

Full wwPDB X-ray Structure Validation Report (i)

Dec 15, 2024 – 03:16 PM EST

PDB ID	:	3FU9
Title	:	Melanocarpus albomyces laccase crystal soaked (20 min) with 2,6-
		dimethoxyphenol
Authors	:	Kallio, J.P.; Hakulinen, N.; Rouvinen, J.
Deposited on	:	2009-01-14
Resolution	:	2.00 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.21
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.004 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	164625	9409 (2.00-2.00)
Clashscore	180529	10737 (2.00-2.00)
Ramachandran outliers	177936	10628 (2.00-2.00)
Sidechain outliers	177891	10627 (2.00-2.00)
RSRZ outliers	164620	9409 (2.00-2.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain				
1	А	559	31%	40%	7%		
1	D	550	38%		1 /0		
	В	559	48%	42%	9% •	•	
2	С	2	1	00%			
2	D	2	50%	50%		•	
2	Е	2	1	00%		•	
2	F	2	50%	50%		•	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	CL	А	605	-	-	Х	-
7	KIB	В	611	-	-	Х	-

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 9692 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	А	559	Total 4369	C 2764	N 759	0 831	S 15	0	0	0
1	В	559	Total 4369	С 2764	N 759	0 831	S 15	0	0	0

• Molecule 1 is a protein called Laccase-1.

• Molecule 2 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace	
9	С	9	Total C N O	0	0	0	
2	U	2	28 16 2 10	0	0	U	
9	Л	9	Total C N O	0	0	0	
	D	2	28 16 2 10	0	0	0	
0	F	2	Total C N O	0	0	0	
		2	28 16 2 10	0	0	0	
0	9 E		Total C N O	0	0	0	
2	Г		28 16 2 10	0		U	

• Molecule 3 is COPPER (II) ION (three-letter code: CU) (formula: Cu).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	4	Total Cu 4 4	0	0
3	В	4	Total Cu 4 4	0	0

• Molecule 4 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total Cl 1 1	0	0
4	В	1	Total Cl 1 1	0	0

• Molecule 5 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf
5	Δ	1	Total	С	Ν	0	0	0
0	Л	T	14	8	1	5	0	0
5	Δ	1	Total	С	Ν	Ο	0	0
0	Π	T	14	8	1	5	0	0
5	Δ	1	Total	С	Ν	Ο	0	0
0	Π	T	14	8	1	5	0	0
5	В	1	Total	С	Ν	Ο	0	0
0	D	T	14	8	1	5	0	0
5	В	1	Total	С	Ν	Ο	0	0
0	D	T	14	8	1	5	0	0
5	В	1	Total	С	Ν	Ο	0	0
0	D	I	14	8	1	5	0	0
5	В	1	Total	С	N	0	0	0
		L L	14	8	1	5		0

• Molecule 6 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
6	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 7 is 2,6-dimethoxybenzene-1,4-diol (three-letter code: KIB) (formula: $C_8H_{10}O_4$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	А	1	Total C O 12 8 4	0	0
7	В	1	Total C O 12 8 4	0	0

• Molecule 8 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	А	340	Total O 340 340	0	0
8	В	360	Total O 360 360	0	0

Residue-property plots (i) 3

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

9%

• Molecule 1: Laccase-1

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain C:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain D: 50% 50%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain E:	10	0%	I.
NAG1 NAG2			
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta-I	D-glucopyranose-(1-4)-2-acetamic	lo-2-deoxy-beta-D-gluc
Chain F:	50%	50%	I
NAG1 NAG2			

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	174.12Å 60.23Å 117.13Å	Deperitor
a, b, c, α , β , γ	90.00° 98.36° 90.00°	Depositor
Bosolution(A)	19.61 - 2.00	Depositor
Resolution (A)	19.61 - 2.00	EDS
% Data completeness	100.0 (19.61-2.00)	Depositor
(in resolution range)	97.4 (19.61-2.00)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	0.09	Depositor
$< I/\sigma(I) > 1$	$3.03 (at 1.90 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.2.0019	Depositor
D D	0.230 , 0.330	Depositor
n, n_{free}	0.291 , 0.291	DCC
R_{free} test set	3972 reflections $(5.00%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	10.1	Xtriage
Anisotropy	1.421	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.41 , 49.8	EDS
L-test for twinning ²	$ \langle L \rangle = 0.39, \langle L^2 \rangle = 0.22$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.75	EDS
Total number of atoms	9692	wwPDB-VP
Average B, all atoms $(Å^2)$	13.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 5.57% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: KIB, CL, SO4, CU, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	1.44	29/4506~(0.6%)	1.26	22/6191~(0.4%)	
1	В	1.40	20/4506~(0.4%)	1.33	37/6191~(0.6%)	
All	All	1.42	49/9012~(0.5%)	1.30	59/12382~(0.5%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	В	0	1
All	All	0	2

All (49) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	А	286	TYR	CD2-CE2	11.69	1.56	1.39
1	В	286	TYR	CD1-CE1	9.74	1.53	1.39
1	В	286	TYR	CD2-CE2	8.73	1.52	1.39
1	А	531	GLU	CG-CD	8.67	1.65	1.51
1	А	255	VAL	CB-CG2	8.35	1.70	1.52
1	А	503	CYS	CB-SG	-8.08	1.68	1.82
1	А	150	VAL	CB-CG2	7.15	1.67	1.52
1	А	154	GLN	C-O	-7.14	1.09	1.23
1	А	286	TYR	CD1-CE1	6.99	1.49	1.39
1	А	233	SER	CB-OG	6.76	1.51	1.42
1	В	257	VAL	CB-CG1	6.55	1.66	1.52
1	А	361	VAL	CA-CB	6.43	1.68	1.54
1	A	1	GLU	CG-CD	6.33	1.61	1.51
1	B	113	GLU	CG-CD	6.32	1.61	1.51

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
1	А	257	VAL	CB-CG1	6.16	1.65	1.52
1	В	519	GLU	CG-CD	6.06	1.61	1.51
1	А	145	TYR	CD1-CE1	6.04	1.48	1.39
1	А	356	ASP	CB-CG	6.03	1.64	1.51
1	А	257	VAL	CB-CG2	-5.98	1.40	1.52
1	В	531	GLU	CB-CG	5.94	1.63	1.52
1	В	452	ALA	CA-CB	5.86	1.64	1.52
1	А	250	ILE	CB-CG2	5.83	1.71	1.52
1	А	249	VAL	CB-CG1	5.75	1.65	1.52
1	В	445	ARG	CZ-NH2	5.70	1.40	1.33
1	А	399	TYR	CD2-CE2	5.68	1.47	1.39
1	А	266	PHE	CE1-CZ	5.64	1.48	1.37
1	А	136	TRP	CB-CG	5.63	1.60	1.50
1	В	499	TRP	CB-CG	5.61	1.60	1.50
1	А	288	PHE	CE2-CZ	5.51	1.47	1.37
1	А	505	ILE	C-O	5.50	1.33	1.23
1	А	78	GLU	CB-CG	5.47	1.62	1.52
1	В	446	SER	CB-OG	-5.43	1.35	1.42
1	А	339	ARG	CG-CD	5.40	1.65	1.51
1	В	136	TRP	CB-CG	5.38	1.59	1.50
1	А	519	GLU	CG-CD	5.30	1.59	1.51
1	А	191	ALA	CA-CB	5.28	1.63	1.52
1	В	257	VAL	CB-CG2	-5.26	1.41	1.52
1	А	440	PHE	CE2-CZ	5.26	1.47	1.37
1	В	179	ALA	CA-CB	5.25	1.63	1.52
1	В	531	GLU	CG-CD	5.24	1.59	1.51
1	В	542	GLU	CD-OE2	5.17	1.31	1.25
1	А	513	LEU	C-O	5.12	1.33	1.23
1	В	449	VAL	CB-CG2	5.10	1.63	1.52
1	А	482	PRO	C-O	5.09	1.33	1.23
1	В	176	TYR	CD2-CE2	-5.08	1.31	1.39
1	В	275	VAL	CA-CB	5.04	1.65	1.54
1	А	289	ASN	CG-ND2	5.03	1.45	1.32
1	В	547	TRP	CB-CG	-5.02	1.41	1.50
1	В	358	THR	CA-CB	5.01	1.66	1.53

All (59) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	130	ARG	NE-CZ-NH2	-10.41	115.09	120.30
1	А	40	LEU	CA-CB-CG	10.27	138.93	115.30
1	В	130	ARG	NE-CZ-NH1	9.37	124.98	120.30

Conti	nuea from	$\frac{1}{\mathbf{D}}$	ous page	····	7	\mathbf{O}	$\mathbf{T}_{1} = 1(0)$
MOI	Chain	Res	Type	Atoms	Z	Observed(°)	Ideal(°)
	В	520	ARG	NE-CZ-NH2	-8.65	115.97	120.30
	A	554	LYS	CD-CE-NZ	-8.64	91.82	111.70
1	В	489	LEU	CA-CB-CG	7.78	133.19	115.30
	A	527	ARG	NE-CZ-NH2	-7.76	116.42	120.30
	В	439	ASP	CB-CG-ODI	7.59	125.13	118.30
	В	520	ARG	NE-CZ-NHI	7.42	124.01	120.30
1	A	75	ASP	CB-CG-OD2	-7.38	111.66	118.30
1	В	350	SER	N-CA-C	7.01	129.93	111.00
1	A	101	ASP	CB-CG-OD1	-6.92	112.07	118.30
1	A	467	ARG	NE-CZ-NH2	-6.91	116.85	120.30
1	В	10	ARG	NE-CZ-NH1	6.88	123.74	120.30
1	В	467	ARG	NE-CZ-NH1	6.73	123.66	120.30
1	В	50	ASP	CB-CG-OD1	-6.63	112.33	118.30
1	В	500	LEU	CA-CB-CG	6.54	130.35	115.30
1	В	50	ASP	CB-CG-OD2	6.51	124.16	118.30
1	В	302	LEU	CB-CG-CD1	-6.40	100.12	111.00
1	В	446	SER	C-N-CD	6.38	141.79	128.40
1	В	532	ASP	CB-CG-OD2	6.25	123.92	118.30
1	А	161	LEU	CB-CG-CD1	6.23	121.58	111.00
1	В	467	ARG	NE-CZ-NH2	-6.14	117.23	120.30
1	В	460	ASP	CB-CG-OD1	5.96	123.67	118.30
1	А	166	ASP	CB-CG-OD1	5.96	123.66	118.30
1	А	155	ILE	N-CA-C	-5.85	95.22	111.00
1	В	334	ASP	CB-CG-OD2	-5.83	113.05	118.30
1	А	253	ASP	CB-CG-OD2	5.79	123.51	118.30
1	В	284	ASP	CB-CG-OD1	5.78	123.51	118.30
1	А	130	ARG	NE-CZ-NH1	5.78	123.19	120.30
1	В	128	ARG	NE-CZ-NH2	-5.76	117.42	120.30
1	В	488	LEU	CB-CG-CD2	-5.75	101.22	111.00
1	В	119	LYS	CD-CE-NZ	5.75	124.92	111.70
1	А	448	ASP	CB-CG-OD1	5.74	123.46	118.30
1	А	44	ASP	CB-CG-OD1	5.68	123.42	118.30
1	В	257	VAL	CG1-CB-CG2	-5.67	101.83	110.90
1	А	350	SER	N-CA-C	5.66	126.28	111.00
1	В	284	ASP	CB-CG-OD2	-5.51	113.34	118.30
1	А	525	ARG	NE-CZ-NH1	5.49	123.04	120.30
1	В	40	LEU	CB-CG-CD1	-5.46	101.72	111.00
1	В	556	ASP	CB-CG-OD1	5.46	123.21	118.30
1	В	164	ASP	CB-CG-OD2	5.45	123.21	118.30
1	В	344	ARG	NE-CZ-NH2	-5.44	117.58	120.30
1	В	476	ARG	CA-CB-CG	5.43	125.34	113.40
1	А	70	VAL	N-CA-C	-5.40	96.43	111.00

Contir d fa

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	364	ASP	CB-CG-OD1	5.37	123.13	118.30
1	В	106	ASP	CB-CG-OD1	5.36	123.12	118.30
1	А	249	VAL	CB-CA-C	-5.33	101.28	111.40
1	А	64	ILE	CG1-CB-CG2	5.30	123.06	111.40
1	В	298	CYS	CA-CB-SG	-5.27	104.51	114.00
1	А	253	ASP	CB-CA-C	5.27	120.93	110.40
1	В	120	GLY	N-CA-C	5.26	126.24	113.10
1	В	40	LEU	CA-CB-CG	5.24	127.34	115.30
1	В	556	ASP	CB-CG-OD2	-5.17	113.65	118.30
1	В	487	LEU	CB-CG-CD1	-5.10	102.33	111.00
1	А	198	VAL	CG1-CB-CG2	-5.06	102.80	110.90
1	В	487	LEU	CA-CB-CG	5.05	126.92	115.30
1	А	224	ARG	NE-CZ-NH2	-5.00	117.80	120.30
1	А	456	ARG	NE-CZ-NH1	5.00	122.80	120.30

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	437	GLY	Peptide
1	В	514	SER	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4369	0	4114	253	0
1	В	4369	0	4114	365	1
2	С	28	0	24	5	0
2	D	28	0	24	3	0
2	Е	28	0	25	8	0
2	F	28	0	25	4	0
3	А	4	0	0	0	0
3	В	4	0	0	0	0
4	А	1	0	0	3	0
4	В	1	0	0	0	0
5	А	42	0	39	5	1

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	В	56	0	52	0	0
6	А	5	0	0	0	0
6	В	5	0	0	0	0
7	А	12	0	8	1	0
7	В	12	0	8	7	0
8	А	340	0	0	109	0
8	В	360	0	0	182	0
All	All	9692	0	8433	631	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 36.

All (631) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:261:THR:HG22	8:B:854:HOH:O	1.28	1.28
1:B:211:GLU:HB2	8:B:717:HOH:O	1.26	1.28
1:B:143:ALA:HA	8:B:877:HOH:O	1.29	1.27
1:B:230:LEU:HB3	8:B:824:HOH:O	1.34	1.27
1:A:510:SER:HB2	8:A:702:HOH:O	1.29	1.25
1:B:505:ILE:HD13	8:B:1023:HOH:O	1.37	1.23
1:B:369:PRO:HB3	8:B:939:HOH:O	1.36	1.23
1:A:12:CYS:HB3	8:A:999:HOH:O	1.10	1.22
1:A:528:ILE:HD12	8:A:992:HOH:O	1.36	1.22
1:B:478:THR:HG22	8:B:955:HOH:O	1.36	1.21
1:B:134:THR:HG22	8:B:722:HOH:O	1.05	1.20
1:B:97:ILE:HD13	8:B:810:HOH:O	1.41	1.18
1:B:388:ILE:HG23	8:B:855:HOH:O	1.46	1.15
1:B:449:VAL:HG21	8:B:832:HOH:O	1.46	1.14
1:B:214:TYR:HA	8:B:831:HOH:O	1.44	1.13
1:B:140:HIS:CE1	8:B:701:HOH:O	1.99	1.12
1:B:217:VAL:HA	8:B:866:HOH:O	1.48	1.11
1:B:23:TYR:HB3	8:B:889:HOH:O	1.50	1.10
1:A:485:GLY:HA3	8:A:719:HOH:O	1.49	1.09
1:A:388:ILE:HD13	1:A:405:ILE:HD11	1.20	1.09
1:A:9:ASN:ND2	1:A:12:CYS:SG	2.25	1.07
1:B:447:PRO:HG2	8:B:881:HOH:O	1.55	1.06
1:B:440:PHE:HE1	8:B:781:HOH:O	1.35	1.05
1:A:64:ILE:HG13	8:A:989:HOH:O	1.55	1.04
1:B:178:ARG:HH21	1:B:182:ASP:HB3	1.23	1.03
1:B:463:VAL:HG23	8:B:952:HOH:O	1.57	1.03

	1 · · · · · · · · · · · · · · · · · · ·	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:85:LEU:HA	8:B:761:HOH:O	1.58	1.03
1:A:285:ASN:OD1	1:A:311:HIS:HD2	1.41	1.02
1:B:38:PHE:CE1	1:B:67:PRO:HG2	1.94	1.01
1:B:178:ARG:NH2	1:B:182:ASP:HB3	1.76	1.00
1:B:322:ASP:HA	8:B:931:HOH:O	1.62	1.00
1:A:433:MET:HB2	8:A:703:HOH:O	1.62	1.00
1:A:271:GLN:HG2	1:A:476:ARG:NH2	1.77	0.99
1:B:57:VAL:HG22	8:B:758:HOH:O	1.62	0.99
1:A:382:VAL:HG13	8:A:845:HOH:O	1.63	0.98
1:B:172:ILE:HG13	8:B:702:HOH:O	1.63	0.97
1:B:417:TRP:HD1	8:B:990:HOH:O	1.48	0.97
1:A:141:PHE:CD1	8:A:743:HOH:O	2.19	0.96
1:B:46:TRP:HB2	8:B:758:HOH:O	1.66	0.96
1:A:115:PRO:HD2	8:A:862:HOH:O	1.64	0.96
1:A:309:ILE:HD12	5:A:607:NAG:H81	1.45	0.95
1:B:50:ASP:HB2	8:B:770:HOH:O	1.62	0.95
1:A:388:ILE:CD1	1:A:405:ILE:HD11	1.96	0.95
1:A:301:SER:HB3	8:A:812:HOH:O	1.66	0.94
1:B:19:ILE:HG13	8:B:720:HOH:O	1.65	0.94
1:B:308:ALA:HB2	8:B:791:HOH:O	1.67	0.94
1:B:82:ILE:HG12	1:B:122:GLN:HB2	1.48	0.93
8:A:725:HOH:O	1:B:191:ALA:HB3	1.69	0.92
1:B:140:HIS:ND1	8:B:701:HOH:O	1.96	0.92
1:B:461:PRO:HG3	8:B:992:HOH:O	1.69	0.92
1:A:510:SER:CB	8:A:702:HOH:O	1.96	0.92
1:B:46:TRP:CB	8:B:758:HOH:O	2.18	0.91
1:B:295:GLN:OE1	1:B:452:ALA:HB3	1.68	0.91
1:A:498:ALA:HB2	8:A:830:HOH:O	1.70	0.91
7:B:611:KIB:H7	8:B:821:HOH:O	1.68	0.91
1:B:107:GLY:HA2	1:B:113:GLU:OE1	1.71	0.90
1:A:388:ILE:HD13	1:A:405:ILE:CD1	2.02	0.90
1:A:358:THR:O	5:A:608:NAG:H82	1.73	0.89
1:A:491:PHE:HB2	8:A:878:HOH:O	1.71	0.89
1:B:460:ASP:HB3	1:B:463:VAL:CG1	2.02	0.89
1:B:261:THR:CG2	8:B:854:HOH:O	1.95	0.87
1:A:438:HIS:NE2	1:A:519:GLU:OE1	2.06	0.87
1:B:428:SER:HB3	1:B:484:GLY:H	1.35	0.87
1:B:540:CYS:HB3	8:B:765:HOH:O	1.74	0.87
1:B:413:GLN:HG2	8:B:841:HOH:O	1.74	0.86
1:A:429:LEU:HD23	8:A:957:HOH:O	1.74	0.86
1:A:43:VAL:HB	1:A:57:VAL:HG23	1.57	0.86

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:161:LEU:HG	8:B:940:HOH:O	1.75	0.86
1:B:265:LEU:HB2	8:B:814:HOH:O	1.76	0.86
1:B:38:PHE:HE1	1:B:67:PRO:HG2	1.40	0.86
1:A:314:GLY:HA3	8:A:727:HOH:O	1.76	0.85
1:B:256:PRO:HB3	8:B:867:HOH:O	1.75	0.85
1:A:523:ASP:HA	8:A:960:HOH:O	1.75	0.85
1:B:381:ASN:OD1	1:B:554:LYS:NZ	2.10	0.85
1:A:273:TYR:CZ	8:A:724:HOH:O	2.28	0.84
1:B:267:LEU:HD11	8:B:814:HOH:O	1.77	0.84
1:B:347:PRO:HD3	8:B:1013:HOH:O	1.76	0.84
1:B:295:GLN:HG2	8:B:820:HOH:O	1.78	0.84
1:B:228:ARG:HG2	1:B:274:ASP:OD2	1.78	0.84
1:B:61:ASN:HB3	8:B:918:HOH:O	1.79	0.83
1:B:455:GLN:HG2	8:B:991:HOH:O	1.77	0.83
1:A:518:LEU:HG	1:A:521:PRO:HG3	1.58	0.83
1:B:115:PRO:HA	8:B:825:HOH:O	1.78	0.83
1:B:145:TYR:CE2	8:B:1006:HOH:O	2.31	0.83
1:A:271:GLN:HG2	1:A:476:ARG:HH21	1.40	0.83
1:B:479:THR:HB	8:B:781:HOH:O	1.79	0.82
1:B:244:ASN:ND2	1:B:281:ARG:HH12	1.78	0.82
1:A:285:ASN:OD1	1:A:311:HIS:CD2	2.31	0.82
1:B:206:ASN:HA	8:B:770:HOH:O	1.78	0.82
1:B:540:CYS:CB	8:B:765:HOH:O	2.28	0.82
1:A:95:HIS:O	1:A:135:SER:HB3	1.80	0.82
1:B:91:SER:HB3	8:B:825:HOH:O	1.79	0.81
7:B:611:KIB:H7	8:B:749:HOH:O	1.79	0.81
1:B:523:ASP:HA	1:B:526:GLN:HE22	1.43	0.81
1:B:549:THR:HA	8:B:885:HOH:O	1.80	0.81
1:A:201:ASN:ND2	8:A:706:HOH:O	2.13	0.81
1:B:520:ARG:HH21	1:B:523:ASP:CG	1.85	0.80
1:A:306:PRO:CG	8:A:812:HOH:O	2.29	0.80
1:A:302:LEU:HD11	8:B:991:HOH:O	1.81	0.80
1:A:429:LEU:CD2	8:A:957:HOH:O	2.29	0.80
1:B:401:VAL:HG23	1:B:402:SER:H	1.47	0.80
1:A:438:HIS:HA	8:A:774:HOH:O	1.81	0.79
1:B:271:GLN:NE2	1:B:476:ARG:CZ	2.46	0.79
1:A:9:ASN:OD1	1:A:12:CYS:SG	2.41	0.79
1:A:189:ASN:ND2	8:A:705:HOH:O	2.13	0.79
1:B:114:CYS:SG	8:B:765:HOH:O	2.40	0.79
1:B:170:PHE:O	8:B:702:HOH:O	2.01	0.78
1:B:306:PRO:HG3	8:B:744:HOH:O	1.83	0.78

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlan (Å)
1.A.114.CYS.HB3	8·A·862·HOH·O	1.83	0.78
1:A:484:GLY:HA2	8:A:715:HOH:O	1.82	0.78
1:A:36:TYR:HB2	1:A:79:VAL:HG22	1.65	0.78
1:B:380:ILE:HG13	1:B:402:SER:O	1.83	0.78
1:A:456:ARG:HD2	8:A:791:HOH:O	1.83	0.78
1:B:440:PHE:CE1	8:B:781:HOH:O	2.17	0.78
1:B:95:HIS:CD2	1:B:272:ARG:HH12	2.02	0.77
1:B:267:LEU:CD1	8:B:814:HOH:O	2.32	0.77
1:B:95:HIS:O	1:B:135:SER:HB2	1.84	0.77
1:B:40:LEU:HD22	1:B:60:ILE:HG12	1.66	0.77
1:B:36:TYR:HB2	1:B:79:VAL:HG22	1.65	0.76
1:A:453:SER:HB2	8:A:1006:HOH:O	1.84	0.76
1:B:479:THR:HG22	8:B:971:HOH:O	1.83	0.76
1:B:1:GLU:HG3	1:B:2:PRO:HD2	1.68	0.76
1:A:9:ASN:CG	1:A:12:CYS:SG	2.63	0.76
1:B:540:CYS:SG	8:B:765:HOH:O	2.44	0.76
1:B:476:ARG:HG3	8:B:781:HOH:O	1.85	0.75
1:B:290:VAL:HG23	8:B:950:HOH:O	1.87	0.75
1:B:303:ASN:O	8:B:703:HOH:O	2.03	0.75
1:A:249:VAL:HA	1:A:275:VAL:HG12	1.69	0.75
1:B:393:LEU:HD21	1:B:528:ILE:HD13	1.69	0.75
1:A:423:PRO:HA	8:A:715:HOH:O	1.85	0.75
1:A:65:MET:HB3	1:A:150:VAL:O	1.87	0.74
1:B:138:HIS:HE1	8:B:894:HOH:O	1.69	0.74
1:B:200:ILE:HD12	8:B:791:HOH:O	1.87	0.74
1:B:373:TRP:HZ3	8:B:860:HOH:O	1.70	0.74
1:A:505:ILE:HG23	8:A:720:HOH:O	1.86	0.73
1:B:4:CYS:HG	1:B:12:CYS:HG	1.31	0.73
1:B:393:LEU:HD21	1:B:528:ILE:CD1	2.18	0.73
1:A:118:PRO:HG3	1:A:546:TYR:CZ	2.22	0.73
1:B:447:PRO:HD2	8:B:921:HOH:O	1.88	0.73
1:B:138:HIS:CE1	8:B:894:HOH:O	2.42	0.73
1:A:109:ASN:HB2	1:A:115:PRO:HD3	1.71	0.72
1:B:447:PRO:CD	8:B:921:HOH:O	2.35	0.72
1:A:95:HIS:CD2	1:A:272:ARG:HH12	2.08	0.72
1:B:428:SER:CB	1:B:484:GLY:H	2.01	0.72
1:B:439:ASP:HB2	8:B:718:HOH:O	1.89	0.72
1:A:106:ASP:HB3	1:A:112:THR:HG21	1.69	0.72
8:B:1019:HOH:O	2:E:1:NAG:H82	1.88	0.71
1:B:113:GLU:OE1	8:B:704:HOH:O	2.06	0.71
1:A:56:LYS:HE3	2:C:1:NAG:O6	1.90	0.71

	i agem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:479:THR:O	8:A:703:HOH:O	2.09	0.71
1:A:219:LEU:HD21	1:A:310:PHE:HD2	1.55	0.71
1:B:142:SER:OG	1:B:556:ASP:OD1	2.06	0.71
1:A:95:HIS:CD2	1:A:272:ARG:NH1	2.59	0.71
1:A:31:GLY:CA	8:A:723:HOH:O	2.40	0.70
1:A:115:PRO:CD	8:A:862:HOH:O	2.28	0.70
1:B:200:ILE:CD1	8:B:950:HOH:O	2.40	0.70
1:A:302:LEU:HD21	8:B:991:HOH:O	1.90	0.70
1:B:546:TYR:OH	1:B:550:ASN:ND2	2.25	0.70
1:A:42:GLU:OE1	8:A:701:HOH:O	2.08	0.70
1:B:446:SER:HB2	8:B:921:HOH:O	1.91	0.69
1:A:43:VAL:HB	1:A:57:VAL:CG2	2.21	0.69
1:A:176:TYR:CE2	1:A:195:SER:HA	2.26	0.69
1:B:50:ASP:CB	8:B:770:HOH:O	2.29	0.69
1:B:172:ILE:CG1	8:B:702:HOH:O	2.31	0.69
1:B:306:PRO:CG	8:B:744:HOH:O	2.39	0.69
1:B:285:ASN:OD1	1:B:311:HIS:HD2	1.76	0.68
1:B:520:ARG:NH2	1:B:523:ASP:OD2	2.17	0.68
1:B:244:ASN:O	1:B:281:ARG:NH1	2.24	0.68
1:A:131:GLN:HG2	1:A:254:MET:SD	2.33	0.68
1:A:297:ALA:HB1	8:A:957:HOH:O	1.93	0.68
1:A:445:ARG:HD3	8:A:748:HOH:O	1.93	0.68
1:B:436:HIS:O	8:B:705:HOH:O	2.12	0.68
1:B:554:LYS:NZ	1:B:557:SER:O	2.27	0.68
1:B:254:MET:SD	8:B:810:HOH:O	2.51	0.67
1:B:460:ASP:HB3	1:B:463:VAL:HG12	1.75	0.67
1:B:97:ILE:HA	8:B:810:HOH:O	1.93	0.67
7:B:611:KIB:O1	7:B:611:KIB:C7	2.43	0.67
1:B:380:ILE:HD12	8:B:793:HOH:O	1.93	0.67
1:A:23:TYR:O	8:A:704:HOH:O	2.11	0.67
1:A:224:ARG:HG3	8:A:857:HOH:O	1.94	0.67
1:B:515:VAL:C	8:B:793:HOH:O	2.31	0.67
1:B:291:THR:HG21	8:B:1028:HOH:O	1.95	0.67
1:A:309:ILE:HD12	5:A:607:NAG:C8	2.22	0.67
1:A:389:ILE:CG2	1:A:389:ILE:O	2.43	0.67
1:A:368:THR:HG21	8:A:1032:HOH:O	1.94	0.67
1:A:389:ILE:O	1:A:389:ILE:HG22	1.95	0.67
1:A:306:PRO:HG3	8:A:812:HOH:O	1.89	0.66
1:B:307:ALA:HB2	2:F:1:NAG:H62	1.77	0.66
1:A:219:LEU:HD21	1:A:310:PHE:CD2	2.30	0.66
1:B:196:ASP:OD1	8:B:706:HOH:O	2.13	0.66

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:135:SER:N	8:B:722:HOH:O	2.28	0.66
4:A:605:CL:CL	8:A:789:HOH:O	2.51	0.65
1:A:37:VAL:CG1	1:A:82:ILE:HD12	2.26	0.65
1:A:311:HIS:CE1	5:A:607:NAG:O4	2.49	0.65
1:A:301:SER:CB	8:A:812:HOH:O	2.35	0.65
1:B:438:HIS:N	8:B:705:HOH:O	2.18	0.65
1:B:117:PRO:HG2	1:B:542:GLU:HB2	1.78	0.65
1:B:200:ILE:HD11	8:B:950:HOH:O	1.96	0.65
1:B:520:ARG:O	1:B:523:ASP:HB2	1.95	0.65
1:B:107:GLY:CA	1:B:113:GLU:OE1	2.45	0.65
1:A:236:ASN:HB3	1:A:238:PHE:CE1	2.31	0.65
1:B:240:VAL:HG22	8:B:814:HOH:O	1.96	0.64
1:A:543:TRP:CD1	8:A:862:HOH:O	2.49	0.64
1:A:468:LEU:HD13	1:A:488:LEU:CD2	2.27	0.64
1:B:420:GLU:OE2	8:B:707:HOH:O	2.15	0.64
1:A:13:TRP:HB2	1:A:158:PRO:HG3	1.78	0.64
1:B:371:PHE:CG	8:B:749:HOH:O	2.50	0.64
1:A:31:GLY:HA3	8:A:723:HOH:O	1.97	0.64
1:A:222:GLY:N	1:A:279:ALA:O	2.31	0.64
1:A:349:ASN:O	1:A:351:PHE:N	2.25	0.64
1:A:559:LEU:CD1	8:A:845:HOH:O	2.45	0.64
1:A:235:GLU:HB2	8:A:720:HOH:O	1.98	0.64
1:A:289:ASN:HB2	8:A:752:HOH:O	1.97	0.63
1:B:455:GLN:CD	8:B:832:HOH:O	2.35	0.63
1:B:178:ARG:NH2	1:B:182:ASP:CB	2.59	0.63
1:B:179:ALA:CB	2:E:2:NAG:H81	2.28	0.63
1:B:303:ASN:HB3	8:B:744:HOH:O	1.97	0.63
1:B:332:CYS:O	1:B:333:LEU:HD23	1.98	0.63
1:A:68:ASN:OD1	8:A:707:HOH:O	2.15	0.63
1:B:455:GLN:HB2	8:B:832:HOH:O	1.97	0.63
1:A:204:ALA:HB1	8:A:800:HOH:O	1.98	0.62
1:B:523:ASP:HA	1:B:526:GLN:NE2	2.12	0.62
7:B:611:KIB:O1	7:B:611:KIB:H7B	1.99	0.62
1:B:347:PRO:HA	8:B:979:HOH:O	1.98	0.62
1:B:500:LEU:HD11	8:B:701:HOH:O	1.99	0.62
1:B:523:ASP:O	1:B:527:ARG:HD2	1.98	0.62
1:A:540:CYS:O	1:A:544:ARG:HG3	1.99	0.62
1:B:179:ALA:HB3	2:E:2:NAG:H81	1.82	0.62
1:B:382:VAL:HG13	1:B:559:LEU:HD11	1.81	0.62
1:B:449:VAL:HG11	8:B:832:HOH:O	1.98	0.61
1:A:484:GLY:C	8:A:715:HOH:O	2.39	0.61

	1	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:436:HIS:C	8:B:705:HOH:O	2.37	0.61
1:A:273:TYR:CE1	8:A:724:HOH:O	2.49	0.61
1:B:131:GLN:HE21	1:B:254:MET:HB3	1.65	0.61
1:A:31:GLY:N	8:A:723:HOH:O	2.33	0.61
1:B:286:TYR:HA	8:B:828:HOH:O	1.99	0.61
1:B:455:GLN:CB	8:B:832:HOH:O	2.49	0.60
1:B:209:THR:OG1	1:B:211:GLU:OE2	2.17	0.60
1:B:327:PRO:HA	8:B:1026:HOH:O	2.00	0.60
1:B:502:HIS:HB3	1:B:514:SER:OG	2.01	0.60
1:B:95:HIS:CD2	1:B:272:ARG:NH1	2.69	0.60
1:B:382:VAL:CG1	1:B:559:LEU:HD11	2.31	0.60
1:B:371:PHE:HB3	8:B:749:HOH:O	2.01	0.60
1:B:219:LEU:O	1:B:221:PRO:HD3	2.02	0.60
1:B:38:PHE:CE1	1:B:67:PRO:CG	2.80	0.59
1:B:307:ALA:CB	2:F:1:NAG:H62	2.32	0.59
1:B:323:GLU:O	2:F:1:NAG:H83	2.03	0.59
1:B:302:LEU:HD11	8:B:706:HOH:O	2.03	0.59
1:A:286:TYR:OH	8:A:708:HOH:O	2.16	0.59
8:A:1022:HOH:O	2:C:2:NAG:H61	2.02	0.59
1:B:196:ASP:O	1:B:197:ASN:HB2	2.03	0.59
1:A:116:ILE:HG22	1:A:117:PRO:O	2.03	0.58
1:B:206:ASN:CA	8:B:770:HOH:O	2.44	0.58
1:B:432:PRO:O	1:B:503:CYS:HA	2.02	0.58
1:A:185:HIS:CD2	8:A:705:HOH:O	2.56	0.58
1:A:546:TYR:OH	1:A:550:ASN:ND2	2.36	0.58
1:B:176:TYR:CE2	1:B:195:SER:HA	2.39	0.58
1:A:231:ASN:HB3	1:A:268:ALA:O	2.03	0.58
1:B:417:TRP:CD1	8:B:990:HOH:O	2.34	0.58
1:B:447:PRO:CG	8:B:881:HOH:O	2.26	0.58
1:A:453:SER:OG	1:A:455:GLN:HG3	2.04	0.57
1:B:353:LYS:HD2	8:B:707:HOH:O	2.03	0.57
1:A:294:GLY:CA	1:A:331:GLN:HA	2.34	0.57
1:B:46:TRP:HH2	1:B:64:ILE:HD12	1.70	0.57
1:B:174:ASP:HB3	1:B:236:ASN:HB2	1.86	0.57
1:B:230:LEU:HD21	8:B:722:HOH:O	2.04	0.57
1:B:380:ILE:CD1	8:B:793:HOH:O	2.50	0.57
1:B:446:SER:CB	8:B:921:HOH:O	2.48	0.57
1:B:46:TRP:HB3	8:B:758:HOH:O	1.98	0.57
1:B:87:THR:HG21	1:B:552:TYR:HE2	1.70	0.57
1:A:436:HIS:HA	4:A:605:CL:CL	2.42	0.57
1:A:174:ASP:HB3	1:A:236:ASN:HB2	1.87	0.57

	jue pugem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:174:ASP:HB2	1:B:195:SER:HB3	1.87	0.57
1:B:416:TYR:CD1	1:B:416:TYR:N	2.73	0.57
1:A:141:PHE:HA	8:A:743:HOH:O	2.04	0.57
1:B:87:THR:HG21	1:B:552:TYR:CE2	2.39	0.57
8:A:1006:HOH:O	1:B:194:PHE:CD2	2.52	0.56
1:A:60:ILE:HD11	1:A:149:VAL:HG13	1.88	0.56
1:A:216:ASN:CG	5:A:607:NAG:H82	2.24	0.56
1:A:479:THR:HG22	8:A:703:HOH:O	2.04	0.56
1:B:95:HIS:CD2	1:B:95:HIS:C	2.79	0.56
1:B:385:GLY:O	1:B:544:ARG:NH1	2.31	0.56
1:A:100:LYS:HG3	8:A:764:HOH:O	2.05	0.56
1:A:103:ASN:HB2	8:A:759:HOH:O	2.05	0.56
1:A:117:PRO:HG3	1:A:543:TRP:HA	1.88	0.56
1:A:42:GLU:OE2	1:A:56:LYS:NZ	2.33	0.55
1:B:184:VAL:O	1:B:188:GLN:HG3	2.05	0.55
1:B:220:THR:HB	1:B:223:LYS:HG3	1.88	0.55
1:B:249:VAL:HG21	1:B:265:LEU:HD21	1.88	0.55
1:B:360:PRO:HG2	1:B:376:ASN:HA	1.88	0.55
1:B:237:HIS:HE1	1:B:505:ILE:HD11	1.71	0.55
1:B:464:ASP:OD1	1:B:467:ARG:HD3	2.06	0.55
8:B:1040:HOH:O	2:E:2:NAG:H61	2.06	0.55
1:A:555:ILE:HD11	8:A:985:HOH:O	2.06	0.55
1:B:145:TYR:CD2	8:B:1006:HOH:O	2.57	0.55
1:A:90:THR:O	1:A:91:SER:HB3	2.07	0.55
1:B:302:LEU:CD1	8:B:706:HOH:O	2.55	0.55
1:B:373:TRP:CZ3	8:B:860:HOH:O	2.53	0.55
1:B:162:PRO:HG2	8:B:940:HOH:O	2.07	0.55
1:A:388:ILE:HD12	1:A:516:ASP:OD2	2.08	0.54
1:B:35:SER:HB3	8:B:980:HOH:O	2.07	0.54
1:A:34:GLN:HA	8:A:858:HOH:O	2.06	0.54
1:B:315:ALA:HB1	1:B:316:PRO:HD2	1.90	0.54
1:B:427:PHE:HA	1:B:456:ARG:HH22	1.73	0.54
1:B:100:LYS:HE3	8:B:1000:HOH:O	2.07	0.54
1:A:27:THR:OG1	1:A:130:ARG:NH1	2.40	0.54
1:A:223:LYS:O	1:A:225:HIS:CE1	2.60	0.54
1:A:290:VAL:HB	1:A:306:PRO:HB2	1.89	0.54
1:A:306:PRO:HG2	8:A:812:HOH:O	2.00	0.54
1:B:348:VAL:HG21	1:B:470:GLY:H	1.72	0.54
1:A:422:ASP:N	1:A:423:PRO:CD	2.69	0.54
1:B:36:TYR:O	1:B:79:VAL:HA	2.08	0.54
8:B:757:HOH:O	2:E:1:NAG:H62	2.07	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:292:PHE:CE1	1:A:300:GLY:HA2	2.43	0.54
1:A:559:LEU:HD11	8:A:845:HOH:O	2.04	0.54
1:B:559:LEU:HD22	8:B:701:HOH:O	2.08	0.54
7:B:611:KIB:C7	8:B:749:HOH:O	2.45	0.54
1:B:104:LEU:HD22	1:B:532:ASP:HB3	1.89	0.53
1:B:117:PRO:O	1:B:121:GLY:HA3	2.08	0.53
1:B:371:PHE:CB	8:B:749:HOH:O	2.55	0.53
1:A:384:TRP:NE1	8:A:743:HOH:O	2.39	0.53
1:B:64:ILE:HG13	1:B:64:ILE:O	2.08	0.53
1:A:311:HIS:NE2	1:A:316:PRO:O	2.40	0.53
1:A:413:GLN:NE2	8:A:740:HOH:O	2.39	0.53
1:B:354:ARG:CB	1:B:356:ASP:OD1	2.57	0.53
1:A:419:ILE:N	1:A:419:ILE:HD12	2.23	0.53
1:A:424:GLU:HB3	8:A:846:HOH:O	2.08	0.53
1:B:163:TYR:HA	1:B:224:ARG:HB2	1.91	0.53
1:A:302:LEU:CD1	8:B:991:HOH:O	2.47	0.53
1:B:217:VAL:HG13	8:B:866:HOH:O	2.09	0.53
1:B:104:LEU:CD2	1:B:528:ILE:HG23	2.39	0.52
1:B:82:ILE:CD1	1:B:122:GLN:NE2	2.72	0.52
1:B:263:ASP:HB2	8:B:963:HOH:O	2.09	0.52
1:B:520:ARG:NH2	1:B:523:ASP:CG	2.59	0.52
1:B:438:HIS:NE2	1:B:519:GLU:OE1	2.34	0.52
1:B:308:ALA:CA	8:B:791:HOH:O	2.58	0.52
1:A:19:ILE:HG13	1:A:341:VAL:HG11	1.92	0.52
1:B:87:THR:HG23	8:B:757:HOH:O	2.09	0.52
1:B:355:PRO:HB3	8:B:748:HOH:O	2.09	0.52
1:B:384:TRP:HH2	8:B:1019:HOH:O	1.93	0.52
1:A:406:VAL:HB	8:A:877:HOH:O	2.10	0.52
1:B:39:ASN:OD1	1:B:84:ASN:ND2	2.39	0.52
1:A:344:ARG:NH2	8:A:749:HOH:O	2.42	0.51
1:B:450:PRO:HB2	1:B:453:SER:HB3	1.91	0.51
1:A:384:TRP:CZ2	8:A:743:HOH:O	2.62	0.51
1:B:249:VAL:CG2	1:B:265:LEU:HD21	2.41	0.51
1:B:487:LEU:HD21	8:B:971:HOH:O	2.09	0.51
1:A:423:PRO:CA	8:A:715:HOH:O	2.49	0.51
1:B:200:ILE:HD13	8:B:950:HOH:O	2.04	0.51
8:A:1022:HOH:O	2:C:2:NAG:C6	2.58	0.51
1:B:321:THR:HG21	8:B:898:HOH:O	2.11	0.51
1:B:174:ASP:CG	1:B:233:SER:HB3	2.30	0.51
1:A:58:MET:HG2	1:A:85:LEU:HD22	1.92	0.51
1:B:104:LEU:HD22	1:B:528:ILE:HG23	1.93	0.51

	io de page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:493:THR:O	1:B:520:ARG:HD2	2.11	0.51
1:A:302:LEU:CD2	8:B:991:HOH:O	2.56	0.50
1:A:371:PHE:CD1	7:A:610:KIB:C8	2.95	0.50
1:A:46:TRP:CE3	1:A:57:VAL:HG11	2.46	0.50
1:B:82:ILE:HD11	1:B:122:GLN:NE2	2.26	0.50
1:B:267:LEU:HD12	1:B:267:LEU:N	2.26	0.50
1:A:416:TYR:HD1	8:A:907:HOH:O	1.94	0.50
1:A:440:PHE:O	1:A:475:ARG:HA	2.12	0.50
1:B:346:VAL:O	8:B:710:HOH:O	2.19	0.50
1:B:393:LEU:HD21	1:B:528:ILE:HD12	1.93	0.50
1:B:23:TYR:CD2	1:B:23:TYR:N	2.78	0.50
1:B:552:TYR:OH	8:B:708:HOH:O	2.15	0.50
8:A:734:HOH:O	2:C:1:NAG:H61	2.11	0.50
1:B:271:GLN:HE21	1:B:476:ARG:NE	2.09	0.50
1:B:559:LEU:O	8:B:709:HOH:O	2.19	0.50
1:A:250:ILE:O	1:A:251:ALA:HB2	2.12	0.50
1:A:490:ALA:CB	8:A:1009:HOH:O	2.60	0.50
1:B:99:GLN:HB3	1:B:102:THR:O	2.12	0.50
1:A:239:GLN:HG2	1:A:330:HIS:CD2	2.47	0.50
1:B:245:HIS:CE1	1:B:281:ARG:HG3	2.47	0.50
1:B:295:GLN:CD	8:B:802:HOH:O	2.49	0.50
1:B:46:TRP:CE3	1:B:57:VAL:HG11	2.47	0.50
1:B:98:HIS:NE2	1:B:131:GLN:OE1	2.45	0.50
1:A:141:PHE:CG	8:A:743:HOH:O	2.58	0.49
1:A:428:SER:CB	1:A:484:GLY:H	2.24	0.49
1:B:234:THR:O	1:B:505:ILE:HA	2.12	0.49
1:A:131:GLN:HB2	8:A:945:HOH:O	2.11	0.49
1:B:473:PRO:O	1:B:474:PRO:C	2.47	0.49
1:A:543:TRP:CG	8:A:862:HOH:O	2.65	0.49
1:A:169:VAL:HA	1:A:228:ARG:HB2	1.94	0.49
1:A:546:TYR:O	1:A:549:THR:OG1	2.26	0.49
1:B:95:HIS:O	1:B:135:SER:CB	2.58	0.49
1:B:331:GLN:O	1:B:332:CYS:HB2	2.11	0.49
1:B:122:GLN:CG	8:B:779:HOH:O	2.61	0.49
1:B:285:ASN:OD1	1:B:311:HIS:CD2	2.62	0.49
1:A:134:THR:HG21	1:A:228:ARG:HB3	1.94	0.49
1:B:355:PRO:CB	8:B:748:HOH:O	2.60	0.49
1:A:287:TRP:CE2	1:A:320:PRO:HB2	2.48	0.49
1:A:552:TYR:CD1	2:C:2:NAG:H62	2.48	0.49
1:A:64:ILE:CG2	8:A:1029:HOH:O	2.61	0.49
1:B:209:THR:CB	1:B:211:GLU:OE2	2.61	0.49

	A i a	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:454:GLN:HG2	8:B:812:HOH:O	2.13	0.49	
1:B:435:LEU:HG	8:B:705:HOH:O	2.13	0.49	
1:B:237:HIS:NE2	1:B:432:PRO:HD3	2.28	0.48	
1:B:530:GLN:N	1:B:531:GLU:OE1	2.46	0.48	
1:A:427:PHE:HA	1:A:456:ARG:HH12	1.78	0.48	
1:A:523:ASP:O	1:A:527:ARG:HG3	2.13	0.48	
1:A:393:LEU:CD2	8:A:992:HOH:O	2.62	0.48	
1:B:200:ILE:CD1	8:B:791:HOH:O	2.54	0.48	
1:B:428:SER:HB3	1:B:484:GLY:N	2.16	0.48	
1:B:467:ARG:NH2	8:B:732:HOH:O	2.34	0.48	
1:B:544:ARG:NH1	8:B:765:HOH:O	2.46	0.48	
1:B:103:ASN:HB2	8:B:899:HOH:O	2.12	0.48	
1:A:103:ASN:N	8:A:759:HOH:O	2.46	0.48	
1:B:447:PRO:CB	8:B:881:HOH:O	2.57	0.48	
1:B:76:THR:CG2	1:B:126:ARG:HG3	2.43	0.48	
1:A:484:GLY:CA	8:A:715:HOH:O	2.46	0.48	
1:B:479:THR:CG2	8:B:971:HOH:O	2.54	0.48	
1:B:543:TRP:CZ2	1:B:547:TRP:CE3	3.02	0.48	
1:A:266:PHE:CE1	1:A:332:CYS:HA	2.49	0.48	
1:A:331:GLN:OE1	1:A:450:PRO:HA	2.13	0.48	
1:A:449:VAL:HB	1:A:455:GLN:NE2	2.29	0.48	
1:A:434:HIS:CD2	1:A:504:HIS:HD2	2.32	0.47	
1:A:529:SER:OG	1:A:531:GLU:HG2	2.14	0.47	
1:B:97:ILE:CD1	8:B:810:HOH:O	2.23	0.47	
1:B:174:ASP:OD1	1:B:233:SER:HB3	2.14	0.47	
1:B:308:ALA:CB	8:B:791:HOH:O	2.40	0.47	
1:A:530:GLN:HA	1:A:530:GLN:OE1	2.14	0.47	
1:B:184:VAL:HG12	1:B:185:HIS:N	2.29	0.47	
1:B:304:PRO:O	8:B:713:HOH:O	2.20	0.47	
1:A:267:LEU:HG	1:A:273:TYR:HD2	1.79	0.47	
1:A:384:TRP:CZ3	1:A:554:LYS:HD2	2.49	0.47	
1:B:268:ALA:O	1:B:269:VAL:C	2.50	0.47	
1:B:445:ARG:HD3	8:B:721:HOH:O	2.13	0.47	
1:B:7:PRO:HB3	1:B:164:ASP:HA	1.95	0.47	
1:B:336:LEU:HD22	1:B:474:PRO:HG2	1.96	0.47	
1:B:476:ARG:CG	8:B:781:HOH:O	2.55	0.47	
1:A:1:GLU:HG3	8:A:851:HOH:O	2.13	0.47	
1:A:95:HIS:O	1:A:135:SER:CB	2.56	0.47	
8:B:1040:HOH:O	2:E:2:NAG:C6	2.63	0.47	
1:A:245:HIS:CE1	1:A:281:ARG:HG3	2.49	0.47	
1:A:336:LEU:HD21	1:A:442:VAL:HG11	1.96	0.47	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:381:ASN:O	1:B:402:SER:HB3	2.14	0.47	
1:A:100:LYS:HB2	1:A:100:LYS:HE3	1.82	0.47	
1:A:305:HIS:O	1:A:306:PRO:C	2.53	0.47	
1:A:449:VAL:HG21	8:A:986:HOH:O	2.14	0.47	
1:B:79:VAL:CG2	8:B:930:HOH:O	2.63	0.47	
1:B:248:THR:CG2	1:B:259:ALA:HB1	2.44	0.47	
1:B:354:ARG:HB3	1:B:356:ASP:OD1	2.14	0.47	
1:B:449:VAL:CG2	8:B:832:HOH:O	2.28	0.47	
1:A:4:CYS:SG	8:A:999:HOH:O	2.11	0.47	
1:A:115:PRO:HG2	8:A:862:HOH:O	2.14	0.47	
1:A:434:HIS:HD2	1:A:504:HIS:HD2	1.63	0.47	
1:B:228:ARG:O	1:B:230:LEU:HD12	2.14	0.47	
1:A:251:ALA:HA	1:A:257:VAL:HG22	1.95	0.47	
1:B:22:ASP:HB3	1:B:25:VAL:HG22	1.96	0.47	
1:B:111:VAL:HG21	1:B:500:LEU:HD21	1.97	0.47	
1:A:64:ILE:HA	8:A:989:HOH:O	2.15	0.46	
1:B:500:LEU:CD1	8:B:701:HOH:O	2.60	0.46	
1:A:359:LEU:HD22	1:A:515:VAL:HG11	1.97	0.46	
1:A:434:HIS:HE1	4:A:605:CL:CL	2.35	0.46	
1:B:93:HIS:HA	1:B:106:ASP:O	2.15	0.46	
1:B:306:PRO:O	8:B:712:HOH:O	2.20	0.46	
1:B:104:LEU:CD2	1:B:532:ASP:HB3	2.45	0.46	
1:B:58:MET:HG3	1:B:147:ASN:HB3	1.97	0.46	
1:B:100:LYS:HA	1:B:100:LYS:HD3	1.52	0.46	
1:A:434:HIS:HA	1:A:477:ASP:O	2.15	0.46	
1:A:533:GLU:O	1:A:536:PHE:HB3	2.16	0.46	
1:B:142:SER:HG	1:B:556:ASP:CG	2.14	0.46	
1:A:354:ARG:NH1	1:A:356:ASP:OD1	2.49	0.46	
1:B:91:SER:O	1:B:91:SER:OG	2.33	0.46	
1:B:122:GLN:HG2	8:B:779:HOH:O	2.15	0.46	
1:B:131:GLN:O	1:B:254:MET:CE	2.64	0.46	
1:B:386:LYS:HE3	1:B:390:ASP:OD2	2.15	0.46	
1:A:253:ASP:OD2	1:A:476:ARG:HB2	2.15	0.46	
1:B:19:ILE:CG1	8:B:720:HOH:O	2.44	0.46	
1:B:332:CYS:C	1:B:333:LEU:HD23	2.35	0.46	
1:B:349:ASN:HB3	8:B:1015:HOH:O	2.16	0.46	
1:A:138:HIS:HB2	1:A:145:TYR:CB	2.46	0.46	
1:B:91:SER:CB	8:B:825:HOH:O	2.52	0.46	
1:B:315:ALA:HB1	1:B:316:PRO:CD	2.46	0.46	
1:B:131:GLN:HB3	8:B:808:HOH:O	2.16	0.45	
1:B:215:ALA:HB3	1:B:308:ALA:HB2	1.97	0.45	

	io ao pagom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:145:TYR:OH	1:A:234:THR:HA	2.15	0.45
1:A:335:THR:CG2	8:A:724:HOH:O	2.65	0.45
1:A:344:ARG:CZ	8:A:749:HOH:O	2.63	0.45
1:A:454:GLN:HB3	8:A:896:HOH:O	2.16	0.45
1:B:348:VAL:HG21	1:B:470:GLY:N	2.31	0.45
1:B:1:GLU:HG3	1:B:2:PRO:CD	2.42	0.45
1:A:138:HIS:HE1	8:A:771:HOH:O	1.99	0.45
1:A:468:LEU:CD1	1:A:488:LEU:CD2	2.94	0.45
1:B:23:TYR:CB	8:B:889:HOH:O	2.32	0.45
1:A:13:TRP:CE3	1:A:157:GLY:HA2	2.52	0.45
1:A:111:VAL:HG13	1:A:516:ASP:OD2	2.17	0.45
1:A:248:THR:HA	1:A:261:THR:HA	1.98	0.45
1:B:223:LYS:O	1:B:225:HIS:CE1	2.70	0.45
1:B:244:ASN:HD22	1:B:244:ASN:HA	1.59	0.45
1:A:271:GLN:CG	1:A:476:ARG:NH2	2.66	0.45
1:A:384:TRP:CE2	8:A:743:HOH:O	2.55	0.45
1:B:76:THR:HG21	1:B:126:ARG:HG3	1.98	0.45
1:A:118:PRO:CG	1:A:546:TYR:CE1	2.99	0.45
1:A:384:TRP:CE3	1:A:554:LYS:HD2	2.52	0.45
1:B:432:PRO:O	1:B:504:HIS:N	2.45	0.45
1:A:64:ILE:HG21	8:A:1029:HOH:O	2.16	0.44
1:A:118:PRO:HG3	1:A:546:TYR:CE1	2.52	0.44
1:A:391:TYR:OH	1:A:400:PRO:HD3	2.17	0.44
1:B:122:GLN:NE2	8:B:779:HOH:O	2.50	0.44
1:B:132:TYR:CD1	1:B:132:TYR:N	2.85	0.44
1:B:215:ALA:HB3	1:B:308:ALA:CB	2.47	0.44
1:A:206:ASN:C	1:A:208:ASN:H	2.20	0.44
1:A:386:LYS:N	1:A:387:PRO:HD3	2.32	0.44
1:A:468:LEU:HD13	1:A:488:LEU:HD23	1.99	0.44
1:B:86:VAL:O	1:B:119:LYS:HE2	2.18	0.44
1:B:192:PRO:HD3	7:B:611:KIB:C1	2.47	0.44
1:B:19:ILE:CD1	8:B:720:HOH:O	2.64	0.44
1:B:325:THR:HG23	8:B:1034:HOH:O	2.17	0.44
1:A:94:TRP:O	8:A:710:HOH:O	2.21	0.44
1:B:136:TRP:CZ3	1:B:138:HIS:CD2	3.05	0.44
1:A:287:TRP:CH2	2:D:1:NAG:H62	2.52	0.44
1:A:427:PHE:HB3	8:A:725:HOH:O	2.17	0.44
1:B:111:VAL:HG21	1:B:500:LEU:CD2	2.48	0.44
1:B:440:PHE:O	1:B:475:ARG:HA	2.18	0.44
1:A:518:LEU:CG	1:A:521:PRO:HG3	2.41	0.44
1:B:136:TRP:CH2	1:B:138:HIS:CD2	3.06	0.44

	lo uo pugom	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:209:THR:HG21	1:B:211:GLU:OE2	2.18	0.44	
1:B:177:TYR:CE2	1:B:196:ASP:HB3	2.53	0.44	
1:B:182:ASP:OD1	8:B:714:HOH:O	2.21	0.44	
1:B:333:LEU:CD2	8:B:975:HOH:O	2.66	0.43	
1:B:443:LEU:HD11	1:B:490:ALA:HB2	1.99	0.43	
1:B:482:PRO:HA	8:B:975:HOH:O	2.16	0.43	
1:B:552:TYR:CD1	2:E:2:NAG:H62	2.52	0.43	
1:A:287:TRP:CZ2	2:D:1:NAG:H62	2.53	0.43	
1:B:230:LEU:HG	1:B:272:ARG:HG2	2.00	0.43	
1:B:449:VAL:HB	1:B:455:GLN:NE2	2.33	0.43	
1:A:490:ALA:HB1	8:A:1009:HOH:O	2.18	0.43	
1:A:292:PHE:CD1	1:A:300:GLY:HA2	2.53	0.43	
1:A:427:PHE:CA	1:A:456:ARG:HH12	2.31	0.43	
1:A:453:SER:CB	8:A:1006:HOH:O	2.55	0.43	
1:A:58:MET:HG2	1:A:85:LEU:CD2	2.47	0.43	
1:B:15:ASP:HA	8:B:844:HOH:O	2.19	0.43	
1:A:37:VAL:CG1	1:A:82:ILE:CD1	2.95	0.43	
1:A:213:GLN:NE2	8:A:731:HOH:O	2.35	0.43	
1:A:393:LEU:HD23	8:A:992:HOH:O	2.19	0.43	
1:B:218:THR:CG2	1:B:313:ALA:HB2	2.48	0.43	
1:B:253:ASP:OD2	1:B:476:ARG:HB2	2.19	0.43	
1:B:389:ILE:O	1:B:393:LEU:HG	2.18	0.43	
1:A:37:VAL:HG13	1:A:82:ILE:HD12	1.97	0.43	
1:B:354:ARG:HB2	1:B:356:ASP:OD1	2.18	0.43	
1:A:103:ASN:ND2	1:A:499:TRP:CZ3	2.82	0.43	
1:A:479:THR:HG23	1:A:487:LEU:HD21	2.00	0.43	
1:B:446:SER:OG	1:B:482:PRO:HG2	2.18	0.43	
1:A:10:ARG:O	1:A:158:PRO:HA	2.19	0.43	
1:B:440:PHE:CD1	1:B:489:LEU:HD22	2.53	0.43	
1:B:339:ARG:HG3	8:B:1027:HOH:O	2.17	0.42	
1:B:531:GLU:OE1	1:B:531:GLU:N	2.48	0.42	
1:A:105:HIS:ND1	1:A:125:TYR:HA	2.34	0.42	
1:B:271:GLN:NE2	1:B:476:ARG:NE	2.65	0.42	
1:B:446:SER:CA	8:B:921:HOH:O	2.67	0.42	
1:A:11:ALA:O	1:A:158:PRO:HB3	2.20	0.42	
1:A:36:TYR:O	1:A:79:VAL:HA	2.19	0.42	
1:B:131:GLN:O	1:B:254:MET:HE2	2.18	0.42	
1:B:244:ASN:ND2	1:B:281:ARG:NH1	2.58	0.42	
1:A:93:HIS:O	1:A:137:TYR:HA	2.20	0.42	
1:A:206:ASN:OD1	1:A:208:ASN:HB2	2.19	0.42	
1:A:334:ASP:OD1	1:A:334:ASP:N	2.51	0.42	

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:B:38:PHE:HE1	1:B:67:PRO:CG	2.21	0.42
1:B:200:ILE:O	1:B:215:ALA:HB2	2.18	0.42
1:A:385:GLY:N	8:A:779:HOH:O	2.52	0.42
1:B:48:GLY:HA3	8:B:734:HOH:O	2.19	0.42
1:B:434:HIS:HA	1:B:477:ASP:O	2.20	0.42
1:B:526:GLN:HE21	1:B:526:GLN:HB2	1.65	0.42
1:B:185:HIS:CD2	1:B:185:HIS:C	2.93	0.42
1:B:197:ASN:ND2	8:B:770:HOH:O	2.48	0.42
1:B:244:ASN:OD1	8:B:715:HOH:O	2.22	0.42
1:B:283:PRO:HA	1:B:312:TYR:CD2	2.54	0.42
1:B:295:GLN:CG	8:B:820:HOH:O	2.48	0.42
1:B:311:HIS:NE2	1:B:316:PRO:O	2.53	0.42
1:B:353:LYS:CD	8:B:707:HOH:O	2.65	0.42
1:A:95:HIS:HD2	1:A:272:ARG:HH12	1.61	0.42
8:A:1006:HOH:O	1:B:194:PHE:HD2	1.95	0.42
1:A:100:LYS:CG	8:A:764:HOH:O	2.68	0.42
1:A:380:ILE:HG23	1:A:557:SER:HB2	2.01	0.42
1:B:11:ALA:HB2	8:B:1018:HOH:O	2.20	0.42
1:B:456:ARG:CG	8:B:922:HOH:O	2.67	0.42
1:B:461:PRO:HG2	8:B:951:HOH:O	2.20	0.41
1:A:46:TRP:CG	1:A:57:VAL:HG21	2.55	0.41
1:A:360:PRO:HG2	1:A:376:ASN:HA	2.02	0.41
1:B:233:SER:O	1:B:269:VAL:HG13	2.20	0.41
1:B:508:HIS:NE2	7:B:611:KIB:H7B	2.36	0.41
1:A:340:PRO:HG2	8:A:821:HOH:O	2.19	0.41
1:A:346:VAL:HG21	8:A:1009:HOH:O	2.21	0.41
1:B:56:LYS:HE3	2:E:1:NAG:O6	2.20	0.41
1:B:104:LEU:HD21	1:B:528:ILE:CG2	2.50	0.41
1:B:135:SER:HB2	1:B:136:TRP:H	1.68	0.41
1:A:36:TYR:CB	1:A:79:VAL:HG22	2.43	0.41
1:A:423:PRO:HG3	8:A:848:HOH:O	2.20	0.41
1:B:471:ASP:OD2	8:B:711:HOH:O	2.20	0.41
1:B:289:ASN:OD1	2:F:1:NAG:H82	2.20	0.41
1:A:12:CYS:CB	8:A:999:HOH:O	1.97	0.41
1:B:81:VAL:HG21	1:B:125:TYR:HE1	1.85	0.41
1:A:87:THR:O	1:A:550:ASN:ND2	2.53	0.41
1:B:305:HIS:O	1:B:306:PRO:C	2.59	0.41
1:A:428:SER:OG	1:A:484:GLY:N	2.44	0.41
1:B:197:ASN:ND2	1:B:205:VAL:O	2.51	0.41
1:A:36:TYR:CE1	1:A:69:ILE:HG23	2.56	0.41
1:A:454:GLN:NE2	8:A:785:HOH:O	2.53	0.41

A 4 amo 1	A + 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:481:LEU:HA	1:A:487:LEU:HD22	2.02	0.41
1:B:97:ILE:CA	8:B:810:HOH:O	2.60	0.41
1:B:99:GLN:OE1	1:B:127:TRP:HB3	2.21	0.41
1:B:237:HIS:CD2	1:B:268:ALA:CB	3.03	0.41
1:B:282:ALA:HA	1:B:283:PRO:HD3	1.77	0.41
1:B:401:VAL:HG23	1:B:402:SER:N	2.26	0.41
1:B:505:ILE:CD1	8:B:1023:HOH:O	2.22	0.41
1:B:555:ILE:HD13	8:B:1049:HOH:O	2.20	0.41
1:A:14:SER:OG	1:A:17:PHE:HB2	2.21	0.41
1:A:291:THR:HG23	8:A:772:HOH:O	2.21	0.41
1:A:521:PRO:HA	1:A:524:LEU:HD23	2.03	0.41
1:B:94:TRP:CD1	1:B:94:TRP:N	2.86	0.41
1:B:401:VAL:CG2	1:B:402:SER:H	2.22	0.41
1:B:460:ASP:HA	1:B:461:PRO:HD2	1.88	0.41
1:A:28:PRO:HD3	1:A:73:TRP:CE2	2.56	0.40
1:B:78:GLU:HA	1:B:125:TYR:O	2.21	0.40
1:B:94:TRP:O	1:B:97:ILE:HB	2.21	0.40
1:B:159:ALA:HB1	1:B:250:ILE:HD12	2.03	0.40
1:B:397:THR:O	1:B:397:THR:OG1	2.34	0.40
1:A:176:TYR:CB	1:A:183:LEU:HD11	2.52	0.40
1:B:207:PRO:HG3	1:B:303:ASN:HA	2.04	0.40
1:A:521:PRO:O	1:A:524:LEU:HB3	2.21	0.40
1:B:131:GLN:NE2	1:B:254:MET:HB3	2.35	0.40
1:A:206:ASN:HB3	1:A:209:THR:OG1	2.21	0.40
1:A:265:LEU:CD2	8:A:724:HOH:O	2.70	0.40
1:B:479:THR:HG21	1:B:489:LEU:HD21	2.03	0.40
1:A:18:ASP:HB2	1:A:19:ILE:H	1.67	0.40
1:A:287:TRP:CE2	2:D:1:NAG:H5	2.57	0.40
1:A:399:TYR:CZ	1:A:518:LEU:CD2	3.04	0.40
1:A:555:ILE:HG12	8:A:898:HOH:O	2.21	0.40
1:B:236:ASN:HB3	1:B:238:PHE:CE1	2.55	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:78:GLU:OE2	5:A:606:NAG:O7[3_545]	2.04	0.16

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	557/559~(100%)	504 (90%)	47 (8%)	6 (1%)	12 7
1	В	557/559~(100%)	502 (90%)	50 (9%)	5 (1%)	14 10
All	All	1114/1118 (100%)	1006 (90%)	97~(9%)	11 (1%)	13 8

All (11) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	350	SER
1	В	402	SER
1	А	91	SER
1	А	493	THR
1	В	15	ASP
1	В	100	LYS
1	В	484	GLY
1	А	268	ALA
1	В	401	VAL
1	А	100	LYS
1	А	149	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	478/478 (100%)	444 (93%)	34 (7%)	12 9
1	В	478/478~(100%)	447 (94%)	31~(6%)	14 11

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
All	All	956/956~(100%)	891~(93%)	65~(7%)	13 10

All (65) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	15	ASP
1	А	40	LEU
1	А	59	LEU
1	А	65	MET
1	А	80	THR
1	А	88	ASN
1	А	91	SER
1	А	100	LYS
1	А	109	ASN
1	А	123	ARG
1	А	140	HIS
1	А	144	GLN
1	А	150	VAL
1	А	189	ASN
1	А	211	GLU
1	А	224	ARG
1	А	230	LEU
1	А	254	MET
1	А	272	ARG
1	А	277	ILE
1	А	295	GLN
1	А	349	ASN
1	А	355	PRO
1	А	422	ASP
1	А	424	GLU
1	A	434	HIS
1	A	454	GLN
1	A	456	ARG
1	А	465	LEU
1	А	477	ASP
1	А	487	LEU
1	А	503	CYS
1	A	507	TRP
1	А	513	LEU
1	В	1	GLU
1	В	9	ASN
1	В	12	CYS

Mol	Chain	Res	Type
1	В	40	LEU
1	В	64	ILE
1	В	95	HIS
1	В	100	LYS
1	В	109	ASN
1	В	122	GLN
1	В	123	ARG
1	В	135	SER
1	В	140	HIS
1	В	223	LYS
1	В	244	ASN
1	В	254	MET
1	В	272	ARG
1	В	281	ARG
1	В	338	VAL
1	В	340	PRO
1	В	355	PRO
1	В	397	THR
1	В	440	PHE
1	В	450	PRO
1	В	487	LEU
1	В	493	THR
1	В	507	TRP
1	В	510	SER
1	В	513	LEU
1	В	520	ARG
1	В	526	GLN
1	В	556	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (20) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	34	GLN
1	А	95	HIS
1	А	122	GLN
1	А	154	GLN
1	А	156	ASN
1	А	185	HIS
1	А	236	ASN
1	А	295	GLN
1	А	311	HIS
1	А	349	ASN

	5	1	1 0		
Mol	Chain	\mathbf{Res}	Type		
1	В	63	ASN		
1	В	122	GLN		
1	В	131	GLN		
1	В	185	HIS		
1	В	244	ASN		
1	В	271	GLN		
1	В	311	HIS		
1	В	455	GLN		
1	В	526	GLN		
1	В	550	ASN		

Continued from previous page...

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

8 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Chain	Dec	Tink	Bo	ond leng	ths	Bond angles		
INIOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
2	NAG	С	1	1,2	14,14,15	1.23	1 (7%)	17,19,21	<mark>3.08</mark>	5 (29%)	
2	NAG	С	2	2	14,14,15	0.98	1 (7%)	17,19,21	2.17	5 (29%)	
2	NAG	D	1	1,2	14,14,15	1.41	2 (14%)	17,19,21	3.74	10 (58%)	
2	NAG	D	2	2	14,14,15	1.65	5 (35%)	17,19,21	2.75	7 (41%)	
2	NAG	Е	1	1,2	14,14,15	1.13	1 (7%)	17,19,21	2.37	7 (41%)	
2	NAG	Е	2	2	14,14,15	0.88	0	17,19,21	1.35	2 (11%)	
2	NAG	F	1	1,2	14,14,15	1.71	3 (21%)	17,19,21	4.75	13 (76%)	

Mol Type Chain	Chain		Link	Bond lengths			Bond angles			
	res Li		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
2	NAG	F	2	2	14,14,15	1.53	2 (14%)	17,19,21	<mark>3.91</mark>	12 (70%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	С	1	1,2	-	4/6/23/26	0/1/1/1
2	NAG	С	2	2	-	0/6/23/26	0/1/1/1
2	NAG	D	1	1,2	-	1/6/23/26	0/1/1/1
2	NAG	D	2	2	-	2/6/23/26	0/1/1/1
2	NAG	Е	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	Ε	2	2	-	0/6/23/26	0/1/1/1
2	NAG	F	1	1,2	-	4/6/23/26	0/1/1/1
2	NAG	F	2	2	-	6/6/23/26	0/1/1/1

All (15) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	F	1	NAG	O5-C5	-4.05	1.35	1.43
2	D	1	NAG	C2-N2	3.92	1.52	1.46
2	F	2	NAG	O5-C5	-3.55	1.36	1.43
2	D	2	NAG	C1-C2	-3.36	1.47	1.52
2	F	1	NAG	C3-C2	-3.11	1.46	1.52
2	F	2	NAG	O5-C1	-3.07	1.38	1.43
2	D	1	NAG	O5-C1	-2.83	1.38	1.43
2	F	1	NAG	O5-C1	-2.77	1.39	1.43
2	D	2	NAG	C2-N2	-2.60	1.42	1.46
2	Ε	1	NAG	C1-C2	2.55	1.55	1.52
2	С	1	NAG	C1-C2	2.45	1.55	1.52
2	D	2	NAG	O5-C1	-2.44	1.39	1.43
2	D	2	NAG	O7-C7	2.24	1.28	1.23
2	D	2	NAG	O5-C5	-2.14	1.39	1.43
2	С	2	NAG	03-C3	-2.02	1.38	1.43

All (61) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	F	1	NAG	C1-O5-C5	11.20	127.20	112.19
2	D	1	NAG	C1-C2-N2	9.73	125.77	110.43

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	F	2	NAG	C1-O5-C5	-9.42	99.56	112.19
2	С	1	NAG	C1-O5-C5	9.29	124.64	112.19
2	F	1	NAG	C2-N2-C7	7.87	133.44	122.90
2	F	1	NAG	O4-C4-C3	-7.67	92.31	110.38
2	F	2	NAG	C1-C2-N2	-7.13	99.20	110.43
2	D	2	NAG	C2-N2-C7	-6.94	113.59	122.90
2	D	1	NAG	C8-C7-N2	6.45	126.81	116.12
2	D	2	NAG	O5-C1-C2	-5.50	102.79	111.29
2	D	1	NAG	C2-N2-C7	-5.10	116.07	122.90
2	F	1	NAG	O7-C7-C8	-5.06	113.05	122.05
2	F	2	NAG	O6-C6-C5	-5.02	94.24	111.33
2	D	2	NAG	O5-C5-C4	-4.68	99.44	110.83
2	F	1	NAG	O5-C5-C6	-4.58	98.75	107.66
2	Е	1	NAG	O5-C5-C6	-4.57	98.77	107.66
2	С	1	NAG	C2-N2-C7	-4.51	116.86	122.90
2	F	2	NAG	C6-C5-C4	4.49	124.05	113.02
2	С	2	NAG	C1-C2-N2	4.39	117.35	110.43
2	F	1	NAG	O7-C7-N2	4.04	129.12	121.98
2	F	1	NAG	C6-C5-C4	3.94	122.69	113.02
2	С	2	NAG	C3-C4-C5	-3.91	103.14	110.23
2	D	1	NAG	O7-C7-C8	-3.84	115.21	122.05
2	Е	1	NAG	C1-O5-C5	3.82	117.31	112.19
2	С	2	NAG	O4-C4-C5	3.81	118.71	109.32
2	D	1	NAG	O3-C3-C2	3.75	117.19	109.40
2	F	1	NAG	C1-C2-N2	3.69	116.25	110.43
2	Е	1	NAG	C1-C2-N2	3.66	116.19	110.43
2	F	2	NAG	C4-C3-C2	3.63	116.34	111.02
2	Е	1	NAG	C4-C3-C2	-3.58	105.77	111.02
2	F	2	NAG	O4-C4-C3	-3.57	101.95	110.38
2	С	1	NAG	O7-C7-C8	-3.45	115.91	122.05
2	D	1	NAG	O5-C5-C6	3.43	114.35	107.66
2	F	1	NAG	C4-C3-C2	3.43	116.05	111.02
2	F	2	NAG	O5-C5-C4	-3.41	102.52	110.83
2	С	1	NAG	C3-C4-C5	3.29	116.19	110.23
2	D	1	NAG	C1-O5-C5	-3.27	107.80	112.19
2	С	1	NAG	O5-C5-C4	3.22	118.66	110.83
2	C	2	NAG	O3-C3-C2	-3.22	102.72	109.40
2	F	1	NAG	O5-C5-C4	-3.09	103.32	110.83
2	F	2	NAG	C2-N2-C7	3.06	127.00	122.90
2	F	2	NAG	C8-C7-N2	3.01	121.12	116.12
2	F	1	NAG	03-C3-C4	2.92	117.25	110.38
2	Е	1	NAG	C8-C7-N2	-2.84	111.40	116.12

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Ε	2	NAG	O5-C1-C2	-2.75	107.04	111.29
2	D	2	NAG	C3-C4-C5	-2.73	105.29	110.23
2	D	2	NAG	C6-C5-C4	2.71	119.68	113.02
2	D	1	NAG	C4-C3-C2	2.68	114.94	111.02
2	F	2	NAG	O3-C3-C2	2.64	114.88	109.40
2	Е	2	NAG	C1-C2-N2	2.56	114.46	110.43
2	Е	1	NAG	O5-C5-C4	2.47	116.85	110.83
2	F	2	NAG	O5-C5-C6	-2.37	103.04	107.66
2	D	1	NAG	O7-C7-N2	-2.32	117.87	121.98
2	D	2	NAG	C8-C7-N2	-2.32	112.27	116.12
2	D	1	NAG	O5-C5-C4	-2.22	105.44	110.83
2	F	1	NAG	O3-C3-C2	-2.18	104.86	109.40
2	F	1	NAG	O4-C4-C5	-2.12	104.09	109.32
2	Ε	1	NAG	O7-C7-N2	2.07	125.64	121.98
2	D	2	NAG	O4-C4-C5	2.02	114.31	109.32
2	С	2	NAG	O5-C1-C2	-2.01	108.19	111.29
2	F	2	NAG	07-C7-C8	-2.00	118.48	122.05

There are no chirality outliers.

All (19) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	F	1	NAG	C8-C7-N2-C2
2	F	1	NAG	O7-C7-N2-C2
2	F	2	NAG	C8-C7-N2-C2
2	F	2	NAG	O7-C7-N2-C2
2	F	2	NAG	O5-C5-C6-O6
2	D	2	NAG	C4-C5-C6-O6
2	F	1	NAG	C4-C5-C6-O6
2	С	1	NAG	O5-C5-C6-O6
2	F	2	NAG	C4-C5-C6-O6
2	F	1	NAG	O5-C5-C6-O6
2	С	1	NAG	C8-C7-N2-C2
2	D	2	NAG	O5-C5-C6-O6
2	С	1	NAG	C4-C5-C6-O6
2	Е	1	NAG	O5-C5-C6-O6
2	С	1	NAG	O7-C7-N2-C2
2	Ε	1	NAG	C1-C2-N2-C7
2	F	2	NAG	C1-C2-N2-C7
2	F	2	NAG	C3-C2-N2-C7
2	D	1	NAG	C4-C5-C6-O6

There are no ring outliers.

6	monomers	are	involved	in	20	short	contacts:	
---	----------	-----	----------	---------------	----	------------------------	-----------	--

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	С	1	NAG	2	0
2	Е	1	NAG	3	0
2	С	2	NAG	3	0
2	D	1	NAG	3	0
2	F	1	NAG	4	0
2	Е	2	NAG	5	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 21 ligands modelled in this entry, 10 are monoatomic - leaving 11 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mal Truna Chain Das		Dec	Tink	Bo	ond leng	$_{\rm ths}$	Bond angles		
MOI	Type	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
5	NAG	А	606	1	14,14,15	1.07	1 (7%)	17,19,21	1.48	3 (17%)
5	NAG	В	609	1	14,14,15	0.95	1 (7%)	17,19,21	2.03	<mark>6 (35%)</mark>
6	SO4	В	610	-	4,4,4	0.36	0	6,6,6	1.08	0

Mal	Tuno	Chain	Dog	Link	Bo	Bond lengths			Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
5	NAG	А	607	1	14,14,15	1.08	0	$17,\!19,\!21$	2.62	8 (47%)	
5	NAG	В	606	1	14,14,15	1.00	1 (7%)	17,19,21	2.54	6 (35%)	
6	SO4	А	609	-	4,4,4	0.37	0	6,6,6	0.53	0	
5	NAG	В	607	1	14,14,15	0.74	0	$17,\!19,\!21$	1.45	2 (11%)	
5	NAG	А	608	1	14,14,15	0.78	0	17,19,21	2.48	6 (35%)	
5	NAG	В	608	1	14,14,15	0.85	1 (7%)	17,19,21	2.26	5 (29%)	
7	KIB	А	610	-	12,12,12	3.08	4 (33%)	16,16,16	2.12	7 (43%)	
7	KIB	В	611	-	12,12,12	3.64	6 (50%)	16,16,16	2.07	5 (31%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAG	А	606	1	-	4/6/23/26	0/1/1/1
5	NAG	В	609	1	-	2/6/23/26	0/1/1/1
5	NAG	А	607	1	-	2/6/23/26	0/1/1/1
5	NAG	В	606	1	-	0/6/23/26	0/1/1/1
5	NAG	В	607	1	-	0/6/23/26	0/1/1/1
5	NAG	А	608	1	-	0/6/23/26	0/1/1/1
5	NAG	В	608	1	-	2/6/23/26	0/1/1/1
7	KIB	А	610	-	-	0/4/4/4	0/1/1/1
7	KIB	В	611	-	_	2/4/4/4	0/1/1/1

All (14) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
7	В	611	KIB	C6-C1	8.18	1.51	1.40
7	А	610	KIB	C2-C1	7.48	1.50	1.40
7	В	611	KIB	C2-C1	5.80	1.48	1.40
7	А	610	KIB	01-C1	-4.41	1.26	1.36
7	В	611	KIB	C5-C4	4.17	1.45	1.39
7	А	610	KIB	O2-C4	-3.93	1.28	1.37
7	А	610	KIB	C6-C1	3.82	1.45	1.40
7	В	611	KIB	O4-C2	3.55	1.42	1.37
7	В	611	KIB	C3-C4	3.16	1.43	1.39
7	В	611	KIB	O2-C4	-3.07	1.30	1.37
5	А	606	NAG	O5-C1	-3.00	1.38	1.43

001000	naca ji cii	Proces	page				
Mol	Chain	Res	Type	Atoms	Z	${ m Observed}({ m \AA})$	Ideal(Å)
5	В	609	NAG	C1-C2	2.45	1.55	1.52
5	В	606	NAG	C4-C3	-2.15	1.46	1.52
5	В	608	NAG	C1-C2	2.12	1.55	1.52

All (48) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	$\mathbf{Z} = \mathbf{Observed}(^{o})$		$Ideal(^{o})$
5	В	606	NAG	O4-C4-C3	-6.66	94.67	110.38
5	А	608	NAG	C3-C4-C5	-5.71	99.88	110.23
5	В	608	NAG	C2-N2-C7	-5.41	115.65	122.90
5	В	609	NAG	O5-C1-C2	-4.93	103.66	111.29
7	В	611	KIB	C3-C2-C1	-4.69	116.13	120.59
5	А	607	NAG	C4-C3-C2	4.56	117.70	111.02
5	А	607	NAG	C1-C2-N2	4.48	117.49	110.43
5	А	608	NAG	O5-C1-C2	-4.45	104.41	111.29
5	А	607	NAG	O7-C7-C8	-4.33	114.34	122.05
5	В	608	NAG	C8-C7-N2	4.24	123.15	116.12
5	В	606	NAG	C1-C2-N2	-3.98	104.16	110.43
5	В	607	NAG	O5-C1-C2	-3.81	105.39	111.29
7	А	610	KIB	C5-C6-C1	-3.77	117.01	120.59
5	А	607	NAG	O7-C7-N2	3.64	128.41	121.98
5	А	608	NAG	C1-O5-C5	-3.60	107.36	112.19
7	А	610	KIB	C7-O3-C6	3.50	122.65	117.51
7	А	610	KIB	O4-C2-C1	3.47	118.16	114.53
5	В	608	NAG	C3-C4-C5	3.42	116.43	110.23
5	А	608	NAG	C2-N2-C7	3.41	127.47	122.90
7	В	611	KIB	O4-C2-C1	3.37	118.06	114.53
5	А	607	NAG	O5-C5-C6	3.30	114.08	107.66
7	В	611	KIB	C2-C3-C4	3.27	124.13	118.98
7	А	610	KIB	C8-O4-C2	3.26	122.29	117.51
5	А	606	NAG	O5-C1-C2	-3.23	106.29	111.29
5	В	606	NAG	O3-C3-C4	-3.22	102.78	110.38
5	В	606	NAG	O3-C3-C2	3.05	115.73	109.40
5	В	609	NAG	O3-C3-C2	2.99	115.61	109.40
5	А	607	NAG	C3-C4-C5	2.90	115.48	110.23
5	В	609	NAG	C2-N2-C7	-2.89	119.03	122.90
5	А	607	NAG	C2-N2-C7	2.76	126.59	122.90
5	В	609	NAG	O5-C5-C6	2.74	112.99	107.66
5	В	609	NAG	C1-O5-C5	-2.71	108.55	112.19
5	А	607	NAG	O3-C3-C2	-2.68	103.84	109.40
5	В	606	NAG	O6-C6-C5	-2.67	102.23	111.33
5	В	608	NAG	07-C7-N2	-2.57	117.43	121.98

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	610	KIB	O1-C1-C2	2.45	124.47	119.21
5	А	606	NAG	C1-C2-N2	-2.44	106.58	110.43
7	В	611	KIB	C7-O3-C6	2.42	121.07	117.51
7	А	610	KIB	C6-C5-C4	2.38	122.73	118.98
5	А	608	NAG	C6-C5-C4	2.36	118.83	113.02
5	В	609	NAG	C1-C2-N2	-2.35	106.73	110.43
5	В	606	NAG	C3-C4-C5	-2.35	105.97	110.23
5	А	606	NAG	C8-C7-N2	2.31	119.95	116.12
5	В	607	NAG	O7-C7-C8	-2.29	117.98	122.05
5	А	608	NAG	07-C7-N2	2.26	125.97	121.98
7	В	611	KIB	C5-C6-C1	2.21	122.69	120.59
7	А	610	KIB	O3-C6-C1	2.18	116.81	114.53
5	В	608	NAG	O5-C5-C4	2.01	115.73	110.83

There are no chirality outliers.

All (12) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
5	А	607	NAG	C8-C7-N2-C2
5	А	607	NAG	O7-C7-N2-C2
7	В	611	KIB	C1-C6-O3-C7
7	В	611	KIB	C5-C6-O3-C7
5	А	606	NAG	C8-C7-N2-C2
5	А	606	NAG	C4-C5-C6-O6
5	В	609	NAG	C4-C5-C6-O6
5	В	608	NAG	C4-C5-C6-O6
5	А	606	NAG	O5-C5-C6-O6
5	А	606	NAG	O7-C7-N2-C2
5	В	608	NAG	O5-C5-C6-O6
5	В	609	NAG	O5-C5-C6-O6

There are no ring outliers.

5 monomers are involved in 14 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	А	606	NAG	0	1
5	А	607	NAG	4	0
5	А	608	NAG	1	0
7	А	610	KIB	1	0
7	В	611	KIB	7	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Warning: The R factor obtained from EDS is 0.3418, which does not match the depositor's R factor of 0.23047. Please interpret the results in this section carefully.

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2		$OWAB(Å^2)$	Q<0.9
1	А	559/559~(100%)	1.71	171 (30%) 1	1	2, 12, 24, 31	0
1	В	559/559~(100%)	1.85	215 (38%) 1	1	3, 13, 23, 32	0
All	All	1118/1118 (100%)	1.78	386 (34%) 1	1	2, 13, 24, 32	0

All (386) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	315	ALA	4.8
1	А	11	ALA	4.6
1	В	12	CYS	4.6
1	В	401	VAL	4.5
1	А	12	CYS	4.5
1	В	217	VAL	4.4
1	В	222	GLY	4.3
1	А	293	GLY	4.2
1	В	14	SER	4.2
1	В	369	PRO	4.2
1	В	243	VAL	4.1
1	А	278	ASP	4.1
1	В	283	PRO	4.1
1	А	401	VAL	4.1
1	А	259	ALA	3.9
1	В	466	ALA	3.9
1	А	218	THR	3.9
1	А	204	ALA	3.8
1	В	282	ALA	3.8
1	В	391	TYR	3.8
1	А	282	ALA	3.8
1	В	400	PRO	3.8

Mol	Chain	Res	Type	RSRZ
1	В	277	ILE	3.8
1	А	527	ARG	3.7
1	В	64	ILE	3.7
1	В	66	GLY	3.7
1	В	73	TRP	3.7
1	В	365	LEU	3.7
1	А	191	ALA	3.7
1	В	346	VAL	3.7
1	А	315	ALA	3.7
1	А	32	VAL	3.6
1	А	333	LEU	3.6
1	А	336	LEU	3.6
1	В	309	ILE	3.6
1	А	117	PRO	3.6
1	А	13	TRP	3.6
1	В	536	PHE	3.6
1	В	314	GLY	3.6
1	В	325	THR	3.6
1	В	547	TRP	3.6
1	В	218	THR	3.5
1	А	244	ASN	3.5
1	В	216	ASN	3.5
1	В	116	ILE	3.5
1	А	143	ALA	3.5
1	В	348	VAL	3.5
1	В	412	ASP	3.4
1	А	64	ILE	3.4
1	А	320	PRO	3.4
1	В	175	TYR	3.4
1	В	549	THR	3.4
1	В	312	TYR	3.4
1	В	191	ALA	3.4
1	А	281	ARG	3.4
1	В	51	GLY	3.4
1	В	342	VAL	3.3
1	В	7	PRO	3.3
1	В	162	PRO	3.3
1	В	46	TRP	3.3
1	В	205	VAL	3.3
1	А	466	ALA	3.3
1	В	367	GLY	3.3
1	А	285	ASN	3.3

3F	U9

Continued from previous page				
Mol	Chain	Res	Type	RSRZ
1	В	27	THR	3.3
1	В	397	THR	3.3
1	А	167	LEU	3.3
1	А	547	TRP	3.3
1	А	368	THR	3.3
1	В	87	THR	3.3
1	А	341	VAL	3.2
1	В	86	VAL	3.2
1	В	280	SER	3.2
1	А	528	ILE	3.2
1	А	316	PRO	3.2
1	В	161	LEU	3.2
1	В	341	VAL	3.2
1	А	546	TYR	3.2
1	В	137	TYR	3.2
1	А	414	TRP	3.1
1	В	13	TRP	3.1
1	В	157	GLY	3.1
1	А	406	VAL	3.1
1	В	8	SER	3.1
1	А	207	PRO	3.1
1	А	312	TYR	3.1
1	В	545	ALA	3.1
1	А	553	PRO	3.1
1	А	146	GLY	3.1
1	А	543	TRP	3.1
1	В	15	ASP	3.1
1	А	328	VAL	3.1
1	А	221	PRO	3.0
1	А	351	PHE	3.0
1	А	309	ILE	3.0
1	А	263	ASP	3.0
1	В	26	SER	3.0
1	А	327	PRO	3.0
1	В	2	PRO	3.0
1	В	328	VAL	3.0
1	В	318	GLY	3.0
1	В	388	ILE	3.0
1	A	355	PRO	3.0
1	В	281	ARG	3.0
1	В	97	ILE	3.0
1	A	287	TRP	3.0

Mol	Chain	Res	Type	RSRZ
1	В	18	ASP	3.0
1	В	133	GLY	3.0
1	В	286	TYR	2.9
1	В	416	TYR	2.9
1	В	393	LEU	2.9
1	А	215	ALA	2.9
1	А	114	CYS	2.9
1	В	399	TYR	2.9
1	А	499	TRP	2.9
1	А	394	THR	2.9
1	В	3	THR	2.9
1	В	9	ASN	2.9
1	В	526	GLN	2.9
1	В	548	PRO	2.9
1	В	25	VAL	2.9
1	В	338	VAL	2.9
1	А	511	GLY	2.9
1	А	267	LEU	2.9
1	А	342	VAL	2.9
1	В	345	SER	2.9
1	А	321	THR	2.9
1	А	484	GLY	2.9
1	А	552	TYR	2.9
1	В	117	PRO	2.8
1	А	104	LEU	2.8
1	В	372	VAL	2.8
1	В	129	ALA	2.8
1	В	159	ALA	2.8
1	А	497	GLY	2.8
1	В	134	THR	2.8
1	В	368	THR	2.8
1	В	484	GLY	2.8
1	A	111	VAL	2.8
1	A	427	PHE	2.8
1	В	351	PHE	2.8
1	В	457	PHE	2.8
1	В	490	ALA	2.8
1	В	385	GLY	2.8
1	А	4	CYS	2.8
1	В	221	PRO	2.8
1	A	217	VAL	2.8
1	А	491	PHE	2.8

3 FU	9
------	---

Mol	Chain	Res	Type	RSRZ
1	В	220	THR	2.8
1	А	137	TYR	2.8
1	А	136	TRP	2.8
1	В	396	ASN	2.7
1	В	389	ILE	2.7
1	А	95	HIS	2.7
1	А	163	TYR	2.7
1	А	150	VAL	2.7
1	А	411	VAL	2.7
1	В	238	PHE	2.7
1	В	324	GLY	2.7
1	В	90	THR	2.7
1	В	291	THR	2.7
1	В	207	PRO	2.7
1	В	4	CYS	2.7
1	А	177	TYR	2.7
1	В	83	ASN	2.7
1	В	91	SER	2.7
1	В	257	VAL	2.7
1	А	120	GLY	2.7
1	А	324	GLY	2.7
1	А	3	THR	2.7
1	А	219	LEU	2.7
1	А	399	TYR	2.7
1	А	529	SER	2.7
1	А	255	VAL	2.7
1	В	506	ALA	2.7
1	В	48	GLY	2.7
1	В	384	TRP	2.7
1	А	391	TYR	2.6
1	В	442	VAL	2.6
1	В	1	GLU	2.6
1	В	405	ILE	2.6
1	В	528	ILE	2.6
1	В	350	SER	2.6
1	В	319	LEU	2.6
1	А	185	HIS	2.6
1	А	338	VAL	2.6
1	В	120	GLY	2.6
1	В	352	VAL	2.6
1	В	408	VAL	2.6
1	В	425	GLY	2.6

3FU9

Mol	Chain	Res	Type	RSRZ
1	А	423	PRO	2.6
1	В	136	TRP	2.6
1	В	323	GLU	2.6
1	В	184	VAL	2.6
1	А	2	PRO	2.6
1	А	283	PRO	2.6
1	В	219	LEU	2.6
1	А	133	GLY	2.5
1	В	279	ALA	2.5
1	А	286	TYR	2.5
1	А	76	THR	2.5
1	А	325	THR	2.5
1	В	141	PHE	2.5
1	В	287	TRP	2.5
1	А	500	LEU	2.5
1	А	377	GLY	2.5
1	А	525	ARG	2.5
1	А	280	SER	2.5
1	А	378	SER	2.5
1	А	73	TRP	2.5
1	А	121	GLY	2.5
1	В	299	GLY	2.5
1	А	545	ALA	2.5
1	А	209	THR	2.5
1	А	262	VAL	2.5
1	В	411	VAL	2.5
1	В	414	TRP	2.5
1	А	308	ALA	2.5
1	В	539	VAL	2.5
1	В	118	PRO	2.4
1	В	320	PRO	2.4
1	B	496	PRO	2.4
1	В	546	TYR	2.4
1	A	8	SER	2.4
1	А	345	SER	2.4
1	В	353	LYS	2.4
1	A	168	GLY	2.4
1	А	127	TRP	2.4
1	А	486	TRP	2.4
1	В	276	VAL	2.4
1	A	28	PRO	2.4
1	А	138	HIS	2.4

3F	U	9

Mol	Chain	Res	Type	RSRZ
1	А	551	PRO	2.4
1	В	67	PRO	2.4
1	В	36	TYR	2.4
1	А	380	ILE	2.4
1	А	107	GLY	2.4
1	В	199	LEU	2.4
1	А	134	THR	2.4
1	В	124	THR	2.4
1	В	366	THR	2.4
1	А	140	HIS	2.4
1	А	348	VAL	2.4
1	А	304	PRO	2.4
1	В	327	PRO	2.4
1	В	379	ASP	2.4
1	А	307	ALA	2.4
1	А	313	ALA	2.4
1	В	143	ALA	2.4
1	В	321	THR	2.4
1	А	115	PRO	2.4
1	А	141	PHE	2.4
1	А	318	GLY	2.4
1	В	132	TYR	2.4
1	В	317	GLY	2.4
1	В	552	TYR	2.4
1	А	322	ASP	2.4
1	В	95	HIS	2.3
1	В	313	ALA	2.3
1	А	184	VAL	2.3
1	А	539	VAL	2.3
1	В	260	MET	2.3
1	В	375	VAL	2.3
1	В	543	TRP	2.3
1	A	96	GLY	2.3
1	А	210	GLY	2.3
1	В	523	ASP	2.3
1	A	17	PHE	2.3
1	В	23	TYR	2.3
1	В	392	ILE	2.3
1	А	220	THR	2.3
1	В	394	THR	2.3
1	В	316	PRO	2.3
1	А	299	GLY	2.3

3FU9

Mol	Chain	Res	Type	RSRZ
1	В	278	ASP	2.3
1	В	125	TYR	2.3
1	В	163	TYR	2.3
1	А	237	HIS	2.3
1	А	366	THR	2.3
1	В	462	ALA	2.3
1	В	223	LYS	2.3
1	В	38	PHE	2.3
1	В	258	ASN	2.3
1	В	349	ASN	2.3
1	А	176	TYR	2.3
1	А	179	ALA	2.3
1	А	203	THR	2.3
1	В	410	ALA	2.3
1	А	447	PRO	2.2
1	В	32	VAL	2.2
1	В	121	GLY	2.2
1	В	109	ASN	2.2
1	В	505	ILE	2.2
1	А	145	TYR	2.2
1	А	131	GLN	2.2
1	В	179	ALA	2.2
1	А	158	PRO	2.2
1	А	403	ASP	2.2
1	В	16	GLY	2.2
1	В	138	HIS	2.2
1	В	225	HIS	2.2
1	В	190	ASN	2.2
1	А	170	PHE	2.2
1	А	319	LEU	2.2
1	В	429	LEU	2.2
1	А	152	THR	2.2
1	В	108	ALA	2.2
1	А	386	LYS	2.2
1	А	70	VAL	2.2
1	В	198	VAL	2.2
1	В	269	VAL	2.2
1	В	463	VAL	2.2
1	В	72	ASN	2.2
1	В	289	ASN	2.2
1	А	292	PHE	2.2
1	В	165	ILE	2.2

Mol	Chain	Res	Type	RSRZ
1	В	94	TRP	2.2
1	В	145	TYR	2.2
1	В	248	THR	2.2
1	В	451	ALA	2.2
1	В	50	ASP	2.2
1	В	456	ARG	2.2
1	А	9	ASN	2.2
1	В	424	GLU	2.1
1	А	388	ILE	2.1
1	В	80	THR	2.1
1	В	127	TRP	2.1
1	В	507	TRP	2.1
1	В	510	SER	2.1
1	А	456	ARG	2.1
1	А	311	HIS	2.1
1	В	31	GLY	2.1
1	А	43	VAL	2.1
1	А	372	VAL	2.1
1	А	310	PHE	2.1
1	В	265	LEU	2.1
1	А	80	THR	2.1
1	А	182	ASP	2.1
1	В	164	ASP	2.1
1	В	493	THR	2.1
1	В	311	HIS	2.1
1	А	175	TYR	2.1
1	А	526	GLN	2.1
1	А	375	VAL	2.1
1	В	100	LYS	2.1
1	В	60	ILE	2.1
1	В	227	LEU	2.1
1	В	33	THR	2.1
1	В	322	ASP	2.1
1	А	98	HIS	2.1
1	А	451	ALA	2.1
1	А	522	ALA	2.1
1	В	74	GLY	2.1
1	В	472	ASN	2.1
1	А	298	CYS	2.1
1	В	111	VAL	2.1
1	В	240	VAL	2.1
1	В	275	VAL	2.1

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	В	509	VAL	2.1
1	В	544	ARG	2.1
1	А	14	SER	2.1
1	А	365	LEU	2.1
1	А	393	LEU	2.1
1	В	487	LEU	2.1
1	А	232	THR	2.1
1	В	76	THR	2.1
1	А	201	ASN	2.0
1	А	531	GLU	2.0
1	В	28	PRO	2.0
1	В	215	ALA	2.0
1	В	306	PRO	2.0
1	А	373	TRP	2.0
1	А	25	VAL	2.0
1	В	135	SER	2.0
1	В	245	HIS	2.0
1	А	47	MET	2.0
1	А	227	LEU	2.0
1	В	68	ASN	2.0
1	А	343	PRO	2.0
1	А	369	PRO	2.0
1	В	49	PRO	2.0
1	В	158	PRO	2.0
1	А	354	ARG	2.0
1	В	150	VAL	2.0
1	В	298	CYS	2.0
1	А	50	ASP	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
2	NAG	F	2	14/15	0.61	0.17	$7,\!18,\!24,\!25$	0
2	NAG	D	2	14/15	0.64	0.16	16,22,28,28	0
2	NAG	D	1	14/15	0.72	0.15	10,13,19,20	0
2	NAG	F	1	14/15	0.78	0.16	5,12,23,23	0
2	NAG	С	1	14/15	0.81	0.14	8,16,18,18	0
2	NAG	Е	1	14/15	0.81	0.14	8,15,16,17	0
2	NAG	Е	2	14/15	0.82	0.12	9,14,18,22	0
2	NAG	С	2	14/15	0.86	0.12	$9,\!15,\!19,\!19$	0

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} extsf{-}\mathbf{B} extsf{-}\mathbf{factors}(\mathbf{A}^2)$	Q < 0.9
5	NAG	А	606	14/15	0.60	0.19	26,29,32,34	0
5	NAG	В	607	14/15	0.60	0.19	13,19,24,24	0
5	NAG	А	608	14/15	0.63	0.17	8,23,27,28	0
7	KIB	А	610	12/12	0.68	0.18	7,17,20,23	0
5	NAG	В	608	14/15	0.69	0.16	17,20,25,26	0
5	NAG	В	609	14/15	0.71	0.18	8,15,27,28	0
5	NAG	А	607	14/15	0.71	0.17	16,22,33,33	0
4	CL	A	605	1/1	0.75	0.20	41,41,41,41	0
5	NAG	В	606	14/15	0.77	0.13	9,17,19,24	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
6	SO4	В	610	5/5	0.83	0.12	17,25,25,29	0
7	KIB	В	611	12/12	0.85	0.13	2,7,15,16	0
4	CL	В	605	1/1	0.92	0.11	26,26,26,26	0
3	CU	А	603	1/1	0.92	0.07	11,11,11,11	0
6	SO4	А	609	5/5	0.92	0.09	22,23,26,29	0
3	CU	В	604	1/1	0.94	0.05	$15,\!15,\!15,\!15$	0
3	CU	В	601	1/1	0.94	0.04	12,12,12,12	0
3	CU	А	602	1/1	0.96	0.04	22,22,22,22	0
3	CU	А	601	1/1	0.97	0.04	$15,\!15,\!15,\!15$	0
3	CU	В	602	1/1	0.97	0.04	18,18,18,18	0
3	CU	А	604	1/1	0.98	0.03	14,14,14,14	0
3	CU	В	603	1/1	0.99	0.02	10,10,10,10	0

6.5 Other polymers (i)

There are no such residues in this entry.

