	1	17	1	12	3	1	0	0
0	Б	1	Total	Br	С	Ν	0	0	0
	Г	1	17	1	12	3	1	0	0
0	С	1	Total	Br	С	Ν	Ο	0	0
	G	L	17	1	12	3	1	0	U

3U8N

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	
0	тт	1	Total	Br	С	Ν	Ο	0	0	
	П	1	17	1	12	3	1	0	0	
0	т	т	1	Total	Br	С	Ν	Ο	0	0
	1	1	17	1	12	3	1	0	0	
0	т	1	Total	Br	С	Ν	Ο	0	0	
	J	1	17	1	12	3	1	0	0	
9	V	1	Total	Br	С	Ν	Ο	0	0	
	Γ	1	17	1	12	3	1	0	0	
2	T	1	Total	Br	С	Ν	Ο	0	0	
2	Ľ	T	17	1	12	3	1	0	0	
2	М	1	Total	Br	С	Ν	Ο	0	0	
2	111	1	17	1	12	3	1		0	
2	N	Ν	1	Total	Br	С	Ν	Ο	0	0
	11	I	17	1	12	3	1	0	0	
2	0	1	Total	Br	\mathbf{C}	Ν	Ο	0	0	
		Ŧ	17	1	12	3	1	0	0	
2	Р	1	Total	Br	С	Ν	Ο	0	0	
	1	1	17	1	12	3	1	0	0	
2	0	1	Total	Br	С	Ν	Ο	0	0	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	17	1	12	3	1	0	0	
2	B	1	Total	$\operatorname{Br}$	С	Ν	Ο	0	0	
	10	1	17	1	12	3	1	Ŭ		
2	S	1	Total	$\operatorname{Br}$	С	Ν	Ο	0	0	
	~	*	17	1	12	3	1			
2	Т	1	Total	$\operatorname{Br}$	С	Ν	Ο	0	0	
	-		17	1	12	3	1	Ŭ		

• Molecule 3 is SULFATE ION (three-letter code: SO4) (formula:  $O_4S$ ).





Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	Н	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	Ν	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	Р	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	Р	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
3	S	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula:  $C_8H_{15}NO_6$ ).





Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	С	1	Total C N O 14 8 1 5	0	0
4	G	1	Total C N O 14 8 1 5	0	0
4	Т	1	Total         C         N         O           14         8         1         5	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	116	Total O 116 116	0	0
5	В	130	Total O 130 130	0	0
5	С	112	Total         O           112         112	0	0
5	D	118	Total O 118 118	0	0
5	Е	110	Total O 110 110	0	0
5	F	79	Total O 79 79	0	0
5	G	91	Total O 91 91	0	0
5	Н	77	Total O 77 77	0	0
5	Ι	77	Total O 77 77	0	0



Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	J	77	Total O 77 77	0	0
5	K	102	Total         O           102         102	0	0
5	L	88	Total O 88 88	0	0
5	М	99	Total O 99 99	0	0
5	Ν	96	Total O 96 96	0	0
5	О	95	Total O 95 95	0	0
5	Р	83	Total O 83 83	0	0
5	Q	69	Total O 69 69	0	0
5	R	80	Total         O           80         80	0	0
5	S	68	Total         O           68         68	0	0
5	Т	58	Total         O           58         58	0	0



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS failed to run properly.

• Molecule 1: Acetylcholine-binding protein







• Molecule 1: Acetylcholine-binding protein





• Molecule 1: Acetylcholine-binding protein Chain L: 83% 12% 5% • Molecule 1: Acetylcholine-binding protein Chain M: 84% 12% • Molecule 1: Acetylcholine-binding protein Chain N: 84% 10% 6% THR GLU GLU ASN SER SER ASP ASP • Molecule 1: Acetylcholine-binding protein Chain O: 85% 10% SER • Molecule 1: Acetylcholine-binding protein Chain P: 83% 14% GLU GLU ASN • Molecule 1: Acetylcholine-binding protein Chain Q: 85% 12% • Molecule 1: Acetylcholine-binding protein Chain R: 83% 12% 5%



#### 

• Molecule 1: Acetylcholine-binding protein



• Molecule 1: Acetylcholine-binding protein





# 4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	239.12Å 73.11Å 271.84Å	Depositor
a, b, c, $\alpha$ , $\beta$ , $\gamma$	$90.00^{\circ}$ $97.45^{\circ}$ $90.00^{\circ}$	Depositor
Resolution (Å)	33.05 - 2.35	Depositor
% Data completeness	95 3 (33 05-2 35)	Depositor
(in resolution range)	30.0 (00.00 2.00)	Берозног
R _{merge}	0.07	Depositor
$R_{sym}$	0.07	Depositor
$< I/\sigma(I) > 1$	$4.72$ (at $2.34\text{\AA}$ )	Xtriage
Refinement program	PHENIX (phenix.refine: 1.6.4_486)	Depositor
$R, R_{free}$	0.197 , $0.230$	Depositor
Wilson B-factor $(Å^2)$	25.3	Xtriage
Anisotropy	0.539	Xtriage
L-test for twinning ²	$< L >=0.43, < L^2>=0.25$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
Total number of atoms	34660	wwPDB-VP
Average B, all atoms $(Å^2)$	27.0	wwPDB-VP

EDS failed to run properly - this section is therefore incomplete.

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.31% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



¹Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4,  $09\mathrm{S},\,\mathrm{NAG}$ 

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles	
	Unam	RMSZ	# Z  > 5	RMSZ	# Z  > 5
1	А	0.40	0/1654	0.53	0/2256
1	В	0.40	0/1667	0.54	0/2274
1	С	0.40	0/1674	0.54	0/2285
1	D	0.40	0/1684	0.53	0/2299
1	Е	0.39	0/1672	0.52	0/2280
1	F	0.39	0/1682	0.54	0/2292
1	G	0.39	0/1647	0.53	0/2246
1	Н	0.37	0/1647	0.53	0/2246
1	Ι	0.38	0/1681	0.52	0/2291
1	J	0.38	0/1647	0.52	0/2246
1	Κ	0.39	0/1671	0.52	0/2278
1	L	0.39	0/1649	0.51	0/2250
1	М	0.41	0/1669	0.54	0/2274
1	Ν	0.39	0/1631	0.51	0/2225
1	0	0.38	0/1647	0.52	0/2246
1	Р	0.39	0/1664	0.53	0/2268
1	Q	0.38	0/1664	0.52	0/2268
1	R	0.37	0/1643	0.52	0/2241
1	S	0.37	0/1670	0.53	0/2277
1	Т	0.38	0/1664	0.53	0/2269
All	All	0.39	0/33227	0.53	0/45311

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	F	0	1

There are no bond length outliers.



There are no bond angle outliers.

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	F	155	THR	Peptide

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1616	0	1568	14	0
1	В	1626	0	1577	18	0
1	С	1635	0	1582	13	0
1	D	1642	0	1591	18	0
1	Е	1625	0	1583	28	0
1	F	1641	0	1599	24	1
1	G	1609	0	1560	15	0
1	Н	1609	0	1561	14	1
1	Ι	1637	0	1597	13	0
1	J	1609	0	1561	16	0
1	K	1633	0	1586	15	0
1	L	1608	0	1563	20	0
1	М	1628	0	1587	18	0
1	N	1590	0	1553	16	0
1	0	1609	0	1561	16	0
1	Р	1626	0	1579	26	0
1	Q	1626	0	1579	15	0
1	R	1605	0	1558	15	0
1	S	1629	0	1584	14	0
1	Т	1620	0	1577	21	0
2	А	17	0	18	1	0
2	В	17	0	18	2	0
2	С	17	0	18	2	0
2	D	17	0	18	4	0
2	Е	17	0	18	2	0
2	F	17	0	18	5	0
2	G	17	0	18	1	0
2	Н	17	0	18	2	0



3U8N	
------	--

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	Ι	17	0	18	0	0
2	J	17	0	18	0	0
2	K	17	0	18	3	0
2	L	17	0	18	1	0
2	М	17	0	18	2	0
2	Ν	17	0	18	1	0
2	0	17	0	18	0	0
2	Р	17	0	18	4	0
2	Q	17	0	18	1	0
2	R	17	0	18	3	0
2	S	17	0	18	0	0
2	Т	17	0	18	5	0
3	А	5	0	0	1	0
3	Н	5	0	0	0	0
3	N	5	0	0	0	0
3	Р	10	0	0	0	0
3	S	5	0	0	0	0
4	С	14	0	13	0	0
4	G	14	0	13	0	0
4	Т	14	0	13	2	0
5	А	116	0	0	3	0
5	В	130	0	0	2	0
5	С	112	0	0	0	0
5	D	118	0	0	2	0
5	E	110	0	0	2	0
5	F	79	0	0	3	0
5	G	91	0	0	3	0
5	Н	77	0	0	2	0
5	l	77	0	0	0	0
5	J	77	0	0	2	0
5	K	102	0	0	3	0
5	Ĺ	88	0	0	1	0
5	M	99	0	0	2	0
5	N	96	0	0	0	0
5	0	95	0	0	3	0
5	P	83	0	0	3	0
5	Q	69	0	0	2	0
5	R	80	0	0	1	0
5	S	68	0	0	0	0
5	T A 11	58	0	0	0	0
All	All	34660	0	31905	318	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including



hydrogen atoms). The all-atom clashscore for this structure is 5.

All (318) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-9	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:49:ASP:OD1	1:E:120[B]:ARG:HG2	1.52	1.07
1:T:49:ASP:OD1	1:T:120[B]:ARG:HG3	1.53	1.06
1:M:49:ASP:OD1	1:M:120[B]:ARG:HG2	1.58	1.04
1:I:49:ASP:OD1	1:I:120[B]:ARG:HG2	1.59	1.02
1:F:152:VAL:HG12	1:F:195:VAL:HG23	1.46	0.98
1:T:152:VAL:HG12	1:T:195:VAL:HG23	1.53	0.90
1:S:152:VAL:HG12	1:S:195:VAL:HG23	1.59	0.84
1:K:152:VAL:HG12	1:K:195:VAL:HG23	1.59	0.84
2:H:211:09S:H19	1:I:104:ARG:HG2	1.59	0.83
1:E:22:GLN:HG3	1:L:25:ARG:HH12	1.44	0.82
1:E:152:VAL:HG12	1:E:195:VAL:HG23	1.64	0.80
1:P:152:VAL:HG12	1:P:195:VAL:HG23	1.63	0.80
1:G:184:THR:HG21	1:P:182:SER:HB3	1.63	0.80
1:L:152:VAL:HG12	1:L:195:VAL:HG23	1.64	0.79
1:C:152:VAL:HG12	1:C:195:VAL:HG23	1.65	0.78
1:P:25:ARG:HG2	1:P:26:PRO:HD2	1.64	0.78
1:O:152:VAL:HG12	1:O:195:VAL:HG23	1.65	0.78
1:M:152:VAL:HG12	1:M:195:VAL:HG23	1.65	0.78
1:L:188[B]:CYS:SG	1:L:189:PRO:HD2	2.25	0.77
1:H:152:VAL:HG12	1:H:195:VAL:HG23	1.66	0.76
1:F:170[B]:ARG:HG3	5:F:217:HOH:O	1.84	0.76
1:N:152:VAL:HG12	1:N:195:VAL:HG23	1.66	0.76
1:F:170[B]:ARG:HD2	1:F:171:PHE:CE2	2.21	0.76
1:N:61:ARG:HH11	4:T:212:NAG:H61	1.51	0.75
1:Q:152:VAL:HG12	1:Q:195:VAL:HG23	1.66	0.75
1:B:152:VAL:HG12	1:B:195:VAL:HG23	1.67	0.75
1:M:49:ASP:OD1	1:M:120[B]:ARG:CG	2.35	0.74
1:K:23:ARG:HG3	1:K:23:ARG:HH11	1.52	0.74
1:A:152:VAL:HG12	1:A:195:VAL:HG23	1.70	0.74
1:D:152:VAL:HG12	1:D:195:VAL:HG23	1.70	0.73
1:S:188[B]:CYS:SG	1:S:189:PRO:HD2	2.28	0.73
1:E:25:ARG:NH2	1:L:22:GLN:HG3	2.04	0.73
1:F:23:ARG:HG3	1:F:23:ARG:HH11	1.54	0.73
1:G:152:VAL:HG12	1:G:195:VAL:HG23	1.72	0.71
1:G:182:SER:HB3	1:P:184:THR:HG21	1.70	0.71
1:H:10:ILE:O	1:H:14:SER:HB2	1.91	0.70
1:K:40:GLU:HG2	5:K:1782:HOH:O	1.90	0.70
1:B:188[B]:CYS:SG	1:B:189:PRO:HD2	2.32	0.70



3U8N
------

Atom-1	Atom-2	Interatomic	Clash
	1100111 2	distance (Å)	overlap (Å)
1:C:10:ILE:O	1:C:14:SER:HB2	1.92	0.70
1:R:152:VAL:HG12	1:R:195:VAL:HG23	1.74	0.69
2:B:211:09S:H19	1:C:104:ARG:HG2	1.73	0.69
1:G:10:ILE:O	1:G:14:SER:HB2	1.93	0.69
1:M:3:ARG:NH1	5:M:1347:HOH:O	2.25	0.69
1:J:152:VAL:HG12	1:J:195:VAL:HG23	1.74	0.68
1:D:188[B]:CYS:SG	1:D:189:PRO:HD2	2.34	0.68
1:E:41:VAL:HG22	1:E:48:VAL:HG23	1.77	0.66
1:Q:14:SER:O	1:Q:16:PRO:HD3	1.95	0.66
1:O:22:GLN:HB3	5:O:1336:HOH:O	1.95	0.66
1:M:40:GLU:HG2	1:M:120[A]:ARG:HH12	1.62	0.65
1:N:188[B]:CYS:SG	1:N:189:PRO:HD2	2.37	0.64
1:T:188[B]:CYS:SG	1:T:189:PRO:HD2	2.37	0.64
1:J:41:VAL:HG22	1:J:48:VAL:HG23	1.80	0.64
1:A:3:ARG:NH1	5:A:883:HOH:O	2.31	0.64
1:F:152:VAL:HG12	1:F:195:VAL:CG2	2.25	0.64
1:F:156:THR:O	5:F:1382:HOH:O	2.14	0.64
1:P:41:VAL:HG22	1:P:48:VAL:HG23	1.79	0.64
1:I:152:VAL:HG12	1:I:195:VAL:HG23	1.80	0.64
1:B:10:ILE:O	1:B:14:SER:HB2	1.98	0.63
1:T:10:ILE:O	1:T:14:SER:HB2	1.98	0.63
1:L:25:ARG:HG2	1:L:26:PRO:HD2	1.80	0.63
1:E:22:GLN:HG3	1:L:25:ARG:NH1	2.13	0.62
1:L:41:VAL:HG22	1:L:48:VAL:HG23	1.81	0.62
1:K:23:ARG:HG3	1:K:23:ARG:NH1	2.14	0.62
1:T:152:VAL:CG1	1:T:195:VAL:HG23	2.28	0.62
1:C:41:VAL:HG22	1:C:48:VAL:HG23	1.81	0.62
1:M:14:SER:HB2	1:M:80:SER:O	2.00	0.62
1:G:41:VAL:HG22	1:G:48:VAL:HG23	1.81	0.61
1:K:41:VAL:HG22	1:K:48:VAL:HG23	1.81	0.61
1:P:74:VAL:HA	5:P:502:HOH:O	2.00	0.61
1:B:41:VAL:HG22	1:B:48:VAL:HG23	1.83	0.61
1:Q:41:VAL:HG22	1:Q:48:VAL:HG23	1.83	0.61
1:F:188:CYS:SG	2:F:211:09S:H19	2.40	0.61
1:T:93:SER:OG	1:T:120[B]:ARG:HD3	2.00	0.60
1:A:41:VAL:HG22	1:A:48:VAL:HG23	1.84	0.60
1:D:143:TRP:CZ3	2:D:211:09S:H4	2.37	0.60
1:F:14:SER:O	1:F:16:PRO:HD3	2.01	0.59
1:F:41:VAL:HG22	1:F:48:VAL:HG23	1.83	0.59
1:I:41:VAL:HG22	1:I:48:VAL:HG23	1.84	0.59
1:H:41:VAL:HG22	1:H:48:VAL:HG23	1.84	0.59



		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:Q:123:CYS:HB2	5:Q:1453:HOH:O	2.03	0.59
1:B:14:SER:O	1:B:16:PRO:HD3	2.03	0.59
1:K:152:VAL:HG12	1:K:195:VAL:CG2	2.32	0.59
1:T:41:VAL:HG22	1:T:48:VAL:HG23	1.83	0.59
1:I:188[B]:CYS:SG	1:I:189:PRO:HD2	2.43	0.59
1:Q:14:SER:HB3	5:Q:1312:HOH:O	2.02	0.59
1:S:41:VAL:HG22	1:S:48:VAL:HG23	1.85	0.59
1:M:41:VAL:HG22	1:M:48:VAL:HG23	1.85	0.59
1:E:188[B]:CYS:SG	1:E:189:PRO:HD2	2.43	0.59
1:K:180:LYS:HE2	5:K:1003:HOH:O	2.03	0.58
1:P:25:ARG:CG	1:P:26:PRO:HD2	2.34	0.58
1:N:41:VAL:HG22	1:N:48:VAL:HG23	1.85	0.58
3:A:212:SO4:O1	1:B:71:PRO:HA	2.04	0.58
1:F:23:ARG:HG3	1:F:23:ARG:NH1	2.14	0.58
1:R:41:VAL:HG22	1:R:48:VAL:HG23	1.85	0.57
1:D:21:THR:HG23	5:D:350:HOH:O	2.04	0.57
1:S:22:GLN:HG3	1:S:25:ARG:HH12	1.70	0.57
1:P:143:TRP:CZ3	2:P:211:09S:H4	2.39	0.57
1:T:152:VAL:HG12	1:T:195:VAL:CG2	2.31	0.57
1:D:41:VAL:HG22	1:D:48:VAL:HG23	1.86	0.57
1:P:3:ARG:NH1	5:P:502:HOH:O	2.36	0.57
1:F:152:VAL:CG1	1:F:195:VAL:HG23	2.27	0.57
1:O:10:ILE:O	1:O:14:SER:HB2	2.05	0.57
1:F:10:ILE:O	1:F:14:SER:HB2	2.06	0.56
1:G:14:SER:HB3	5:G:1025:HOH:O	2.06	0.56
1:N:10:ILE:O	1:N:14:SER:HB3	2.05	0.56
1:J:3:ARG:NE	5:J:1326:HOH:O	2.33	0.56
1:O:41:VAL:HG22	1:O:48:VAL:HG23	1.87	0.56
2:G:211:09S:H19	1:H:104:ARG:HG2	1.87	0.56
1:E:179:LYS:HE3	1:L:178:GLN:O	2.05	0.56
1:S:152:VAL:HG12	1:S:195:VAL:CG2	2.34	0.55
1:A:10:ILE:O	1:A:14:SER:HB2	2.07	0.55
1:E:178:GLN:O	1:L:179:LYS:HE3	2.07	0.54
1:J:10:ILE:O	1:J:14:SER:HB2	2.08	0.54
2:R:211:09S:H19	1:S:104:ARG:HG2	1.88	0.53
1:M:143:TRP:CZ3	2:M:211:09S:H4	2.43	0.53
1:G:184:THR:HG21	1:P:182:SER:CB	2.37	0.53
1:B:185:TYR:HD1	1:C:164:TYR:CE1	2.28	0.52
1:J:3:ARG:NH2	5:J:1326:HOH:O	2.37	0.52
1:N:14:SER:O	1:N:16:PRO:HD3	2.08	0.52
1:K:14:SER:HB3	5:K:1332:HOH:O	2.08	0.52



00011
-------

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance $(\text{\AA})$	overlap (Å)
1:N:14:SER:OG	1:N:80:SER:O	2.26	0.52
2:Q:211:09S:H19	1:R:104:ARG:HG2	1.92	0.52
1:A:99:THR:HG21	1:E:143:TRP:CE2	2.45	0.51
1:E:49:ASP:OD1	1:E:120[B]:ARG:CG	2.43	0.51
2:C:211:09S:H19	1:D:104:ARG:HG2	1.93	0.51
1:O:188:CYS:HB3	5:O:1830:HOH:O	2.10	0.51
1:L:152:VAL:HG12	1:L:195:VAL:CG2	2.40	0.51
1:O:152:VAL:CG1	1:O:195:VAL:HG23	2.40	0.51
1:D:160:ASP:HB3	1:D:163:GLU:HB2	1.92	0.51
1:E:14:SER:O	1:E:16:PRO:HD3	2.09	0.51
1:P:14:SER:O	1:P:16:PRO:HD3	2.11	0.50
1:P:112:LEU:CD2	2:T:211:09S:H15	2.41	0.50
2:P:211:09S:H18	1:Q:104:ARG:HG2	1.93	0.50
1:O:152:VAL:HG12	1:O:195:VAL:CG2	2.37	0.50
5:P:1211:HOH:O	1:T:120[A]:ARG:HD3	2.11	0.50
1:R:160:ASP:HB3	1:R:163:GLU:HB2	1.93	0.49
1:F:32:SER:HB2	1:F:155:THR:HB	1.95	0.49
1:I:143:TRP:CE2	1:J:99:THR:HG21	2.48	0.49
1:O:146:HIS:CE1	1:0:148:ARG:HB2	2.47	0.49
1:S:152:VAL:CG1	1:S:195:VAL:HG23	2.36	0.49
1:P:164:TYR:CE1	1:T:185:TYR:HD1	2.29	0.49
1:D:143:TRP:CE2	1:E:99:THR:HG21	2.48	0.49
1:H:125:VAL:HG12	1:H:125:VAL:O	2.13	0.49
1:G:3:ARG:NH1	5:G:1130:HOH:O	2.45	0.48
1:H:14:SER:HB3	5:H:287:HOH:O	2.11	0.48
1:D:185:TYR:HD1	1:E:164:TYR:CE1	2.31	0.48
1:K:143:TRP:CZ3	2:K:211:09S:H4	2.48	0.48
1:R:68:SER:HA	5:R:1412:HOH:O	2.13	0.48
1:R:146:HIS:CE1	1:R:148:ARG:HB2	2.47	0.48
1:P:152:VAL:HG12	1:P:195:VAL:CG2	2.40	0.48
1:D:143:TRP:CE3	2:D:211:09S:H4	2.49	0.48
1:P:99:THR:HG21	1:T:143:TRP:CE2	2.48	0.48
1:S:14:SER:O	1:S:16:PRO:HD3	2.14	0.48
1:B:160:ASP:OD1	1:B:162:SER:HB3	2.13	0.48
1:O:15:ARG:N	1:O:16:PRO:HD3	2.29	0.48
1:H:188:CYS:HB3	5:H:1404:HOH:O	2.13	0.47
1:D:40:GLU:HG3	5:D:1163:HOH:O	2.14	0.47
1:L:188[B]:CYS:SG	1:L:189:PRO:CD	3.00	0.47
1:P:112:LEU:HD23	2:T:211:09S:H15	1.97	0.47
1:B:152:VAL:HG12	1:B:195:VAL:CG2	2.43	0.47
1:N:61:ARG:NH1	4:T:212:NAG:H61	2.25	0.47



	A la D	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:143:TRP:CE2	1:C:99:THR:HG21	2.50	0.47
1:I:92:ILE:HD11	1:I:120[A]:ARG:HG2	1.97	0.47
1:R:30:SER:HB2	1:R:57:THR:OG1	2.14	0.47
1:K:152:VAL:CG1	1:K:195:VAL:HG23	2.37	0.47
1:Q:143:TRP:CE2	1:R:99:THR:HG21	2.50	0.47
1:E:22:GLN:HG2	5:E:1808:HOH:O	2.15	0.47
1:G:182:SER:CB	1:P:184:THR:HG21	2.43	0.47
1:K:99:THR:HG21	1:0:143:TRP:CE2	2.50	0.47
1:O:125:VAL:HG12	1:0:125:VAL:O	2.15	0.47
1:P:30:SER:HB2	1:P:57:THR:OG1	2.15	0.46
1:T:25:ARG:HG2	1:T:26:PRO:HD2	1.96	0.46
1:E:152:VAL:HG12	1:E:195:VAL:CG2	2.38	0.46
1:M:1:LEU:HB2	1:M:70:SER:OG	2.16	0.46
1:S:25:ARG:HG2	1:S:26:PRO:HD2	1.98	0.46
1:L:125:VAL:HG12	1:L:125:VAL:O	2.16	0.46
2:L:211:09S:H14	2:L:211:09S:H15	1.76	0.46
1:H:25:ARG:HE	1:H:25:ARG:HB2	1.31	0.46
1:R:125:VAL:HG12	1:R:125:VAL:O	2.16	0.46
1:A:132:SER:HA	5:A:1685:HOH:O	2.16	0.45
2:A:211:09S:H19	1:B:104:ARG:HG2	1.98	0.45
1:S:125:VAL:HG12	1:S:125:VAL:O	2.17	0.45
1:C:143:TRP:CZ3	2:C:211:09S:H4	2.52	0.45
1:H:67:SER:HB3	1:H:107:SER:CB	2.46	0.45
1:K:143:TRP:CE3	2:K:211:09S:H4	2.52	0.45
1:P:143:TRP:CE2	2:P:211:09S:H1	2.52	0.45
1:R:146:HIS:HE1	1:R:148:ARG:HB2	1.82	0.45
1:E:146:HIS:CE1	1:E:148:ARG:HB2	2.51	0.45
1:E:192:TYR:OH	2:E:211:09S:H16	2.16	0.45
1:F:170[B]:ARG:HD2	1:F:171:PHE:HE2	1.75	0.45
1:D:30:SER:HB2	1:D:57:THR:OG1	2.16	0.45
2:B:211:09S:H18	5:B:396:HOH:O	2.16	0.45
1:H:152:VAL:CG1	1:H:195:VAL:HG23	2.44	0.45
1:B:137:ARG:HD2	5:B:681:HOH:O	2.15	0.45
1:E:152:VAL:CG1	1:E:195:VAL:HG23	2.42	0.45
2:F:211:09S:H13	2:F:211:09S:H1	1.69	0.45
1:G:68:SER:HA	5:G:499:HOH:O	2.16	0.45
1:M:125:VAL:HG12	1:M:125:VAL:O	2.17	0.45
1:R:152:VAL:HG12	1:R:195:VAL:CG2	2.45	0.45
1:E:83:VAL:HG13	1:E:84:PRO:HD2	1.99	0.45
1:F:143:TRP:CZ3	2:F:211:09S:H4	2.52	0.45
1:N:146:HIS:CE1	1:N:148:ARG:HB2	2.51	0.45



		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:F:1389:HOH:O	1:J:21:THR:HG21	2.16	0.45
1:J:83:VAL:HG13	1:J:84:PRO:HD2	1.99	0.45
1:S:143:TRP:CE2	1:T:99:THR:HG21	2.52	0.45
1:A:152:VAL:CG1	1:A:195:VAL:HG23	2.45	0.44
1:F:143:TRP:CE3	2:F:211:09S:H4	2.52	0.44
1:T:143:TRP:CZ3	2:T:211:09S:H4	2.52	0.44
1:B:30:SER:HB2	1:B:57:THR:OG1	2.17	0.44
1:F:188:CYS:SG	2:F:211:09S:C12	3.04	0.44
1:P:10:ILE:O	1:P:14:SER:HB2	2.17	0.44
1:B:185:TYR:HD1	1:C:164:TYR:HE1	1.65	0.44
1:D:125:VAL:HG12	1:D:125:VAL:O	2.18	0.44
1:L:152:VAL:CG1	1:L:195:VAL:HG23	2.42	0.44
1:F:30:SER:HB2	1:F:57:THR:OG1	2.18	0.44
1:M:188:CYS:SG	2:M:211:09S:H15	2.57	0.44
1:C:14:SER:O	1:C:16:PRO:HD3	2.18	0.44
1:0:11:ARG:NH2	5:O:1559:HOH:O	2.50	0.44
1:A:99:THR:HG21	1:E:143:TRP:CZ2	2.53	0.44
1:Q:143:TRP:CZ2	1:R:99:THR:HG21	2.52	0.44
1:Q:152:VAL:HG12	1:Q:195:VAL:CG2	2.41	0.44
1:E:30:SER:HB2	1:E:57:THR:OG1	2.18	0.43
2:K:211:09S:H14	2:K:211:09S:H15	1.89	0.43
1:M:152:VAL:CG1	1:M:195:VAL:HG23	2.43	0.43
1:A:155:THR:HG23	1:A:155:THR:O	2.19	0.43
1:H:30:SER:HB2	1:H:57:THR:OG1	2.19	0.43
1:G:125:VAL:HG12	1:G:125:VAL:O	2.18	0.43
1:A:125:VAL:HG12	1:A:125:VAL:O	2.18	0.43
1:H:143:TRP:CE2	1:I:99:THR:HG21	2.54	0.43
1:D:45:THR:HA	1:E:170:ARG:HD2	2.00	0.43
1:J:125:VAL:HG12	1:J:125:VAL:O	2.17	0.43
1:L:185:TYR:HD1	1:M:164:TYR:CE1	2.36	0.43
2:R:211:09S:H13	2:R:211:09S:H1	1.71	0.43
1:S:83:VAL:HG13	1:S:84:PRO:HD2	2.00	0.43
1:T:143:TRP:CE3	2:T:211:09S:H4	2.54	0.43
1:Q:23:ARG:O	1:Q:24:ASP:HB3	2.19	0.43
1:T:125:VAL:HG12	1:T:125:VAL:O	2.19	0.43
1:D:1:LEU:HB2	1:D:70:SER:OG	2.19	0.43
1:F:99:THR:HG21	1:J:143:TRP:CE2	2.54	0.43
1:T:25:ARG:CG	1:T:26:PRO:HD2	2.49	0.43
1:G:83:VAL:HG13	1:G:84:PRO:HD2	2.00	0.43
1:A:152:VAL:HG12	1:A:195:VAL:CG2	2.45	0.43
1:H:152:VAL:HG12	1:H:195:VAL:CG2	2.42	0.43



00011
-------

	Atom 9	Interatomic	Clash
Atom-1	Atom-2	distance $(\text{\AA})$	overlap (Å)
1:I:125:VAL:HG12	1:I:125:VAL:O	2.19	0.43
1:I:160:ASP:HB3	1:I:163:GLU:HB2	1.99	0.43
1:O:30:SER:HB2	1:O:57:THR:OG1	2.19	0.43
1:E:68:SER:HA	5:E:889:HOH:O	2.19	0.43
1:J:14:SER:O	1:J:16:PRO:HD3	2.18	0.43
1:B:143:TRP:CZ2	1:C:99:THR:HG21	2.53	0.42
1:F:204:LYS:O	1:F:205:GLY:C	2.58	0.42
1:L:30:SER:HB2	1:L:57:THR:OG1	2.19	0.42
1:E:92:ILE:HD11	1:E:120[A]:ARG:HG2	2.00	0.42
1:K:1:LEU:HB2	1:K:70:SER:OG	2.20	0.42
1:Q:67:SER:HB3	1:Q:107:SER:CB	2.48	0.42
1:T:152:VAL:O	1:T:180:LYS:HE3	2.19	0.42
1:A:167:GLN:NE2	5:A:1757:HOH:O	2.34	0.42
1:D:143:TRP:CE2	2:D:211:09S:H1	2.54	0.42
1:D:143:TRP:CZ2	1:E:99:THR:HG21	2.54	0.42
1:K:99:THR:HG21	1:O:143:TRP:CZ2	2.54	0.42
1:N:30:SER:HB2	1:N:57:THR:OG1	2.19	0.42
1:S:30:SER:HB2	1:S:57:THR:OG1	2.19	0.42
1:E:1:LEU:HB2	1:E:70:SER:OG	2.20	0.42
1:M:94:LYS:NZ	5:M:1767:HOH:O	2.52	0.42
1:R:143:TRP:CZ3	2:R:211:09S:H4	2.53	0.42
1:S:188[B]:CYS:SG	1:S:189:PRO:CD	3.04	0.42
1:C:143:TRP:CE2	1:D:99:THR:HG21	2.55	0.42
1:L:169:SER:O	1:L:204:LYS:HE2	2.20	0.42
1:M:20:PRO:HD3	1:M:82:TRP:CD2	2.54	0.42
1:N:15:ARG:HB3	1:N:15:ARG:NH1	2.34	0.42
1:P:143:TRP:CE3	2:P:211:09S:H4	2.54	0.42
1:F:124:ASP:HB2	1:G:168:TYR:CE1	2.55	0.42
1:L:83:VAL:HG13	1:L:84:PRO:HD2	2.02	0.42
1:J:25:ARG:HG2	1:J:26:PRO:HD2	2.02	0.42
1:E:143:TRP:CZ3	2:E:211:09S:H4	2.55	0.42
1:F:99:THR:HG21	1:J:143:TRP:CZ2	2.54	0.42
1:I:30:SER:HB2	1:I:57:THR:OG1	2.19	0.42
1:J:25:ARG:HB2	1:J:25:ARG:CZ	2.50	0.42
1:L:143:TRP:CE2	1:M:99:THR:HG21	2.54	0.42
1:R:1:LEU:HB2	1:R:70:SER:OG	2.19	0.42
2:T:211:09S:H16	2:T:211:09S:H14	1.77	0.42
1:C:30:SER:HB2	1:C:57:THR:OG1	2.19	0.42
1:I:67:SER:HB3	1:I:107:SER:CB	2.50	0.42
1:M:10:ILE:O	1:M:14:SER:HB3	2.20	0.42
1:P:1:LEU:HB2	1:P:70:SER:OG	2.20	0.42



Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:30:SER:HB2	1:A:57:THR:OG1	2.21	0.41
1:H:192:TYR:CG	2:H:211:09S:H8	2.54	0.41
1:I:134:ALA:O	1:I:200:ASN:HA	2.21	0.41
1:Q:160:ASP:HB3	1:Q:163:GLU:HB2	2.02	0.41
1:A:83:VAL:HG13	1:A:84:PRO:HD2	2.02	0.41
1:B:125:VAL:O	1:B:125:VAL:HG12	2.20	0.41
1:K:124:ASP:HB2	1:L:168:TYR:CE1	2.55	0.41
1:P:125:VAL:HG12	1:P:125:VAL:O	2.21	0.41
1:B:146:HIS:CE1	1:B:148:ARG:HB2	2.56	0.41
1:G:30:SER:HB2	1:G:57:THR:OG1	2.20	0.41
1:N:188[A]:CYS:SG	2:N:211:09S:H15	2.60	0.41
1:0:146:HIS:HE1	1:O:148:ARG:HB2	1.85	0.41
1:B:67:SER:HA	1:B:70:SER:HB2	2.02	0.41
1:L:3:ARG:NE	5:L:1383:HOH:O	2.45	0.41
1:P:146:HIS:CE1	1:P:148:ARG:HB2	2.55	0.41
1:T:67:SER:HB3	1:T:107:SER:CB	2.50	0.41
1:M:83:VAL:HG13	1:M:84:PRO:HD2	2.03	0.41
1:C:125:VAL:HG12	1:C:125:VAL:O	2.20	0.41
1:P:99:THR:HG21	1:T:143:TRP:CZ2	2.56	0.41
1:F:83:VAL:HG13	1:F:84:PRO:HD2	2.03	0.41
1:J:30:SER:HB2	1:J:57:THR:OG1	2.20	0.41
1:N:125:VAL:HG12	1:N:125:VAL:O	2.21	0.41
2:D:211:09S:H14	2:D:211:09S:H15	1.81	0.40
1:N:152:VAL:HG12	1:N:195:VAL:CG2	2.43	0.40
1:Q:1:LEU:HB2	1:Q:70:SER:OG	2.21	0.40
1:Q:10:ILE:O	1:Q:14:SER:HB2	2.21	0.40
1:F:67:SER:HA	1:F:70:SER:HB2	2.04	0.40
1:J:146:HIS:CE1	1:J:148:ARG:HB2	2.56	0.40
1:N:146:HIS:HE1	1:N:148:ARG:HB2	1.87	0.40
1:P:164:TYR:HE1	1:T:185:TYR:HD1	1.70	0.40
1:Q:125:VAL:O	1:Q:125:VAL:HG12	2.20	0.40
1:N:143:TRP:CE2	1:O:99:THR:HG21	2.56	0.40
1:R:83:VAL:HG13	1:R:84:PRO:HD2	2.03	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic}\\ {\rm distance}~({\rm \AA}) \end{array}$	Clash overlap (Å)
1:F:156:THR:OG1	1:H:184:THR:OG1[1_565]	2.05	0.15



# 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	199/210~(95%)	198 (100%)	1 (0%)	0	100 100
1	В	201/210~(96%)	197~(98%)	2(1%)	2(1%)	15 15
1	С	203/210~(97%)	202 (100%)	1 (0%)	0	100 100
1	D	205/210~(98%)	205 (100%)	0	0	100 100
1	Е	201/210~(96%)	201 (100%)	0	0	100 100
1	F	202/210~(96%)	200 (99%)	2 (1%)	0	100 100
1	G	198/210 (94%)	198 (100%)	0	0	100 100
1	Н	198/210 (94%)	198 (100%)	0	0	100 100
1	Ι	202/210~(96%)	201 (100%)	1 (0%)	0	100 100
1	J	198/210 (94%)	194 (98%)	4 (2%)	0	100 100
1	К	201/210~(96%)	200 (100%)	1 (0%)	0	100 100
1	L	198/210 (94%)	197 (100%)	1 (0%)	0	100 100
1	М	200/210~(95%)	199 (100%)	1 (0%)	0	100 100
1	Ν	196/210~(93%)	195 (100%)	1 (0%)	0	100 100
1	Ο	198/210 (94%)	197 (100%)	1 (0%)	0	100 100
1	Р	200/210~(95%)	199 (100%)	1 (0%)	0	100 100
1	Q	200/210~(95%)	197 (98%)	3 (2%)	0	100 100
1	R	197/210~(94%)	196 (100%)	1 (0%)	0	100 100
1	S	201/210~(96%)	200 (100%)	1 (0%)	0	100 100
1	Т	200/210~(95%)	200 (100%)	0	0	100 100
All	All	3998/4200~(95%)	3974 (99%)	22 (1%)	2(0%)	51 63

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type						
1	В	163	GLU						
Continued on next page									



Continued from previous page...

Mol	Chain	Res	Type
1	В	161	ASP

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percen	tiles
1	А	189/196~(96%)	185~(98%)	4 (2%)	53	65
1	В	191/196~(97%)	186~(97%)	5(3%)	46	56
1	С	192/196~(98%)	184 (96%)	8 (4%)	30	36
1	D	193/196~(98%)	186 (96%)	7 (4%)	35	43
1	Ε	191/196~(97%)	184 (96%)	7 (4%)	34	42
1	F	192/196~(98%)	186 (97%)	6 (3%)	40	48
1	G	188/196~(96%)	182 (97%)	6 (3%)	39	47
1	Н	188/196~(96%)	182 (97%)	6 (3%)	39	47
1	Ι	192/196~(98%)	187 (97%)	5 (3%)	46	56
1	J	188/196~(96%)	180 (96%)	8 (4%)	29	35
1	К	191/196~(97%)	184 (96%)	7 (4%)	34	42
1	L	189/196~(96%)	184 (97%)	5 (3%)	46	56
1	М	190/196~(97%)	186 (98%)	4 (2%)	53	65
1	Ν	186/196~(95%)	179 (96%)	7 (4%)	33	41
1	Ο	188/196~(96%)	183 (97%)	5 (3%)	44	55
1	Р	190/196~(97%)	185 (97%)	5 (3%)	46	56
1	Q	190/196~(97%)	183 (96%)	7 (4%)	34	42
1	R	188/196~(96%)	181 (96%)	7 (4%)	34	42
1	S	191/196~(97%)	186 (97%)	5 (3%)	46	56
1	Т	190/196~(97%)	183 (96%)	7 (4%)	34	42
All	All	3797/3920 (97%)	3676 (97%)	121 (3%)	43	47

All (121) residues with a non-rotameric sidechain are listed below:



Mol	Chain	Res	Type
1	А	39	LEU
1	А	49	ASP
1	А	129	ASP
1	А	156	THR
1	В	39	LEU
1	В	49	ASP
1	В	129	ASP
1	В	187[A]	CYS
1	В	187[B]	CYS
1	С	14	SER
1	С	21	THR
1	С	39	LEU
1	С	49	ASP
1	С	129	ASP
1	С	187[A]	CYS
1	С	187[B]	CYS
1	С	188	CYS
1	D	23	ARG
1	D	39	LEU
1	D	49	ASP
1	D	129	ASP
1	D	156	THR
1	D	187[A]	CYS
1	D	187[B]	CYS
1	Е	23	ARG
1	Е	25	ARG
1	Е	39	LEU
1	Е	49	ASP
1	Е	129	ASP
1	Е	187[A]	CYS
1	Е	187[B]	CYS
1	F	23	ARG
1	F	39	LEU
1	F	49	ASP
1	F	129	ASP
1	F	187[A]	CYS
1	F	187[B]	CYS
1	G	14	SER
1	G	24	ASP
1	G	39	LEU
1	G	49	ASP
1	G	129	ASP
1	G	188	CYS



001000	nucu jion	t prectoa	e page
Mol	Chain	Res	Type
1	Н	14	SER
1	Н	23	ARG
1	Н	25	ARG
1	Н	39	LEU
1	Н	49	ASP
1	Н	129	ASP
1	Ι	39	LEU
1	Ι	49	ASP
1	Ι	129	ASP
1	Ι	187[A]	CYS
1	Ι	187[B]	CYS
1	J	14	SER
1	J	24	ASP
1	J	25	ARG
1	J	39	LEU
1	J	49	ASP
1	J	129	ASP
1	J	187[A]	CYS
1	J	187[B]	CYS
1	K	24	ASP
1	K	39	LEU
1	K	49	ASP
1	K	129	ASP
1	K	187[A]	CYS
1	K	187[B]	CYS
1	K	188	CYS
1	L	39	LEU
1	L	49	ASP
1	L	129	ASP
1	L	187[A]	CYS
1	L	187[B]	CYS
1	М	24	ASP
1	М	39	LEU
1	М	49	ASP
1	М	129	ASP
1	N	14	SER
1	N	15	ARG
1	N	39	LEU
1	N	49	ASP
1	N	129	ASP
1	N	187[A]	CYS
1	N	187[B]	CYS
*			



Mol	Chain	Res	Type
1	0	39	LEU
1	0	49	ASP
1	0	129	ASP
1	0	187[A]	CYS
1	0	187[B]	CYS
1	Р	23	ARG
1	Р	39	LEU
1	Р	49	ASP
1	Р	129	ASP
1	Р	188	CYS
1	Q	25	ARG
1	Q	39	LEU
1	Q	49	ASP
1	Q	129	ASP
1	Q	187[A]	CYS
1	Q	187[B]	CYS
1	Q	188	CYS
1	R	24	ASP
1	R	39	LEU
1	R	49	ASP
1	R	129	ASP
1	R	187[A]	CYS
1	R	187[B]	CYS
1	R	188	CYS
1	S	39	LEU
1	S	49	ASP
1	S	129	ASP
1	S	187[A]	CYS
1	S	187[B]	CYS
1	Т	14	SER
1	Т	21	THR
1	Т	39	LEU
1	Т	49	ASP
1	Т	129	ASP
1	Т	187[A]	CYS
1	Т	187[B]	CYS

Continued from previous page...

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	200	ASN
1	G	200	ASN



Continued from previous page...

Mol	Chain	$\operatorname{Res}$	Type
1	S	69	HIS

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

### 5.6 Ligand geometry (i)

29 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	(al Turne Chain Deg Lin		T:nl.	Bo	ond leng	ths	Bond angles			
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z  > 2
2	09S	S	211	-	16,18,18	3.17	5 (31%)	16,23,23	1.47	3 (18%)
2	09S	Ο	211	-	16,18,18	3.22	2 (12%)	16,23,23	1.58	3 (18%)
2	09S	L	211	-	16,18,18	3.01	3 (18%)	$16,\!23,\!23$	1.37	3 (18%)
3	SO4	Н	212	-	4,4,4	0.15	0	$6,\!6,\!6$	0.11	0
2	09S	А	211	-	16,18,18	3.26	3 (18%)	$16,\!23,\!23$	1.37	2 (12%)
2	09S	G	211	-	16,18,18	3.14	4 (25%)	$16,\!23,\!23$	1.67	3 (18%)
4	NAG	С	300	1	14,14,15	0.49	0	17,19,21	1.91	6 (35%)
3	SO4	S	212	-	4,4,4	0.11	0	$6,\!6,\!6$	0.14	0
2	09S	Ν	211	-	16,18,18	2.99	3 (18%)	$16,\!23,\!23$	1.47	2 (12%)
2	09S	Е	211	-	16,18,18	3.02	4 (25%)	16,23,23	1.65	3 (18%)
4	NAG	G	301	1	14,14,15	0.59	0	17,19,21	1.30	2 (11%)



Mal	Iol Type Chain		Dog	Link	Bo	Bond lengths			Bond angles		
	Type	Ullalli	nes		Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z  > 2	
2	09S	F	211	-	16,18,18	<mark>3.39</mark>	4 (25%)	16,23,23	1.36	2 (12%)	
2	09S	K	211	-	16,18,18	<b>3.09</b>	3 (18%)	16,23,23	1.47	2 (12%)	
3	SO4	N	212	-	4,4,4	0.13	0	6,6,6	0.33	0	
2	09S	Q	211	-	16,18,18	2.81	3 (18%)	16,23,23	1.73	3 (18%)	
2	09S	D	211	-	16,18,18	<b>3.05</b>	4 (25%)	16,23,23	1.76	4 (25%)	
2	09S	R	211	-	16,18,18	3.01	4 (25%)	16,23,23	1.55	3 (18%)	
2	09S	Т	211	-	16,18,18	3.04	3 (18%)	16,23,23	2.12	3 (18%)	
2	09S	М	211	-	16,18,18	3.04	3 (18%)	16,23,23	1.56	2 (12%)	
3	SO4	А	212	-	4,4,4	0.12	0	6,6,6	0.22	0	
2	09S	Р	211	-	16,18,18	3.14	3 (18%)	16,23,23	1.59	2 (12%)	
2	09S	Н	211	-	16,18,18	3.01	3 (18%)	16,23,23	1.73	2 (12%)	
3	SO4	Р	213	-	4,4,4	0.16	0	6,6,6	0.09	0	
2	09S	В	211	-	16,18,18	3.10	3 (18%)	16,23,23	1.32	2 (12%)	
2	09S	J	211	-	16,18,18	3.21	4 (25%)	16,23,23	1.32	3 (18%)	
2	09S	С	211	-	16,18,18	3.16	3 (18%)	16,23,23	1.37	2 (12%)	
2	09S	Ι	211	-	16,18,18	3.08	3 (18%)	16,23,23	1.52	3 (18%)	
4	NAG	Т	212	1	14,14,15	0.44	0	17,19,21	1.49	5 (29%)	
3	SO4	Р	212	-	4,4,4	0.16	0	6,6,6	0.07	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	09S	S	211	-	-	0/7/16/16	0/2/2/2
2	09S	0	211	-	-	0/7/16/16	0/2/2/2
2	09S	L	211	-	-	1/7/16/16	0/2/2/2
2	09S	А	211	-	-	0/7/16/16	0/2/2/2
2	09S	G	211	-	-	0/7/16/16	0/2/2/2
4	NAG	С	300	1	-	2/6/23/26	0/1/1/1
2	09S	N	211	-	-	0/7/16/16	0/2/2/2
2	09S	Е	211	-	-	0/7/16/16	0/2/2/2
4	NAG	G	301	1	-	0/6/23/26	0/1/1/1
2	09S	F	211	-	-	1/7/16/16	0/2/2/2
2	09S	K	211	-	-	1/7/16/16	0/2/2/2
2	09S	Q	211	-	-	0/7/16/16	0/2/2/2
2	09S	D	211	-	-	1/7/16/16	0/2/2/2
2	09S	R	211	-	-	0/7/16/16	0/2/2/2



Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	09S	Т	211	-	-	1/7/16/16	0/2/2/2
2	09S	М	211	-	-	0/7/16/16	0/2/2/2
2	09S	Р	211	-	-	0/7/16/16	0/2/2/2
2	09S	Н	211	-	-	1/7/16/16	0/2/2/2
2	09S	В	211	-	-	1/7/16/16	0/2/2/2
2	09S	J	211	-	-	2/7/16/16	0/2/2/2
2	09S	С	211	-	-	0/7/16/16	0/2/2/2
2	09S	Ι	211	-	-	0/7/16/16	0/2/2/2
4	NAG	Т	212	1	-	0/6/23/26	0/1/1/1

All (67) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
2	Р	211	09S	BR1-C6	-11.12	1.73	1.90
2	В	211	09S	BR1-C6	-11.07	1.73	1.90
2	F	211	09S	BR1-C6	-11.01	1.73	1.90
2	А	211	09S	BR1-C6	-10.97	1.73	1.90
2	0	211	09S	BR1-C6	-10.91	1.73	1.90
2	Ι	211	09S	BR1-C6	-10.72	1.73	1.90
2	J	211	09S	BR1-C6	-10.64	1.73	1.90
2	Κ	211	09S	BR1-C6	-10.55	1.74	1.90
2	R	211	09S	BR1-C6	-10.48	1.74	1.90
2	G	211	09S	BR1-C6	-10.43	1.74	1.90
2	М	211	09S	BR1-C6	-10.35	1.74	1.90
2	Т	211	09S	BR1-C6	-10.29	1.74	1.90
2	С	211	09S	BR1-C6	-10.23	1.74	1.90
2	D	211	09S	BR1-C6	-10.11	1.74	1.90
2	Е	211	09S	BR1-C6	-10.01	1.74	1.90
2	Н	211	09S	BR1-C6	-10.00	1.74	1.90
2	S	211	09S	BR1-C6	-9.98	1.74	1.90
2	L	211	09S	BR1-C6	-9.88	1.75	1.90
2	Q	211	09S	BR1-C6	-9.88	1.75	1.90
2	Ν	211	09S	BR1-C6	-9.78	1.75	1.90
2	F	211	09S	C6-N3	6.49	1.36	1.32
2	S	211	09S	C6-N3	6.32	1.36	1.32
2	С	211	09S	C6-N3	6.08	1.36	1.32
2	0	211	09S	C6-N3	5.76	1.36	1.32
2	Ν	211	09S	C6-N3	5.53	1.36	1.32
2	А	211	09S	C6-N3	5.45	1.35	1.32
2	J	211	09S	C6-N3	5.36	1.35	1.32
2	L	211	09S	C6-N3	5.35	1.35	1.32
2	G	211	09S	C6-N3	5.29	1.35	1.32



Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	Е	211	09S	C6-N3	5.12	1.35	1.32
2	D	211	09S	C6-N3	5.06	1.35	1.32
2	Т	211	09S	C6-N3	4.86	1.35	1.32
2	Н	211	09S	C6-N3	4.86	1.35	1.32
2	М	211	09S	C6-N3	4.68	1.35	1.32
2	Κ	211	09S	C6-N3	4.67	1.35	1.32
2	Ι	211	09S	C6-N3	4.36	1.35	1.32
2	Р	211	09S	C6-N3	4.18	1.35	1.32
2	R	211	09S	C6-N3	4.07	1.35	1.32
2	В	211	09S	C6-N3	4.05	1.35	1.32
2	Q	211	09S	C6-N3	3.45	1.34	1.32
2	S	211	09S	C10-C6	2.57	1.43	1.38
2	D	211	09S	C9-C10	2.50	1.43	1.38
2	М	211	09S	C9-C10	2.47	1.43	1.38
2	J	211	09S	C10-C6	2.44	1.43	1.38
2	G	211	09S	C10-C6	2.44	1.43	1.38
2	Т	211	09S	C10-C6	2.43	1.43	1.38
2	Н	211	09S	C9-C10	2.36	1.43	1.38
2	L	211	09S	C10-C6	2.30	1.42	1.38
2	K	211	09S	C9-C10	2.28	1.42	1.38
2	D	211	09S	C10-C6	2.27	1.42	1.38
2	G	211	09S	C9-C10	2.27	1.42	1.38
2	R	211	09S	C10-C6	2.25	1.42	1.38
2	Е	211	09S	C10-C6	2.22	1.42	1.38
2	Ν	211	09S	C9-C10	2.22	1.42	1.38
2	J	211	09S	C9-C10	2.21	1.42	1.38
2	Е	211	09S	C9-C10	2.19	1.42	1.38
2	R	211	09S	C9-C10	2.19	1.42	1.38
2	Q	211	09S	C9-C10	2.19	1.42	1.38
2	Р	211	09S	C9-C10	2.15	1.42	1.38
2	F	211	09S	C10-C6	2.13	1.42	1.38
2	F	211	09S	C9-C10	2.11	1.42	1.38
2	S	211	09S	C9-C10	2.08	1.42	1.38
2	S	211	09S	C7-C8	2.06	1.42	1.38
2	В	211	09S	C9-C10	2.05	1.42	1.38
2	С	211	09S	C10-C6	2.05	1.42	1.38
2	А	211	09S	C7-C8	2.03	1.42	1.38
2	Ι	211	09S	C9-C10	2.02	1.42	1.38

All (65) bond angle outliers are listed below:



31	J8N

- J. T. F. T. G. W. P. J. T. P. T. P	Continued from previous page							
Mol         Chain         Res         Type         Atoms         Z         Observation	$\operatorname{rved}(^{o}) \mid \operatorname{Ideal}(^{o})$							
Mol Chain Res Type Atoms Z Obser	$rved(^{o})   Ideal(^{o})$							
2 H 211 09S C9-C8-C7 -5.11 11	5.43 119.48							
2 T 211 09S C9-C8-C7 -5.11 11	5.43 119.48							
2 T 211 09S 01-C10-C6 4.96 12	2.92 116.58							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.57 119.48							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.91 119.48							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.07 119.48							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.12 119.48							
2 M 211 09S C9-C8-C7 -4.13 11	<u>6.20</u> <u>119.48</u>							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.24 119.48							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.38 110.10							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.31 119.48							
2 N 211 095 C9-C8-C7 -3.72 11	653 119.48							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.63 119.10							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.65 119.18							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	740 112.19							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.83 119.48							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.85 116.58							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.86         110.30							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.00 119.40							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 00 119.48							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 33 115 60							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{0.00}{1.00}$ 110.00							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 17 119 48							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110.40							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.20 110.50 $7.22$ 110.48							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.21 110.40							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 <i>11</i> 110.50							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.11 112.19							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	734 110.88							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 99 116 58							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 37 110.60							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 60 112 19							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.00 112.19 0.50 116.10							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 30 122 90							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	473 111 02							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 60 113 46							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 03 191 33							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 77 116 58							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 75 113 46							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.10 110.40							



Mol	Chain	$\mathbf{Res}$	Type	Atoms	$\mathbf{Z}$	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	L	211	09S	O1-C10-C6	2.34	119.57	116.58
2	Р	211	09S	C9-C8-N2	2.33	123.84	121.33
2	D	211	09S	C9-C8-N2	2.33	123.84	121.33
4	Т	212	NAG	C8-C7-N2	2.32	120.03	116.10
2	J	211	09S	O1-C10-C6	2.32	119.55	116.58
2	Q	211	09S	C9-C8-N2	2.31	123.83	121.33
2	Ν	211	09S	C4-C5-N2	-2.31	109.01	113.46
4	С	300	NAG	O5-C1-C2	-2.30	107.66	111.29
2	Ι	211	09S	C2-C1-N2	2.26	117.25	113.12
2	Κ	211	09S	C9-C8-N2	2.25	123.75	121.33
4	Т	212	NAG	O5-C5-C6	2.22	110.68	107.20
2	S	211	09S	O1-C10-C6	2.20	119.39	116.58
2	В	211	09S	C9-C8-N2	2.17	123.67	121.33
4	Т	212	NAG	C6-C5-C4	-2.16	107.94	113.00
2	0	211	09S	C4-C5-N2	-2.14	109.34	113.46
2	J	211	09S	C5-N2-C1	2.14	121.29	117.47
4	С	300	NAG	C6-C5-C4	-2.13	108.01	113.00
2	R	211	09S	C9-C8-N2	2.13	123.63	121.33
2	Т	211	09S	C11-O1-C10	-2.13	113.41	118.05
2	Е	211	09S	C4-C5-N2	-2.12	109.38	113.46
2	F	211	09S	O1-C10-C6	2.11	119.27	116.58
2	Q	211	09S	O1-C10-C6	2.10	119.26	116.58
2	L	211	098	C9-C8-N2	2.05	123.54	121.33
2	D	211	098	C4-C5-N2	-2.01	109.59	113.46

There are no chirality outliers.

All (11) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	С	300	NAG	C4-C5-C6-O6
2	Κ	211	09S	C12-C11-O1-C10
4	С	300	NAG	O5-C5-C6-O6
2	L	211	09S	C12-C11-O1-C10
2	F	211	09S	C12-C11-O1-C10
2	D	211	09S	C12-C11-O1-C10
2	J	211	09S	C7-C8-N2-C1
2	В	211	09S	C12-C11-O1-C10
2	Т	211	09S	C6-C10-O1-C11
2	Н	211	09S	C9-C8-N2-C1
2	J	211	09S	C9-C8-N2-C1

There are no ring outliers.



Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	L	211	09S	1	0
2	А	211	09S	1	0
2	G	211	09S	1	0
2	N	211	09S	1	0
2	Е	211	09S	2	0
2	F	211	09S	5	0
2	K	211	09S	3	0
2	Q	211	09S	1	0
2	D	211	09S	4	0
2	R	211	09S	3	0
2	Т	211	09S	5	0
2	М	211	09S	2	0
3	А	212	SO4	1	0
2	Р	211	09S	4	0
2	Н	211	09S	2	0
2	В	211	09S	2	0
2	С	211	09S	2	0
4	Т	212	NAG	2	0

18 monomers are involved in 42 short contacts:

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.









































### 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

# 6.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

### 6.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

## 6.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

### 6.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

