

Mar 6, 2025 - 06:01 pm GMT

PDB ID	:	9GR1
EMDB ID	:	EMD-51517
Title	:	E. coli 70S-TEC complex in delivery state
Authors	:	Webster, M.W.; Weixlbaumer, A.
Deposited on	:	2024-09-10
Resolution	:	3.17 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.17 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures		
	(# Entries)	(#Entries)		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	0	55	89%	• 7%
2	1	46	98%	·
3	2	65	97%	
4	3	38	97%	•
5	А	1542	85%	13% •
6	В	241	88%	5% 7%
7	С	233	85%	• 12%
8	D	206	99%	
9	Е	167	92%	• 7%

Mol	Chain	Length	Quality of chain	
10	F	135	74% •	24%
11	G	179	82%	• 15%
12	Н	130	96%	•••
13	Ι	130	96%	•••
14	J	103	88%	7% 5%
15	K	129	86%	5% 9%
16	L	124	91%	• 6%
17	М	118	95%	•••
18	Ν	101	97%	•••
19	О	89	98%	••
20	Р	82	99%	·
21	Q	84	89%	5% 6%
22	R	75	67% 7%	27%
23	S	92	87%	• 9%
24	Т	87	97%	•••
25	U	71	94%	
26	Х	16	44% 31% 6%	19%
27	Z	76	75%	20% 5%
28	a	2925	84%	10% 6%
29	b	119	92%	8%
30	с	273	99%	••
31	d	209	99%	
32	е	201	98%	
33	f	179	97%	••
34	g	177	91%	8% •

Mol	Chain	Length	Quality of chain	
35	h	149	94%	5%•
36	i	142	99%	•
37	j	123	98%	•
38	k	144	100%	
39	1	136	99%	·
40	m	127	92%	• 7%
41	n	117	97%	
42	0	115	98%	••
43	р	118	99%	•
44	q	103	99%	•
45	r	110	99%	•
46	\mathbf{S}	100	89%	• 7%
47	t	104	94%	• •
48	u	94	99%	•
49	V	85	91%	• 8%
50	W	78	96%	••
51	х	63	98%	
52	у	59	98%	
53	Z	57	96%	•••
54	4	10	50% 50'	%
55	Y	77	79%	18% •

2 Entry composition (i)

There are 59 unique types of molecules in this entry. The entry contains 142297 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
1	0	51	Total 417	C 269	N 76	O 72	0	0

• Molecule 2 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	1	46	Total 377	C 228	N 90	O 57	S 2	0	0

• Molecule 3 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	64	Total 504	C 323	N 105	0 74	${ m S} { m 2}$	0	0

• Molecule 4 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	3	38	Total 302	C 185	N 65	O 48	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 5 is a RNA chain called 16S ribosomal RNA.

Mol	Chain	Residues		I	AltConf	Trace			
5	А	1513	Total 32478	C 14493	N 5961	O 10511	Р 1513	0	0

• Molecule 6 is a protein called Small ribosomal subunit protein uS2.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	В	224	Total 1753	C 1109	N 315	0 321	S 8	0	0

• Molecule 7 is a protein called Small ribosomal subunit protein uS3.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	С	206	Total 1624	C 1028	N 305	0 288	${ m S} { m 3}$	0	0

• Molecule 8 is a protein called Small ribosomal subunit protein uS4.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
8	D	205	Total 1643	C 1026	N 315	O 298	$\frac{S}{4}$	0	0

• Molecule 9 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	Е	156	Total 1152	C 717	N 217	0 212	S 6	0	0

• Molecule 10 is a protein called Small ribosomal subunit protein bS6, fully modified isoform.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	F	103	Total 839	C 530	N 151	0 151	${ m S} 7$	0	0

• Molecule 11 is a protein called Small ribosomal subunit protein uS7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	G	153	Total 1203	C 750	N 231	0 218	$\frac{S}{4}$	0	0

• Molecule 12 is a protein called Small ribosomal subunit protein uS8.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	Н	129	Total 979	C 616	N 173	0 184	S 6	0	0

• Molecule 13 is a protein called Small ribosomal subunit protein uS9.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Ι	127	Total 1022	C 634	N 206	0 179	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called Small ribosomal subunit protein uS10.

Mol	Chain	Residues	Atoms					AltConf	Trace
14	J	98	Total 786	C 493	N 150	0 142	S 1	0	0

• Molecule 15 is a protein called Small ribosomal subunit protein uS11.

Mol	Chain	Residues	Atoms					AltConf	Trace
15	K	117	Total 877	C 540	N 174	O 160	${ m S} { m 3}$	0	0

• Molecule 16 is a protein called Small ribosomal subunit protein uS12.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	L	116	Total 902	C 558	N 183	0 156	${f S}{5}$	0	0

• Molecule 17 is a protein called Small ribosomal subunit protein uS13.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	М	115	Total 891	C 552	N 179	0 157	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	Ν	100	Total 805	C 499	N 164	0 139	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
19	Ο	88	Total 714	C 439	N 144	O 130	S 1	0	0

• Molecule 20 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	Р	81	Total 643	C 403	N 127	0 112	S 1	0	0

• Molecule 21 is a protein called Small ribosomal subunit protein uS17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Q	79	Total 641	C 406	N 120	0 112	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called Small ribosomal subunit protein bS18.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
22	R	55	Total 455	C 288	N 86	O 81	0	0

• Molecule 23 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	S	84	Total 668	С 427	N 127	0 112	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 24 is a protein called Small ribosomal subunit protein bS20.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	Т	86	Total 670	C 414	N 138	0 115	${ m S} { m 3}$	0	0

• Molecule 25 is a protein called Small ribosomal subunit protein bS21.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
25	U	70	Total 589	C 366	N 125	O 97	S 1	0	0

• Molecule 26 is a RNA chain called mRNA in ribosome channel.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
26	Х	13	Total 271	C 122	N 44	O 92	Р 13	0	0

• Molecule 27 is a RNA chain called Phe-NH-tRNA(Phe) A-site.

Mol	Chain	Residues		-	AltConf	Trace				
27	Z	76	Total 1624	С 724	N 290	O 533	Р 76	S 1	0	0

• Molecule 28 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
28	a	2748	Total 59025	C 26336	N 10876	O 19065	Р 2748	0	0

• Molecule 29 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
29	b	119	Total 2549	C 1135	N 466	O 829	Р 119	0	0

• Molecule 30 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		At	AltConf	Trace			
30	С	271	Total 2082	C 1288	N 423	0 364	${ m S} 7$	0	0

• Molecule 31 is a protein called Large ribosomal subunit protein uL3.

Mol	Chain	Residues		At	AltConf	Trace			
31	d	209	Total 1566	C 980	N 288	0 294	$\frac{S}{4}$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	е	201	Total 1552	C 974	N 283	O 290	${f S}{5}$	0	0

• Molecule 33 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	f	177	Total 1410	C 899	N 249	O 256	S 6	0	0

• Molecule 34 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	AltConf	Trace			
34	g	176	Total 1323	C 832	N 243	0 246	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 35 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	h	148	Total 1101	C 694	N 196	0 210	S 1	0	0

• Molecule 36 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	i	142	Total 1129	С 714	N 212	O 199	$\frac{S}{4}$	0	0

• Molecule 37 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	AltConf	Trace			
37	j	123	Total 946	C 593	N 181	O 166	S 6	0	0

• Molecule 38 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
38	k	144	Total 1053	C 654	N 207	O 190	${S \over 2}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
k	77	ILE	VAL	conflict	UNP A0A140N711

• Molecule 39 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	AltConf	Trace			
39	1	136	Total 1075	C 686	N 205	0 178	S 6	0	0

• Molecule 40 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	m	118	Total 945	C 585	N 194	0 161	${ m S}{ m 5}$	0	0

• Molecule 41 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
41	n	116	Total 892	C 552	N 178	O 162	0	0

• Molecule 42 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms		AltConf	Trace	
42	О	114	Total 917	С 574	N 179	0 163	S 1	0	0

• Molecule 43 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
43	р	117	Total 947	C 604	N 192	0 151	0	0

• Molecule 44 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	q	103	Total 816	C 516	N 153	0 145	${ m S} { m 2}$	0	0

• Molecule 45 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
45	r	110	Total 857	C 532	N 166	O 156	${ m S} { m 3}$	0	0

• Molecule 46 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	S	93	Total 738	C 466	N 139	0 131	${ m S} { m 2}$	0	0

• Molecule 47 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
47	t	102	Total 779	C 492	N 146	O 141	0	0

• Molecule 48 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms			AltConf	Trace
48	u	94	Total 753	$\begin{array}{c} \mathrm{C} \\ 479 \end{array}$	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 49 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
49	v	78	Total 586	C 362	N 116	O 107	S 1	0	0

• Molecule 50 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms		AltConf	Trace	
50	W	77	Total 625	C 388	N 129	0 106	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 51 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
51	X	62	Total	С	Ν	Ο	S	0	0
	X	02	501	308	98	94	1	0	0

• Molecule 52 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
52	У	58	Total 449	C 281	N 87	O 79	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 53 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
52	7	56	Total	С	Ν	Ο	S	0	0
00	Z	50	444	269	94	80	1	0	0

• Molecule 54 is a RNA chain called mRNA in SD-aSD duplex.

Mol	Chain	Residues	Atoms				AltConf	Trace	
54	4	10	Total 223	C 99	N 48	O 66	Р 10	0	0

• Molecule 55 is a RNA chain called tRNA(fmet) P-site.

Mol	Chain	Residues	Atoms					AltConf	Trace	
55	Y	77	Total 1645	С 734	N 297	O 536	Р 77	S 1	0	0

• Molecule 56 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
56	3	1	Total Zn 1 1	0

• Molecule 57 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
57	А	48	Total K 48 48	0
57	a	112	Total K 112 112	0
57	b	1	Total K 1 1	0
57	С	4	Total K 4 4	0
57	d	1	Total K 1 1	0
57	е	1	Total K 1 1	0
57	f	1	Total K 1 1	0

• Molecule 58 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
58	А	95	Total Mg 95 95	0
58	Ν	1	Total Mg 1 1	0
58	a	254	Total Mg 254 254	0
58	b	5	Total Mg 5 5	0
58	с	1	Total Mg 1 1	0
58	d	1	Total Mg 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
58	k	1	Total Mg 1 1	0
58	Z	1	Total Mg 1 1	0
58	Y	1	Total Mg 1 1	0

Mol	Chain	Residues	Atoms			AltConf	
50	0	1	Total	С	Ν	0	0
59	a		11	9	1	1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L33

Chain 0:	89% • 7%	Ď
MET ALA LYS G4 R28 K33 K33 I54	7.48	
• Molecule 2:	50S ribosomal protein L34	
Chain 1:	98%	•
M1 K25 K46		
• Molecule 3:	50S ribosomal protein L35	
Chain 2:	97%	•••
MET P2 H31 A65		
• Molecule 4:	50S ribosomal protein L36	
Chain 3:	97%	·
M1 R36 G38 G38		
• Molecule 5:	16S ribosomal RNA	
Chain A:	85% 13%	·
A1 A2 A3 U5 C9 C9 C31 A32	639 639 648 660 648 660 648 77 648 64 77 64 77 64 4131 614 14 10 614 14 10 614 14 10 614 14 10 614 14 10 614 14	A160 C178 A181 A182
C188 A189 A197 C211 C211 C212 C226	A246 6251 6251 6255 6256 6266 6266 6266 6269 6269 6280 6281 6281 6281 6382	6428 0429 A448

C457 U458 U458 U463 A465 A465 A465 A465 A465 A465 A465 A468 A475 U479 U479 U479 U479 U479 U481	6484 0486 0486 0486 0486 0486 04866 04860 0510 0511 0516	61/ 652 6527 6527 8531 8532 8533 8546 8546 8547	A559 A572 A573 C576 G577 A596	C618 A630 C631 C633 G633 C633
6650 6650 0652 U653 U653 0665 665 665 0724 6724 6724	470 4777 4777 4777 6786 7786 777 777 777 777 777 779 4795 8795 8795 8795	се17 (821 С 340 С 340 С 346 В 46 С 346	4872 6890 6890 4914 6926 6934 6934	1960 1960 1969 1969 1971
A975 6976 6976 6976 6993 A996 A1004 A1004 U1008 U1017	1027 C1027 C1027 C1027 C1027 C1027 A1036 A1036 A1036 A1036	A1045 C1045 C1045 C1053 C1053 U1065 U1085 C1094 C1094	01000 A1101 C1132 C1132 C1133 C1133 C1137 C1137 C1137	C1140 C1158 U1159 A1167 A1171
(1184 41196 41197 (1207 (1207 41213 41213 41223 41238 (1253	61.260 61.260 61.279 61.279 A1.280 A1.285 A1.285 01.286 61.300 61.300 01.301 01.301	C1317 C1320 C1320 G1338 A1346 A1346 A1346 C1353	41903 (1370 (1379 (1379 (1379 (1379 (1379 (1379 (1379 (1379 (1379 (1379 (1379) (1379) (1379) (1377) (1377) (1376) (1376) (1376) (1376) (1376) (1376) (1376) (1376) (1376) (1376) (1376) (1376) (1376) (1376) (1376) (1376) (1377) (1377) (1376) (1377) (1377) (1377) (1376) (1376) (1376) (1376) (1376) (1376) (1377) (1377) (1377) (1376) (1377) (1376) (1377) (1376) (1377) (1	C1407 A1408 G1419 G1419 G1432 A1441
A1446 G1453 G1453 G1487 A1492 G1494 G1495 G1495 G1495 G1497 G1497 G1497	A1506 01516 01516 01519 A1519 01519 01529 01530 01530 01535	U1536 01537 01538 U1541 U1542		
• Molecule 6: Small	ribosomal subunit _l	protein uS2		
Chain B:	88%		59	% 7%
MET ALA ALA V4 V4 D8 N23 V23 V23 V23 V23 V23 S86 S86 S86 S86 S87 C37	0123 K128 K128 N146 D167 A5P A5P A5P	ALLA SER GLU GLU GLU SER PHE VAL CLU ALA	dtD	
• Molecule 7: Small	ribosomal subunit p	orotein uS3		
Chain C:	85%		·	12%
MET 62 853 853 853 853 8107 8107 8127 8127 8128 8128 8128 8128 8128 812	1207 1207 1207 1217 017 017 017 010 010 010 010	PRO ALA ALA ALA ALA ALA PRO PRO LYS GLN GLN ARG	LTS GLY ARG LYS	
• Molecule 8: Small	ribosomal subunit p	protein uS4		
Chain D:		99%		
MET A2 A2 A2 A2 A2 K206				
• Molecule 9: Small	ribosomal subunit p	orotein uS5		
Chain E:	92	%		• 7%
MET ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	LI <mark>165</mark> LI185 LIYS			
• Molecule 10: Small	ribosomal subunit	protein bS6, fu	ally modified is	soform
Chain F:	74%		• 24%	

• Molecule 18: Small ribosomal subunit protein uS14

Chain N:	97%		
MET A2 855 101			
• Molecule 19: Smal	l ribosomal subunit protein u	S15	
Chain O:	98%		
MET 889 R89			
• Molecule 20: 30S r	ibosomal protein S16		
Chain P:	99%		
M3 A81 ALA			
• Molecule 21: Smal	l ribosomal subunit protein u	S17	
Chain Q:	89%		5% 6%
MET THR ARF ARF F44 F44 F44 F44 F44 F44 F44 F44 F44 F	LEU		
• Molecule 22: Smal	l ribosomal subunit protein b	S18	
Chain R:	67%	7%	27%
MET ALA ALA ARG PHE PHE CYS CYS CYS CYS ARG CYS ARG ARG ARG ARG	GLU GLY VAL VAL ECLN R30 R43 R43 R43 R73 GLN GLN		
• Molecule 23: 30S r	ibosomal protein S19		
Chain S:	87%		• 9%
MET P2 D12 M44 M44 D64 A85 A85 LYS LYS A1A	SV1 LVS LVS		
• Molecule 24: Smal	l ribosomal subunit protein b	S20	
Chain T:	97%		

20%

5%

• Molecule 25: Small ribosomal subunit protein bS21

Chain U:	94%	•••
MET 77 11 12 12 12 12 12 12 12 12 12 12 12 12		
• Molecule 26: mRNA in ribosome cha	annel	

Chain X: 44% 31% 6% 19%

• Molecule 27: Phe-NH-tRNA(Phe) A-site

• Molecule 28: 23S ribosomal RNA

Chain a:	84%	10% 6%
61 410 012 012 012 012 012 415 474 471 474 471 675 474 471 471 102 1102 1102 1120	G136 U139 C140 C140 G141 A142 A142 G154 A146 A146 A146 A146 A146 A146 A146 A181 A181 A181 A181 A181 A181 A181 A18	A221 A222 A222 G248 A272 G277 A278 A278 A278 U280
C281 C287 C287 C287 C387 C386 C361 C386 C367 C386 C386 C386 C386 C386 C386 C386 C386	0481 6491 6491 6530 6533 6533 6533 6533 6533 6533 6533	U554 U565 A565 A576 A576 A576 A605 U617
A639 A639 C647 C647 C647 C649 G649 G649 A655 A655 A655 A732 C719 C719 C719 C719 C719 C719 C719 C719	6777 6778 6778 6778 A784 A784 6807 6807 0807 0814 0829 0829 0829 0828 0884	G 885 B 88 U 886 U 886 U 887 U 887 C 891 U 887 C 892 U 892 C 892 U 892 C 893 U 893 C 893 U 893
C300 A912 A912 C916 C916 C916 C916 A985 A985 A985 A986 A986 A986 A986 C1015 C1015 C1015	и 1042 1035 1042 1042 1044 1042 1044 1042 1044 1042 1042	< 0 < < 0 0 < 0 0 0 < 5
U < D D D < < C U < C U U D D < < D < C U D U < U	U G G C C C C C C C C C C C C C C C C C	U A C 179 A1265 G1275 G1273 A1274
61 302 41 303 41 303 61 315 61 326 11 357 11 367 11 367 11 367 11 367 11 367 11 361 11 381 01 413 01 418 01 418 010000000000000000000000000000000000	C1 484 C1 486 C1 486 A1510 A1511 C1 512 C1 512 C1 531 C1 535 C1 537 C1 5	A1585 01586 01587 01587 01587 01587 01587 01587 01580 01650 01650

C1658 G15717 G17717 G17732 C1732 G1740 G1746 G1746 G1766 A1775 A1775 A1775 C1818 A1775 A1810 G1877 A1810 G1877 G1877 G1872 G1872 G1872 G1819 G1819 G1819 G1819 G1819 G1819 G1819 G1819 G1819 G1819 G1819 G1819 G1819 G1818 G1818 G1818 G1818 G1818 G1833 G1834 G1833 G1834 G1834 G1834 G1834 G1834 G1834 G1834 G1834 G1834 G1834 G1834 G1834 G1834 G1834 G1834 G1834 G1834 G18377 G18377 G18377 G18377 G183777 G183777 G183777	-
C1971 M1974 01976 01976 01976 01995 01995 01995 01995 01995 01995 01995 01995 01995 02026 02026 02026 02026 02026 02026 02026 02026 02073 02066 02073 02070 02070 02070 02070 02070 02000 0200000000	U
, , , , , , , , , , , , , , , , , , ,	D
d A2195 A2202 G2208 G2208 G2208 G2245 G2245 G2245 G2245 G2245 G2245 G2245 G2245 G2245 G2245 G2245 G2245 G2245 G2245 G2245 G2235 G2245 G2245 G2245 G2245 G2245 G2255 G2245 G2255 G2265 G2265 G2355 G2255 G2555 G2555 G2555 G2555 G2555 G2555 G2555 G255	-
22449 12453 12453 12461 12461 12461 12465 22502 22502 22509 22509 22509 12566 12566 12566 12566 12566 12566 12566 12566 12568 12566 12568 12568 12569 12569 12569 12693	-
22748 A2765 A2765 A2769 A2769 A2824 A2827 A2826 A2877 A28577 A28577 A2857 A2857 A2857 A2857 A2857 A2857 A2857 A2857 A285	
• Molecule 29: 5S ribosomal RNA	
Chain b: 92% 8%	
U1 C36 A45 A55 A109 A109 A119 A119	
• Molecule 30: 50S ribosomal protein L2	
Chain c: 99%	
MET A2 R182 S272 LVS	
• Molecule 31: Large ribosomal subunit protein uL3	
Chain d: 99% .	
MI NSO NSO NSO NSO NSO NSO NSO NSO NSO NSO	
• Molecule 32: 50S ribosomal protein L4	
Chain e: 98% ·	
H 31 200 H 13 38 H	
• Molecule 33: 50S ribosomal protein L5	
Chain f: 97%	

PROTEIN DATA BANK

• Molecule 34: 50S ribosomal protein L6

Chain g:	91%	8% •
MET 82 83 83 83 84 83 145 145 145 145 145 145 145 145 165 165 165 165 165 165 165 174 165 165 174 165 174 165 174 165 174 165 174 175 174 175 174 175 174 175 175 175 175 175 175 175 175 175 175	1152 R152 K176 K177	
• Molecule 35: 50S ribosomal pro	otein L9	
Chain h:	94%	5%•
M1 K42 K57 K57 K57 K57 K143 K116 V142 V142 A148 Q10		
• Molecule 36: 50S ribosomal pro	otein L13	
Chain i:	99%	·
M1 R96 1142		
• Molecule 37: 50S ribosomal pro	otein L14	
Chain j:	98%	·
M1 105 1123		
• Molecule 38: 50S ribosomal pro	otein L15	
Chain k:	100%	
There are no outlier residues reco	orded for this chain.	
• Molecule 39: 50S ribosomal pro	otein L16	
Chain l:	99%	
M1 86 M136		
• Molecule 40: 50S ribosomal pro	otein L17	
Chain m:	92%	• 7%

• Molecule 41: 50S ribosomal protein L18

Chain n: 97% MEJ • Molecule 42: 50S ribosomal protein L19 Chain o: 98% ... • Molecule 43: 50S ribosomal protein L20 Chain p: 99% • Molecule 44: 50S ribosomal protein L21 Chain q: 99% \bullet Molecule 45: 50S ribosomal protein L22 Chain r: 99% • Molecule 46: 50S ribosomal protein L23 Chain s: 89% 7% • ASP PHE VAL GLY GLY ALA GLU • Molecule 47: 50S ribosomal protein L24 Chain t: 94% . .

MET

• Molecule 48: 50S ribosomal protein L25

Chain u:	99%	
M1 A94		
• Molecule	49: 50S ribosomal protein L27	
Chain v:	91%	• 8%
MET ALA HIS LYS LYS GLY GLY		
• Molecule	50: 50S ribosomal protein L28	
Chain w:	96%	
MET S2 S42 R45 Y78		
• Molecule	51: 50S ribosomal protein L29	
Chain x:	98%	
MET K2 A63		
• Molecule	52: 50S ribosomal protein L30	
Chain y:	98%	
MET A2 E59		
• Molecule	53: 50S ribosomal protein L32	
Chain z:	96%	
MET A2 K57		
• Molecule	54: mRNA in SD-aSD duplex	
Chain 4:	50%	50%

 \bullet Molecule 55: tRNA(fmet) P-site

Cł	nain	Y													79%	•	18%	·
C1	U8 G9	C13	C16	U17A	G18 G19	U20	A21	C32	C48	1154	U55	C74	C75 A76	A/D				

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	39139	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	700	Depositor
Maximum defocus (nm)	3500	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OMG, 4SU, MA6, 1MG, 7MG, 3TD, 3AU, MG, 5MU, 4D4, G7M, OMC, 5MC, OMU, 4OC, MIA, UR3, PSU, ZN, K, 2MA, MEQ, D2T, H2U, 2MG, 6MZ

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles			
MOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	0	0.37	0/424	0.55	0/565		
2	1	0.37	0/380	0.70	0/498		
3	2	0.37	0/513	0.57	0/676		
4	3	0.37	0/303	0.60	0/397		
5	А	0.58	1/36083~(0.0%)	0.80	16/56274~(0.0%)		
6	В	0.30	0/1784	0.51	0/2403		
7	С	0.32	0/1651	0.53	0/2225		
8	D	0.28	0/1665	0.55	0/2227		
9	Е	0.35	0/1165	0.54	0/1568		
10	F	0.35	0/858	0.54	0/1160		
11	G	0.29	0/1219	0.53	0/1635		
12	Н	0.34	0/989	0.50	0/1326		
13	Ι	0.31	0/1034	0.59	0/1375		
14	J	0.31	0/796	0.57	0/1077		
15	Κ	0.34	0/893	0.58	0/1205		
16	L	0.36	0/904	0.62	0/1211		
17	М	0.28	0/900	0.56	0/1204		
18	Ν	0.30	0/817	0.57	0/1088		
19	0	0.30	0/722	0.53	0/964		
20	Р	0.29	0/653	0.64	0/877		
21	Q	0.36	0/650	0.55	0/871		
22	R	0.37	0/462	0.60	0/621		
23	S	0.30	0/685	0.53	0/922		
24	Т	0.28	0/676	0.50	0/895		
25	U	0.30	0/597	0.58	0/792		
26	Х	0.39	0/301	1.22	5/465~(1.1%)		
27	Ζ	0.35	1/1584~(0.1%)	0.72	0/2463		
28	a	0.98	0/65531	0.91	26/102222 (0.0%)		
29	b	0.80	0/2850	0.77	0/4444		
30	с	0.41	0/2121	0.61	0/2852		
31	d	0.39	0/1576	0.56	0/2119		

Mal	Chain	Bo	ond lengths	E	Bond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
32	е	0.37	0/1571	0.54	0/2113
33	f	0.33	0/1434	0.52	0/1926
34	g	0.36	0/1343	0.53	0/1816
35	h	0.33	0/1112	0.53	0/1503
36	i	0.40	0/1152	0.54	0/1551
37	j	0.39	0/955	0.62	0/1279
38	k	0.36	0/1062	0.62	0/1413
39	l	0.38	0/1081	0.58	0/1443
40	m	0.37	0/958	0.60	0/1281
41	n	0.36	0/902	0.57	0/1209
42	0	0.40	0/929	0.56	0/1242
43	р	0.39	0/960	0.57	0/1278
44	q	0.41	0/829	0.57	0/1107
45	r	0.35	0/864	0.55	0/1156
46	s	0.38	0/744	0.54	0/994
47	t	0.36	0/787	0.54	0/1051
48	u	0.39	0/766	0.52	0/1025
49	V	0.38	0/593	0.55	0/785
50	W	0.37	0/635	0.60	0/848
51	Х	0.30	0/502	0.50	0/667
52	У	0.33	0/453	0.59	0/605
53	Z	0.40	0/450	0.65	0/599
54	4	0.29	0/251	0.85	0/391
55	Y	0.38	1/1725~(0.1%)	0.80	0/2687
All	All	0.73	$3/1\overline{52844}~(0.0\%)$	0.80	47/228590~(0.0%)

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
5	А	1407	5MC	O3'-P	20.37	1.85	1.61
55	Y	1	С	OP3-P	-10.62	1.48	1.61
27	Ζ	1	G	OP3-P	-10.60	1.48	1.61

All (47) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	А	1495	U	P-O3'-C3'	15.04	137.74	119.70
5	А	1495	U	OP2-P-O3'	-14.46	73.40	105.20
5	А	1495	U	OP1-P-O3'	9.75	126.66	105.20
5	А	1407	5MC	O3'-P-O5'	8.46	120.08	104.00
28	a	2433	G	P-O3'-C3'	-8.18	109.88	119.70
28	a	12	U	N3-C2-O2	-8.06	116.56	122.20

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
26	Х	21	С	O3'-P-O5'	-7.74	89.30	104.00
28	a	512	G	O4'-C1'-N9	7.38	114.11	108.20
5	А	1407	5MC	P-O3'-C3'	-7.20	111.06	119.70
5	А	1495	U	O3'-P-O5'	6.78	116.88	104.00
26	Х	21	С	OP2-P-O3'	6.75	120.04	105.20
28	a	986	А	O4'-C1'-N9	6.71	113.57	108.20
28	a	12	U	C2-N1-C1'	6.64	125.67	117.70
5	А	1407	5MC	OP1-P-O3'	-6.47	90.96	105.20
28	a	1940	А	O4'-C1'-N9	6.46	113.36	108.20
28	a	12	U	N1-C2-O2	6.42	127.29	122.80
5	А	1158	С	C2-N1-C1'	6.38	125.82	118.80
26	Х	23	С	C2-N1-C1'	6.35	125.79	118.80
28	a	2852	G	O4'-C1'-N9	6.18	113.15	108.20
5	А	178	С	N1-C2-O2	6.03	122.52	118.90
5	А	178	С	N3-C2-O2	-5.90	117.77	121.90
5	А	872	А	O4'-C1'-N9	5.83	112.86	108.20
28	a	395	U	O4'-C1'-N1	5.80	112.84	108.20
26	Х	23	С	C3'-C2'-C1'	-5.79	96.87	101.50
28	a	576	А	O5'-P-OP1	-5.74	100.53	105.70
28	a	1326	G	O4'-C1'-N9	5.74	112.79	108.20
28	a	792	U	C5-C6-N1	-5.71	119.85	122.70
28	a	750	G	O4'-C1'-N9	5.70	112.76	108.20
28	a	554	U	N3-C2-O2	-5.66	118.24	122.20
28	a	2649	G	O4'-C1'-N9	5.52	112.62	108.20
28	a	1658	C	C6-N1-C2	-5.50	118.10	120.30
5	А	792	А	O4'-C1'-N9	5.47	112.58	108.20
28	a	205	G	O4'-C1'-N9	5.47	112.57	108.20
28	a	1313	G	O4'-C1'-N9	5.39	112.51	108.20
5	А	1158	С	N1-C2-O2	5.39	122.14	118.90
5	А	477	C	N3-C2-O2	-5.33	118.17	121.90
28	a	177	G	O4'-C1'-N9	5.32	112.46	108.20
28	a	2395	G	O4'-C1'-N9	5.32	112.45	108.20
28	a	329	G	O5'-P-OP2	-5.30	100.93	105.70
28	a	2433	G	OP2-P-O3'	5.25	116.76	105.20
28	a	786	G	P-O3'-C3'	5.25	126.00	119.70
28	a	512	G	C1'-O4'-C4'	-5.25	105.70	109.90
5	А	1535	С	OP2-P-O3'	5.13	116.49	105.20
28	a	370	G	O4'-C1'-N9	-5.11	104.11	108.20
26	Х	21	C	P-O3'-C3'	5.05	125.76	119.70
28	a	12	U	C6-N1-C2	-5.04	117.97	121.00
5	A	1535	C	P-O3'-C3'	5.03	125.74	119.70

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	0	49/55~(89%)	49 (100%)	0	0	100	100
2	1	44/46~(96%)	44 (100%)	0	0	100	100
3	2	62/65~(95%)	60~(97%)	2(3%)	0	100	100
4	3	36/38~(95%)	36 (100%)	0	0	100	100
6	В	222/241~(92%)	210 (95%)	9 (4%)	3~(1%)	9	38
7	С	204/233~(88%)	193 (95%)	11 (5%)	0	100	100
8	D	203/206~(98%)	198 (98%)	5 (2%)	0	100	100
9	Е	154/167~(92%)	150 (97%)	4 (3%)	0	100	100
10	F	101/135~(75%)	99~(98%)	2 (2%)	0	100	100
11	G	151/179~(84%)	136 (90%)	13 (9%)	2 (1%)	10	39
12	Н	127/130~(98%)	122 (96%)	5 (4%)	0	100	100
13	Ι	125/130~(96%)	120 (96%)	5 (4%)	0	100	100
14	J	96/103~(93%)	88 (92%)	7 (7%)	1 (1%)	13	45
15	Κ	115/129~(89%)	109 (95%)	6 (5%)	0	100	100
16	L	111/124~(90%)	107 (96%)	3 (3%)	1 (1%)	14	47
17	М	113/118~(96%)	109 (96%)	4 (4%)	0	100	100
18	Ν	98/101~(97%)	95 (97%)	3 (3%)	0	100	100
19	Ο	86/89~(97%)	84 (98%)	2 (2%)	0	100	100
20	Р	79/82~(96%)	73 (92%)	6 (8%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
21	Q	77/84~(92%)	70~(91%)	7~(9%)	0	100	100
22	R	53/75~(71%)	51 (96%)	1 (2%)	1 (2%)	6	31
23	S	82/92~(89%)	74 (90%)	8 (10%)	0	100	100
24	Т	84/87~(97%)	84 (100%)	0	0	100	100
25	U	68/71~(96%)	67~(98%)	1 (2%)	0	100	100
30	с	269/273~(98%)	259~(96%)	10 (4%)	0	100	100
31	d	206/209~(99%)	200 (97%)	6(3%)	0	100	100
32	е	199/201~(99%)	194 (98%)	5(2%)	0	100	100
33	f	175/179~(98%)	165 (94%)	10 (6%)	0	100	100
34	g	174/177~(98%)	160 (92%)	13 (8%)	1 (1%)	22	55
35	h	146/149~(98%)	134 (92%)	10 (7%)	2(1%)	9	38
36	i	140/142~(99%)	140 (100%)	0	0	100	100
37	j	121/123~(98%)	118 (98%)	3(2%)	0	100	100
38	k	142/144~(99%)	138 (97%)	4 (3%)	0	100	100
39	1	133/136~(98%)	128 (96%)	5 (4%)	0	100	100
40	m	116/127~(91%)	112 (97%)	4 (3%)	0	100	100
41	n	114/117~(97%)	113 (99%)	1 (1%)	0	100	100
42	О	112/115~(97%)	110 (98%)	2(2%)	0	100	100
43	р	115/118 (98%)	114 (99%)	1 (1%)	0	100	100
44	q	101/103~(98%)	100 (99%)	1 (1%)	0	100	100
45	r	108/110 (98%)	106 (98%)	2(2%)	0	100	100
46	s	91/100 (91%)	90 (99%)	1 (1%)	0	100	100
47	t	100/104~(96%)	96 (96%)	3 (3%)	1 (1%)	13	45
48	u	92/94~(98%)	90 (98%)	2(2%)	0	100	100
49	V	76/85~(89%)	75~(99%)	1 (1%)	0	100	100
50	W	75/78~(96%)	75 (100%)	0	0	100	100
51	x	60/63~(95%)	60 (100%)	0	0	100	100
52	У	56/59~(95%)	55~(98%)	1(2%)	0	100	100
53	z	54/57~(95%)	53~(98%)	1 (2%)	0	100	100
All	All	5515/5843~(94%)	5313 (96%)	190 (3%)	12 (0%)	45	73

All (12) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
6	В	87	CYS
6	В	131	LYS
11	G	81	GLY
14	J	57	VAL
34	g	126	PRO
6	В	86	SER
35	h	42	LYS
35	h	76	GLU
11	G	153	HIS
22	R	73	ARG
47	t	39	ILE
16	L	91	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	0	46/49~(94%)	44 (96%)	2(4%)	25	54
2	1	38/38~(100%)	37~(97%)	1 (3%)	41	68
3	2	51/52~(98%)	50~(98%)	1 (2%)	50	73
4	3	34/34~(100%)	33~(97%)	1 (3%)	37	65
6	В	186/199~(94%)	176~(95%)	10 (5%)	18	48
7	С	170/190~(90%)	163 (96%)	7 (4%)	26	56
8	D	172/173~(99%)	171 (99%)	1 (1%)	84	92
9	Ε	119/126~(94%)	116~(98%)	3~(2%)	42	68
10	F	90/116~(78%)	87~(97%)	3~(3%)	33	62
11	G	126/147~(86%)	122~(97%)	4 (3%)	34	63
12	Н	104/105~(99%)	100 (96%)	4 (4%)	28	58
13	Ι	105/107~(98%)	103~(98%)	2(2%)	52	74
14	J	86/90~(96%)	80~(93%)	6 (7%)	12	39
15	К	90/99~(91%)	84 (93%)	6 (7%)	13	41
16	L	96/103~(93%)	95~(99%)	1 (1%)	73	86

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
17	М	93/96~(97%)	90~(97%)	3~(3%)	34	63
18	Ν	83/84~(99%)	81~(98%)	2(2%)	44	69
19	Ο	76/77~(99%)	75~(99%)	1 (1%)	65	82
20	Р	65/65~(100%)	65~(100%)	0	100	100
21	Q	73/78~(94%)	69 (94%)	4 (6%)	18	47
22	R	48/65~(74%)	44 (92%)	4 (8%)	9	32
23	S	72/79~(91%)	68 (94%)	4 (6%)	17	47
24	Т	65/66~(98%)	63~(97%)	2(3%)	35	63
25	U	60/61~(98%)	57 (95%)	3(5%)	20	50
30	с	216/218~(99%)	214 (99%)	2 (1%)	75	88
31	d	163/163~(100%)	160 (98%)	3 (2%)	54	75
32	е	165/165~(100%)	160 (97%)	5 (3%)	36	64
33	f	148/150~(99%)	144 (97%)	4 (3%)	40	67
34	g	137/138~(99%)	123 (90%)	14 (10%)	6	23
35	h	113/114 (99%)	107 (95%)	6(5%)	19	48
36	i	116/116 (100%)	114 (98%)	2 (2%)	56	77
37	j	104/104~(100%)	102 (98%)	2(2%)	52	74
38	k	103/103~(100%)	103 (100%)	0	100	100
39	1	108/108~(100%)	107~(99%)	1 (1%)	75	88
40	m	98/103~(95%)	97~(99%)	1 (1%)	73	86
41	n	86/87~(99%)	83 (96%)	3 (4%)	31	60
42	0	99/100~(99%)	98~(99%)	1 (1%)	73	86
43	р	89/90~(99%)	89 (100%)	0	100	100
44	q	84/84 (100%)	83 (99%)	1 (1%)	67	83
45	r	93/93~(100%)	92~(99%)	1 (1%)	70	84
46	s	80/84~(95%)	76~(95%)	4 (5%)	20	50
47	t	83/85~(98%)	80 (96%)	3 (4%)	30	59
48	u	78/78~(100%)	77 (99%)	1 (1%)	65	82
49	V	58/63~(92%)	57~(98%)	1 (2%)	56	77
50	W	67/68~(98%)	65 (97%)	2(3%)	36	64
51	х	54/55~(98%)	54 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
52	У	48/49~(98%)	48 (100%)	0	100	100
53	Z	47/48~(98%)	46 (98%)	1 (2%)	48	72
All	All	4585/4765~(96%)	4452 (97%)	133 (3%)	39	65

All (133) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	0	28	ARG
1	0	33	LYS
2	1	25	LYS
3	2	31	HIS
4	3	36	ARG
6	В	4	VAL
6	В	8	ASP
6	В	23	TRP
6	В	74	ARG
6	В	78	GLU
6	В	87	CYS
6	В	123	ASP
6	В	128	LYS
6	В	146	ASN
6	В	167	ASP
7	С	53	SER
7	С	107	ARG
7	С	112	ASP
7	С	127	ARG
7	С	169	ARG
7	С	185	ASN
7	С	192	THR
8	D	151	LYS
9	Е	55	GLU
9	Е	142	ASP
9	Е	152	MET
10	F	15	SER
10	F	74	LEU
10	F	102	MET
11	G	5	ARG
11	G	6	VAL
11	G	15	ASP
11	G	113	ASP
12	Н	54	ASP

Mol	Chain	Res	Type
12	Н	89	LYS
12	Н	90	ASP
12	Н	117	ARG
13	Ι	100	LYS
13	Ι	123	ARG
14	J	30	LYS
14	J	40	ILE
14	J	48	ARG
14	J	66	GLU
14	J	75	ASP
14	J	89	ARG
15	K	13	ARG
15	K	14	LYS
15	K	75	LYS
15	K	98	ARG
15	K	106	ARG
15	K	108	THR
16	L	54	ARG
17	М	31	LYS
17	М	83	LEU
17	М	90	ARG
18	N	49	GLN
18	Ν	55	SER
19	0	83	GLU
21	Q	40	ARG
21	Q	42	THR
21	Q	60	GLU
21	Q	77	ARG
22	R	30	LYS
22	R	42	SER
22	R	43	ARG
22	R	66	SER
23	S	12	ASP
23	S	44	MET
23	S	63	THR
23	S	64	ASP
24	Т	23	SER
24	Т	24	ARG
25	U	7	ARG
25	U	29	LEU
25	U	66	ARG
30	С	36	LYS

Mol	Chain	Res	Type
30	с	182	ARG
31	d	1	MET
31	d	32	ASN
31	d	208	LYS
32	е	55	SER
32	е	107	SER
32	е	165	HIS
32	е	198	GLU
32	е	199	MET
33	f	3	LYS
33	f	23	ASN
33	f	47	LYS
33	f	95	ARG
34	g	3	ARG
34	g	17	VAL
34	g	30	ASN
34	g	45	HIS
34	g	49	THR
34	g	51	THR
34	g	67	THR
34	g	69	ARG
34	g	74	SER
34	g	81	GLU
34	g	99	LYS
34	g	152	ARG
34	g	175	LYS
34	g	176	LYS
35	h	43	ASN
35	h	57	LYS
35	h	83	LYS
35	h	116	ARG
35	h	134	VAL
35	h	142	VAL
36	i	11	VAL
36	i	96	ARG
37	j	105	ARG
37	j	113	MET
39	1	6	ARG
40	m	6	SER
41	n	13	ARG
41	n	68	LYS
41	n	88	LYS

Mol	Chain	Res	Type
42	0	53	ARG
44	q	60	LYS
45	r	109	ASP
46	s	3	ARG
46	S	24	MET
46	S	25	GLU
46	s	27	SER
47	t	15	THR
47	t	52	LEU
47	t	100	SER
48	u	1	MET
49	V	72	LYS
50	W	42	SER
50	W	45	ARG
53	Z	57	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (19) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
8	D	59	GLN
8	D	120	HIS
9	Е	89	HIS
20	Р	18	GLN
23	S	14	HIS
24	Т	70	ASN
24	Т	82	GLN
30	с	153	GLN
30	с	226	ASN
33	f	37	ASN
34	g	38	ASN
35	h	66	ASN
36	i	76	HIS
38	k	104	GLN
46	s	59	ASN
47	t	45	HIS
47	t	54	GLN
50	W	36	HIS
52	у	20	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
26	Х	12/16~(75%)	5 (41%)	0
27	Ζ	73/76~(96%)	12 (16%)	1 (1%)
28	a	2738/2925~(93%)	257 (9%)	0
29	b	118/119~(99%)	10 (8%)	0
5	А	1505/1542~(97%)	191 (12%)	5~(0%)
54	4	9/10~(90%)	5(55%)	0
55	Y	76/77~(98%)	12 (15%)	0
All	All	4531/4765~(95%)	492 (10%)	6~(0%)

All (492) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
5	А	2	А
5	А	3	А
5	А	4	U
5	А	5	U
5	А	9	G
5	А	31	G
5	А	32	А
5	А	39	G
5	А	48	С
5	A	51	A
5	А	54	С
5	А	60	А
5	А	72	А
5	А	95	С
5	А	130	А
5	А	131	А
5	А	141	G
5	А	144	G
5	А	150	U
5	А	160	А
5	А	181	А
5	А	182	А
5	А	188	С
5	A	189	A
5	A	197	A
5	А	211	G
5	A	212	G
5	A	226	G
5	A	246	A
5	А	247	G
5	A	251	G

Mol	Chain	Res	Type
5	А	266	G
5	А	267	С
5	А	279	А
5	А	280	С
5	А	281	G
5	А	289	G
5	А	306	А
5	А	321	А
5	А	328	С
5	А	330	С
5	А	332	G
5	А	351	G
5	А	352	С
5	А	354	G
5	А	367	U
5	А	372	C
5	А	373	А
5	А	397	А
5	А	406	G
5	А	413	G
5	А	414	А
5	А	421	U
5	А	422	С
5	А	428	G
5	А	429	U
5	А	448	А
5	А	457	G
5	А	458	U
5	А	463	U
5	А	465	A
5	А	467	U
5	А	468	A
5	А	479	U
5	А	481	G
5	A	484	G
5	А	486	U
5	А	495	A
5	A	496	A
5	А	497	G
5	А	509	А
5	А	511	С
5	А	518	С

Mol	Chain	Res	Type
5	А	531	U
5	А	532	А
5	А	533	А
5	А	546	А
5	А	547	А
5	А	559	А
5	А	572	А
5	А	573	А
5	А	576	С
5	А	577	G
5	А	596	А
5	А	618	С
5	А	630	A
5	A	632	U
5	A	633	G
5	A	642	A
5	А	650	G
5	А	651	С
5	А	653	U
5	А	661	G
5	А	665	А
5	А	723	U
5	А	724	G
5	А	748	G
5	А	755	G
5	А	777	А
5	А	793	U
5	А	794	А
5	А	815	А
5	А	817	С
5	A	821	G
5	A	890	G
5	A	914	A
5	А	926	G
5	А	934	С
5	A	935	A
5	A	960	U
5	А	966	2MG
5	A	969	A
5	A	971	G
5	A	975	A
5	А	976	G

Mol	Chain	Res	Type
5	А	977	А
5	А	993	G
5	А	996	А
5	А	1003	G
5	А	1004	А
5	А	1008	U
5	А	1017	U
5	А	1020	G
5	А	1035	А
5	А	1036	А
5	А	1042	А
5	А	1044	А
5	А	1045	С
5	А	1053	G
5	А	1065	U
5	А	1085	U
5	А	1094	G
5	А	1095	U
5	А	1101	А
5	А	1132	С
5	А	1134	G
5	А	1137	С
5	А	1139	G
5	А	1140	С
5	А	1159	U
5	А	1167	А
5	А	1171	А
5	А	1184	G
5	А	1196	А
5	А	1197	А
5	A	1213	A
5	A	1227	A
5	А	1238	A
5	A	1253	G
5	А	1258	G
5	A	1260	G
5	А	1279	G
5	А	1280	A
5	A	1285	A
5	А	1286	U
5	A	1287	A
5	А	1300	G

Mol	Chain	Res	Type
5	А	1302	С
5	А	1317	С
5	А	1320	С
5	А	1338	G
5	А	1346	А
5	А	1353	G
5	А	1363	А
5	А	1370	G
5	А	1378	С
5	А	1379	G
5	А	1398	А
5	А	1408	А
5	А	1419	G
5	А	1432	G
5	А	1441	A
5	А	1442	G
5	А	1446	А
5	А	1453	G
5	А	1487	G
5	А	1492	А
5	А	1494	G
5	А	1496	С
5	А	1497	G
5	А	1503	А
5	А	1506	U
5	А	1517	G
5	А	1529	G
5	А	1530	G
5	А	1534	А
5	A	1535	С
5	A	1536	С
5	A	1537	U
5	A	1538	C
5	А	1541	U
26	X	13	U
$\overline{26}$	X	16	А
26	Х	22	А
26	X	23	C
$2\overline{6}$	X	24	A
27	Z	8	4SU
$\overline{27}$	Z	9	A
27	Z	16	H2U

Mol	Chain	Res	Type		
27	Ζ	17	C		
27	Ζ	19	G		
27	Ζ	20	H2U		
27	Ζ	22	G		
27	Ζ	44	G		
27	Ζ	46	7MG		
27	Ζ	48	С		
27	Ζ	70	G		
27	Ζ	74	С		
28	a	10	А		
28	a	15	G		
28	a	34	U		
28	a	42	A		
28	a	71	A		
28	a	74	A		
28	a	75	G		
28	a	101	А		
28	a	102	U		
28	a	118	А		
28	a	119	А		
28	a	120	U		
28	a	125	А		
28	a	136	G		
28	a	139	U		
28	a	140	С		
28	a	142	А		
28	a	163	С		
28	a	165	А		
28	a	181	А		
28	a	196	А		
28	a	215	G		
$\overline{28}$	a	216	A		
28	a	221	A		
28	a	222	A		
28	a	248	G		
28	a	272	A		
28	а	276	U		
28	a	277	G		
28	a	278	A		
28	a	279	A		
28	a	281	C		
28	a	287	G		

Mol	Chain	Res	Type
28	a	311	А
28	a	329	G
28	a	330	А
28	a	345	А
28	a	361	G
28	a	367	G
28	a	386	G
28	a	405	U
28	a	411	G
28	a	412	А
28	a	481	G
28	a	491	G
28	a	505	А
28	a	509	С
28	a	530	G
28	a	531	С
28	a	532	А
28	a	565	А
28	a	575	U
28	a	577	А
28	a	605	А
28	a	617	U
28	a	629	А
28	a	639	А
28	a	647	С
28	a	648	U
28	a	649	G
28	a	655	U
28	a	656	А
28	a	657	А
$\overline{28}$	a	688	U
28	a	719	C
$\overline{28}$	a	732	А
28	a	749	5MU
$\overline{28}$	a	766	А
28	a	777	G
28	a	778	G
28	a	784	A
$\overline{28}$	a	786	G
28	a	787	G
$\overline{28}$	a	807	G
28	a	814	С

Mol	Chain	Res	Type
28	a	829	U
28	a	830	U
28	a	848	U
28	a	861	G
28	a	884	G
28	a	886	U
28	a	887	С
28	a	890	С
28	a	892	С
28	a	893	G
28	a	897	U
28	a	898	А
28	a	899	С
28	a	901	А
28	a	912	А
28	a	916	G
28	a	933	U
28	a	948	С
28	a	963	С
28	a	976	G
28	a	985	А
28	a	998	А
28	a	1014	U
28	a	1015	С
28	a	1024	G
28	a	1035	U
28	a	1042	А
28	a	1049	G
28	a	1110	U
28	a	1112	G
28	a	1113	А
28	a	1114	G
28	a	1118	G
28	a	1124	G
28	a	1134	U
28	a	1137	С
28	a	1144	A
28	a	1173	G
28	a	1255	А
28	a	1258	G
28	a	1273	G
28	a	1274	А
	<i>a</i>	,	

Mol	Chain	Res	Type
28	a	1302	G
28	a	1303	А
28	a	1354	U
28	a	1367	А
28	a	1381	U
28	a	1385	А
28	a	1413	U
28	a	1418	G
28	a	1430	С
28	a	1436	А
28	a	1454	G
28	a	1455	А
28	a	1484	G
28	a	1495	С
28	a	1510	A
28	a	1511	А
28	a	1512	G
28	a	1517	А
28	a	1531	G
28	a	1536	U
28	a	1537	А
28	a	1538	С
28	a	1539	G
28	a	1568	А
28	a	1571	А
28	a	1580	U
28	a	1585	А
28	a	1587	С
28	a	1610	А
28	a	1649	U
28	a	1650	U
28	a	1651	G
28	a	1676	G
28	a	1717	G
28	a	1731	U
28	a	1732	C
28	a	1740	G
28	a	1746	A
28	a	1766	С
28	a	1775	A
28	a	1802	C
28	a	1803	A

Mol	Chain	Res	Type
28	a	1810	А
28	a	1818	С
28	a	1831	А
28	a	1849	А
28	a	1850	А
28	a	1860	А
28	a	1872	G
28	a	1910	G
28	a	1911	G
28	a	1917	А
28	a	1918	С
28	a	1933	G
28	a	1934	G
28	a	1941	A
28	a	1942	A
28	a	1959	U
28	a	1971	С
28	a	1974	А
28	a	1975	U
28	a	1976	G
28	a	1995	U
28	a	1997	U
28	a	2027	С
28	a	2035	А
28	a	2037	А
28	a	2047	С
28	a	2059	С
28	a	2060	G
28	a	2064	А
28	a	2065	G
28	a	2066	А
28	a	2073	G7M
28	a	2202	A
28	a	2208	G
28	a	2215	G
28	a	2227	G
28	a	2229	А
28	a	2242	G
28	a	$2\overline{243}$	G
28	a	2272	A
28	a	$2\overline{287}$	C
28	a	$2\overline{291}$	A

Mol	Chain	Res	Type
28	a	2309	U
28	a	2312	G
28	a	2326	А
28	a	2329	G
28	a	2337	А
28	a	2339	А
28	a	2351	С
28	a	2376	U
28	a	2387	G
28	a	2389	С
28	a	2400	G
28	a	2410	А
28	a	2429	A
28	a	2433	G
28	a	2434	А
28	a	2435	U
28	a	2439	А
28	a	2445	U
28	a	2452	А
28	a	2474	G
28	a	2495	U
28	a	2506	G
28	a	2509	G
28	a	2522	А
28	a	2524	С
28	a	2529	G
28	a	2533	G
28	a	2551	А
28	a	2570	А
28	a	2571	G
28	a	2577	С
28	a	2606	A
28	a	2613	U
28	a	2617	U
28	a	2633	U
28	a	2634	G
28	a	2667	G
28	a	2693	U
28	a	2694	U
28	a	2718	G
28	a	2730	A
28	a	2748	G

Mol	Chain	Res	Type
28	a	2752	А
28	a	2761	А
28	a	2769	А
28	a	2782	А
28	a	2802	U
28	a	2803	G
28	a	2824	А
28	a	2825	А
28	a	2839	А
28	a	2865	U
28	a	2877	А
28	a	2878	С
28	a	2887	А
28	a	2888	U
29	b	35	С
29	b	36	С
29	b	45	A
29	b	56	G
29	b	57	А
29	b	67	G
29	b	89	U
29	b	90	С
29	b	99	A
29	b	109	A
54	4	5	А
54	4	8	A
54	4	9	G
54	4	10	G
54	4	11	А
55	Y	8	4SU
55	Y	9	G
55	Y	13	С
55	Y	16	С
55	Y	17(A)	U
55	Y	18	G
55	Y	19	G
55	Y	20	H2U
55	Y	21	A
55	Y	48	С
55	Y	74	С
55	Y	76	А

All (6) RNA pucker outliers are listed below:

Mol	Chain	Res	Type	
5	А	641	U	
5	А			
5	5 A 786			
5	5 A 1035		А	
5	А	1535	С	
27	Ζ	19	G	

5.4 Non-standard residues in protein, DNA, RNA chains (i)

53 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	BogLinkBond lengthsBond at		ond ang	les			
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
28	PSU	a	957	28	18,21,22	1.07	1 (5%)	22,30,33	1.79	2 (9%)
27	3AU	Ζ	47	27	18,21,29	<mark>3.38</mark>	8 (44%)	26,30,43	1.64	5 (19%)
27	PSU	Ζ	55	27	18,21,22	1.10	1 (5%)	22,30,33	1.81	5 (22%)
55	H2U	Y	20	55	18,21,22	<mark>3.11</mark>	5 (27%)	21,30,33	1.96	5 (23%)
5	UR3	А	1498	5	19,22,23	2.57	6 (31%)	26,32,35	1.38	3 (11%)
28	1MG	a	747	28	18,26,27	2.52	5 (27%)	19,39,42	1.16	2 (10%)
55	PSU	Y	55	55	18,21,22	1.12	1 (5%)	22,30,33	1.76	4 (18%)
28	PSU	a	2461	28	18,21,22	1.09	1 (5%)	22,30,33	1.84	4 (18%)
28	6MZ	a	1620	28	18,25,26	2.12	3 (16%)	16,36,39	2.21	4 (25%)
28	PSU	a	1915	28	18,21,22	1.01	1 (5%)	22,30,33	1.78	3 (13%)
28	5MC	a	1966	28,57	18,22,23	0.81	0	26,32,35	0.53	0
28	6MZ	a	2034	28	18,25,26	2.08	5 (27%)	16,36,39	2.18	4 (25%)
28	OMC	a	2502	$28,\!58$	19,22,23	0.81	1 (5%)	26,31,34	0.66	0
28	2MA	a	2507	$28,\!58,\!57$	19,25,26	3.17	8 (42%)	21,37,40	2.64	4 (19%)
5	MA6	А	1518	5	18,26,27	1.01	1 (5%)	19,38,41	2.66	3 (15%)
55	5MU	Y	54	55	19,22,23	1.39	5 (26%)	28,32,35	2.07	6 (21%)
28	H2U	a	2453	28	18,21,22	0.64	0	21,30,33	1.07	3 (14%)
16	D2T	L	89	16	7,9,10	1.36	1 (14%)	6,11,13	1.79	2 (33%)
28	2MG	a	1837	28	18,26,27	1.36	3 (16%)	16,38,41	0.81	1 (6%)

Mal	T	Chain	Dec	T in la	Link Bond lengths			Bond angles		
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
28	PSU	a	2508	28,57	18,21,22	1.03	1(5%)	22,30,33	1.87	4 (18%)
5	2MG	А	1207	5,57	18,26,27	1.20	3 (16%)	16,38,41	0.92	1 (6%)
5	PSU	А	516	5	18,21,22	0.99	1 (5%)	22,30,33	1.71	5 (22%)
27	MIA	Z	37	27	18,24,32	1.53	3 (16%)	18,35,47	1.54	3 (16%)
27	4SU	Z	8	27	18,21,22	4.19	8 (44%)	26,30,33	2.25	4 (15%)
28	OMG	a	2255	28,55,57	18,26,27	1.31	3 (16%)	19,38,41	0.80	1 (5%)
5	2MG	А	1516	5	18,26,27	1.33	3 (16%)	16,38,41	0.90	1 (6%)
5	5MC	А	1407	5	18,22,23	0.83	1 (5%)	26,32,35	0.58	0
5	G7M	А	527	5	20,26,27	2.42	7 (35%)	17,39,42	1.14	1 (5%)
5	2MG	А	966	5	18,26,27	1.26	3 (16%)	16,38,41	0.84	0
28	PSU	a	748	28,58	18,21,22	1.10	2 (11%)	22,30,33	1.60	3 (13%)
28	PSU	a	2584	28	18,21,22	1.07	2 (11%)	22,30,33	1.77	3 (13%)
27	H2U	Z	16	27	18,21,22	3.06	5 (27%)	21,30,33	2.09	5 (23%)
28	3TD	a	1919	28	18,22,23	4.02	7 (38%)	22,32,35	1.79	3 (13%)
27	PSU	Z	32	27	18,21,22	1.06	1 (5%)	22,30,33	1.77	5 (22%)
28	PSU	a	2608	28	18,21,22	1.06	1 (5%)	22,30,33	1.85	3 (13%)
28	PSU	a	2609	28	18,21,22	1.08	1 (5%)	22,30,33	1.89	4 (18%)
39	4D4	1	81	39	9,11,12	0.54	0	8,13,15	1.03	1 (12%)
27	PSU	Z	39	27	18,21,22	1.05	1 (5%)	22,30,33	1.80	5 (22%)
55	4SU	Y	8	55	18,21,22	4.19	8 (44%)	26,30,33	2.26	5 (19%)
5	MA6	А	1519	5	18,26,27	1.04	1 (5%)	19,38,41	2.77	3 (15%)
28	OMU	a	2556	28,58,57	19,22,23	<mark>3.07</mark>	7 (36%)	26,31,34	1.66	4 (15%)
28	PSU	a	1921	28	18,21,22	1.04	1 (5%)	22,30,33	1.84	4 (18%)
5	4OC	А	1402	5	20,23,24	2.98	8 (40%)	26,32,35	0.94	1 (3%)
28	G7M	a	2073	28,57	20,26,27	2.45	7 (35%)	17,39,42	1.12	2 (11%)
27	7MG	Z	46	27	20,25,27	3.36	10 (50%)	27,37,42	2.11	8 (29%)
27	5MU	Z	54	27	19,22,23	1.38	5 (26%)	28,32,35	2.09	6 (21%)
28	2MG	a	2449	28	18,26,27	1.46	3 (16%)	16,38,41	0.66	0
28	5MU	a	749	28	19,22,23	0.72	0	28,32,35	0.56	0
28	5MU	a	1943	28,57	19,22,23	0.81	0	28,32,35	0.46	0
27	H2U	Z	20	27	18,21,22	3.13	5 (27%)	21,30,33	1.99	5 (23%)
5	5MC	A	967	5	18,22,23	0.76	0	26,32,35	0.61	0
55	OMC	Y	32	55	19,22,23	3.01	8 (42%)	26,31,34	0.90	2 (7%)
31	MEQ	d	150	31	8,9,10	0.82	0	5,10,12	0.76	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
28	PSU	a	957	28	-	0/7/25/26	0/2/2/2
27	3AU	Ζ	47	27	-	2/7/25/35	0/2/2/2
27	PSU	Ζ	55	27	-	0/7/25/26	0/2/2/2
55	H2U	Y	20	55	-	7/7/38/39	0/2/2/2
5	UR3	А	1498	5	-	0/7/25/26	0/2/2/2
28	1MG	a	747	28	-	0/3/25/26	0/3/3/3
55	PSU	Y	55	55	-	0/7/25/26	0/2/2/2
28	PSU	a	2461	28	-	0/7/25/26	0/2/2/2
28	6MZ	a	1620	28	-	0/5/27/28	0/3/3/3
28	PSU	a	1915	28	-	0/7/25/26	0/2/2/2
28	5MC	a	1966	28,57	-	0/7/25/26	0/2/2/2
28	6MZ	a	2034	28	-	2/5/27/28	0/3/3/3
28	OMC	a	2502	28,58	-	0/9/27/28	0/2/2/2
28	2MA	a	2507	28,58,57	-	2/3/25/26	0/3/3/3
5	MA6	А	1518	5	-	0/7/29/30	0/3/3/3
55	5MU	Y	54	55	-	0/7/25/26	0/2/2/2
28	H2U	a	2453	28	-	0/7/38/39	0/2/2/2
16	D2T	L	89	16	-	3/7/12/14	-
28	2MG	a	1837	28	-	0/5/27/28	0/3/3/3
28	PSU	a	2508	28,57	-	0/7/25/26	0/2/2/2
5	2MG	А	1207	$5,\!57$	-	0/5/27/28	0/3/3/3
5	PSU	А	516	5	-	0/7/25/26	0/2/2/2
27	MIA	Ζ	37	27	-	0/3/25/34	0/3/3/3
27	$4\mathrm{SU}$	Ζ	8	27	-	2/7/25/26	0/2/2/2
28	OMG	a	2255	28,55,57	-	1/5/27/28	0/3/3/3
5	2MG	А	1516	5	-	0/5/27/28	0/3/3/3
5	5MC	А	1407	5	-	0/7/25/26	0/2/2/2
5	G7M	А	527	5	-	0/3/25/26	0/3/3/3
5	2MG	А	966	5	-	0/5/27/28	0/3/3/3
28	PSU	a	748	$28,\!58$	-	1/7/25/26	0/2/2/2
28	PSU	a	2584	28	-	0/7/25/26	0/2/2/2
27	H2U	Ζ	16	27	-	0/7/38/39	0/2/2/2
28	3TD	a	1919	28	-	2/7/25/26	0/2/2/2
27	PSU	Ζ	32	27	-	0/7/25/26	0/2/2/2
28	PSU	a	2608	28	-	0/7/25/26	0/2/2/2
28	PSU	a	2609	28	-	0/7/25/26	0/2/2/2
39	4D4	1	81	39	-	6/11/12/14	-
27	PSU	Ζ	39	27	-	0/7/25/26	0/2/2/2

centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
55	4SU	Y	8	55	-	2/7/25/26	0/2/2/2
5	MA6	А	1519	5	-	3/7/29/30	0/3/3/3
28	OMU	a	2556	28,58,57	-	0/9/27/28	0/2/2/2
28	PSU	a	1921	28	-	0/7/25/26	0/2/2/2
5	4OC	А	1402	5	-	0/9/29/30	0/2/2/2
28	G7M	a	2073	28,57	-	2/3/25/26	0/3/3/3
27	7MG	Z	46	27	-	2/7/34/38	0/3/3/3
27	5MU	Ζ	54	27	-	0/7/25/26	0/2/2/2
28	2MG	a	2449	28	-	0/5/27/28	0/3/3/3
28	5MU	a	749	28	-	0/7/25/26	0/2/2/2
28	5MU	a	1943	28,57	-	0/7/25/26	0/2/2/2
27	H2U	Z	20	27	-	2/7/38/39	0/2/2/2
5	5MC	А	967	5	-	0/7/25/26	0/2/2/2
55	OMC	Y	32	55	-	3/9/27/28	0/2/2/2
31	MEQ	d	150	31	-	2/8/9/11	-

All (172) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	a	1919	3TD	C6-C5	12.08	1.49	1.35
27	Ζ	20	H2U	C2-N1	9.70	1.49	1.35
55	Y	20	H2U	C2-N1	9.65	1.49	1.35
55	Y	8	4SU	C4-N3	9.58	1.47	1.37
27	Ζ	8	4SU	C4-N3	9.41	1.47	1.37
27	Ζ	16	H2U	C2-N1	9.37	1.49	1.35
28	a	1919	3TD	C2-N1	8.61	1.48	1.37
27	Ζ	8	4SU	C2-N1	7.99	1.51	1.38
55	Y	8	4SU	C2-N1	7.73	1.50	1.38
28	a	2507	2MA	C4-N3	7.57	1.47	1.35
27	Ζ	47	3AU	C2-N1	7.32	1.50	1.38
28	a	1620	6MZ	C6-N6	7.20	1.46	1.35
27	Ζ	47	3AU	C6-C5	6.98	1.51	1.35
28	a	2034	6MZ	C6-N6	6.88	1.46	1.35
27	Ζ	8	4SU	C2-N3	6.66	1.49	1.38
55	Y	8	4SU	C2-N3	6.58	1.49	1.38
27	Ζ	20	H2U	C2-N3	6.52	1.49	1.38
55	Y	20	H2U	C2-N3	6.50	1.49	1.38
27	Ζ	47	3AU	C2-N3	6.50	1.49	1.38
27	Ζ	16	H2U	C2-N3	6.48	1.49	1.38
55	Y	32	OMC	C2-N3	6.43	1.49	1.36
5	А	1402	4OC	C4-N3	6.31	1.43	1.32

Conti	Continued from previous page											
Mol	Chain	Res	Type	Atoms								
5	А	1498	UR3	C2-N1	6.29							

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
5	А	1498	UR3	C2-N1	6.29	1.47	1.38
28	a	2507	2MA	C2-N3	6.27	1.45	1.34
28	a	2556	OMU	C2-N3	6.26	1.49	1.38
28	a	747	1MG	C2-N3	6.16	1.45	1.34
27	Z	8	4SU	C6-C5	6.05	1.49	1.35
55	Y	8	4SU	C6-C5	6.05	1.49	1.35
27	Ζ	46	7MG	C2-N3	6.05	1.47	1.33
5	А	1402	4OC	C6-C5	6.04	1.49	1.35
27	Ζ	46	7MG	C4-N3	5.97	1.48	1.34
28	a	2073	G7M	C2-N2	5.94	1.48	1.34
55	Y	32	OMC	C6-C5	5.91	1.48	1.35
28	a	2556	OMU	C2-N1	5.90	1.47	1.38
28	a	747	1MG	C2-N2	5.88	1.44	1.34
28	a	2507	2MA	C2-N1	5.84	1.44	1.34
5	А	1498	UR3	C6-C5	5.75	1.48	1.35
55	Y	8	4SU	C5-C4	5.71	1.49	1.42
27	Ζ	8	4SU	C5-C4	5.68	1.49	1.42
27	Ζ	46	7MG	C4-N9	5.66	1.44	1.37
5	А	1402	4OC	C2-N3	5.66	1.47	1.36
28	a	2507	2MA	C6-N1	5.65	1.44	1.33
28	a	1919	3TD	C6-N1	5.44	1.45	1.36
55	Y	8	4SU	C4-S4	-5.41	1.58	1.68
5	А	527	G7M	C2-N3	5.39	1.46	1.33
27	Ζ	8	4SU	C4-S4	-5.33	1.58	1.68
55	Y	32	OMC	C4-N3	5.25	1.45	1.34
28	a	2556	OMU	C6-C5	5.24	1.47	1.35
27	Z	47	3AU	C4-N3	5.19	1.47	1.38
28	a	2556	OMU	O4-C4	-5.18	1.14	1.24
27	Z	20	H2U	C4-N3	5.03	1.46	1.37
27	Z	16	H2U	C4-N3	4.95	1.46	1.37
5	А	527	G7M	C4-N3	4.92	1.49	1.37
55	Y	20	H2U	C4-N3	4.91	1.46	1.37
27	Z	46	7MG	C2-N2	4.89	1.45	1.34
27	Z	46	7MG	C5-C4	4.88	1.44	1.37
55	Y	32	OMC	C4-N4	4.87	1.45	1.33
28	a	2073	G7M	C2-N3	4.79	1.44	1.33
5	A	527	G7M	C2-N2	4.76	1.45	1.34
5	А	1402	4OC	C4-N4	4.68	1.45	1.35
28	a	747	1MG	C4-N3	4.62	1.48	1.37
5	А	1498	UR3	C2-N3	4.53	1.47	1.39
55	Y	32	OMC	C2-N1	4.53	1.49	1.40
28	a	2556	OMU	O2-C2	-4.46	1.14	1.23

1.39

Ideal(Å) 1.37

1.42

1.37

1.34

1.38

1.35

1.35 1.38

1.40

1.38

1.37

1.35

1.40

1.35

Contr	Continuea from previous page													
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)								
27	Ζ	46	7MG	C2-N1	4.39	1.48								
27	Ζ	46	7MG	C5-C6	4.34	1.53								
28	a	2073	G7M	C4-N3	4.17	1.47								
27	Ζ	37	MIA	C6-N6	4.13	1.49								
28	a	1919	3TD	C2-N3	3.93	1.47								
28	a	1837	2MG	C8-N7	-3.76	1.28								
28	a	2449	2MG	C8-N7	-3.75	1.28								
28	a	2556	OMU	C4-N3	3.70	1.45								
5	А	1402	4OC	C5-C4	3.65	1.48								
27	Ζ	46	7MG	C6-N1	3.60	1.45								
5	А	527	G7M	C6-N1	3.59	1.43								
55	Y	55	PSU	C6-C5	3.58	1.39								
5	А	1402	4OC	C2-N1	3.49	1.47								
27	Z	55	PSU	C6-C5	3.46	1.39								

 α 1: 1 [

27	Z	46	7MG	O6-C6	-3.45	1.17	1.23
5	А	1402	4OC	O2-C2	-3.44	1.17	1.23
5	А	1516	2MG	C8-N7	-3.42	1.29	1.35
27	Z	39	PSU	C6-C5	3.36	1.39	1.35
5	А	966	2MG	C8-N7	-3.36	1.29	1.35
27	Z	32	PSU	C6-C5	3.36	1.39	1.35
27	Z	47	3AU	C6-N1	3.33	1.46	1.38
28	a	2556	OMU	C6-N1	3.30	1.45	1.38
28	a	2073	G7M	C6-N1	3.29	1.42	1.37
27	Z	8	4SU	C6-N1	3.28	1.45	1.38
28	a	2255	OMG	C8-N7	-3.24	1.29	1.35
55	Y	8	4SU	C6-N1	3.24	1.45	1.38
55	Y	8	4SU	O2-C2	-3.20	1.17	1.23
27	Z	46	7MG	C5-N7	3.14	1.44	1.35
5	А	1518	MA6	C5-C4	-3.14	1.32	1.40
55	Y	32	OMC	C6-N1	3.13	1.45	1.38
5	А	527	G7M	C5-C6	3.09	1.53	1.45
28	a	1921	PSU	C6-C5	3.07	1.38	1.35
28	a	2073	G7M	O6-C6	-3.05	1.17	1.23
5	А	1519	MA6	C5-C4	-3.03	1.32	1.40
5	А	1207	2MG	C8-N7	-2.99	1.29	1.35
28	a	748	PSU	C6-C5	2.99	1.38	1.35
27	Z	8	4SU	O2-C2	-2.98	1.17	1.23
5	A	516	PSU	C6-C5	2.96	1.38	1.35
28	a	2508	PSU	C6-C5	2.95	1.38	1.35
28	a	2507	2MA	C6-C5	2.92	1.54	1.43
28	a	2461	PSU	C6-C5	2.91	1.38	1.35
28	a	957	PSU	C6-C5	2.90	1.38	1.35

Continued	from	previous	page
Contentaca	<i>J</i> 10110	proceeduo	pago

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	a	2449	2MG	C5-C6	-2.89	1.41	1.47
28	a	1915	PSU	C6-C5	2.87	1.38	1.35
27	Ζ	37	MIA	C2-N3	2.87	1.36	1.32
5	А	1402	4OC	C6-N1	2.85	1.44	1.38
27	Ζ	47	3AU	O4-C4	-2.83	1.19	1.24
28	a	2073	G7M	C5-C6	2.83	1.52	1.45
5	А	1516	2MG	C5-C6	-2.79	1.41	1.47
5	А	1498	UR3	O2-C2	-2.77	1.17	1.22
27	Ζ	47	3AU	C5-C4	2.75	1.49	1.43
5	А	966	2MG	C5-C6	-2.73	1.41	1.47
5	А	527	G7M	C2-N1	2.71	1.44	1.37
28	a	1837	2MG	C5-C6	-2.69	1.41	1.47
5	А	1498	UR3	O4-C4	-2.69	1.17	1.23
28	a	2255	OMG	C5-C6	-2.69	1.42	1.47
27	Ζ	54	5MU	C6-C5	2.67	1.39	1.34
55	Y	32	OMC	O2-C2	-2.67	1.18	1.23
5	А	1498	UR3	C6-N1	2.64	1.44	1.38
55	Y	54	5MU	C4-N3	-2.61	1.34	1.38
55	Y	54	5MU	C6-C5	2.60	1.38	1.34
28	a	2609	PSU	C6-C5	2.60	1.38	1.35
27	Ζ	54	5MU	C4-N3	-2.59	1.34	1.38
28	a	2034	6MZ	C5-C4	-2.58	1.34	1.40
28	a	2608	PSU	C6-C5	2.58	1.38	1.35
28	a	1620	6MZ	C5-C4	-2.57	1.34	1.40
27	Ζ	47	3AU	O2-C2	-2.55	1.18	1.23
28	a	747	1MG	O6-C6	-2.52	1.17	1.22
28	a	2584	PSU	C6-C5	2.51	1.38	1.35
28	a	1919	3TD	O4-C4	-2.50	1.17	1.23
28	a	747	1MG	C5-C4	-2.49	1.36	1.43
5	А	1207	2MG	C5-C6	-2.46	1.42	1.47
28	a	2073	G7M	C2-N1	2.37	1.43	1.37
55	Y	54	$5 \mathrm{MU}$	C6-N1	-2.36	1.34	1.38
27	Ζ	16	H2U	O2-C2	-2.36	1.18	1.23
28	a	1919	3TD	C1'-C5	2.36	1.55	1.50
5	А	527	G7M	O6-C6	-2.35	1.18	1.23
55	Υ	32	OMC	C5-C4	2.35	1.48	1.42
55	Y	20	H2U	O2-C2	-2.34	1.18	1.23
27	Ζ	20	H2U	O2-C2	-2.31	1.18	1.23
28	a	$20\overline{34}$	6MZ	C2-N1	2.30	1.38	1.33
27	Ζ	54	5MU	C6-N1	-2.28	1.34	1.38
28	a	2507	2MA	C5-C4	-2.27	1.34	1.40
28	a	2449	2MG	C5-C4	-2.26	1.37	1.43

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	a	1837	2MG	C5-C4	-2.26	1.37	1.43
55	Y	54	5MU	C2-N1	2.26	1.42	1.38
28	a	2584	PSU	O4'-C1'	-2.25	1.40	1.43
28	a	2034	6MZ	C2-N3	2.23	1.35	1.32
27	Ζ	37	MIA	C5-C4	-2.23	1.35	1.40
55	Y	20	H2U	O4-C4	-2.23	1.18	1.23
28	a	2507	2MA	C5-N7	-2.21	1.31	1.39
28	a	1919	3TD	C4-N3	2.20	1.45	1.40
27	Ζ	20	H2U	O4-C4	-2.18	1.18	1.23
5	А	1516	2MG	C5-C4	-2.18	1.37	1.43
27	Ζ	54	5MU	C4-C5	2.15	1.48	1.44
55	Y	54	5MU	C4-C5	2.14	1.48	1.44
27	Ζ	16	H2U	O4-C4	-2.14	1.18	1.23
28	a	2034	6MZ	C5-N7	-2.11	1.32	1.39
28	a	1620	6MZ	C2-N3	2.11	1.35	1.32
27	Ζ	54	5MU	C2-N1	2.10	1.41	1.38
28	a	2255	OMG	C5-C4	-2.10	1.37	1.43
5	А	1207	2MG	C5-C4	-2.10	1.37	1.43
28	a	2502	OMC	C4-N3	-2.09	1.30	1.34
5	А	1407	5MC	C4-N3	-2.06	1.30	1.34
28	a	2507	2MA	C8-N7	2.05	1.38	1.34
5	А	966	2MG	C5-C4	-2.04	1.37	1.43
28	a	748	PSU	O4'-C1'	-2.01	1.41	1.43
16	L	89	D2T	CB1-SB	-2.01	1.75	1.79

All (152) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	А	1519	MA6	N1-C6-N6	-9.71	106.84	117.06
28	a	2507	2MA	C1'-N9-C4	9.39	143.13	126.64
5	А	1518	MA6	N1-C6-N6	-9.21	107.36	117.06
55	Y	8	4SU	C4-N3-C2	-7.98	119.59	127.34
27	Ζ	8	4SU	C4-N3-C2	-7.85	119.72	127.34
27	Ζ	16	H2U	C4-N3-C2	-7.28	119.75	125.79
27	Ζ	46	7MG	C5-C4-N3	-7.12	120.45	127.80
27	Ζ	20	H2U	C4-N3-C2	-6.89	120.07	125.79
55	Y	20	H2U	C4-N3-C2	-6.77	120.18	125.79
5	А	1519	MA6	N3-C2-N1	-6.02	119.28	128.68
28	a	1919	3TD	N1-C2-N3	5.90	120.79	116.14
5	А	1518	MA6	N3-C2-N1	-5.86	119.52	128.68
27	Z	8	4SU	C5-C4-N3	5.76	120.03	114.69
55	Y	8	4SU	C5-C4-N3	5.66	119.94	114.69

$\alpha \cdot \cdot \cdot \cdot$	r		
Continued	from	previous	page
		1	1 0

Mol	Chain	Res	Type	Atoms Z		$Observed(^{o})$	$Ideal(^{o})$
27	Ζ	37	MIA	N3-C2-N1	-5.36	120.30	128.68
28	a	1620	6MZ	N3-C2-N1	-5.32	120.36	128.68
27	Ζ	54	5MU	C4-N3-C2	-5.19	120.63	127.35
28	a	2461	PSU	N1-C2-N3	5.09	120.90	115.13
55	Y	54	5MU	C4-N3-C2	-5.07	120.79	127.35
28	a	2556	OMU	C4-N3-C2	-5.04	119.93	126.58
28	a	2609	PSU	N1-C2-N3	5.01	120.80	115.13
28	a	1620	6MZ	C9-N6-C6	5.00	127.18	122.87
28	a	2034	6MZ	N3-C2-N1	-4.96	120.92	128.68
28	a	2508	PSU	N1-C2-N3	4.94	120.73	115.13
28	a	2034	6MZ	C9-N6-C6	4.93	127.12	122.87
28	a	957	PSU	C4-N3-C2	-4.93	119.23	126.34
27	Ζ	47	3AU	C4-N3-C2	-4.89	120.13	126.58
5	А	1498	UR3	C4-N3-C2	-4.85	119.99	124.56
28	a	1921	PSU	C4-N3-C2	-4.83	119.38	126.34
28	a	2608	PSU	C4-N3-C2	-4.82	119.40	126.34
28	a	1915	PSU	C4-N3-C2	-4.80	119.42	126.34
28	a	2609	PSU	C4-N3-C2	-4.77	119.46	126.34
27	Ζ	54	5MU	N3-C2-N1	4.74	121.18	114.89
28	a	2608	PSU	N1-C2-N3	4.71	120.47	115.13
28	a	2584	PSU	C4-N3-C2	-4.71	119.56	126.34
28	a	1921	PSU	N1-C2-N3	4.69	120.45	115.13
27	Ζ	54	5MU	C5-C4-N3	4.69	119.31	115.31
28	a	2508	PSU	C4-N3-C2	-4.68	119.60	126.34
28	a	957	PSU	N1-C2-N3	4.66	120.41	115.13
55	Y	54	5MU	C5-C4-N3	4.64	119.28	115.31
55	Y	54	5MU	N3-C2-N1	4.62	121.03	114.89
55	Y	55	PSU	C4-N3-C2	-4.59	119.72	126.34
27	Ζ	55	PSU	C4-N3-C2	-4.58	119.75	126.34
27	Ζ	39	PSU	C4-N3-C2	-4.57	119.76	126.34
27	Ζ	39	PSU	N1-C2-N3	4.53	120.26	115.13
28	a	2461	PSU	C4-N3-C2	-4.48	119.88	126.34
27	Ζ	32	PSU	C4-N3-C2	-4.47	119.90	126.34
28	a	748	PSU	C4-N3-C2	-4.46	119.91	126.34
28	a	1915	PSU	N1-C2-N3	4.46	120.18	115.13
27	Ζ	55	PSU	N1-C2-N3	4.44	$1\overline{20.16}$	115.13
28	a	2584	PSU	N1-C2-N3	4.44	120.16	115.13
27	Ζ	32	PSU	N1-C2-N3	4.40	120.11	115.13
27	Z	54	5MU	O4-C4-C5	-4.35	119.86	124.90
27	Z	46	7MG	C2-N3-C4	4.33	120.01	112.30
55	Y	55	PSU	N1-C2-N3	4.28	119.98	115.13
5	А	516	PSU	C4-N3-C2	-4.26	120.19	126.34

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
55	Y	54	5MU	O4-C4-C5	-4.25	119.97	124.90
5	А	516	PSU	N1-C2-N3	4.22	119.91	115.13
28	a	2556	OMU	N3-C2-N1	4.16	120.42	114.89
28	a	748	PSU	N1-C2-N3	4.14	119.82	115.13
27	Ζ	47	3AU	N3-C2-N1	3.99	120.19	114.89
28	a	2507	2MA	C2-N3-C4	3.96	118.74	115.52
28	a	1919	3TD	C4-N3-C2	-3.91	120.37	124.61
55	Y	8	4SU	N3-C2-N1	3.85	119.99	114.89
28	a	2507	2MA	CM2-C2-N1	3.83	123.12	117.15
28	a	2034	6MZ	C1'-N9-C4	-3.69	120.15	126.64
27	Ζ	8	4SU	N3-C2-N1	3.68	119.77	114.89
27	Ζ	54	5MU	C5-C6-N1	-3.64	119.59	123.34
28	a	2507	2MA	N3-C2-N1	-3.63	119.11	125.73
28	a	747	1MG	C5-C6-N1	3.60	119.32	113.90
28	a	1620	6MZ	C2-N1-C6	3.48	119.58	116.59
27	Ζ	8	4SU	C5-C4-S4	-3.47	119.99	124.47
55	Y	54	5MU	C5-C6-N1	-3.37	119.87	123.34
55	Y	8	4SU	C5-C4-S4	-3.34	120.16	124.47
27	Ζ	16	H2U	N3-C2-N1	3.32	120.17	116.65
55	Y	20	H2U	N3-C2-N1	3.26	120.11	116.65
27	Ζ	47	3AU	C5-C4-N3	3.24	119.69	114.84
28	a	2508	PSU	O2-C2-N1	-3.22	119.25	122.79
27	Ζ	20	H2U	N3-C2-N1	3.09	119.92	116.65
27	Ζ	46	7MG	O6-C6-C5	-3.06	120.22	127.24
28	a	2556	OMU	C5-C4-N3	3.00	119.32	114.84
27	Ζ	16	H2U	C5-C4-N3	2.96	119.97	116.65
5	А	516	PSU	O2-C2-N1	-2.95	119.54	122.79
28	a	2461	PSU	C6-N1-C2	-2.93	119.69	122.68
5	А	1518	MA6	C1'-N9-C4	2.91	131.76	126.64
28	a	2034	6MZ	C2-N1-C6	2.89	119.06	116.59
5	А	527	G7M	C2-N1-C6	-2.87	119.81	125.10
27	Z	46	7MG	C2-N1-C6	-2.83	119.95	125.10
27	Z	47	3AU	O4-C4-C5	-2.82	120.20	125.16
28	a	2073	G7M	C2-N1-C6	-2.80	119.94	125.10
27	Z	20	H2U	C5-C6-N1	2.78	120.78	111.61
27	Z	20	H2U	C5-C4-N3	2.77	119.76	116.65
55	Y	20	H2U	C5-C6-N1	2.75	120.67	111.61
28	a	1620	6MZ	C1'-N9-C4	-2.74	121.82	126.64
27	Z	32	PSU	O2-C2-N1	-2.69	119.83	122.79
5	A	1498	UR3	C6-N1-C2	-2.66	119.41	121.79
27	Z	55	PSU	O2-C2-N1	-2.66	119.86	122.79
27	Z	46	7MG	N9-C4-N3	2.63	129.40	125.47

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
27	Ζ	16	H2U	C5-C6-N1	2.62	120.26	111.61
55	Y	55	PSU	O2-C2-N1	-2.60	119.92	122.79
5	А	1402	4OC	C6-C5-C4	2.59	120.13	116.96
27	Ζ	16	H2U	O2-C2-N1	-2.59	119.86	123.11
55	Y	20	H2U	C5-C4-N3	2.58	119.55	116.65
28	a	2508	PSU	C6-N1-C2	-2.57	120.05	122.68
28	а	1921	PSU	O2-C2-N1	-2.56	119.97	122.79
28	а	2609	PSU	C6-N1-C2	-2.54	120.08	122.68
27	Ζ	54	5MU	O2-C2-N1	-2.51	119.46	122.79
27	Ζ	46	7MG	C5-C4-N9	2.49	110.15	106.68
5	А	1519	MA6	C1'-N9-C4	2.49	131.01	126.64
28	a	1919	3TD	C6-C5-C4	2.47	119.93	118.22
27	Ζ	39	PSU	O2-C2-N1	-2.47	120.07	122.79
27	Ζ	46	7MG	C5-C6-N1	2.45	119.61	112.31
5	А	516	PSU	C6-N1-C2	-2.42	120.20	122.68
28	а	2556	OMU	O4-C4-C5	-2.42	120.90	125.16
27	Ζ	32	PSU	C6-N1-C2	-2.41	120.22	122.68
5	А	1207	2MG	O6-C6-C5	2.40	129.07	124.37
16	L	89	D2T	OD2-CG-CB	2.40	118.34	113.15
28	a	747	1MG	C8-N7-C5	2.40	107.55	102.99
28	a	1915	PSU	O2-C2-N1	-2.37	120.18	122.79
27	Ζ	55	PSU	C6-C5-C4	2.34	119.84	118.20
28	a	2584	PSU	O4'-C1'-C2'	2.32	108.42	105.14
16	L	89	D2T	O-C-CA	-2.29	118.78	124.78
28	a	2453	H2U	C5-C4-N3	-2.28	114.09	116.65
28	a	2453	H2U	C4-N3-C2	2.27	127.67	125.79
28	a	2608	PSU	C6-C5-C4	2.27	119.78	118.20
55	Y	8	4SU	O2-C2-N1	-2.26	119.78	122.79
5	А	516	PSU	O4'-C1'-C2'	2.26	108.33	105.14
27	Z	47	3AU	O2-C2-N1	-2.25	119.80	122.79
39	1	81	4D4	O-C-CA	-2.24	118.90	124.78
27	Z	39	PSU	C6-C5-C4	2.23	119.75	118.20
5	A	1498	UR3	C1'-N1-C2	2.21	120.72	116.99
28	a	2461	PSU	O2-C2-N3	-2.21	117.66	121.82
27	Z	39	PSU	C6-N1-C2	-2.20	120.43	122.68
28	a	2073	G7M	N2-C2-N1	2.19	121.38	116.71
28	a	748	PSU	C6-N1-C2	-2.19	120.44	122.68
28	a	2255	OMG	O6-C6-C5	2.16	128.60	124.37
28	a	2609	PSU	O2-C2-N1	-2.15	120.43	122.79
27	Z	20	H2U	O2-C2-N1	-2.12	120.45	123.11
5	А	1516	2MG	O6-C6-C5	2.11	128.50	124.37
28	a	2453	H2U	O2-C2-N3	-2.11	117.56	121.50

55

55

5

5

5

28

39

55

28

55

Υ

Y

А

А

А

 \mathbf{a}

1

Y

 \mathbf{a}

Y

8

8

1519

1519

1519

1919

81

20

2073

20

4SU

4SU

MA6

MA6

MA6

3TD

4D4

H2U

G7M

H2U

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
27	Ζ	55	PSU	C6-N1-C2	-2.10	120.54	122.68
55	Y	55	PSU	C6-N1-C2	-2.09	120.54	122.68
55	Y	20	H2U	O2-C2-N1	-2.08	120.50	123.11
55	Y	32	OMC	O2-C2-N3	-2.06	118.98	122.33
55	Y	32	OMC	C1'-N1-C2	2.05	122.99	118.42
28	a	1837	2MG	O6-C6-C5	2.04	128.35	124.37
55	Y	54	5MU	C1'-N1-C2	2.03	121.25	117.57
27	Ζ	46	7MG	C4-C5-N7	2.03	110.08	106.13
27	Ζ	37	MIA	C1'-N9-C4	2.03	130.20	126.64
27	Ζ	37	MIA	C5-C6-N6	2.02	123.42	120.35
27	Ζ	32	PSU	C6-C5-C4	2.01	119.60	118.20
28	a	1921	PSU	C6-C5-C4	2.00	119.60	118.20

Continued from previous page...

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
27	Ζ	46	7MG	O4'-C4'-C5'-O5'
39	1	81	4D4	NH1-CZ-NE-CD
55	Y	20	H2U	O4'-C1'-N1-C6
55	Y	32	OMC	C1'-C2'-O2'-CM2
28	a	2034	6MZ	O4'-C4'-C5'-O5'
28	а	2255	OMG	C1'-C2'-O2'-CM2
27	Ζ	46	7MG	C3'-C4'-C5'-O5'
27	Ζ	47	3AU	O4'-C4'-C5'-O5'
55	Y	20	H2U	O4'-C4'-C5'-O5'
28	а	2034	6MZ	C3'-C4'-C5'-O5'
31	d	150	MEQ	OE1-CD-CG-CB
31	d	150	MEQ	NE2-CD-CG-CB
27	Ζ	8	4SU	C3'-C4'-C5'-O5'
27	Ζ	8	4SU	O4'-C4'-C5'-O5'
27	Ζ	47	3AU	C3'-C4'-C5'-O5'

All (44) torsion outliers are listed below:

Continued on next page...

C3'-C4'-C5'-O5'

O4'-C4'-C5'-O5'

O4'-C4'-C5'-O5'

C3'-C4'-C5'-O5' C5-C6-N6-C10

O4'-C4'-C5'-O5'

NH2-CZ-NE-CD

C3'-C4'-C5'-O5'

C4'-C5'-O5'-P

C4'-C5'-O5'-P

Mol	Chain	Res	Type	Atoms
39	1	81	4D4	OB-CB-CG-CD
39	1	81	4D4	CG-CD-NE-CZ
39	1	81	4D4	NE-CD-CG-CB
16	L	89	D2T	CA-CB-SB-CB1
28	a	2507	2MA	C4'-C5'-O5'-P
16	L	89	D2T	SB-CB-CG-OD2
55	Y	32	OMC	C2'-C1'-N1-C6
28	a	1919	3TD	C3'-C4'-C5'-O5'
16	L	89	D2T	CG-CB-SB-CB1
27	Z	20	H2U	C2'-C1'-N1-C2
28	a	748	PSU	O4'-C1'-C5-C6
55	Y	32	OMC	C2'-C1'-N1-C2
55	Y	20	H2U	C2'-C1'-N1-C6
55	Y	20	H2U	O4'-C1'-N1-C2
55	Y	20	H2U	C2'-C1'-N1-C2
27	Z	20	H2U	O4'-C4'-C5'-O5'
$\overline{28}$	a	2073	G7M	O4'-C4'-C5'-O5'
28	a	2507	2MA	O4 ['] -C4'-C5'-O5'
$\overline{39}$	1	81	4D4	O-C-CA-CB

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 530 ligands modelled in this entry, 529 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Tink	Bo	ond leng	ths	B	ond ang	les
	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
59	PHE	a	3001	-	$10,\!11,\!12$	0.43	0	$10,\!13,\!15$	0.30	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
59	PHE	a	3001	-	-	0/5/6/8	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
5	А	2

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	A	1532:U	O3'	1533:C	Р	3.52
1	А	1407:5MC	O3'	1408:A	Р	1.85

