

Mar 10, 2025 - 03:00 pm GMT

PDB ID	:	9GFT
EMDB ID	:	EMD-51318
Title	:	Structure of the HrpA-bound E. coli disome, Class I
Authors	:	Esser, H.F.; Berninghausen, O.; Becker, T.; Beckmann, R.
Deposited on	:	2024-08-12
Resolution	:	3.10 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1.dev 117
:	4.02b-467
:	20231227.v01 (using entries in the PDB archive December 27th 2023)
:	1.9.13
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.41
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	EM structures
	$(\# {\rm Entries})$	$(\# { m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	0	1542	83%	15% ••
1	AA	1542	82%	16% ·
2	1	241	87%	• 10%
2	AB	241	86%	• 10%
3	2	233	5% 87%	• 12%
3	AC	233	86%	• 12%
4	3	206	97%	·
4	AD	206	93%	6%

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol 54 16784% 10% 5% 19% AE 516783% 7% 10% 6 513567% 7% 26% 12% AF 6 13566% 7% • 26% 8% 7617979% 6% 16% 9% 7AG 17983% 16% . 78 13097% •• 18% 8 AH 8% • 13092% 6% 8 9 1307%• 91% 15% 7%• 9 AI 13091% 21% 9 10103• 5% 85% 9% 15% AJ 10310• 5% 92% 11 76А 70% 28% • 30% • 7% 12A17192% 27% 1271v 99% 21% 13A37760% 34% 6% 54% AK 2341455% 43% 52% \mathbf{C} 2341456% 43% • 19% AL 151186% • 91% F ••• 1511894% 16% 16AM101• 5% 94% \mathbf{G} • • 16101 96% 16% 17AN 89 6% • 93% . . Η 89 1794% 13% 18 AO 82 94% 6%

Continued from previous page...

Chain Length Quality of chain Mol 10% 18 Ι 82 96% • 19% AP1984 93% • 5% 5% 19J 84 • 5% 94% 20% AQ207580% 8% 12% 5% 20Κ 7584% • 13% 21% 21AR 92 76% 5% 18% 2192 \mathbf{t} 80% 16% 15% 22AS 87 8% • 90% 8% 2287 u 97% . . 40% AT 237079% 7% 14% 20% 23L 7087% 11% • 8% AU 762482% 14% . 25AV 2903 82% 18% 25Ν 2903 84% 15% • 7% AW 120 2619% 78% •• 26Ο 120• • 82% 15% 21% ... AX 2727397% ... Р 2732797% 29% AY 209 286% 94% Q • 2092897% 53% AZ292015% 95% 29R 20196% • 44% ••• 30 179Aa 97% 7% \mathbf{S} 30 1796% • 93% 66% Ab ... 31 17797%

Conti	nued fron	<i>i</i> previous	page	
Mol	Chain	Length	Quality of chain	
31	Т	177	94%	5%•
32	Ac	149	97%	•
32	U	149	95%	5%
33	Ad	142	95%	
33	V	142	89%	5% 6%
34	Ae	142	96%	•
34	W	142	96%	•
35	Af	123	90%	9% •
35	Х	123	95%	• •
36	Ag	144	96%	• •
36	Y	144	9 6%	••
37	Ah	136	97%	•
37	Z	136	9 7%	•
38	Ai	127		• 7%
38	a	127	8 9% 42%	5% 6%
39	Aj	117	94%	5%•
39	b	117	94% 30%	5%•
40	Ak	115	94%	5%•
40	С	115	97%	••
41	Al	118	94%	5%•
41	d	118	97%	•••
42	Am	103	99%	•
42	е	103	95% 14%	5%
43	An	110	•	5%
43	f	110	98%	•

Mol	Chain	Length	Quality of chain	
44	Ao	100	89%	• 7%
44	g	100	85% 8	% 7%
45	Ар	104	95%	· ·
45	h	104	5% 	
46	Αα	94	45%	
46	i	94	5% 95%	5%
47	Ar	85	19% 82% 6%	12%
47	i	85	84% 5%	12%
48	As	78	94%	5% •
48	k	78	91%	6% ••
49	At	63	27%	
49	1	63	6% 97%	
50	Δ11	59	20%	E0/ E0/
50	m	50	90%	5% 5%
50	111	59	95%	
51	Av	57	93%	5% •
52	Aw	55	89%	• 9%
52	0	55	89%	• 9%
53	Ax	46	98%	<u> </u>
53	р	46	98%	•
54	Ay	65	91%	8% •
54	q	65	94%	5% •
55	Az	38	97%	·
55	r	38	95%	5%
56	В	1326	95%	•••
57	D	129	8%	• 9%

Continued from previous page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
57	У	129	84%	7% 9%
58	Е	124	6% 94%	6%•
58	Z	124	94%	6%•
59	М	75	79%	21%
60	n	56	• 89%	7% •
61	S	179	1 9% • 79%	
62	W	698	5% • • • 92%	
63	x	165	46% 75%	23%

2 Entry composition (i)

There are 63 unique types of molecules in this entry. The entry contains 307377 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S ribosomal RNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	0	1533	Total 32895	C 14671	N 6036	O 10655	Р 1533	0	0
1	AA	1539	Total 33015	C 14725	N 6052	O 10699	Р 1539	0	0

• Molecule 2 is a protein called Small ribosomal subunit protein uS2.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	1	218	Total 1704	C 1081	N 305	0 311	${ m S} 7$	0	0
2	AB	218	Total 1704	C 1081	N 305	0 311	${f S}{7}$	0	0

• Molecule 3 is a protein called Small ribosomal subunit protein uS3.

Mol	Chain	Residues	Atoms				AltConf	Trace	
3	2	206	Total	С	Ν	Ο	S	0	0
3 2	200	1624	1028	305	288	3	0	0	
2		206	Total	С	Ν	0	\mathbf{S}	0	0
5	AU	200	1624	1028	305	288	3	0	0

• Molecule 4 is a protein called Small ribosomal subunit protein uS4.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	3	205	Total 1643	C 1026	N 315	O 298	${S \atop 4}$	0	0
4	AD	205	Total 1643	C 1026	N 315	O 298	${S \atop 4}$	0	0

• Molecule 5 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	4	150	Total 1105	C 687	N 211	0 201	S 6	0	0
5	AE	150	Total 1105	C 687	N 211	0 201	S 6	0	0

• Molecule 6 is a protein called Small ribosomal subunit protein bS6, fully modified isoform.

Mol	Chain	Residues		At	oms		AltConf	Trace	
6	5	100	Total	С	Ν	0	\mathbf{S}	0	0
0	5	100	817	515	148	148	6	0	0
6		100	Total	С	Ν	0	S	0	0
0	AP	100	817	515	148	148	6	0	0

• Molecule 7 is a protein called Small ribosomal subunit protein uS7.

Mol	Chain	Residues		At	oms		AltConf	Trace	
7	6	151	Total 1181	C 735	N 227	0 215	${S \atop 4}$	0	0
7	AG	151	Total 1181	C 735	N 227	0 215	$\frac{S}{4}$	0	0

• Molecule 8 is a protein called Small ribosomal subunit protein uS8.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	7	120	Total	С	Ν	0	S	0	0
0	1	129	979	616	173	184	6	0	0
8	٨н	120	Total	С	Ν	0	S	0	0
0	АП	129	979	616	173	184	6	0	0

• Molecule 9 is a protein called Small ribosomal subunit protein uS9.

Mol	Chain	Residues		At	oms			AltConf	Trace
0	0	197	Total	С	Ν	0	S	0	0
9	0	127	1022	634	206	179	3	0	0
0	ΔΤ	197	Total	С	Ν	0	\mathbf{S}	0	0
9	AI	121	1022	634	206	179	3		0

• Molecule 10 is a protein called Small ribosomal subunit protein uS10.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	9	98	Total 786	C 493	N 150	0 142	S 1	0	0

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf	Trace
10	AJ	98	Total 786	C 493	N 150	0 142	S 1	0	0

• Molecule 11 is a RNA chain called A-site tRNA.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
11	А	76	Total 1622	C 723	N 290	O 533	Р 76	0	0

• Molecule 12 is a protein called Small ribosomal subunit protein bS21.

Mol	Chain	Residues		At	oms		AltConf	Trace	
10	Δ 1	66	Total	С	Ν	0	S	0	0
12	AI	00	551	340	118	92	1	0	0
10		70	Total	С	Ν	Ο	S	0	0
	V	10	589	366	125	97	1	0	0

• Molecule 13 is a RNA chain called A-site tRNA.

Mol	Chain	Residues		A	toms	AltConf	Trace		
13	A3	77	Total 1638	C 732	N 291	O 538	Р 77	0	0

• Molecule 14 is a protein called Large ribosomal subunit protein uL1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
14	ΔK	134	Total	С	Ν	Ο	S	0	0
14	7111	104	1026	645	186	193	2	0	0
14	С	134	Total	С	Ν	Ο	\mathbf{S}	0	0
14	U	154	1026	645	186	193	2	0	0

• Molecule 15 is a protein called Small ribosomal subunit protein uS13.

Mol	Chain	Residues		At	oms		AltConf	Trace	
15	ΔT	114	Total	С	Ν	Ο	S	0	0
10	AL	114	883	546	178	156	3	0	0
15	F	114	Total	С	Ν	0	S	0	0
1.0	Ľ	114	883	546	178	156	3	0	

• Molecule 16 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		At	oms		AltConf	Trace	
16	ΔM	96	Total	С	Ν	0	S	0	0
10		30	774	483	160	128	3	0	0
16	C	08	Total	С	Ν	Ο	\mathbf{S}	0	0
10	G	90	791	490	161	137	3	0	0

• Molecule 17 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues		At	oms		AltConf	Trace	
17	ΛN	00	Total	С	Ν	0	S	0	0
11	AN	00	714	439	144	130	1	0	0
17	Ц	97	Total	С	Ν	0	S	0	0
11	11	01	702	433	140	128	1		U

• Molecule 18 is a protein called Small ribosomal subunit protein bS16.

Mol	Chain	Residues		At	oms		AltConf	Trace	
18	AO	82	Total 649	C 406	N 128	0 114	${ m S}_1$	0	0
18	Ι	82	Total 648	C 406	N 128	0 113	1 S 1	0	0

• Molecule 19 is a protein called Small ribosomal subunit protein uS17.

Mol	Chain	Residues		At	oms		AltConf	Trace	
10	٨D	80	Total	С	Ν	0	\mathbf{S}	0	0
19	AI	80	648	411	121	113	3	0	0
10	т	80	Total	С	Ν	0	S	0	0
19	1	80	648	411	121	113	3		

• Molecule 20 is a protein called Small ribosomal subunit protein bS18.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
20	10	66	Total	С	Ν	0	S	0	0
20	AQ	00	544	345	102	96	1	0	0
20	K	65	Total	С	Ν	0	S	0	0
20	Γ	05	535	339	100	95	1	0	0

• Molecule 21 is a protein called Small ribosomal subunit protein uS19.

Mol	Chain	Residues		At	oms		AltConf	Trace	
21	AR	75	Total 603	C 387	N 112	0 102	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
21	t	77	Total 620	C 399	N 115	O 104	${ m S} { m 2}$	0	0

• Molecule 22 is a protein called Small ribosomal subunit protein bS20.

Mol	Chain	Residues		At	oms			AltConf	Trace
22	15	85	Total	С	Ν	0	S	0	0
	AB	85	665	411	137	114	3	0	0
		85	Total	С	Ν	0	S	0	0
	u	00	665	411	137	114	3	0	0

• Molecule 23 is a protein called Large ribosomal subunit protein bL31A.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
93	۸T	60	Total	С	Ν	0	\mathbf{S}	0	0
20	AI	00	480	299	90	85	6	0	0
- 12	т	62	Total	С	Ν	0	S	0	0
20		02	499	309	95	89	6	0	0

• Molecule 24 is a RNA chain called P-site tRNA.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
24	AU	76	Total 1625	С 724	N 293	O 532	Р 76	0	0

• Molecule 25 is a RNA chain called 23S RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
25	AV	2807	Total	С	Ν	Ο	Р	0	Ο
20	ΛV	2091	62195	27745	11446	20107	2897	0	0
25	N	2807	Total	С	Ν	0	Р	0	0
20	1	2091	62195	27745	11446	20107	2897	0	0

• Molecule 26 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
26	AW	118	Total 2529	C 1126	N 464	0 821	Р 118	0	0
26	0	118	Total 2529	C 1126	N 464	O 821	Р 118	0	0

• Molecule 27 is a protein called Large ribosomal subunit protein uL2.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
27	AX	271	Total 2082	C 1288	N 423	0 364	${f S}7$	0	0
27	Р	271	Total 2082	C 1288	N 423	0 364	S 7	0	0

• Molecule 28 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	۸V	200	Total	С	Ν	0	S	0	0
20	AI	209	1565	979	288	294	4	0	0
20	0	200	Total	С	Ν	0	S	0	0
20	Q	209	1565	979	288	294	4	0	

• Molecule 29 is a protein called Large ribosomal subunit protein uL4.

Mol	Chain	Residues		At	oms		AltConf	Trace	
29	AZ	201	Total 1552	C 974	N 283	0 290	S 5	0	0
29	R	201	Total 1552	C 974	N 283	0 290	S 5	0	0

• Molecule 30 is a protein called Large ribosomal subunit protein uL5.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	Δο	177	Total	С	Ν	0	S	0	0
- 50	Ла	111	1410	899	249	256	6	0	0
30	q	177	Total	С	Ν	0	S	0	0
00	G	111	1410	899	249	256	6		

• Molecule 31 is a protein called Large ribosomal subunit protein uL6.

Mol	Chain	Residues		At	oms		AltConf	Trace	
21	Ab	176	Total	С	Ν	0	S	0	0
	AD	170	1323	832	243	246	2	0	0
21	Т	175	Total	С	Ν	0	S	0	0
	1	175	1313	826	241	244	2	0	0

• Molecule 32 is a protein called Large ribosomal subunit protein bL9.

Mol	Chain	Residues		At	oms		AltConf	Trace	
32	Ac	149	Total 1111	C 699	N 197	0 214	S 1	0	0

Continued from previous page...

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
39	II	140	Total	С	Ν	Ο	\mathbf{S}	0	0
52	U	143	1111	699	197	214	1	0	0

• Molecule 33 is a protein called 50S ribosomal protein L11.

Mol	Chain	Residues		At	oms		AltConf	Trace	
22	Ad	1.4.1	Total	С	Ν	0	S	0	0
- 55	Au	141	1032	651	179	196	6	0	0
22	V	134	Total	С	Ν	0	S	0	0
00	v	104	979	619	169	185	6	0	

• Molecule 34 is a protein called Large ribosomal subunit protein uL13.

Mol	Chain	Residues		At	oms		AltConf	Trace	
24	Δο	149	Total	С	Ν	0	S	0	0
34	Ae	142	1129	714	212	199	4	0	0
24	W	149	Total	С	Ν	0	S	0	0
04	vv	142	1129	714	212	199	4	0	

• Molecule 35 is a protein called Large ribosomal subunit protein uL14.

Mol	Chain	Residues		At	oms		AltConf	Trace	
35	Δf	199	Total	С	Ν	Ο	S	0	0
00	111	122	938	587	180	165	6	0	0
25	v	199	Total	С	Ν	Ο	\mathbf{S}	0	0
- 35	Λ	122	938	587	180	165	6	0	0

• Molecule 36 is a protein called Large ribosomal subunit protein uL15.

Mol	Chain	Residues		At	oms		AltConf	Trace	
36	٨œ	149	Total	С	Ν	Ο	S	0	0
- 30	лg	142	1034	643	202	188	1	0	0
26	V	1/12	Total	С	Ν	0	S	0	0
- 50	1	140	1045	649	206	189	1	0	

• Molecule 37 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms		AltConf	Trace	
27	Ab	126	Total	С	Ν	0	S	0	0
- 57	All	150	1074	686	205	177	6	0	0
27	7	126	Total	С	Ν	0	S	0	0
57		150	1074	686	205	177	6	0	0

• Molecule 38 is a protein called Large ribosomal subunit protein bL17.

Mol	Chain	Residues		At	oms		AltConf	Trace	
38	Λį	118	Total	С	Ν	Ο	\mathbf{S}	0	0
30		110	945	585	194	161	5	0	0
38	0	110	Total	С	Ν	0	S	0	0
30	a	119	951	588	195	163	5	0	0

• Molecule 39 is a protein called Large ribosomal subunit protein uL18.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
39	Aj	116	Total 892	C 552	N 178	O 162	0	0
39	b	116	Total 892	C 552	N 178	O 162	0	0

• Molecule 40 is a protein called Large ribosomal subunit protein bL19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	Ak	114	Total 017	C 574	N 170	0	S 1	0	0
			917	074	179	105	1 		
40	C	114	Total	С	Ν	O	S	0	Ο
40	U	114	917	574	179	163	1	0	0

• Molecule 41 is a protein called Large ribosomal subunit protein bL20.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
41	A 1	117	Total	С	Ν	Ο	0	0
41	AI	111	947	604	192	151	0	0
41	d	117	Total	С	Ν	Ο	0	0
41	u	111	947	604	192	151	0	0

• Molecule 42 is a protein called Large ribosomal subunit protein bL21.

Mol	Chain	Residues		At	oms		AltConf	Trace	
42	Δm	103	Total	С	Ν	0	\mathbf{S}	0	0
42	71111	103	816	516	153	145	2	0	0
49	0	103	Total	С	Ν	0	\mathbf{S}	0	0
42	е	105	816	516	153	145	2	0	0

• Molecule 43 is a protein called Large ribosomal subunit protein uL22.

Mol	Chain	Residues		At	oms		AltConf	Trace	
/13	An	110	Total	С	Ν	0	S	0	0
40	АП	110	857	532	166	156	3	0	0
/3	f	110	Total	С	Ν	0	S	0	0
40		110	857	532	166	156	3		

• Molecule 44 is a protein called Large ribosomal subunit protein uL23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4.4	10	03	Total	С	Ν	0	S	0	0
44	A0	90	738	466	139	131	2	0	0
4.4	a.	02	Total	С	Ν	0	S	0	0
44	g	95	738	466	139	131	2	0	0

• Molecule 45 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
45	Ар	102	Total 779	C 492	N 146	0 141	0	0
45	h	102	Total 779	C 492	N 146	0 141	0	0

• Molecule 46 is a protein called Large ribosomal subunit protein bL25.

Mol	Chain	Residues		At	oms		AltConf	Trace	
46	Δα	04	Total	С	Ν	0	S	0	0
40	АЧ	94	753	479	137	134	3	0	0
46	i	04	Total	С	Ν	0	S	0	0
40	1	94	753	479	137	134	3	0	0

• Molecule 47 is a protein called Large ribosomal subunit protein bL27.

Mol	Chain	Residues		At	oms		AltConf	Trace	
47	Ar	75	Total	С	Ν	0	S	0	0
41	AI	7.5	575	356	116	102	1	0	0
47	;	75	Total	С	Ν	0	S	0	0
41	J	15	575	356	116	102	1	0	0

• Molecule 48 is a protein called Large ribosomal subunit protein bL28.

Mol	Chain	Residues		At	oms		AltConf	Trace	
48	As	77	Total 625	C 388	N 129	0 106	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues		At	oms		AltConf	Trace	
48	k	77	Total 625	C 388	N 129	0 106	${ m S} { m 2}$	0	0

• Molecule 49 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
49	At	63	Total 509	C 313	N 99	O 95	S 2	0	0
49	1	63	Total 509	C 313	N 99	O 95	S 2	0	0

• Molecule 50 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
50	Δ.,	56	Total	С	Ν	0	\mathbf{S}	0	0
DO AU	Au	- 50	435	272	84	77	2	0	0
50		59	Total	С	Ν	0	S	0	0
50	III	58	449	281	87	79	2		U

• Molecule 51 is a protein called Large ribosomal subunit protein bL32.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
51	Av	56	Total 444	C 269	N 94	O 80	S 1	0	0

• Molecule 52 is a protein called Large ribosomal subunit protein bL33.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
52	Δ	50	Total	С	Ν	0	0	0
JZ AW	лw	50	409	263	75	71	0	0
52	0	50	Total	С	Ν	0	0	0
52	0	- 50	409	263	75	71	0	0

• Molecule 53 is a protein called Large ribosomal subunit protein bL34.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
53	Δv	46	Total	С	Ν	0	S	0	0
- 55	AX	40	377	228	90	57	2	0	0
52	n	46	Total	С	Ν	0	\mathbf{S}	0	0
53	р	40	377	228	90	57	2	0	0

• Molecule 54 is a protein called Large ribosomal subunit protein bL35.

Mol	Chain	Residues	Atoms					AltConf	Trace
54	٨٠	64	Total	С	Ν	Ο	\mathbf{S}	0	0
D4 Ay	04	504	323	105	74	2	0	0	
54	9	64	Total	С	Ν	Ο	S	0	0
54	q	q 04	504	323	105	74	2	0	U

• Molecule 55 is a protein called Large ribosomal subunit protein bL36A.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
55	Δπ	20	Total	С	Ν	0	S	0	0
JJ AZ		302	185	65	48	4	0	0	
55	r	20	Total	С	Ν	0	S	0	0
55	ſ	38	302	185	65	48	4	0	U

• Molecule 56 is a protein called ATP-dependent RNA helicase HrpA.

Mol	Chain	Residues		A	AltConf	Trace			
56	В	1295	Total 10462	C 6619	N 1887	0 1924	S 32	0	0

There are 27 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	-25	MET	-	initiating methionine	UNP P43329
В	-24	GLY	-	expression tag	UNP P43329
В	-23	HIS	-	expression tag	UNP P43329
В	-22	HIS	-	expression tag	UNP P43329
В	-21	HIS	-	expression tag	UNP P43329
В	-20	HIS	-	expression tag	UNP P43329
В	-19	HIS	-	expression tag	UNP P43329
В	-18	HIS	-	expression tag	UNP P43329
В	-17	HIS	-	expression tag	UNP P43329
В	-16	HIS	-	expression tag	UNP P43329
В	-15	ASP	-	expression tag	UNP P43329
В	-14	TYR	-	expression tag	UNP P43329
В	-13	ASP	-	expression tag	UNP P43329
В	-12	ILE	-	expression tag	UNP P43329
В	-11	PRO	-	expression tag	UNP P43329
В	-10	THR	-	expression tag	UNP P43329
В	-9	THR	-	expression tag	UNP P43329
В	-8	LEU	-	expression tag	UNP P43329
В	-7	GLU	-	expression tag	UNP P43329
В	-6	VAL	-	expression tag	UNP P43329
В	-5	LEU	-	expression tag	UNP P43329

Chain	Residue	Modelled	Actual	Comment	Reference
В	-4	PHE	-	expression tag	UNP P43329
В	-3	GLN	-	expression tag	UNP P43329
В	-2	GLY	-	expression tag	UNP P43329
В	-1	PRO	-	expression tag	UNP P43329
В	0	GLY	-	expression tag	UNP P43329
В	1	THR	-	expression tag	UNP P43329

Continued from previous page...

• Molecule 57 is a protein called Small ribosomal subunit protein uS11.

Mol	Chain	Residues	Atoms					AltConf	Trace
57	Л	117	Total	С	Ν	Ο	S	0	0
	D	111	877	540	174	160	3	0	
57	17	117	Total	С	Ν	Ο	\mathbf{S}	0	0
57	У	у 117	877	540	174	160	3	0	0

• Molecule 58 is a protein called Small ribosomal subunit protein uS12.

Mol	Chain	Residues		At	oms	AltConf	Trace			
58	Е	123	Total	C	N 106	0	S	0	0	
			955 TL 1	<u>590</u>	190 N	105	4			
58	z	123	Total	C	N	0	S	0	0	
00				955	590	196	165	4		

• Molecule 59 is a RNA chain called P-site tRNA.

Mol	Chain	Residues		A	toms	AltConf	Trace		
59	М	75	Total 1593	С 711	N 281	O 526	Р 75	0	0

• Molecule 60 is a protein called Large ribosomal subunit protein bL32.

Mol	Chain	Residues	Atoms				AltConf	Trace	
60	n	54	Total 429	C 260	N 91	0 77	S 1	0	0

• Molecule 61 is a protein called VemP nascent chain.

Mol	Chain	Residues	Atoms				AltConf	Trace	
61	q	27	Total	С	Ν	Ο	\mathbf{S}	0	0
01	מ	51	316	198	58	58	2	0	0

• Molecule 62 is a RNA chain called messenger RNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
62	W	57	Total 1175	C 527	N 165	O 426	Р 57	0	0

• Molecule 63 is a protein called Large ribosomal subunit protein uL10.

Mol	Chain	Residues	Atoms				AltConf	Trace	
63	х	127	Total 958	C 605	N 171	0 178	${S \atop 4}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 16S ribosomal RNA

• Molecule 3: Small ribosomal	subunit protein uS3		
Chain 2:	87%	• 12%	I
MET 62 K27 K49 K49 K71 K71 K79 K79 K79 K79 K79 K79 K79 K79 K79 K79	D118 D118 D118 D181 D181 D181 D181 D181	VAL VAL GLU GLU GLU CLN PRO PRO PRO PRO PRO CLU PRO CLN CLN GLN GLN GLN	LYS GLY ARG LYS
• Molecule 3: Small ribosomal	subunit protein uS3		
Chain AC:	86%	• 12%	-
MET G2 C2 A30 F29 A30 B31 C33 D34 A38 A48 K45 K48 K48 K48 K48 K48 K48 K48 K48 K48 K48	A61 A71 678 678 680 681 681 887 K89 K89 K89 K89	V90 194 A95 G96 E105 K107 K108 F109 E110	K114 L115 R126 R126 V128 M129 R121 R131 R132 R132 R132
R143 1144 6145 E152 E152 E166 P183 E169 E188 E188 E188 C1207 C17 C17 C17 C17 C17 C17 C17 C17 C17 C1	MET ALA ALA ALA ALA GLU GLU FLU GLU ALA ALA ALA ALA ALA CLU CLV CLV CLV	GLM ARG LYS GLY ARG LYS	
• Molecule 4: Small ribosomal	subunit protein uS4		
Chain 3:	97%		
MET A2 R3 F4 F5 E3 E35 E35 666 666 F72 R73	Y76 K77 B88 B99 K148 K148 K148 K151	K156 R165 E166 K167 A175 A175 E172 K178 E179 K185	A193 D194 E202 L203 K206
• Molecule 4: Small ribosomal	subunit protein uS4		
Chain AD:	93%	6%	•
MET A2 R3 R3 F3 F3 F118 F20 F20 F20 F20 F20 F20 F20 F20 F20 F20	R43 R47 D50 D50 R72 R73 N74 R31 R31	N85 L90 R104 R115 C1117 C1117 C1117 R148 R148 K148 K149	K151 K156 A157 A157 A157 L158 E160 E160 A162 E163
E166 K157 V173 V173 A175 C176 A175 C176 F179 E179 E179 E179 E187 E187 E187 E187 E187 E187 E187 E187	A193		
• Molecule 5: Small ribosomal	subunit protein uS5		
Chain 4:	84%	5% 10%	
MET ALA ALA ILE CLU CLU CLU CLU CLU CLA CLA CLA CLA CLA CLA CLA CLA CLA CLA	E101 B142 B142 S149 S149 C158 C158 C158 C158 C158 C158 C158 C158	LLE GLY LYS	
• Molecule 5: Small ribosomal	subunit protein uS5		
Chain AE:	83%	7% 10%	-

• Molecule 6: Small ribosomal subunit protein bS6, fully modified isoform

• Molecule 8: Small ribosomal subunit protein uS8

• Molecule 12: Small ribosomal subunit protein bS21

Chain A1:	30%	92%		• 7%	
MET PRO 14 K5 K5 K6 K6 K7 B1 F11 F11	D13 R17 R21 R21 R24 R24 R24 R24 R34 R34	L60 A61 R62 E63 N64 A65 R65 R65 R65 R65 R65 R65 R65 R65 R65 R	LEU TYR		
• Molecule 12: Sm	all ribosomal subu	nit protein bS21	_		
Chain v:	7%	99%		·	
MET P2 K5 V6 R7 E8 B1 D13	E24 K25 K25 K25 A61 A61 R62 R62 R62 R62	R66 R67 T68 T68 R69 Y71 Y71			
• Molecule 13: A-	site tRNA %				
Chain A3:	60%		34%	6%	
CT CT CT CT CT CT CT CT CT CT CT CT CT C	421 422 023 035 442 647 048 647 048 048	A50 C51 A52 A52 C53 C55 C55 C55 C55 C55 C55 C55 C55 C55	C64 C64 C65 C67 C72 C73 C73 C75 C75 C75		
• Molecule 14: La	rge ribosomal subu	nit protein uL1			
Chain AK:	54% 55%		43%		
MET ALA K3 L4 R7 M8 R9 V10 V10 V11	E13 K14 V15 D16 A17 A17 T18 K19 Q20 Y21 Y21 D22	N24 E25 A26 A26 A28 A28 L30 E32 E32 L33	A34 T35 A36 A36 F38 F38 F38 F38 F38 F37 F38 F37 F37 F37 F37 F37 F37 F37 F37 F37 F37	D43 V44 A45 V46 N47 L48 G49 G49 C49 D51	A52 R53 K54 S55 S55 D56 Q57 N58 N58 N58 C61 C61
A62 T63 V64 F65 H67 G68 G68 G1Y G1Y ARG	VAL VAL VAL VAL VAL PHE FHR GLN GLN ALA ALA ALA	ALA LYS ALA ALA ALA ALA CLY CLU CLU CLU CLU CLU CLU CLY SLY ASP	LEU ALA ASP CLN CLN CLN CLN CLN GLN GLN MET ASN	ASP VAL VAL TLE ALA SER PRO ALA MET	
ARG VAL VAL CLN GLN GLN GLN CLN CLN GLN CLN CLN CLN CLN CLN CLN CLN CLN CLN C	LEU MET PRO ASN ASN ASN LVS LVS CLY CLY CLY CLY CLY CLY CLY CLY CLN CLN CLN CLN CLN CLN CLN ASN CLN CLN CLN CLN CLN CLN CLN CLN CLN CL	ALA ALA GLU ALA VAL VAL LYS ALA ALA ALA ALA ALA ALA ALA ALA C159 0150	R162 Y163 R164 N165 N165 N166 K167 N168 C169	1171 H172 1173 1174 1176 6176 K177 V178	F180
A182 D183 K184 L185 K186 E187 N188 L189 E190 A191	L192 L193 V194 A195 K197 K197 K199 K200 P201 P201	q203 A204 K205 G206 V207 V207 K210 K211 V212 V212	2215 214 2216 7217 7217 7217 7220 6221 V222 8221 V222	V224 V224 GLN GLN GLN GLN CLBU SER SER VAL ASN	
• Molecule 14: La	rge ribosomal subu	nit protein uL1			
Chain C:	56%	·	43%	_	
MET ALA K3 F1 K6 K9 K9 K9 K10 K10	R12 E13 K14 V15 V15 A17 A17 A17 C19 C20 Y21	123 (123 (124 (125 (125 (125 (125 (125 (125 (125 (125	L33 A34 A36 A36 K37 F38 F38 F38 F40 S41	V42 V44 V45 V46 V46 V46 V47 C48 C48 C49 C49 C49 C49 D51	A52 R53 K54 S55 S55 Q57 Q57 V59 V59 N58
G61 A62 A62 F63 F66 F66 H67 C68 C68 C68 C68 C68 C68 C68 C68 C68 C68	SER VAL VAL VAL VAL VAL THR THR CIN GLN ALA ALA GLN GLN	ALA ALA LYS LYS ALA ALA GLY CLEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	ASP ALA ALA ALA ASP GLN CLN GLN MET ASN	PHE ASP VAL VAL ILE ALA SER SER ASP ALA	

6%

• 5%

• Molecule 21: Small ribosomal subunit protein uS19

• Molecule 25: 23S RNA

• Molecule 28: 50S ribosomal protein L3

44%

Chain Aa:

97%

•••

• Molecule 37: 50S ribosomal protein L16

	42%	
Chain Ah:	97%	•
MI K5 K5 K6 K1 K1 K11 K11 K14 K14 K14 K14 M17	R11 R13 G19 L20 D25 G32 G32 R37 R37 R37 R37 R37 R37 R37 R37 R37 R37	H39 Q60 G61 K62 K63 K64 K65 K64 K65 F65 F65 F65 F65 F65 F65 F65 F65 F75 F68 F75 F69 F75 F
V101 L102 E104 M105 M105 0106 0107 V108 P109 E111 E111 L113 A113	R114 E115 F117 F117 A121 P126 F126 F126 F126 F128 F128 F129 F130 F130 F130 F133 T132 T132 T132 M136	
• Molecule 37: 50S rib	bosomal protein L16	
Chain Z:	97%	
M1 124 830 830 830 830 838 888 848 843 848 843 848 848 848 848		
• Molecule 38: Large	ribosomal subunit protein bL17	
Chain Ai:	89%	• 7%
M1 R8 R8 R8 R3 R10 R10 K35 K35	LEA B72 B72 B72 B72 B72 B72 B72 B72 B72 B72	
• Molecule 38: Large	ribosomal subunit protein bL17	
Chain a:	89%	5% 6%
Chain a:	89% LVS ALA ALA ALA ALA ALA	5% 6%
Chain a:	89% 등원활용활활활동 ribosomal subunit protein uL18	5% 6%
Chain a:	89% Ribosomal subunit protein uL18 42% 94%	5% 6%
Chain a:	89% ribosomal subunit protein uL18 42% 94%	5% 6% 5% 6% 5% 8% 5% 8% 5% 8% 5% 8% 5% 8% 6% 8% 6% 8% 8% 8% 8% 8% 6% 8%
Chain a:	89%	5% 6%
Chain a: Chain a: Molecule 39: Large Chain Aj: Chain Aj: Chain Aj: Molecule 39: Large Molecule 39: Large	89%	
Chain a: Chain a: Chain Aj: Chain Aj:	89%	5% 6%
Chain a: Chain a: Chain Aj: Chain Aj:	89% ribosomal subunit protein uL18 42% 94% Pibosomal subunit protein uL18 20 94% Pibosomal subunit protein uL18 Pibosomal subunit protein uL18 Pibosomal subunit protein uL18	5% 6%

N74 A75 A76

• Molecule 43: Large ribosomal subunit protein uL22

14% Chain An: 95% 5%
M1 H7 H7 H7 H22 L23 K22 K22 K22 K22 K22 K23 K23 K23 K23 K
\bullet Molecule 43: Large ribosomal subunit protein uL22
Chain f: 98% .
H1 H66 R110 B65 R110
• Molecule 44: Large ribosomal subunit protein uL23
Chain Ao: 89% · 7%
M I2 R1 R5 R1 R1 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3
\bullet Molecule 44: Large ribosomal subunit protein uL23
Chain g: 85% 8% 7%
M1 817 817 817 817 818 869 818 818 814 814 814 814 814 814 814 814
\bullet Molecule 45: Large ribosomal subunit protein uL24
Chain Ap: 95% · ·
MET A3 A3 A3 K4 B5 K7 B9 C115 V111 112 V113 L124 V135 V135 V25 V25 V25 V25 V25 V25 V25 V25 V25 V2
G78 K79 K79 K30 K31 K32 K32 K34 K35 K34 K35 K36 K37 K38 K
\bullet Molecule 45: Large ribosomal subunit protein uL24
Chain h: 94% · ·

• Molecule 49: Large ribosomal subunit protein uL29

Chain of		00/
Chan 0.	89%	• 9%
MET ALA ALA ALA CIS C16 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	SXI	
• Molecule 53: Large rib	osomal subunit protein bL34	
Chain Ax:	98%	
M1 A36 A36 A1 143 V44 S45 K46		
• Molecule 53: Large rib	osomal subunit protein bL34	
Chain p:	98%	•
M1 K26 K36		
• Molecule 54: Large rib	osomal subunit protein bL35	
Chain Ay:	91%	8% •
MET P2 K3 K3 A10 A11 C117 C18 C10 C20 C20 C20 C20 C20 C20 C20 C20 C20 C2	H31 L44 K52 K52 G53 G53 G53 G53 C60 C61 C55 C60 C61 C62 C61 C62 C61 C62 C61 C62 C61 C62 C61 C62 C61 C62 C61 C62 C62 C62 C62 C62 C62 C62 C62 C62 C62	
• Molecule 54: Large rib	osomal subunit protein bL35	
Chain q:	94%	5%•
MET P2 H31 132 A65		
• Molecule 55: Large rib	osomal subunit protein bL36A	
Chain Az:	97%	·
M1 A5 A5 CV K8 K9 K9 K12 K12 K15 C0 D20 C21 C21	A 29 F 31 K 32 G 38 G 38	
• Molecule 55: Large rib	osomal subunit protein bL36A	
Chain r:	95%	5%
	5570	570

 \bullet Molecule 56: ATP-dependent RNA helicase HrpA

Chain B:	
********************************	•
	34
(35) (35) (36) (36) (36) (36) (34) (44) (44) (44) (44) (44) (44) (44	184 199 193 194 193
••••••••••••••••••••••••••••••••••	*****
96 97 98 99 99 99 99 99 90 1111 1112 1112 1112 1	147 148 149 151 152 152 153
	чнысосн
8 8 5 5 8 6 9 5 5 8 8 9 8 9 8 9 7 7 <mark>7 7</mark> 7 7 8 7 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8	008 111 113 113 113
STN S S S S S S S S S S S S S S S S S S	F2 L2 G2 G2 C2 L2 C2 L2 F2 K2
E21 122 122 122 122 122 122 122 122 122	D26 D26 T27 T27 R27 D27 D27 D27
L277 Q276 P2276 F277 F277 F277 F276 P228 P2286 C289 C289 C289 C289 C289 C289 C289 C289	L32 S328 S3328 S3328 E333 Q335 Q335 R334 R334
***************************************	**** *
 v3355 F3366 F3367 F3368 F3868 F3868 F3868 F3868 F3868 F3868 	I 1388 S 3899 Q 390 A 391 S 3392 A 393 A 393 N 394
<u>*************************************</u>	******
q395 R396 R401 R402 R403 R404 R417 R410 R410 R410 R410 R411 R421 R422 R423 R424 R423 R424 R443 R444 R444 R444 R444	D441 1448 A450 F451 P452 F453 V454 V454
•••••••••••••••••	•••••
4455 4455 4455 4454 4454 4454 4445 4445 4444 4444 4444 4444 4444 4444 4444 4444	508 509 511 511 513 513 513
	HAGXHOO
1115 1117 1118 1118 1118 1118 1119 1119 1119	668 669 670 671 672 672 573 573
A B B B B B B B B B B B B B B B B B B B	AE A
形 形 가 形 わ の む の の の の の の の み 名 お お か お め ひ ひ ひ ひ み ち め ひ し ひ ほ は ち ち ら り ち ご ち み ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち	2 2 3 1 2 5 4
NS AS AS AS AS AS AS AS AS AS AS AS AS AS	T65 L66 L66 L66 L66 L66 L66 L66 L66 L66 L
463 M63 M63 M63 M64 M64 M64 M64 M64 M66 M66 M66	P68 E69 V69 P69

MET M2 R14 R14 R15 V16 M17 M17 K14 R12 H2 H2 H2 H2	K123	
• Molecule 58: Small riboso	omal subunit protein uS	12
Chain z:	94%	6% •
MET A2 A17 A17 K18 K18 K18 K18 K18 K18 K18 K18 K18 K18	R56 L57 HT77 L81 L81 L81 L81 L81 L81 L81 L81 L81 L81	V93 K129 A124
• Molecule 59: P-site tRNA	L	
Chain M:	79%	21%
U1 C9 G10 G11 G11 G11 G12 G13 G14 G15 G17 G18 G19 G19 G14 G14 G14 G14 G14 G14 G14 G43 G43 G43 G43 G44 G43 G43 G44 G43 G44 G43 G44 G43 G44 G44 G45 G47 G48 G47 G48 G47 G48 G47 G48 G47 G48 G49 G47 G48 G48 <	C55 A75	
• Molecule 60: Large riboso	omal subunit protein bL	32
Chain n:	89%	7% •
MET A2 A2 122 128 156 ALA ALA		
• Molecule 61: VemP nasce	nt chain	
Chain s: 19% ·	79%	
MET HIS HIS HIS HIS HIS HIS HIS HIS HIS AIS AIS ASP ASP ASP ASP ASP ASP CUY	GLU LEU TYR PHE PHE CLN GLN CLN ALA ALA ALA ALA ALA ALA	PRU PHE PHE LYS LYS CLN CLN PHE PLEU VAL VAL SER SER SER SER SER SER SER SER SER SER
GLU SER SER GLU GLU GLU SER SER SER PRO GLU VAL SER ALA ASP ASP ASP ASP SER SER SER SER SER SER SER SER SER SER	VAL VAL LEU PHE ASIN SER AC ALA ASIN SER THR THR THR THR THR CLU GLU GLU	ASP ASP ASP HIS VAL ASP ASP CVAL ASP CIA THR THR THR THR ASP AIA AIA AIA AIA AIA AIA AIA TYR
LEU N120 N127 N127 N127 D137 D137 D137 D137 D137 C156 D137 C156 D137 C156 D137 C156 C15 C15 C15 C15 C15 C15 C15 C15 C15 C15	GLN GLZ PRO TYR TYR ASP VAL PRO ASP ALA ALA	
• Molecule 62: messenger R	NA	
Chain w: •••	92%	
00004400004000040444	0 < < > > 0 0 0 0 0 0 0 5 0 5 4 5 4 4 5	
0 < 0 < 5 < 5 < 0 < 5 < 5 0 0 < 5 0 0 < 0 0 < 5 0	0 < D 0 < D 0 < 0 0 < D 0 < D 0 < :) , , , , , , , , , , , , , , , , , , ,
< 0 0 < 0 0 < 5 < < 0 0 < < < < 0 0 5 ;		0 U < < < > U 0 < > U < 0 < < 0 U > U < U 0
D < 0 0 0 0 < 0 D D D D D D < < 0 0 D < 0	0 4 4 0 0 5 5 5 5 6 5 4 8 0 0 0 5 5	< < < < < < < < < < < < < < < < < < <

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	17182	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2400	Depositor
Magnification	Not provided	
Image detector	TFS FALCON 4i (4k x 4k)	Depositor
Maximum map value	0.831	Depositor
Minimum map value	-0.349	Depositor
Average map value	0.004	Depositor
Map value standard deviation	0.048	Depositor
Recommended contour level	0.165	Depositor
Map size (Å)	508.9, 508.9, 508.9	wwPDB
Map dimensions	700, 700, 700	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.727, 0.727, 0.727	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	ond lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	0	0.29	0/36834	0.89	31/57462~(0.1%)
1	AA	0.27	0/36966	0.89	45/57666~(0.1%)
2	1	0.29	0/1735	0.61	1/2338~(0.0%)
2	AB	0.29	0/1735	0.63	2/2338~(0.1%)
3	2	0.29	0/1651	0.66	0/2225
3	AC	0.30	0/1651	0.64	0/2225
4	3	0.29	0/1665	0.65	0/2227
4	AD	0.28	0/1665	0.69	3/2227~(0.1%)
5	4	0.35	0/1118	0.66	0/1504
5	AE	0.34	0/1118	0.73	0/1504
6	5	0.39	0/835	0.87	5/1128~(0.4%)
6	AF	0.42	0/835	0.90	5/1128~(0.4%)
7	6	0.29	0/1195	0.74	6/1602~(0.4%)
7	AG	0.33	0/1195	0.64	0/1602
8	7	0.30	0/989	0.65	1/1326~(0.1%)
8	AH	0.32	0/989	0.72	2/1326~(0.2%)
9	8	0.37	0/1034	0.80	1/1375~(0.1%)
9	AI	0.31	0/1034	0.82	4/1375~(0.3%)
10	9	0.33	0/796	0.75	1/1077~(0.1%)
10	AJ	0.28	0/796	0.74	0/1077
11	А	0.29	0/1812	1.00	9/2823~(0.3%)
12	A1	0.34	0/557	0.71	1/738~(0.1%)
12	V	0.28	0/597	0.66	0/792
13	A3	0.31	0/1830	1.11	16/2849~(0.6%)
14	AK	0.24	0/1033	0.53	0/1387
14	С	0.23	0/1033	0.55	1/1387~(0.1%)
15	AL	0.26	0/892	0.74	1/1193~(0.1%)
15	F	0.31	0/892	0.73	2/1193~(0.2%)
16	AM	0.28	0/785	0.72	0/1043
16	G	0.45	0/803	0.69	0/1070
17	AN	0.32	0/722	0.73	2/964~(0.2%)
17	Н	0.32	0/710	0.65	0/950
18	AO	0.37	0/659	0.83	0/884
18	Ι	0.28	0/658	0.72	1/884~(0.1%)

Mal	Chain	Bo	ond lengths	I	Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
19	AP	0.29	0/657	0.68	0/881
19	J	0.30	0/657	0.65	0/881
20	AQ	0.31	0/553	0.81	2/742~(0.3%)
20	Κ	0.28	0/544	0.69	0/731
21	AR	0.30	0/618	0.71	2/833~(0.2%)
21	t	0.32	0/635	0.64	1/855~(0.1%)
22	AS	0.30	0/671	0.68	1/888~(0.1%)
22	u	0.28	0/671	0.62	0/888
23	AT	0.26	0/488	0.67	1/649~(0.2%)
23	L	0.31	0/507	0.67	0/674
24	AU	0.29	0/1816	1.02	9/2830~(0.3%)
25	AV	0.27	0/69659	0.90	72/108672~(0.1%)
25	Ν	0.30	0/69659	0.88	76/108672~(0.1%)
26	AW	0.26	0/2828	0.96	6/4410~(0.1%)
26	0	0.26	0/2828	0.91	5/4410 (0.1%)
27	AX	0.27	0/2121	0.62	0/2852
27	Р	0.30	0/2121	0.63	1/2852~(0.0%)
28	AY	0.30	0/1586	0.66	3/2134~(0.1%)
28	Q	0.29	0/1586	0.58	0/2134
29	AZ	0.27	0/1571	0.58	0/2113
29	R	0.30	0/1571	0.62	2/2113~(0.1%)
30	Aa	0.27	0/1434	0.62	0/1926
30	S	0.34	0/1434	0.64	2/1926~(0.1%)
31	Ab	0.29	0/1343	0.61	1/1816~(0.1%)
31	Т	0.29	0/1333	0.66	3/1805~(0.2%)
32	Ac	0.28	0/1122	0.65	1/1515~(0.1%)
32	U	0.41	0/1122	0.70	1/1515~(0.1%)
33	Ad	0.33	0/1046	0.58	0/1410
33	V	0.27	0/993	0.61	2/1341~(0.1%)
34	Ae	0.30	0/1152	0.69	2/1551~(0.1%)
34	W	0.33	0/1152	0.67	2/1551~(0.1%)
35	Af	0.29	0/947	0.66	0/1268
35	Х	0.30	0/947	0.71	1/1268~(0.1%)
36	Ag	0.25	0/1043	0.60	0/1389
36	Υ	0.30	0/1054	0.76	1/1403~(0.1%)
37	Ah	0.26	0/1093	0.61	0/1460
37	Ζ	0.32	0/1093	0.64	0/1460
38	Ai	0.31	0/958	0.75	2/1281~(0.2%)
38	a	0.30	0/964	0.70	1/1289~(0.1%)
39	Aj	0.28	0/902	0.59	0/1209
39	b	0.28	0/902	0.69	1/1209~(0.1%)
40	Ak	0.39	1/929~(0.1%)	0.73	1/1242~(0.1%)
40	с	0.31	0/929	0.73	1/1242~(0.1%)

Mal	Chain	Bo	ond lengths	Bond angles	
INIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
41	Al	0.28	0/960	0.66	1/1278~(0.1%)
41	d	0.27	0/960	0.59	0/1278
42	Am	0.30	0/829	0.72	0/1107
42	е	0.32	0/829	0.72	1/1107~(0.1%)
43	An	0.33	0/864	0.70	2/1156~(0.2%)
43	f	0.27	0/864	0.63	0/1156
44	Ao	0.28	0/744	0.60	0/994
44	g	0.39	0/744	0.71	1/994~(0.1%)
45	Ap	0.29	0/787	0.67	1/1051~(0.1%)
45	h	0.27	0/787	0.58	0/1051
46	Aq	0.32	0/766	0.63	0/1025
46	i	0.33	0/766	0.75	1/1025~(0.1%)
47	Ar	0.30	0/582	0.77	3/769~(0.4%)
47	j	0.33	0/582	0.74	1/769~(0.1%)
48	As	0.26	0/635	0.71	1/848~(0.1%)
48	k	0.43	1/635~(0.2%)	0.72	1/848~(0.1%)
49	At	0.29	0/510	0.68	0/677
49	l	0.41	0/510	0.67	0/677
50	Au	0.29	0/439	0.72	0/587
50	m	0.27	0/453	0.72	1/605~(0.2%)
51	Av	0.33	0/450	0.67	0/599
52	Aw	0.31	0/416	0.68	0/554
52	0	0.37	0/416	0.70	0/554
53	Ax	0.27	0/380	0.73	0/498
53	р	0.25	0/380	0.74	0/498
54	Ay	0.26	0/513	0.71	1/676~(0.1%)
54	q	0.26	0/513	0.62	0/676
55	Az	0.25	0/303	0.61	0/397
55	r	0.29	0/303	0.64	0/397
56	В	0.27	0/10668	0.57	7/14419~(0.0%)
57	D	0.31	0/893	0.68	0/1205
57	у	0.33	0/893	0.70	$0/120\overline{5}$
58	Ε	0.31	0/969	0.75	2/1300~(0.2%)
58	Z	0.37	0/969	0.73	0/1300
59	М	0.27	0/1778	0.90	1/2768~(0.0%)
60	n	0.25	0/435	0.66	0/581
61	s	0.37	0/326	0.66	1/441~(0.2%)
62	W	0.32	0/1302	1.07	13/2018~(0.6%)
63	Х	0.27	0/970	0.61	2/1307 (0.2%)
All	All	0.29	2/333181~(0.0%)	0.84	384/496574~(0.1%)

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
48	k	45	ARG	C-N	5.68	1.47	1.34
40	Ak	75	GLN	C-N	5.41	1.46	1.34

All (384) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
25	AV	613	A	O4'-C1'-N9	10.79	116.84	108.20
1	0	1125	U	C2-N1-C1'	9.96	129.65	117.70
25	N	1313	U	C2-N1-C1'	9.95	129.64	117.70
13	A3	76	С	N1-C2-O2	9.94	124.86	118.90
13	A3	76	С	C2-N1-C1'	9.82	129.60	118.80
25	N	1313	U	N1-C2-O2	8.86	129.00	122.80
25	N	1313	U	N3-C2-O2	-8.85	116.01	122.20
26	0	89	U	C2-N1-C1'	8.74	128.19	117.70
25	AV	2506	U	C2-N1-C1'	8.74	128.19	117.70
1	AA	386	С	N3-C2-O2	-8.67	115.83	121.90
1	0	1125	U	N3-C4-O4	8.66	125.46	119.40
25	N	510	С	N1-C2-O2	8.65	124.09	118.90
25	AV	2013	А	N1-C6-N6	-8.56	113.46	118.60
1	0	1125	U	C5-C4-O4	-8.43	120.84	125.90
58	Е	109	ASP	CB-CG-OD1	8.39	125.85	118.30
20	AQ	65	LEU	CA-CB-CG	8.24	134.26	115.30
25	AV	1313	U	C2-N1-C1'	8.20	127.55	117.70
40	с	114	LEU	CA-CB-CG	8.17	134.10	115.30
25	AV	2506	U	N1-C2-O2	8.13	128.49	122.80
26	0	89	U	N1-C2-O2	8.08	128.46	122.80
1	0	1322	С	N1-C2-O2	8.06	123.73	118.90
26	AW	89	U	C2-N1-C1'	8.04	127.35	117.70
25	Ν	2473	U	N1-C2-O2	8.03	128.42	122.80
25	Ν	2656	U	C2-N1-C1'	8.02	127.33	117.70
13	A3	76	C	N3-C2-O2	-7.98	116.32	121.90
25	Ν	2794	С	C2-N1-C1'	7.83	127.42	118.80
25	AV	1774	C	N3-C2-O2	-7.71	116.51	121.90
1	AA	1125	U	C2-N1-C1'	7.63	126.86	117.70
25	Ν	2656	U	N1-C2-O2	7.59	128.11	122.80
26	AW	89	U	N1-C2-O2	7.59	128.11	122.80
25	N	1774	С	N3-C2-O2	-7.57	116.60	121.90
45	Ap	52	LEU	CA-CB-CG	7.57	132.70	115.30
11	A	75	С	C2-N1-C1'	7.48	127.03	118.80
25	N	510	С	C2-N1-C1'	7.42	126.96	118.80
25	N	1348	С	N1-C2-O2	7.39	123.34	118.90
4	AD	174	ASP	CB-CG-OD1	7.34	124.91	118.30
25	AV	2506	U	N3-C2-O2	-7.34	117.06	122.20

$\alpha \cdot \cdot \cdot \cdot$	C	•	
Continued	trom	nremous	naae
Contentaca	<i>J</i> 10110	preciouo	pagem

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
25	N	2473	U	C2-N1-C1'	7.30	126.46	117.70
1	0	1322	С	C2-N1-C1'	7.26	126.78	118.80
25	AV	1071	G	C4-N9-C1'	7.25	135.93	126.50
32	Ac	122	LEU	CA-CB-CG	7.25	131.97	115.30
62	W	534	G	C4-N9-C1'	7.23	135.90	126.50
6	5	72	ASP	CB-CG-OD1	7.22	124.79	118.30
25	N	837	С	N3-C2-O2	-7.21	116.86	121.90
1	0	754	С	C2-N1-C1'	7.16	126.67	118.80
1	AA	528	С	N1-C2-O2	7.15	123.19	118.90
56	В	1292	LEU	CA-CB-CG	7.15	131.74	115.30
6	AF	91	ARG	NE-CZ-NH2	7.15	123.87	120.30
32	U	7	ASP	CB-CG-OD1	7.14	124.73	118.30
9	8	56	ASP	CB-CG-OD1	7.12	124.71	118.30
26	AW	89	U	N3-C2-O2	-7.11	117.22	122.20
26	0	89	U	N3-C2-O2	-7.08	117.25	122.20
13	A3	30	U	C2-N1-C1'	7.04	126.15	117.70
25	N	2473	U	N3-C2-O2	-7.03	117.28	122.20
25	AV	1313	U	N1-C2-O2	6.99	127.69	122.80
11	А	75	С	N1-C2-O2	6.98	123.09	118.90
25	AV	1068	G	N3-C4-C5	-6.94	125.13	128.60
25	AV	1313	U	N3-C2-O2	-6.94	117.34	122.20
36	Y	91	ASP	CB-CG-OD1	6.93	124.54	118.30
31	Т	147	ASP	CB-CG-OD1	6.92	124.52	118.30
8	AH	9	ASP	CB-CG-OD1	6.88	124.50	118.30
6	5	90	MET	CA-C-N	-6.87	102.09	117.20
9	AI	107	ASP	CB-CG-OD1	6.87	124.48	118.30
34	W	141	ASP	CB-CG-OD1	6.87	124.48	118.30
25	Ν	837	С	N1-C2-O2	6.86	123.02	118.90
50	m	25	LEU	CA-CB-CG	6.84	131.02	115.30
25	AV	1068	G	N3-C4-N9	6.83	130.10	126.00
25	Ν	2656	U	C5-C6-N1	6.81	126.11	122.70
6	5	90	MET	C-N-CA	-6.78	104.76	121.70
13	A3	76	С	C6-N1-C1'	-6.77	112.68	120.80
25	Ν	2682	A	C5-C6-N1	6.77	121.08	117.70
25	AV	1068	G	C4-N9-C1'	6.76	135.29	126.50
25	Ν	2098	U	C2-N1-C1'	6.75	125.79	117.70
25	AV	2013	A	C5-C6-N1	6.69	121.05	117.70
1	AA	979	C	N1-C2-O2	6.69	122.91	118.90
25	AV	1061	U	C2-N1-C1'	6.68	125.71	117.70
18	Ι	53	ASP	CB-CG-OD1	6.64	124.28	118.30
62	W	555	G	P-03'-C3'	6.63	$1\overline{27.65}$	119.70
43	An	22	ASP	CB-CG-OD1	6.60	124.24	118.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	А	53	G	C4-N9-C1'	6.59	135.07	126.50
62	W	555	G	C4-N9-C1'	6.59	135.06	126.50
56	В	1160	LEU	CA-CB-CG	6.58	130.43	115.30
44	g	52	GLU	CA-CB-CG	6.56	127.83	113.40
28	AY	181	ASP	CB-CG-OD1	6.56	124.20	118.30
34	Ae	28	LEU	CA-CB-CG	6.55	130.37	115.30
47	Ar	56	ASP	CB-CG-OD1	6.54	124.19	118.30
1	0	1125	U	C6-N1-C1'	-6.54	112.05	121.20
56	В	383	LEU	CA-CB-CG	6.53	130.31	115.30
15	AL	75	MET	CA-CB-CG	6.52	124.39	113.30
15	F	83	LEU	CA-CB-CG	6.51	130.28	115.30
26	AW	26	С	N1-C2-O2	6.50	122.80	118.90
13	A3	30	U	N3-C2-O2	-6.48	117.66	122.20
62	W	543	А	P-O3'-C3'	6.48	127.48	119.70
20	AQ	68	LEU	CA-CB-CG	6.48	130.20	115.30
25	AV	1774	С	N1-C2-O2	6.47	122.78	118.90
42	е	95	ASP	CB-CG-OD1	6.47	124.12	118.30
13	A3	30	U	N1-C2-O2	6.46	127.32	122.80
13	A3	76	С	C6-N1-C2	-6.46	117.72	120.30
62	W	534	G	N3-C4-N9	6.45	129.87	126.00
1	AA	582	С	N1-C2-O2	6.44	122.76	118.90
25	AV	1072	С	N1-C2-O2	6.44	122.76	118.90
28	AY	39	ASP	CB-CG-OD1	6.42	124.07	118.30
62	W	534	G	N3-C4-C5	-6.41	125.39	128.60
25	Ν	1774	С	N1-C2-O2	6.41	122.74	118.90
25	N	404	А	P-O3'-C3'	6.38	127.36	119.70
25	Ν	1313	U	C6-N1-C1'	-6.38	112.27	121.20
9	AI	87	LEU	CA-CB-CG	6.38	129.96	115.30
25	N	510	С	N3-C2-O2	-6.37	117.44	121.90
25	AV	421	С	P-O3'-C3'	6.37	127.34	119.70
39	b	106	LEU	CA-CB-CG	6.29	129.77	115.30
25	N	1079	С	C2-N1-C1'	6.28	125.71	118.80
25	AV	1061	U	N1-C2-O2	6.27	127.19	122.80
58	Е	21	VAL	CG1-CB-CG2	-6.26	100.88	110.90
25	N	2682	А	N1-C6-N6	-6.25	114.85	118.60
54	Ay	29	LEU	CA-CB-CG	6.25	129.68	115.30
24	AU	72	С	C2-N1-C1'	6.25	125.67	118.80
31	Т	16	ASP	CB-CG-OD1	6.25	123.92	118.30
25	AV	2225	А	P-O3'-C3'	6.24	127.19	119.70
11	A	53	G	C8-N9-C1'	-6.23	118.90	127.00
13	A3	51	С	P-O3'-C3'	6.23	127.18	119.70
62	W	555	G	N3-C4-C5	-6.23	125.49	128.60

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	0	1322	С	N3-C2-O2	-6.23	117.54	121.90
25	AV	242	G	P-O3'-C3'	6.23	127.17	119.70
13	A3	63	С	O4'-C1'-N1	6.21	113.17	108.20
1	AA	1201	A	P-O3'-C3'	6.18	127.11	119.70
47	Ar	15	ASP	CB-CG-OD1	6.17	123.86	118.30
6	AF	86	ARG	NE-CZ-NH2	6.17	123.38	120.30
1	0	1201	A	P-O3'-C3'	6.17	127.10	119.70
63	Х	59	LEU	CA-CB-CG	6.16	129.47	115.30
23	AT	4	ASP	CB-CG-OD1	6.16	123.84	118.30
25	Ν	2225	A	P-O3'-C3'	6.15	127.08	119.70
10	9	97	ASP	CB-CG-OD1	6.15	123.84	118.30
25	AV	404	A	P-O3'-C3'	6.15	127.08	119.70
25	AV	1071	G	C8-N9-C1'	-6.15	119.01	127.00
25	Ν	84	A	P-O3'-C3'	6.14	127.07	119.70
1	0	1320	С	C2-N1-C1'	6.13	125.54	118.80
25	Ν	1109	С	P-O3'-C3'	6.13	127.05	119.70
1	0	1320	С	N1-C2-O2	6.12	122.57	118.90
1	0	479	U	N1-C2-O2	6.12	127.08	122.80
25	N	421	С	P-O3'-C3'	6.12	127.04	119.70
25	Ν	1314	С	C2-N1-C1'	6.12	125.53	118.80
25	N	271	G	O4'-C1'-N9	6.11	113.08	108.20
62	W	534	G	C8-N9-C1'	-6.10	119.06	127.00
13	A3	63	С	C2-N1-C1'	-6.10	112.09	118.80
1	0	1132	С	C2-N1-C1'	6.09	125.50	118.80
1	AA	979	С	C2-N1-C1'	6.09	125.49	118.80
1	AA	1086	U	N1-C2-O2	6.08	127.06	122.80
13	A3	73	С	O4'-C1'-N1	6.08	113.06	108.20
1	AA	979	С	N3-C2-O2	-6.06	117.66	121.90
1	0	812	G	P-O3'-C3'	6.05	126.97	119.70
40	Ak	114	LEU	CA-CB-CG	6.05	129.22	115.30
25	AV	2013	A	C4-C5-C6	-6.05	113.98	117.00
1	AA	386	C	C6-N1-C2	-6.04	117.89	120.30
6	5	90	MET	O-C-N	6.02	132.34	122.70
31	Ab	55	ARG	NE-CZ-NH2	6.02	123.31	120.30
1	AA	979	С	C6-N1-C2	-6.01	117.90	120.30
25	AV	1071	G	N3-C4-N9	5.99	129.59	126.00
25	AV	1348	С	N1-C2-O2	5.98	122.49	118.90
25	AV	1614	A	C5-C6-N1	5.98	120.69	117.70
1	0	115	G	P-O3'-C3'	5.97	126.87	119.70
62	W	553	C	C2-N1-C1'	5.97	125.37	118.80
62	W	555	G	N3-C4-N9	5.96	129.58	126.00
25	Ν	670	A	P-O3'-C3'	5.96	126.85	119.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$ $ Ideal(o)
25	N	2098	U	N1-C2-O2	5.95	126.97	122.80
25	AV	670	А	P-O3'-C3'	5.93	126.82	119.70
1	AA	1322	С	N1-C2-O2	5.93	122.46	118.90
11	А	53	G	N3-C4-N9	5.93	129.56	126.00
13	A3	63	С	C6-N1-C1'	5.92	127.90	120.80
1	AA	1158	С	C2-N1-C1'	5.91	125.30	118.80
25	N	974	G	C4-N9-C1'	5.91	134.18	126.50
25	AV	1956	U	N3-C2-O2	-5.90	118.07	122.20
26	0	89	U	C6-N1-C1'	-5.90	112.94	121.20
25	AV	61	С	N1-C2-O2	5.88	122.43	118.90
25	AV	2776	А	P-O3'-C3'	5.88	126.75	119.70
25	N	2178	С	N3-C2-O2	-5.88	117.79	121.90
25	N	2656	U	N3-C2-O2	-5.88	118.09	122.20
47	j	56	ASP	CB-CG-OD1	5.88	123.59	118.30
25	AV	1071	G	N3-C4-C5	-5.87	125.67	128.60
15	F	79	ARG	NE-CZ-NH2	5.86	123.23	120.30
25	N	323	С	C2-N1-C1'	5.86	125.24	118.80
25	Ν	2776	А	P-O3'-C3'	5.85	126.72	119.70
25	Ν	1956	U	N3-C2-O2	-5.84	118.11	122.20
25	N	1348	С	N3-C2-O2	-5.84	117.81	121.90
38	Ai	54	LEU	CA-CB-CG	5.84	128.73	115.30
25	AV	1585	С	N1-C2-O2	5.82	122.39	118.90
34	Ae	36	LEU	CA-CB-CG	5.82	128.67	115.30
25	AV	607	U	N1-C2-O2	5.81	126.87	122.80
25	N	2682	А	C4-C5-C6	-5.80	114.10	117.00
25	AV	2901	С	N1-C2-O2	5.80	122.38	118.90
1	AA	54	С	N3-C2-O2	-5.79	117.85	121.90
25	AV	2153	С	N3-C2-O2	-5.79	117.85	121.90
35	Х	87	LEU	CA-CB-CG	5.79	128.60	115.30
1	AA	115	G	P-O3'-C3'	5.78	126.64	119.70
11	А	75	С	N3-C2-O2	-5.75	117.87	121.90
38	a	72	ASP	CB-CG-OD1	5.74	123.47	118.30
25	AV	1314	С	C2-N1-C1'	5.73	125.10	118.80
25	N	1348	С	C2-N1-C1'	5.73	125.10	118.80
25	N	669	G	C4-N9-C1'	5.72	133.94	126.50
25	AV	1	G	C4-N9-C1'	5.72	133.94	126.50
30	S	26	MET	CA-CB-CG	5.72	123.02	113.30
25	AV	1956	U	N1-C2-O2	5.71	126.80	122.80
25	N	1180	U	C2-N1-C1'	5.71	124.55	117.70
8	7	9	ASP	CB-CG-OD1	5.68	123.42	118.30
25	Ν	1956	U	N1-C2-O2	5.68	126.78	122.80
25	AV	1615	С	04'-C1'-N1	5.68	112.74	108.20

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
34	W	96	ARG	NE-CZ-NH2	5.67	123.14	120.30
6	AF	8	PHE	CB-CG-CD1	5.67	124.77	120.80
1	AA	528	С	N3-C2-O2	-5.66	117.94	121.90
25	AV	669	G	C4-N9-C1'	5.65	133.85	126.50
25	AV	2506	U	C6-N1-C1'	-5.64	113.30	121.20
48	As	33	LEU	CA-CB-CG	5.62	128.23	115.30
25	N	2043	С	C2-N1-C1'	5.62	124.98	118.80
25	AV	2506	U	C5-C6-N1	5.61	125.50	122.70
1	AA	1301	U	C2-N1-C1'	5.61	124.43	117.70
25	AV	137	U	N3-C2-O2	-5.61	118.28	122.20
21	AR	13	LEU	CA-CB-CG	5.60	128.18	115.30
28	AY	40	LEU	CA-CB-CG	5.60	128.17	115.30
25	N	2716	С	C2-N1-C1'	5.57	124.93	118.80
22	AS	79	LEU	CA-CB-CG	5.57	128.11	115.30
1	AA	1086	U	N3-C2-O2	-5.57	118.30	122.20
25	AV	607	U	N3-C2-O2	-5.57	118.31	122.20
25	AV	1068	G	C8-N9-C1'	-5.57	119.77	127.00
25	AV	581	С	C5-C6-N1	5.56	123.78	121.00
7	6	124	LEU	CA-CB-CG	5.56	128.09	115.30
1	AA	386	С	N1-C2-N3	5.56	123.09	119.20
25	AV	234	U	N3-C2-O2	-5.55	118.31	122.20
25	N	2794	С	C6-N1-C1'	-5.55	114.14	120.80
13	A3	19	G	O4'-C1'-N9	-5.55	103.76	108.20
25	N	2430	А	C2-N3-C4	5.55	113.37	110.60
1	AA	479	U	N1-C2-O2	5.53	126.67	122.80
25	N	281	С	C2-N1-C1'	5.52	124.88	118.80
25	AV	372	G	P-O3'-C3'	5.52	126.32	119.70
25	AV	2739	U	N3-C2-O2	-5.52	118.34	122.20
56	В	983	LEU	CA-CB-CG	5.51	127.97	115.30
25	AV	2901	C	N3-C2-O2	-5.51	118.05	121.90
2	AB	129	LEU	CA-CB-CG	5.51	127.97	115.30
61	S	153	LEU	CA-CB-CG	5.51	127.96	115.30
1	AA	436	С	C2-N1-C1'	5.50	124.85	118.80
25	AV	669	G	N3-C4-N9	5.49	129.30	126.00
9	AI	118	LEU	CA-CB-CG	5.48	127.90	115.30
17	AN	70	LEU	CA-CB-CG	5.48	127.90	115.30
56	В	1251	LEU	CA-CB-CG	5.48	127.90	115.30
25	N	2177	C	N3-C2-O2	-5.47	118.07	121.90
25	N	2683	C	N3-C2-O2	-5.47	118.07	121.90
25	AV	1614	A	C4-C5-C6	-5.47	114.27	117.00
41	Al	18	LEU	CA-CB-CG	5.47	127.88	115.30
27	Р	66	ASP	CB-CG-OD1	5.47	123.22	118.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	6	66	LEU	CA-CB-CG	5.46	127.85	115.30
4	AD	5	LEU	CA-CB-CG	5.46	127.85	115.30
25	N	545	U	C2-N1-C1'	5.45	124.24	117.70
25	N	2098	U	N3-C2-O2	-5.45	118.38	122.20
1	0	479	U	N3-C2-O2	-5.44	118.39	122.20
25	AV	2884	U	C2-N1-C1'	5.44	124.23	117.70
1	AA	890	G	P-O3'-C3'	5.43	126.22	119.70
25	AV	545	U	C2-N1-C1'	5.43	124.22	117.70
33	V	106	LEU	CA-CB-CG	5.43	127.80	115.30
25	N	1047	G	O4'-C1'-N9	5.43	112.54	108.20
1	AA	1279	G	C4-N9-C1'	5.42	133.55	126.50
11	А	50	U	C5-C4-O4	-5.42	122.65	125.90
24	AU	20	G	C4-N9-C1'	5.42	133.54	126.50
25	N	1313	U	C5-C6-N1	5.42	125.41	122.70
1	0	1262	С	N1-C2-O2	5.42	122.15	118.90
24	AU	17	U	N1-C2-O2	5.41	126.58	122.80
25	AV	61	С	N3-C2-O2	-5.41	118.12	121.90
25	AV	2226	С	N1-C2-O2	5.41	122.14	118.90
1	AA	54	С	N1-C2-O2	5.40	122.14	118.90
1	0	530	G	C4-N9-C1'	5.39	133.51	126.50
25	AV	669	G	N3-C4-C5	-5.39	125.90	128.60
26	AW	26	С	N3-C2-O2	-5.39	118.13	121.90
56	В	660	LEU	CA-CB-CG	5.39	127.69	115.30
30	S	174	ASP	CB-CG-OD1	5.37	123.13	118.30
25	AV	717	С	N1-C2-O2	5.36	122.12	118.90
1	0	1158	С	C2-N1-C1'	5.36	124.69	118.80
17	AN	18	ASP	CB-CG-OD1	5.36	123.12	118.30
25	N	2072	С	C2-N1-C1'	5.35	124.69	118.80
25	N	1102	С	N1-C2-O2	5.35	122.11	118.90
62	W	555	G	C8-N9-C1'	-5.35	120.05	127.00
9	AI	52	LEU	CA-CB-CG	5.34	127.59	115.30
1	0	442	G	N3-C4-N9	5.33	129.20	126.00
1	AA	1182	G	P-O3'-C3'	5.33	126.10	119.70
14	С	48	LEU	CA-CB-CG	5.33	127.56	115.30
1	AA	518	С	P-O3'-C3'	5.32	126.08	119.70
$\overline{24}$	AU	17	U	N3-C2-O2	-5.32	118.48	122.20
6	AF	1	MET	CB-CG-SD	5.30	128.31	112.40
13	A3	76	C	C5-C6-N1	5.30	123.65	121.00
25	AV	2655	G	P-O3'-C3'	5.30	$126.0\overline{6}$	119.70
7	6	99	LEU	CA-CB-CG	5.29	127.47	115.30
25	AV	1313	U	C6-N1-C1'	-5.28	113.80	121.20
8	AH	32	LEU	CA-CB-CG	5.28	127.45	115.30

α \cdot \cdot \cdot	r	•	
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	AA	610	U	N1-C2-O2	5.27	126.49	122.80
24	AU	20	G	N3-C4-C5	-5.27	125.96	128.60
24	AU	17	U	C2-N1-C1'	5.27	124.02	117.70
7	6	50	LEU	CA-CB-CG	5.26	127.41	115.30
25	AV	2043	С	C2-N1-C1'	5.26	124.59	118.80
11	А	75	С	C6-N1-C1'	-5.26	114.49	120.80
2	AB	68	LEU	CA-CB-CG	5.25	127.39	115.30
25	Ν	12	U	C2-N1-C1'	5.25	124.00	117.70
21	t	71	LEU	CA-CB-CG	5.25	127.38	115.30
1	0	563	A	C4-N9-C1'	5.25	135.75	126.30
38	Ai	10	LEU	CA-CB-CG	5.25	127.38	115.30
25	Ν	301	G	C4-N9-C1'	-5.25	119.68	126.50
1	0	1125	U	C5-C6-N1	5.24	125.32	122.70
6	5	61	LEU	CA-CB-CG	5.24	127.36	115.30
33	V	125	MET	CA-CB-CG	5.24	122.21	113.30
24	AU	59	U	N1-C2-O2	5.24	126.47	122.80
25	AV	2286	G	P-O3'-C3'	5.24	125.99	119.70
1	AA	598	U	N3-C2-O2	-5.23	118.54	122.20
1	AA	388	G	P-O3'-C3'	5.22	125.97	119.70
1	AA	812	G	P-O3'-C3'	5.22	125.97	119.70
1	AA	1466	С	N3-C2-O2	-5.22	118.24	121.90
1	0	1322	С	C6-N1-C1'	-5.22	114.53	120.80
1	AA	1345	U	P-O3'-C3'	5.22	125.96	119.70
25	AV	1061	U	N3-C2-O2	-5.22	118.55	122.20
12	A1	13	ASP	CB-CG-OD1	5.21	122.99	118.30
1	0	1182	G	P-O3'-C3'	5.21	125.95	119.70
1	0	754	С	C6-N1-C1'	-5.20	114.56	120.80
46	i	38	LEU	CA-CB-CG	5.20	127.25	115.30
1	AA	563	A	C4-N9-C1'	5.20	135.65	126.30
25	AV	114	U	C2-N1-C1'	5.20	123.94	117.70
1	0	1345	U	P-O3'-C3'	5.19	125.93	119.70
25	AV	1615	С	N3-C2-O2	-5.19	118.27	121.90
6	AF	61	LEU	CA-CB-CG	5.18	127.21	115.30
25	N	1180	U	N1-C2-O2	5.18	126.42	122.80
25	N	1728	С	C2-N1-C1'	5.18	124.50	118.80
7	6	110	LYS	CA-CB-CG	5.17	124.78	113.40
1	0	1300	G	P-O3'-C3'	5.17	125.91	119.70
25	N	776	G	C4-N9-C1'	5.17	133.22	126.50
25	N	2226	C	N1-C2-O2	5.17	122.00	118.90
1	AA	1347	G	P-O3'-C3'	5.17	125.90	119.70
59	М	18	G	O4'-C1'-N9	-5.16	104.07	108.20
62	W	553	C	N1-C2-O2	5.16	122.00	118.90

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
25	AV	1100	С	C2-N1-C1'	5.16	124.47	118.80
43	An	95	ARG	NE-CZ-NH2	5.15	122.88	120.30
63	Х	38	MET	CA-CB-CG	5.15	122.06	113.30
47	Ar	19	LYS	CA-CB-CG	5.15	124.73	113.40
1	0	479	U	C2-N1-C1'	5.15	123.88	117.70
1	0	620	С	P-O3'-C3'	5.14	125.87	119.70
1	AA	1300	G	P-O3'-C3'	5.14	125.86	119.70
26	AW	89	U	C6-N1-C1'	-5.14	114.01	121.20
13	A3	73	С	C6-N1-C1'	5.13	126.96	120.80
1	AA	582	С	N3-C2-O2	-5.13	118.31	121.90
29	R	168	ASP	CB-CG-OD1	5.13	122.92	118.30
31	Т	46	ALA	C-N-CA	5.13	134.53	121.70
21	AR	31	LEU	CA-CB-CG	5.12	127.09	115.30
1	AA	1158	С	N3-C2-O2	-5.12	118.32	121.90
1	AA	307	С	N1-C2-O2	5.12	121.97	118.90
25	Ν	158	U	C2-N1-C1'	5.11	123.83	117.70
25	N	481	G	P-O3'-C3'	5.11	125.83	119.70
1	AA	1158	С	N1-C2-O2	5.11	121.96	118.90
11	А	53	G	OP1-P-O3'	5.10	116.43	105.20
1	AA	479	U	N3-C2-O2	-5.10	118.63	122.20
25	Ν	1716	U	C2-N1-C1'	5.10	123.82	117.70
26	0	17	С	C2-N1-C1'	5.10	124.41	118.80
25	Ν	277	G	P-O3'-C3'	5.09	125.81	119.70
62	W	544	G	N3-C4-C5	-5.09	126.05	128.60
1	AA	754	C	C2-N1-C1'	5.09	124.40	118.80
25	Ν	12	U	N1-C2-O2	5.09	126.36	122.80
25	Ν	2656	U	C6-N1-C1'	-5.09	114.07	121.20
48	k	33	LEU	CA-CB-CG	5.09	127.01	115.30
1	AA	1125	U	N1-C2-O2	5.09	126.36	122.80
2	1	212	LEU	CA-CB-CG	5.09	127.00	115.30
25	AV	1104	С	C6-N1-C2	-5.09	118.27	120.30
25	Ν	510	С	C6-N1-C1'	-5.08	114.70	120.80
25	Ν	12	U	N3-C2-O2	-5.08	118.65	122.20
25	AV	1	G	N3-C4-C5	-5.07	126.07	128.60
1	0	470	С	C5-C6-N1	5.06	123.53	121.00
25	AV	915	С	N1-C2-O2	5.06	121.94	118.90
25	Ν	2794	С	N1-C2-O2	5.05	121.93	118.90
25	N	158	U	N1-C2-O2	5.05	126.33	122.80
25	AV	2153		C6-N1-C2	-5.04	118.28	120.30
1	0	442	G	C4-N9-C1'	5.04	133.06	126.50
1	AA	330	C	N1-C2-O2	5.04	121.92	118.90
56	В	472	LEU	CA-CB-CG	5.04	126.89	115.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	AA	386	C	C6-N1-C1'	5.04	126.84	120.80
24	AU	72	С	N1-C2-O2	5.03	121.92	118.90
4	AD	90	LEU	CA-CB-CG	5.03	126.87	115.30
25	AV	481	G	P-O3'-C3'	5.03	125.73	119.70
29	R	115	GLN	CA-CB-CG	5.03	124.46	113.40
1	AA	439	U	C2-N1-C1'	5.03	123.73	117.70
25	Ν	2832	U	P-O3'-C3'	5.02	125.72	119.70
25	Ν	784	G	P-O3'-C3'	5.01	125.72	119.70
7	6	13	LEU	CA-CB-CG	5.01	126.82	115.30
25	N	2072	Ċ	C5-C6-N1	5.01	123.50	121.00
24	AU	59	Ū	N3-C2-O2	-5.01	118.70	122.20

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
2	1	216/241~(90%)	203~(94%)	13 (6%)	0	100	100
2	AB	216/241~(90%)	203~(94%)	13 (6%)	0	100	100
3	2	204/233~(88%)	197~(97%)	7(3%)	0	100	100
3	AC	204/233~(88%)	198~(97%)	6 (3%)	0	100	100
4	3	203/206~(98%)	195~(96%)	8 (4%)	0	100	100
4	AD	203/206~(98%)	191 (94%)	12 (6%)	0	100	100
5	4	148/167~(89%)	139 (94%)	9 (6%)	0	100	100

\mathbf{Mol}	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
5	AE	148/167~(89%)	135 (91%)	12 (8%)	1 (1%)	19	51
6	5	98/135~(73%)	90 (92%)	8 (8%)	0	100	100
6	AF	98/135~(73%)	94 (96%)	4 (4%)	0	100	100
7	6	149/179~(83%)	145 (97%)	4 (3%)	0	100	100
7	AG	149/179~(83%)	142 (95%)	7 (5%)	0	100	100
8	7	127/130~(98%)	123 (97%)	4 (3%)	0	100	100
8	AH	127/130~(98%)	123 (97%)	3 (2%)	1 (1%)	16	48
9	8	125/130~(96%)	113 (90%)	11 (9%)	1 (1%)	16	48
9	AI	125/130~(96%)	118 (94%)	7 (6%)	0	100	100
10	9	96/103~(93%)	86 (90%)	9 (9%)	1 (1%)	13	42
10	AJ	96/103~(93%)	83 (86%)	13 (14%)	0	100	100
12	A1	64/71~(90%)	64 (100%)	0	0	100	100
12	v	68/71~(96%)	66 (97%)	2 (3%)	0	100	100
14	AK	130/234~(56%)	126 (97%)	4 (3%)	0	100	100
14	С	130/234~(56%)	129 (99%)	1 (1%)	0	100	100
15	AL	112/118~(95%)	103 (92%)	9 (8%)	0	100	100
15	F	112/118~(95%)	108 (96%)	4 (4%)	0	100	100
16	AM	92/101~(91%)	79~(86%)	13 (14%)	0	100	100
16	G	96/101~(95%)	87 (91%)	8 (8%)	1 (1%)	13	42
17	AN	86/89~(97%)	85 (99%)	1 (1%)	0	100	100
17	Η	85/89~(96%)	83 (98%)	2 (2%)	0	100	100
18	AO	80/82~(98%)	74 (92%)	6 (8%)	0	100	100
18	Ι	80/82~(98%)	73 (91%)	7 (9%)	0	100	100
19	AP	78/84~(93%)	68 (87%)	10 (13%)	0	100	100
19	J	78/84~(93%)	74 (95%)	4 (5%)	0	100	100
20	AQ	64/75~(85%)	58 (91%)	6 (9%)	0	100	100
20	K	63/75 $(84%)$	62 (98%)	1 (2%)	0	100	100
21	AR	73/92~(79%)	69 (94%)	4 (6%)	0	100	100
21	t	75/92 (82%)	70 (93%)	5 (7%)	0	100	100
22	AS	83/87~(95%)	80 (96%)	3 (4%)	0	100	100
22	u	83/87~(95%)	82 (99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
23	AT	56/70~(80%)	52 (93%)	4 (7%)	0	100	100
23	L	58/70~(83%)	54 (93%)	4 (7%)	0	100	100
27	AX	269/273~(98%)	255 (95%)	14 (5%)	0	100	100
27	Р	269/273~(98%)	256 (95%)	13 (5%)	0	100	100
28	AY	207/209~(99%)	190 (92%)	17 (8%)	0	100	100
28	Q	207/209~(99%)	199 (96%)	8 (4%)	0	100	100
29	AZ	199/201~(99%)	194 (98%)	5 (2%)	0	100	100
29	R	199/201~(99%)	193 (97%)	6 (3%)	0	100	100
30	Aa	175/179~(98%)	168 (96%)	7 (4%)	0	100	100
30	S	175/179~(98%)	162 (93%)	13 (7%)	0	100	100
31	Ab	174/177~(98%)	167 (96%)	7 (4%)	0	100	100
31	Т	173/177~(98%)	167 (96%)	6 (4%)	0	100	100
32	Ac	147/149~(99%)	133 (90%)	14 (10%)	0	100	100
32	U	147/149~(99%)	136 (92%)	11 (8%)	0	100	100
33	Ad	139/142~(98%)	120 (86%)	18 (13%)	1 (1%)	19	51
33	V	132/142~(93%)	119 (90%)	13 (10%)	0	100	100
34	Ae	140/142~(99%)	132 (94%)	8 (6%)	0	100	100
34	W	140/142~(99%)	137 (98%)	3 (2%)	0	100	100
35	Af	120/123~(98%)	118 (98%)	2 (2%)	0	100	100
35	Х	120/123~(98%)	114 (95%)	6 (5%)	0	100	100
36	Ag	140/144~(97%)	134 (96%)	6 (4%)	0	100	100
36	Y	141/144~(98%)	133 (94%)	8 (6%)	0	100	100
37	Ah	134/136~(98%)	129 (96%)	5 (4%)	0	100	100
37	Ζ	134/136~(98%)	132 (98%)	2 (2%)	0	100	100
38	Ai	116/127~(91%)	112 (97%)	4 (3%)	0	100	100
38	a	117/127~(92%)	111 (95%)	6 (5%)	0	100	100
39	Aj	$114/11\overline{7}\ (97\%)$	113 (99%)	1 (1%)	0	100	100
39	b	114/117~(97%)	110 (96%)	4 (4%)	0	100	100
40	Ak	112/115~(97%)	106 (95%)	6 (5%)	0	100	100
40	с	112/115~(97%)	109 (97%)	3 (3%)	0	100	100
41	Al	115/118 (98%)	113 (98%)	2 (2%)	0	100	100

Continued	from	mranique	naac
Commueu	from	previous	page

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
41	d	115/118~(98%)	115 (100%)	0	0	100	100
42	Am	101/103~(98%)	96~(95%)	5 (5%)	0	100	100
42	е	101/103~(98%)	97~(96%)	4 (4%)	0	100	100
43	An	108/110~(98%)	103 (95%)	5 (5%)	0	100	100
43	f	108/110~(98%)	106 (98%)	2 (2%)	0	100	100
44	Ao	91/100 (91%)	89 (98%)	2 (2%)	0	100	100
44	g	91/100 (91%)	83 (91%)	8 (9%)	0	100	100
45	Ар	100/104~(96%)	92 (92%)	8 (8%)	0	100	100
45	h	100/104~(96%)	93 (93%)	7 (7%)	0	100	100
46	Aq	92/94~(98%)	88 (96%)	3 (3%)	1 (1%)	12	39
46	i	92/94~(98%)	88 (96%)	4 (4%)	0	100	100
47	Ar	73/85~(86%)	69 (94%)	4 (6%)	0	100	100
47	j	73/85~(86%)	72 (99%)	1 (1%)	0	100	100
48	As	75/78~(96%)	74 (99%)	1 (1%)	0	100	100
48	k	75/78~(96%)	74 (99%)	1 (1%)	0	100	100
49	At	61/63~(97%)	59 (97%)	2 (3%)	0	100	100
49	1	61/63~(97%)	57 (93%)	4 (7%)	0	100	100
50	Au	54/59~(92%)	50 (93%)	4 (7%)	0	100	100
50	m	56/59~(95%)	55 (98%)	1 (2%)	0	100	100
51	Av	54/57~(95%)	50 (93%)	4 (7%)	0	100	100
52	Aw	48/55~(87%)	47 (98%)	1 (2%)	0	100	100
52	О	48/55~(87%)	45 (94%)	3 (6%)	0	100	100
53	Ax	44/46~(96%)	42 (96%)	2 (4%)	0	100	100
53	р	44/46~(96%)	43 (98%)	1 (2%)	0	100	100
54	Ay	62/65~(95%)	61 (98%)	1 (2%)	0	100	100
54	q	62/65~(95%)	60 (97%)	1 (2%)	1 (2%)	8	31
55	Az	36/38~(95%)	29 (81%)	7 (19%)	0	100	100
55	r	36/38~(95%)	35 (97%)	1 (3%)	0	100	100
56	В	1291/1326~(97%)	1247 (97%)	44 (3%)	0	100	100
57	D	115/129~(89%)	107 (93%)	8 (7%)	0	100	100
57	У	115/129~(89%)	104 (90%)	11 (10%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
58	Ε	121/124~(98%)	109 (90%)	12 (10%)	0	100	100
58	Z	121/124~(98%)	115~(95%)	6 (5%)	0	100	100
60	n	52/56~(93%)	49 (94%)	3~(6%)	0	100	100
61	\mathbf{S}	35/179~(20%)	33~(94%)	2~(6%)	0	100	100
63	х	125/165~(76%)	118 (94%)	7~(6%)	0	100	100
All	All	13095/14247~(92%)	12440 (95%)	647 (5%)	8 (0%)	50	79

All (8) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
33	Ad	47	ASP
9	8	39	PHE
5	AE	90	THR
8	AH	66	PHE
16	G	33	ASP
46	Aq	84	PRO
10	9	57	VAL
54	q	32	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	Percentiles	
2	1	180/199~(90%)	173~(96%)	7 (4%)	27	58	
2	AB	180/199~(90%)	172~(96%)	8 (4%)	24	54	
3	2	170/190~(90%)	166~(98%)	4 (2%)	44	70	
3	AC	170/190~(90%)	164 (96%)	6 (4%)	31	61	
4	3	172/173~(99%)	166 (96%)	6 (4%)	31	61	
4	AD	172/173~(99%)	160~(93%)	12 (7%)	12	39	
5	4	113/126~(90%)	104 (92%)	9~(8%)	10	34	
5	AE	113/126~(90%)	102 (90%)	11 (10%)	6	25	

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
6	5	87/116~(75%)	81~(93%)	6~(7%)	13	39
6	AF	87/116~(75%)	80~(92%)	7 (8%)	10	34
7	6	124/147~(84%)	120 (97%)	4 (3%)	34	63
7	AG	124/147~(84%)	121 (98%)	3 (2%)	44	70
8	7	104/105~(99%)	102 (98%)	2 (2%)	52	75
8	AH	104/105~(99%)	97~(93%)	7 (7%)	13	40
9	8	105/107~(98%)	98~(93%)	7 (7%)	13	40
9	AI	105/107~(98%)	100 (95%)	5 (5%)	21	51
10	9	86/90~(96%)	77 (90%)	9 (10%)	5	22
10	AJ	86/90~(96%)	83 (96%)	3 (4%)	31	61
12	A1	56/61~(92%)	56 (100%)	0	100	100
12	V	60/61~(98%)	60 (100%)	0	100	100
14	AK	110/181 (61%)	105 (96%)	5 (4%)	23	53
14	С	110/181~(61%)	107 (97%)	3 (3%)	40	67
15	AL	92/96~(96%)	86 (94%)	6 (6%)	14	41
15	F	92/96~(96%)	90 (98%)	2 (2%)	47	71
16	AM	79/84~(94%)	78~(99%)	1 (1%)	65	82
16	G	82/84~(98%)	82 (100%)	0	100	100
17	AN	76/77~(99%)	73~(96%)	3 (4%)	27	58
17	Н	75/77~(97%)	72 (96%)	3 (4%)	27	58
18	AO	65/65~(100%)	60 (92%)	5 (8%)	10	35
18	Ι	65/65~(100%)	63~(97%)	2 (3%)	35	63
19	AP	74/78~(95%)	72 (97%)	2 (3%)	40	67
19	J	74/78~(95%)	73~(99%)	1 (1%)	62	81
20	AQ	57/65~(88%)	53 (93%)	4 (7%)	12	39
20	K	56/65~(86%)	54 (96%)	2 (4%)	30	60
21	AR	66/79~(84%)	63~(96%)	3 (4%)	23	53
21	t	68/79~(86%)	66 (97%)	2 (3%)	37	65
22	AS	65/66~(98%)	59 (91%)	6 (9%)	7	28
22	u	65/66~(98%)	64 (98%)	1 (2%)	60	80
23	AT	55/62~(89%)	51 (93%)	4 (7%)	11	37

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
23	L	57/62~(92%)	56~(98%)	1 (2%)	54	76
27	AX	216/218~(99%)	210 (97%)	6 (3%)	38	66
27	Р	216/218~(99%)	211 (98%)	5 (2%)	45	70
28	AY	164/164~(100%)	155 (94%)	9 (6%)	18	47
28	Q	164/164~(100%)	158 (96%)	6 (4%)	29	59
29	AZ	165/165~(100%)	154 (93%)	11 (7%)	13	40
29	R	165/165~(100%)	157 (95%)	8 (5%)	21	51
30	Aa	148/150~(99%)	144 (97%)	4 (3%)	40	67
30	S	148/150~(99%)	139 (94%)	9 (6%)	15	43
31	Ab	137/138~(99%)	134 (98%)	3 (2%)	47	71
31	Т	136/138~(99%)	131 (96%)	5 (4%)	29	59
32	Ac	114/114~(100%)	110 (96%)	4 (4%)	31	61
32	U	114/114~(100%)	108 (95%)	6 (5%)	19	48
33	Ad	109/110~(99%)	106 (97%)	3 (3%)	38	66
33	V	104/110~(94%)	99~(95%)	5 (5%)	21	51
34	Ae	116/116 (100%)	113 (97%)	3 (3%)	41	68
34	W	116/116 (100%)	113 (97%)	3 (3%)	41	68
35	Af	103/104~(99%)	92~(89%)	11 (11%)	5	21
35	Х	103/104~(99%)	99~(96%)	4 (4%)	27	58
36	Ag	101/103~(98%)	97~(96%)	4 (4%)	27	58
36	Y	102/103~(99%)	98 (96%)	4 (4%)	27	58
37	Ah	109/109~(100%)	105 (96%)	4 (4%)	29	59
37	Ζ	109/109~(100%)	105 (96%)	4 (4%)	29	59
38	Ai	98/103~(95%)	95~(97%)	3 (3%)	35	63
38	a	99/103~(96%)	94 (95%)	5 (5%)	20	49
39	Aj	86/87~(99%)	80 (93%)	6 (7%)	12	39
39	b	86/87~(99%)	81 (94%)	5 (6%)	17	45
40	Ak	99/100~(99%)	95 (96%)	4 (4%)	27	58
40	с	99/100~(99%)	98~(99%)	1 (1%)	73	86
41	Al	89/90~(99%)	84 (94%)	5 (6%)	17	46
41	d	89/90~(99%)	87~(98%)	2 (2%)	47	71

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
42	Am	84/84 (100%)	83 (99%)	1 (1%)	67	83
42	е	84/84~(100%)	80~(95%)	4 (5%)	21	51
43	An	93/93~(100%)	90~(97%)	3 (3%)	34	63
43	f	93/93~(100%)	91 (98%)	2 (2%)	47	71
44	Ao	80/84~(95%)	76 (95%)	4 (5%)	20	50
44	g	80/84~(95%)	73 (91%)	7 (9%)	8	30
45	Ap	83/85~(98%)	81 (98%)	2 (2%)	44	70
45	h	83/85~(98%)	79~(95%)	4 (5%)	21	51
46	Aq	78/78~(100%)	76 (97%)	2 (3%)	41	68
46	i	78/78~(100%)	74 (95%)	4 (5%)	20	49
47	Ar	57/63~(90%)	55 (96%)	2 (4%)	31	61
47	j	57/63~(90%)	54 (95%)	3 (5%)	19	48
48	As	67/68~(98%)	64 (96%)	3 (4%)	23	53
48	k	67/68~(98%)	62 (92%)	5 (8%)	11	36
49	At	55/55~(100%)	53 (96%)	2 (4%)	30	60
49	1	55/55~(100%)	53 (96%)	2 (4%)	30	60
50	Au	47/49~(96%)	44 (94%)	3 (6%)	14	42
50	m	48/49~(98%)	47 (98%)	1 (2%)	48	72
51	Av	47/48~(98%)	44 (94%)	3 (6%)	14	42
52	Aw	45/49~(92%)	44 (98%)	1 (2%)	47	71
52	О	45/49~(92%)	44 (98%)	1 (2%)	47	71
53	Ax	38/38~(100%)	37 (97%)	1 (3%)	41	68
53	р	38/38~(100%)	37 (97%)	1 (3%)	41	68
54	Ay	51/52~(98%)	47 (92%)	4 (8%)	10	35
54	q	51/52~(98%)	49 (96%)	2 (4%)	27	58
55	Az	34/34~(100%)	33 (97%)	1 (3%)	37	65
55	r	34/34~(100%)	32 (94%)	2 (6%)	16	44
56	В	1130/1158~(98%)	1097 (97%)	33 (3%)	37	65
57	D	90/99~(91%)	87 (97%)	3 (3%)	33	62
57	у	90/99~(91%)	81 (90%)	9 (10%)	6	24
58	Е	103/104 (99%)	98~(95%)	5 (5%)	21	51

Continued from previous page...

 Mol
 Chain
 Analysed

Continued on next page...

DE BANK

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
58	Z	103/104~(99%)	96~(93%)	7~(7%)	13 40)
60	n	46/47~(98%)	42 (91%)	4 (9%)	8 31	
61	\mathbf{S}	34/158~(22%)	32~(94%)	2~(6%)	16 44	Ł
63	х	96/123~(78%)	94~(98%)	2(2%)	48 72	2
All	All	10949/11680~(94%)	10490 (96%)	459 (4%)	27 56	3

All (459) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	1	22	TYR
2	1	32	PHE
2	1	59	LYS
2	1	77	SER
2	1	127	ASP
2	1	192	ASP
2	1	197	ASP
3	2	36	ASP
3	2	70	THR
3	2	118	ASP
3	2	181	ASP
4	3	4	TYR
4	3	71	GLN
4	3	76	TYR
4	3	85	ASN
4	3	178	MET
4	3	203	LEU
5	4	10	GLU
5	4	11	LEU
5	4	76	LEU
5	4	78	ASN
5	4	97	GLN
5	4	135	ASN
5	4	142	ASP
5	4	149	SER
5	4	157	ARG
6	5	13	ASP
6	5	35	LYS
6	5	39	LEU
6	5	40	GLU
6	5	47	LEU
6	5	81	ASN

Mol	Chain	Res	Type
7	6	20	SER
7	6	60	GLU
7	6	75	VAL
7	6	140	ASP
8	7	32	LEU
8	7	113	ASP
9	8	6	TYR
9	8	34	SER
9	8	37	GLN
9	8	63	LEU
9	8	87	LEU
9	8	89	GLU
9	8	106	ARG
10	9	10	LEU
10	9	57	VAL
10	9	63	ASP
10	9	65	TYR
10	9	71	LEU
10	9	80	THR
10	9	91	ASP
10	9	92	LEU
10	9	101	SER
2	AB	30	PHE
2	AB	90	PHE
2	AB	109	GLN
2	AB	121	SER
2	AB	127	ASP
2	AB	144	LEU
2	AB	170	HIS
2	AB	213	TYR
3	AC	29	PHE
3	AC	31	ASP
3	AC	32	ASN
3	AC	38	LYS
3	AC	88	ARG
3	AC	130	PHE
4	AD	3	ARG
4	AD	5	LEU
4	AD	50	ASP
4	AD	72	PHE
4	AD	74	ASN
4	AD	81	ARG

Mol	Chain	Res	Type
4	AD	85	ASN
4	AD	134	SER
4	AD	179	GLU
4	AD	187	GLU
4	AD	190	ASP
4	AD	191	LEU
5	AE	11	LEU
5	AE	15	LEU
5	AE	62	LYS
5	AE	69	ARG
5	AE	73	ASN
5	AE	81	LEU
5	AE	100	SER
5	AE	115	LEU
5	AE	122	ASN
5	AE	135	ASN
5	AE	149	SER
6	AF	8	PHE
6	AF	11	HIS
6	AF	44	ARG
6	AF	52	ASN
6	AF	59	TYR
6	AF	72	ASP
6	AF	82	ASP
7	AG	15	ASP
7	AG	26	PHE
7	AG	115	SER
8	AH	12	THR
8	AH	55	THR
8	AH	63	LEU
8	AH	79	SER
8	AH	111	MET
8	AH	112	THR
8	AH	128	TYR
9	AI	6	TYR
9	AI	46	MET
9	AI	49	ARG
9	AI	88	MET
9	AI	94	LEU
10	AJ	35	GLN
10	AJ	60	ASP
10	AJ	71	LEU

Mol	Chain	Res	Type
14	AK	42	VAL
14	AK	172	HIS
14	AK	188	ASN
14	AK	208	TYR
14	AK	216	THR
15	AL	11	ASP
15	AL	19	LEU
15	AL	34	LEU
15	AL	52	GLN
15	AL	58	ASP
15	AL	83	LEU
16	AM	11	VAL
17	AN	20	ASN
17	AN	22	THR
17	AN	48	LYS
18	AO	1	MET
18	AO	14	ARG
18	AO	39	PHE
18	AO	53	ASP
18	AO	79	ASN
19	AP	68	SER
19	AP	69	LYS
20	AQ	11	CYS
20	AQ	31	ASN
20	AQ	64	TYR
20	AQ	73	ARG
21	AR	36	ARG
21	AR	44	MET
21	AR	55	ARG
22	AS	3	ASN
22	AS	13	GLN
22	AS	36	TYR
22	AS	40	GLU
22	AS	61	GLN
22	AS	66	LEU
23	AT	26	SER
23	AT	34	LEU
23	AT	45	THR
23	AT	65	ASN
27	AX	20	VAL
27	AX	35	GLU
27	AX	203	ARG

Mol	Chain	Res	Type
27	AX	213	TRP
27	AX	251	GLN
27	AX	266	PHE
28	AY	30	GLU
28	AY	45	TYR
28	AY	73	VAL
28	AY	82	PHE
28	AY	105	LYS
28	AY	137	SER
28	AY	161	MET
28	AY	169	ARG
28	AY	189	VAL
29	AZ	12	LEU
29	AZ	19	PHE
29	AZ	30	GLN
29	AZ	90	GLN
29	AZ	116	ASP
29	AZ	124	PHE
29	AZ	144	GLU
29	AZ	171	ASP
29	AZ	183	PHE
29	AZ	198	GLU
29	AZ	199	MET
30	Aa	5	HIS
30	Aa	38	MET
30	Aa	96	MET
30	Aa	162	SER
31	Ab	20	ASN
31	Ab	166	ASP
31	Ab	170	ARG
32	Ac	28	ASN
32	Ac	51	ARG
32	Ac	101	ASP
32	Ac	147	VAL
33	Ad	57	VAL
33	Ad	79	LEU
33	Ad	135	SER
34	Ae	14	ASP
34	Ae	32	LEU
34	Ae	128	ASN
35	Af	1	MET
35	Af	9	ASN

Mol	Chain	Res	Type
35	Af	21	CYS
35	Af	23	LYS
35	Af	25	LEU
35	Af	37	ASP
35	Af	40	LYS
35	Af	49	ARG
35	Af	58	LEU
35	Af	80	ASP
35	Af	109	SER
36	Ag	12	SER
36	Ag	54	GLN
36	Ag	69	ARG
36	Ag	81	ASP
37	Ah	7	THR
37	Ah	88	ASN
37	Ah	90	GLU
37	Ah	93	VAL
38	Ai	1	MET
38	Ai	16	HIS
38	Ai	51	LEU
39	Aj	32	PRO
39	Aj	47	VAL
39	Aj	89	ASP
39	Aj	95	SER
39	Aj	98	GLN
39	Aj	103	VAL
40	Ak	41	GLN
40	Ak	65	SER
40	Ak	74	PHE
40	Ak	99	TYR
41	Al	51	ARG
41	Al	56	GLN
41	Al	76	TYR
41	Al	79	PHE
41	Al	109	LEU
42	Am	39	LEU
43	An	1	MET
43	An	7	HIS
43	An	34	ASP
44	Ao	32	LEU
44	Ao	36	LYS
44	Ao	51	PHE

Mol	Chain	Res	Type
44	Ao	87	LEU
45	Ap	27	ASN
45	Ap	81	ASP
46	Aq	1	MET
46	Aq	42	LEU
47	Ar	21	LEU
47	Ar	53	CYS
48	As	44	LYS
48	As	60	ASP
48	As	65	ASP
49	At	31	GLN
49	At	49	ASP
50	Au	6	LYS
50	Au	25	LEU
50	Au	40	ASP
51	Av	6	ASN
51	Av	22	LEU
51	Av	27	SER
52	Aw	7	GLU
53	Ax	43	THR
54	Ay	28	ASN
54	Ay	31	HIS
54	Ay	47	LYS
54	Ay	62	LEU
55	Az	12	ARG
56	В	9	PHE
56	В	76	ASN
56	В	85	ASP
56	В	132	ARG
56	В	172	LEU
56	В	173	MET
56	В	208	PHE
56	В	209	LEU
56	В	250	SER
56	В	269	ASP
56	В	660	LEU
56	В	669	MET
56	В	677	SER
56	В	723	THR
56	В	758	ASP
56	В	851	PHE
56	В	860	ARG

Mol	Chain	Res	Type
56	В	891	PHE
56	В	898	LEU
56	В	953	VAL
56	В	1086	HIS
56	В	1089	LEU
56	В	1099	PHE
56	В	1115	CYS
56	В	1128	VAL
56	В	1129	TRP
56	В	1132	GLU
56	В	1160	LEU
56	В	1175	ASP
56	В	1194	TYR
56	В	1265	ARG
56	В	1288	ASP
56	В	1292	LEU
14	С	41	SER
14	С	174	THR
14	С	196	LEU
57	D	34	ILE
57	D	82	LEU
57	D	119	ASN
58	Е	14	ARG
58	Е	44	LYS
58	Е	64	THR
58	Е	72	HIS
58	Е	93	VAL
15	F	54	ASP
15	F	83	LEU
17	Н	4	SER
17	Н	20	ASN
17	Н	66	LEU
18	Ι	48	GLU
18	Ι	69	ASP
19	J	50	ASN
20	K	25	ASP
20	K	42	SER
23	L	34	LEU
27	Р	10	SER
27	Р	72	ASP
27	Р	130	LEU
27	Р	213	TRP

Mol	Chain	Res	Type
27	Р	259	SER
28	Q	80	TRP
28	Q	84	LEU
28	Q	113	SER
28	Q	118	PHE
28	Q	185	ASN
28	Q	200	ASP
29	R	75	SER
29	R	115	GLN
29	R	124	PHE
29	R	141	MET
29	R	150	THR
29	R	156	ASN
29	R	165	HIS
29	R	166	LYS
30	S	5	HIS
30	S	17	MET
30	S	52	ASN
30	S	68	THR
30	S	80	ARG
30	S	83	TYR
30	S	115	ARG
30	S	121	SER
30	S	164	GLU
31	Т	50	LEU
31	Т	60	ASP
31	Т	155	GLU
31	Т	164	TYR
31	Т	166	ASP
32	U	9	VAL
32	U	21	VAL
32	U	25	TYR
32	U	53	GLU
32	U	62	LEU
32	U	90	LEU
33	V	28	LEU
33	V	60	THR
33	V	69	PHE
33	V	80	LEU
33	V	97	LYS
34	W	28	LEU
34	W	60	ASP

Mol	Chain	Res	Type
34	W	90	GLU
35	Х	25	LEU
35	Х	56	ASP
35	Х	84	CYS
35	Х	88	ASN
36	Y	12	SER
36	Y	60	ARG
36	Y	74	THR
36	Y	93	ASN
37	Ζ	24	THR
37	Ζ	30	SER
37	Ζ	54	THR
37	Ζ	88	ASN
38	a	2	ARG
38	a	4	ARG
38	a	8	ARG
38	a	23	ASN
38	a	60	VAL
39	b	2	ASP
39	b	48	LEU
39	b	58	ILE
39	b	64	TYR
39	b	67	ASN
40	с	109	ARG
41	d	79	PHE
41	d	102	ASP
42	е	2	TYR
42	е	5	PHE
42	е	15	SER
42	е	86	GLN
43	f	59	GLU
43	f	61	ASN
44	g	17	SER
44	g	24	MET
44	g	25	GLU
44	g	32	LEU
44	g	37	ASP
44	g	62	VAL
44	g	69	ARG
45	h	8	ASP
45	h	14	LEU
45	h	68	SER

Mol	Chain	Res	Type
45	h	81	ASP
46	i	42	LEU
46	i	69	GLU
46	i	73	LYS
46	i	75	GLN
47	j	12	ASN
47	j	19	LYS
47	j	32	LEU
48	k	4	VAL
48	k	45	ARG
48	k	46	PHE
48	k	47	VAL
48	k	48	THR
49	1	40	SER
49	1	58	ASN
50	m	29	LEU
60	n	22	LEU
60	n	27	SER
60	n	28	LEU
60	n	46	ASP
52	0	49	TYR
53	р	25	LYS
54	q	31	HIS
54	q	47	LYS
55	r	4	ARG
55	r	11	CYS
61	s	127	ASN
61	S	136	SER
21	t	31	LEU
21	t	32	ARG
22	u	59	ASP
63	Х	72	LEU
63	Х	99	PHE
57	У	18	ASP
57	У	36	ASP
57	У	42	LEU
57	У	58	SER
57	У	95	SER
57	У	107	ILE
57	У	119	ASN
57	У	121	CYS
57	У	126	LYS

Continued from previous page...

Mol	Chain	Res	Type
58	Z	19	SER
58	Z	46	ASN
58	Z	66	TYR
58	Z	81	LEU
58	Z	89	ASP
58	Z	93	VAL
58	Z	108	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (20) such side chains are listed below:

Mol	Chain	Res	Type
2	1	94	HIS
2	AB	15	HIS
2	AB	109	GLN
6	AF	81	ASN
7	AG	122	ASN
18	AO	9	HIS
22	AS	82	GLN
29	AZ	24	ASN
36	Ag	104	GLN
37	Ah	45	GLN
38	Ai	62	ASN
47	Ar	12	ASN
56	В	600	GLN
16	G	35	ASN
30	S	21	ASN
32	U	66	ASN
33	V	43	ASN
39	b	43	ASN
46	i	75	GLN
58	Z	77	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	0	1532/1542~(99%)	232~(15%)	14 (0%)
1	AA	1538/1542~(99%)	250~(16%)	14 (0%)
11	А	75/76~(98%)	20 (26%)	5~(6%)
13	A3	76/77~(98%)	28~(36%)	6 (7%)
24	AU	75/76~(98%)	13 (17%)	0

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
25	AV	2895/2903~(99%)	498 (17%)	21 (0%)
25	Ν	2895/2903~(99%)	439~(15%)	15~(0%)
26	AW	117/120~(97%)	23~(19%)	0
26	0	117/120~(97%)	18 (15%)	1 (0%)
59	М	74/75~(98%)	14 (18%)	1 (1%)
62	W	56/698~(8%)	27~(48%)	0
All	All	9450/10132~(93%)	1562~(16%)	77~(0%)

All (1562) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	0	4	U
1	0	5	U
1	0	9	G
1	0	32	А
1	0	39	G
1	0	47	С
1	0	48	С
1	0	51	А
1	0	52	С
1	0	65	A
1	0	66	A
1	0	72	A
1	0	81	А
1	0	83	С
1	0	88	U
1	0	95	С
1	0	97	G
1	0	108	G
1	0	116	A
1	0	121	U
1	0	122	G
1	0	131	A
1	0	144	G
1	0	163	C
	0	173	U
1	0	174	A
1	0	177	G
1	0	182	A
1	0	183	C
1	0	191	G
1	0	197	A

Mol	Chain	Res	Type
1	0	226	G
1	0	245	U
1	0	247	G
1	0	251	G
1	0	262	А
1	0	266	G
1	0	267	С
1	0	279	А
1	0	280	С
1	0	281	G
1	0	289	G
1	0	306	A
1	0	328	С
1	0	330	С
1	0	332	G
1	0	338	A
1	0	351	G
1	0	352	С
1	0	354	G
1	0	367	U
1	0	372	С
1	0	373	A
1	0	388	G
1	0	397	А
1	0	406	G
1	0	411	А
1	0	412	А
1	0	413	G
1	0	421	U
1	0	422	С
1	0	424	G
1	0	429	U
1	0	435	А
1	0	436	С
1	0	439	U
1	0	440	С
1	0	441	А
1	0	451	А
1	0	458	U
1	0	467	U
1	0	468	A
1	0	479	U

Mol	Chain	Res	Type
1	0	484	G
1	0	492	С
1	0	493	А
1	0	495	А
1	0	496	А
1	0	497	G
1	0	509	А
1	0	510	А
1	0	511	С
1	0	517	G
1	0	518	С
1	0	521	G
1	0	527	G
1	0	531	U
1	0	532	А
1	0	547	A
1	0	562	U
1	0	564	С
1	0	572	А
1	0	573	А
1	0	576	С
1	0	577	G
1	0	584	G
1	0	618	С
1	0	619	U
1	0	621	А
1	0	633	G
1	0	653	U
1	0	665	А
1	0	666	G
1	0	687	A
1	0	701	U
1	0	702	A
1	0	703	G
1	0	723	U
1	0	724	G
1	0	731	G
1	0	755	G
1	0	793	U
1	0	794	A
1	0	808	С
1	0	813	U

Mol	Chain	Res	Type
1	0	815	А
1	0	817	С
1	0	819	А
1	0	821	G
1	0	828	U
1	0	829	G
1	0	832	G
1	0	841	С
1	0	842	U
1	0	843	U
1	0	844	G
1	0	845	А
1	0	846	G
1	0	849	G
1	0	885	G
1	0	889	A
1	0	914	А
1	0	934	С
1	0	935	А
1	0	958	А
1	0	960	U
1	0	966	G
1	0	969	А
1	0	971	G
1	0	972	С
1	0	975	А
1	0	976	G
1	0	977	А
1	0	992	U
1	0	993	G
1	0	996	A
1	0	1004	А
1	0	1005	А
1	0	1006	G
1	0	1016	A
1	0	1017	U
1	0	1022	А
1	0	1026	G
1	0	1029	U
1	0	1030	U
1	0	1031	С
1	0	1032	G

Mol	Chain	Res	Type
1	0	1045	С
1	0	1046	А
1	0	1064	G
1	0	1065	U
1	0	1066	С
1	0	1085	U
1	0	1094	G
1	0	1095	U
1	0	1101	А
1	0	1108	G
1	0	1125	U
1	0	1133	G
1	0	1137	С
1	0	1139	G
1	0	1143	G
1	0	1154	G
1	0	1158	С
1	0	1159	U
1	0	1182	G
1	0	1183	U
1	0	1184	G
1	0	1191	А
1	0	1196	А
1	0	1197	А
1	0	1198	G
1	0	1202	U
1	0	1206	G
1	0	1213	А
1	0	1226	С
1	0	1227	А
1	0	1241	G
1	0	1257	А
1	0	1258	G
1	0	1260	G
1	0	1268	G
1	0	1270	G
1	0	1280	A
1	0	1285	A
1	0	1286	U
1	0	1287	А
1	0	1297	G
1	0	1298	U

Mol	Chain	Res	Type
1	0	1300	G
1	0	1301	U
1	0	1302	С
1	0	1305	G
1	0	1312	G
1	0	1317	С
1	0	1318	А
1	0	1322	С
1	0	1323	G
1	0	1332	А
1	0	1340	А
1	0	1346	А
1	0	1362	А
1	0	1363	A
1	0	1364	U
1	0	1370	G
1	0	1379	G
1	0	1401	G
1	0	1419	G
1	0	1432	G
1	0	1441	А
1	0	1452	С
1	0	1487	G
1	0	1491	G
1	0	1492	A
1	0	1494	G
1	0	1497	G
1	0	1499	A
1	0	1503	А
1	0	1506	U
1	0	1517	G
1	0	1529	G
1	0	1530	G
11	A	7	A
11	A	8	U
11	A	9	A
11	А	10	G
11	А	13	С
11	A	17	С
11	A	18	G
11	A	19	G
11	А	20	U

Mol	Chain	Res	Type
11	А	21	А
11	А	22	G
11	А	45	U
11	А	47	U
11	А	52	G
11	А	53	G
11	А	54	U
11	А	55	U
11	А	56	С
11	А	74	С
11	А	75	С
13	A3	7	G
13	A3	13	С
13	A3	16	U
13	A3	17	U
13	A3	19	G
13	A3	21	U
13	A3	23	G
13	A3	35	С
13	A3	42	А
13	A3	46	G
13	A3	47	G
13	A3	48	U
13	A3	49	С
13	A3	50	А
13	A3	51	С
13	A3	52	А
13	A3	53	G
13	A3	58	G
13	A3	59	А
13	A3	62	С
13	A3	63	С
13	A3	64	С
13	A3	66	U
13	A3	67	C
13	A3	$\overline{72}$	C
13	A3	73	С
13	A3	75	C
13	A3	77	A
1	AA	4	U
1	AA	6	G
1	AA	9	G

Mol	Chain	Res	Type
1	AA	22	G
1	AA	32	А
1	AA	39	G
1	AA	47	С
1	AA	48	С
1	AA	51	А
1	AA	65	А
1	AA	71	А
1	AA	82	G
1	AA	83	С
1	AA	86	G
1	AA	95	С
1	AA	97	G
1	AA	108	G
1	AA	116	А
1	AA	121	U
1	AA	122	G
1	AA	130	A
1	AA	143	А
1	AA	144	G
1	AA	148	G
1	AA	149	А
1	AA	163	С
1	AA	174	А
1	AA	183	С
1	AA	197	А
1	AA	210	С
1	AA	211	G
1	AA	226	G
1	AA	245	U
1	AA	246	A
1	AA	247	G
1	AA	251	G
1	AA	253	A
1	AA	266	G
1	AA	267	С
1	AA	279	А
1	AA	281	G
1	AA	289	G
1	AA	301	G
1	AA	306	A
1	AA	328	С

Mol	Chain	Res	Type
1	AA	330	С
1	AA	332	G
1	AA	346	G
1	AA	347	G
1	AA	351	G
1	AA	352	С
1	AA	354	G
1	AA	363	А
1	AA	367	U
1	AA	372	С
1	AA	389	А
1	AA	397	А
1	AA	406	G
1	AA	411	A
1	AA	412	A
1	AA	413	G
1	AA	421	U
1	AA	422	C
1	AA	423	G
1	AA	424	G
1	AA	429	U
1	AA	439	U
1	AA	458	U
1	AA	467	U
1	AA	468	А
1	AA	478	А
1	AA	479	U
1	AA	481	G
1	AA	484	G
1	AA	494	G
1	AA	496	A
1	AA	497	G
1	AA	509	A
1	AA	510	A
1	AA	511	С
1	AA	517	G
1	AA	518	С
1	AA	519	С
1	AA	521	G
1	AA	527	G
1	AA	531	U
1	AA	532	А

Mol	Chain	Res	Type
1	AA	533	А
1	AA	547	А
1	AA	559	А
1	AA	562	U
1	AA	564	С
1	AA	572	А
1	AA	573	А
1	AA	576	С
1	AA	577	G
1	AA	596	А
1	AA	619	U
1	AA	633	G
1	AA	653	U
1	AA	665	A
1	AA	$68\overline{7}$	A
1	AA	688	G
1	AA	695	A
1	AA	702	A
1	AA	703	G
1	AA	718	А
1	AA	721	G
1	AA	723	U
1	AA	724	G
1	AA	731	G
1	AA	747	A
1	AA	752	G
1	AA	755	G
1	AA	793	U
1	AA	794	A
1	AA	799	G
1	AA	813	U
1	AA	814	A
1	AA	815	A
1	AA	817	C
1	AA	818	G
1	AA	819	A
1	AA	821	G
1	AA	828	U
1	AA	836	G
1	AA	843	U
1	AA	844	G
1	AA	845	A

Mol	Chain	Res	Type
1	AA	846	G
1	AA	885	G
1	AA	889	А
1	AA	890	G
1	AA	891	U
1	AA	902	G
1	AA	914	А
1	AA	922	G
1	AA	926	G
1	AA	934	С
1	AA	935	А
1	AA	958	А
1	AA	960	U
1	AA	965	U
1	AA	966	G
1	AA	969	А
1	AA	971	G
1	AA	972	С
1	AA	975	А
1	AA	976	G
1	AA	977	А
1	AA	982	U
1	AA	992	U
1	AA	993	G
1	AA	999	С
1	AA	1004	А
1	AA	1008	U
1	AA	1014	А
1	AA	1015	G
1	AA	1016	А
1	AA	1017	U
1	AA	1022	A
1	AA	1024	G
1	AA	1025	U
1	AA	1026	G
1	AA	1027	С
1	AA	1030	U
1	AA	1031	С
1	AA	1043	G
1	AA	1056	U
1	AA	1064	G
1	AA	1065	U

Mol	Chain	Res	Type
1	AA	1066	С
1	AA	1085	U
1	AA	1094	G
1	AA	1095	U
1	AA	1101	А
1	AA	1104	G
1	AA	1108	G
1	AA	1125	U
1	AA	1133	G
1	AA	1136	С
1	AA	1137	С
1	AA	1138	G
1	AA	1139	G
1	AA	1157	А
1	AA	1158	С
1	AA	1159	U
1	AA	1160	G
1	AA	1167	A
1	AA	1169	A
1	AA	1183	U
1	AA	1184	G
1	AA	1196	A
1	AA	1202	U
1	AA	1212	U
1	AA	1226	С
1	AA	1227	A
1	AA	1238	A
1	AA	1250	A
1	AA	1258	G
1	AA	1260	G
1	AA	1275	A
1	AA	1280	A
1	AA	1285	A
1	AA	1287	A
1	AA	1297	G
1	AA	1298	U
1	AA	1300	G
1	AA	1301	U
1	AA	1305	G
1	AA	1317	С
1	AA	1319	A
1	AA	1320	С

Mol	Chain	Res	Type
1	AA	1322	С
1	AA	1323	G
1	AA	1324	А
1	AA	1328	С
1	AA	1331	G
1	AA	1332	А
1	AA	1337	G
1	AA	1338	G
1	AA	1340	А
1	AA	1346	А
1	AA	1347	G
1	AA	1348	U
1	AA	1353	G
1	AA	1362	А
1	AA	1363	A
1	AA	1364	U
1	AA	1370	G
1	AA	1379	G
1	AA	1398	А
1	AA	1419	G
1	AA	1429	А
1	AA	1432	G
1	AA	1442	G
1	AA	1451	U
1	AA	1452	С
1	AA	1454	G
1	AA	1487	G
1	AA	1492	А
1	AA	1497	G
1	AA	1503	А
1	AA	1506	U
1	AA	1517	G
1	AA	1529	G
1	AA	1530	G
1	AA	1534	А
1	AA	1535	C
1	AA	1538	С
$\overline{24}$	AU	9	A
$\overline{24}$	AU	16	С
$\overline{24}$	AU	17	U
24	AU	18	G
24	AU	19	G

Mol	Chain	Res	Type
24	AU	20	G
24	AU	21	А
24	AU	22	G
24	AU	43	G
24	AU	46	G
24	AU	55	U
24	AU	59	U
24	AU	76	А
25	AV	2	G
25	AV	10	А
25	AV	15	G
25	AV	27	G
25	AV	34	U
$\overline{25}$	AV	35	G
25	AV	42	А
25	AV	46	G
$\overline{25}$	AV	49	А
25	AV	50	U
25	AV	51	G
25	AV	60	G
25	AV	63	А
25	AV	71	А
25	AV	72	U
25	AV	74	А
25	AV	75	G
25	AV	84	А
25	AV	96	С
25	AV	100	U
25	AV	101	А
25	AV	102	U
25	AV	103	А
25	AV	118	A
25	AV	119	A
25	AV	120	U
25	AV	125	A
25	AV	138	U
25	AV	139	U
25	AV	140	C
25	AV	141	G
25	AV	142	А
25	AV	160	А
25	AV	162	U

Mol	Chain	Res	Type
25	AV	196	А
25	AV	199	А
25	AV	215	G
25	AV	216	А
25	AV	222	А
25	AV	223	А
25	AV	228	С
25	AV	233	А
25	AV	241	А
25	AV	243	U
25	AV	248	G
25	AV	250	G
25	AV	255	А
25	AV	266	G
25	AV	271	G
25	AV	276	U
25	AV	277	G
25	AV	278	А
25	AV	281	С
25	AV	284	U
25	AV	301	G
25	AV	310	А
25	AV	323	С
25	AV	329	G
25	AV	330	А
25	AV	331	С
25	AV	332	А
25	AV	333	G
25	AV	338	G
25	AV	354	А
25	AV	361	G
25	AV	362	А
25	AV	368	A
$\overline{25}$	AV	371	A
25	AV	372	G
25	AV	373	U
25	AV	386	G
25	AV	388	G
$\overline{25}$	AV	396	G
25	AV	405	U
25	AV	411	G
25	AV	422	А

Mol	Chain	Res	Type
25	AV	424	G
25	AV	429	А
25	AV	435	С
25	AV	451	U
25	AV	455	С
25	AV	456	С
25	AV	457	А
25	AV	479	А
25	AV	480	А
25	AV	481	G
25	AV	482	А
25	AV	491	G
25	AV	503	А
25	AV	504	А
25	AV	505	A
25	AV	509	С
25	AV	529	А
25	AV	530	G
25	AV	532	А
25	AV	533	G
25	AV	544	С
25	AV	546	U
25	AV	547	А
25	AV	548	G
25	AV	549	G
25	AV	550	С
25	AV	563	А
25	AV	572	А
25	AV	573	U
25	AV	575	A
25	AV	586	А
25	AV	603	A
25	AV	613	А
25	AV	614	A
25	AV	622	G
25	AV	627	A
25	AV	637	А
25	AV	646	U
25	AV	647	G
25	AV	648	G
25	AV	654	А
25	AV	655	А

Mol	Chain	Res	Type
25	AV	669	G
25	AV	670	А
25	AV	671	С
25	AV	686	U
25	AV	712	G
25	AV	726	G
25	AV	729	G
25	AV	730	А
25	AV	739	А
25	AV	740	C
25	AV	747	U
25	AV	757	G
25	AV	764	А
25	AV	765	С
25	AV	774	G
25	AV	776	G
25	AV	782	A
25	AV	783	А
25	AV	784	G
25	AV	785	G
25	AV	800	А
25	AV	805	G
25	AV	811	U
25	AV	812	С
25	AV	819	А
25	AV	827	U
25	AV	828	U
25	AV	831	G
25	AV	844	А
25	AV	845	А
$\overline{25}$	AV	846	U
25	AV	847	U
25	AV	859	G
25	AV	860	U
25	AV	894	U
25	AV	896	A
25	AV	897	C
25	AV	910	A
25	AV	914	G
25	AV	931	U
$\overline{25}$	AV	934	U
25	AV	941	А

Mol	Chain	Res	Type
25	AV	945	А
25	AV	946	С
25	AV	960	А
25	AV	961	С
25	AV	973	А
25	AV	974	G
25	AV	980	А
25	AV	983	А
25	AV	995	С
25	AV	996	А
25	AV	1005	С
25	AV	1009	А
25	AV	1010	А
25	AV	1012	U
25	AV	1013	С
25	AV	1022	G
25	AV	1026	G
25	AV	1033	U
25	AV	1040	А
25	AV	1046	А
25	AV	1047	G
25	AV	1056	G
25	AV	1060	U
25	AV	1062	G
25	AV	1065	U
25	AV	1066	U
25	AV	1067	А
25	AV	1068	G
25	AV	1070	А
25	AV	1071	G
25	AV	1075	С
25	AV	1078	U
25	AV	1083	U
25	AV	1084	А
25	AV	1087	G
25	AV	1088	А
25	AV	1089	А
25	AV	1090	A
25	AV	1094	U
25	AV	1095	А
25	AV	1096	А
25	AV	1097	U

Mol	Chain	Res	Type
25	AV	1100	С
25	AV	1103	А
25	AV	1104	С
25	AV	1110	G
25	AV	1112	G
25	AV	1130	U
25	AV	1131	G
25	AV	1132	U
25	AV	1133	А
25	AV	1135	С
25	AV	1136	G
25	AV	1139	G
25	AV	1142	А
25	AV	1143	A
25	AV	1157	G
25	AV	1172	С
25	AV	1173	U
25	AV	1174	U
25	AV	1175	А
25	AV	1176	U
25	AV	1180	U
25	AV	1181	U
25	AV	1204	А
25	AV	1206	G
25	AV	1210	G
25	AV	1211	C
25	AV	1223	G
25	AV	1224	U
25	AV	1227	G
25	AV	1237	А
$\overline{25}$	AV	1238	G
25	AV	1251	С
25	AV	1253	A
$\overline{25}$	AV	1256	G
25	AV	1266	G
25	AV	1271	G
25	AV	1272	А
25	AV	$1\overline{274}$	A
25	AV	1293	С
25	AV	1300	G
25	AV	1301	А
25	AV	1306	С

Mol	Chain	Res	Type
25	AV	1321	А
25	AV	1345	С
25	AV	1346	G
25	AV	1360	G
25	AV	1365	А
25	AV	1368	G
25	AV	1376	С
25	AV	1378	А
25	AV	1379	U
25	AV	1380	G
25	AV	1383	А
25	AV	1416	G
25	AV	1419	А
25	AV	1420	A
25	AV	1427	А
25	AV	1437	С
25	AV	1451	С
25	AV	1458	U
25	AV	1459	G
25	AV	1475	G
25	AV	1478	G
25	AV	1482	G
25	AV	1496	А
25	AV	1497	U
25	AV	1504	A
25	AV	1515	А
25	AV	1524	G
25	AV	1530	G
25	AV	1533	С
25	AV	1535	A
25	AV	1536	С
25	AV	1537	G
25	AV	1546	G
25	AV	1566	A
25	AV	1583	A
25	AV	1584	U
25	AV	1585	С
25	AV	1587	G
25	AV	1588	G
25	AV	1603	A
25	AV	1608	A
25	AV	1613	G

Mol	Chain	Res	Type
25	AV	1616	А
25	AV	1634	А
25	AV	1646	С
25	AV	1647	U
25	AV	1648	U
25	AV	1660	G
25	AV	1665	А
25	AV	1667	G
25	AV	1674	G
25	AV	1675	С
25	AV	1682	G
25	AV	1698	А
25	AV	1714	U
25	AV	1715	G
25	AV	1729	U
25	AV	1730	С
25	AV	1738	G
25	AV	1744	А
25	AV	1752	С
25	AV	1756	G
25	AV	1757	А
25	AV	1758	U
25	AV	1764	С
25	AV	1773	А
25	AV	1784	А
25	AV	1790	С
25	AV	1800	С
25	AV	1808	А
25	AV	1816	С
25	AV	1829	А
25	AV	1835	G
25	AV	1847	А
25	AV	1852	U
25	AV	1869	G
25	AV	1870	С
25	AV	1881	С
25	AV	1884	G
25	AV	1901	А
25	AV	1906	G
25	AV	1913	А
25	AV	1926	U
25	AV	1927	А

Mol	Chain	Res	Type
25	AV	1929	G
25	AV	1930	G
25	AV	1937	А
25	AV	1938	А
25	AV	1955	U
25	AV	1967	С
25	AV	1970	А
25	AV	1971	U
25	AV	1972	G
25	AV	1991	U
25	AV	1992	G
25	AV	1993	U
25	AV	1997	С
25	AV	2020	A
25	AV	2022	U
25	AV	2023	C
25	AV	2030	А
25	AV	2031	А
25	AV	2033	А
25	AV	2043	С
25	AV	2052	А
25	AV	2055	С
25	AV	2056	G
25	AV	2057	G
25	AV	2060	А
25	AV	2061	G
25	AV	2062	А
25	AV	2069	G
25	AV	2096	С
25	AV	2097	A
25	AV	2104	С
25	AV	2107	G
25	AV	2110	G
25	AV	2111	U
25	AV	2112	G
25	AV	2113	U
25	AV	2115	G
25	AV	2119	А
25	AV	2120	G
25	AV	2125	G
25	AV	2126	A
25	AV	2131	U

Mol	Chain	Res	Type
25	AV	2132	U
25	AV	2133	G
25	AV	2134	А
25	AV	2144	G
25	AV	2145	С
25	AV	2157	G
25	AV	2161	С
25	AV	2162	G
25	AV	2163	А
25	AV	2165	С
25	AV	2172	U
25	AV	2173	А
25	AV	2178	С
$\overline{25}$	AV	2198	A
25	AV	2199	А
25	AV	2204	G
25	AV	2210	U
25	AV	2211	А
25	AV	2214	С
25	AV	2225	А
25	AV	2226	С
25	AV	2238	G
25	AV	2239	G
25	AV	2250	G
25	AV	2266	А
25	AV	2269	G
25	AV	2278	А
25	AV	2283	С
25	AV	2286	G
25	AV	2287	A
25	AV	2288	A
25	AV	2305	U
25	AV	2307	G
25	AV	2309	A
25	AV	2312	U
25	AV	2319	G
25	AV	2321	U
25	AV	2325	G
25	AV	2333	A
25	AV	2347	С
25	AV	2350	С
25	AV	2352	А

Mol	Chain	Res	Type
25	AV	2357	G
25	AV	2361	G
25	AV	2383	G
25	AV	2385	С
25	AV	2402	U
25	AV	2406	А
25	AV	2423	U
25	AV	2425	А
25	AV	2426	А
25	AV	2428	G
25	AV	2429	G
25	AV	2430	А
25	AV	2431	U
25	AV	2441	U
25	AV	2447	G
25	AV	2448	A
25	AV	2460	U
25	AV	2476	А
25	AV	2478	А
25	AV	2487	G
25	AV	2491	U
25	AV	2494	G
25	AV	2498	С
25	AV	2502	G
25	AV	2503	А
25	AV	2504	U
25	AV	2518	А
25	AV	2520	С
25	AV	2529	G
25	AV	2535	G
25	AV	2547	A
25	AV	2554	U
25	AV	2566	A
25	AV	2567	G
25	AV	2572	А
25	AV	2576	G
25	AV	2578	G
25	AV	2602	A
25	AV	2609	U
25	AV	2613	U
25	AV	2615	U
25	AV	2621	G

Mol	Chain	Res	Type
25	AV	2629	U
25	AV	2630	G
25	AV	2642	G
25	AV	2646	С
25	AV	2655	G
25	AV	2656	U
25	AV	2682	А
25	AV	2685	G
25	AV	2686	G
25	AV	2689	U
25	AV	2690	U
25	AV	2714	G
25	AV	2716	С
25	AV	2726	A
25	AV	2733	A
25	AV	2744	G
25	AV	2748	А
25	AV	2750	А
25	AV	2757	А
25	AV	2758	А
25	AV	2765	А
25	AV	2769	U
25	AV	2777	G
25	AV	2778	А
25	AV	2779	U
25	AV	2798	U
25	AV	2808	G
25	AV	2809	А
25	AV	2818	U
25	AV	2820	A
25	AV	2823	A
25	AV	2832	U
25	AV	2833	U
25	AV	2834	G
25	AV	2849	U
25	AV	2872	A
25	AV	2873	A
25	AV	2877	G
25	AV	2880	С
25	AV	2884	U
25	AV	2886	A
25	AV	2891	U

Mol	Chain	Res	Type
25	AV	2893	А
25	AV	2903	U
26	AW	9	G
26	AW	13	G
26	AW	23	G
26	AW	25	U
26	AW	30	С
26	AW	35	С
26	AW	37	С
26	AW	41	G
26	AW	42	С
26	AW	44	G
$\overline{26}$	AW	52	А
26	AW	56	G
26	AW	66	A
26	AW	67	G
26	AW	87	U
26	AW	88	С
26	AW	89	U
26	AW	90	С
26	AW	91	С
26	AW	99	А
26	AW	105	G
26	AW	108	А
26	AW	109	А
59	М	9	С
59	М	10	G
59	М	14	А
$\overline{59}$	М	16	C
59	М	17	G
59	М	19	U
59	M	20	A
59	М	41	G
59	M	42	G
59	М	45	U
59	М	46	U
59	М	47	С
59	М	55	С
59	М	75	A
25	N	10	А
25	N	15	G
25	N	34	U

Mol	Chain	Res	Type
25	N	35	G
25	N	46	G
25	N	51	G
25	N	60	G
25	N	63	А
25	N	71	А
25	N	74	А
25	N	75	G
25	N	85	G
25	N	91	A
25	N	96	С
25	N	102	U
25	N	103	A
25	N	114	U
25	N	118	А
25	N	119	A
25	N	120	U
25	N	131	А
25	N	138	U
25	N	139	U
25	N	140	С
25	N	141	G
25	N	162	U
25	N	163	С
25	N	181	А
25	N	196	А
25	N	199	А
25	N	215	G
25	N	216	А
25	Ν	222	A
25	N	229	С
25	N	241	А
25	N	248	G
25	Ν	255	A
25	N	266	G
25	N	267	С
25	Ν	272	A
25	N	276	U
25	N	278	A
25	N	281	C
25	N	285	G
25	N	301	G

Mol	Chain	Res	Type
25	N	310	А
25	N	329	G
25	N	330	А
25	N	331	С
25	N	346	А
25	N	361	G
25	N	362	А
25	N	370	G
25	N	371	А
25	N	372	G
25	N	386	G
25	N	396	G
25	N	403	U
25	N	405	U
25	N	406	G
25	N	407	G
25	N	411	G
25	N	422	А
25	N	424	G
25	N	435	С
25	N	457	А
25	N	467	G
25	N	477	А
25	N	481	G
25	N	482	А
25	N	489	G
25	N	491	G
25	N	504	А
25	N	505	А
25	N	509	С
25	N	510	С
25	N	529	A
25	N	530	G
25	Ν	532	А
25	N	533	G
25	Ν	539	G
25	Ν	540	С
25	N	543	G
25	Ν	544	С
25	N	546	U
25	Ν	548	G
25	N	549	G

Mol	Chain	Res	Type
25	N	563	А
25	N	573	U
25	N	575	А
25	N	577	G
25	Ν	586	А
25	N	603	А
25	N	614	А
25	Ν	622	G
25	N	627	А
25	N	637	А
25	N	646	U
25	N	647	G
25	N	654	А
25	N	664	G
25	N	668	А
25	N	669	G
25	N	670	А
25	N	671	С
25	N	677	А
25	N	686	U
25	N	704	G
25	N	715	А
25	N	717	С
25	N	726	G
25	N	730	А
25	N	747	U
25	N	764	А
25	N	765	С
25	N	776	G
25	Ν	782	A
25	N	784	G
25	Ν	785	G
25	N	805	G
25	N	811	U
25	N	812	С
25	Ν	819	А
25	Ν	827	U
25	N	828	U
25	N	845	А
25	N	846	U
25	Ν	847	U
25	N	858	G

Mol	Chain	Res	Type
25	N	869	G
25	N	878	А
25	N	882	G
25	N	883	G
25	N	884	U
25	Ν	895	U
25	Ν	897	С
25	Ν	907	G
25	Ν	910	А
25	Ν	941	А
25	N	946	С
25	N	957	С
25	N	961	С
25	N	973	А
25	N	974	G
25	N	980	А
25	N	983	А
25	N	995	С
25	N	996	А
25	N	1009	А
25	N	1012	U
25	N	1013	С
25	N	1020	А
25	N	1022	G
25	N	1026	G
25	N	1033	U
25	N	1046	А
25	N	1047	G
25	Ν	1060	U
25	Ν	1062	G
25	Ν	1063	G
25	Ν	1070	А
25	N	1071	G
25	N	1083	U
25	Ν	1084	А
25	N	1087	G
25	Ν	1088	А
25	N	1090	A
25	Ν	1110	G
25	N	1111	А
25	N	1112	G
25	Ν	1132	U

Mol	Chain	Res	Type
25	N	1133	А
25	N	1135	С
25	N	1136	G
25	N	1139	G
25	N	1142	А
25	N	1155	А
25	N	1168	G
25	N	1174	U
25	N	1175	А
25	N	1176	U
25	N	1180	U
25	N	1186	G
25	N	1206	G
25	N	1208	С
25	N	1212	G
25	N	1237	А
25	N	1238	G
25	N	1247	А
25	N	1250	G
25	N	1252	G
25	N	1253	А
25	Ν	1256	G
25	Ν	1265	А
25	N	1266	G
25	Ν	1272	А
25	Ν	1273	U
25	N	1300	G
25	N	1301	А
25	N	1314	С
25	Ν	1321	А
25	N	1332	G
25	Ν	1345	С
25	N	1352	U
25	N	1365	А
25	Ν	1368	G
25	N	1378	A
25	Ν	1379	U
25	N	1380	G
25	Ν	1383	A
25	N	1386	С
25	Ν	1395	А
25	Ν	1403	А

Mol	Chain	Res	Type
25	N	1416	G
25	N	1419	А
25	N	1427	А
25	N	1428	С
25	N	1437	С
25	N	1453	А
25	N	1458	U
25	Ν	1461	С
25	Ν	1478	G
25	Ν	1482	G
25	Ν	1493	С
25	Ν	1504	А
$\overline{25}$	N	1509	А
25	Ν	1515	A
25	Ν	1522	А
25	Ν	1524	G
25	Ν	1529	G
25	Ν	1530	G
25	N	1535	А
25	Ν	1536	С
25	N	1537	G
25	Ν	1558	С
25	N	1560	G
25	N	1566	А
25	Ν	1569	А
25	Ν	1578	U
25	Ν	1583	А
25	Ν	1584	U
25	Ν	1585	С
25	Ν	1607	С
25	Ν	1608	А
25	Ν	1610	А
25	N	1618	A
25	N	1619	G
25	N	$1\overline{646}$	C
25	N	1647	U
25	N	1648	U
25	N	$1\overline{654}$	A
25	Ν	1665	A
25	N	1674	G
25	N	1715	G
25	N	1729	U

Mol	Chain	Res	Type
25	Ν	1730	С
25	Ν	1732	С
25	Ν	1733	G
25	N	1738	G
25	N	1756	G
25	N	1758	U
25	N	1764	С
25	N	1773	А
25	N	1781	U
25	Ν	1786	А
25	N	1800	С
25	N	1807	G
25	Ν	1808	A
25	N	1816	С
25	Ν	1829	A
25	N	1857	G
25	N	1866	A
25	N	1870	С
25	N	1901	А
25	N	1906	G
25	N	1913	А
25	N	1914	С
25	N	1927	A
25	N	1929	G
25	Ν	1930	G
25	N	1936	А
25	Ν	1937	А
25	N	1938	А
25	N	1955	U
25	Ν	1964	G
25	N	1967	С
25	N	1970	А
25	N	1971	U
25	N	1972	G
25	N	1991	U
25	N	1992	G
25	Ν	1996	С
25	N	1997	С
25	N	2020	A
25	N	2021	С
25	N	2022	U
25	Ν	2023	С

Mol	Chain	Res	Type
25	Ν	2030	А
25	Ν	2031	A
25	Ν	2033	А
25	Ν	2043	С
25	Ν	2055	С
25	Ν	2056	G
25	N	2059	А
25	Ν	2060	А
25	N	2061	G
25	Ν	2062	А
25	N	2069	G
25	N	2072	С
25	N	2093	G
25	N	2097	А
25	Ν	2098	U
25	Ν	2110	G
25	Ν	2111	U
25	Ν	2112	G
25	Ν	2113	U
25	N	2114	A
25	N	2115	G
25	Ν	2118	U
25	N	2119	A
25	N	2125	G
25	Ν	2126	А
25	N	2128	G
25	Ν	2132	U
25	N	2133	G
25	N	2136	G
25	Ν	2145	С
25	N	2149	U
25	Ν	2158	А
25	N	2162	G
25	Ν	2167	U
25	Ν	2168	G
25	N	2171	A
25	Ν	2172	U
25	N	2173	A
25	Ν	2178	C
25	N	2194	U
25	Ν	2198	A
25	Ν	2204	G

Mol	Chain	Res	Type
25	Ν	2211	А
25	Ν	2214	С
25	N	2225	А
25	N	2226	С
25	N	2238	G
25	Ν	2239	G
25	Ν	2250	G
25	Ν	2266	А
25	Ν	2278	А
25	N	2283	С
25	Ν	2286	G
25	N	2287	А
25	Ν	2288	А
25	N	2305	U
25	N	2307	G
25	N	2309	A
25	N	2312	U
25	N	2320	U
25	Ν	2325	G
25	Ν	2333	А
25	Ν	2336	А
25	N	2347	С
25	Ν	2350	С
25	N	2354	С
25	N	2357	G
25	Ν	2361	G
25	Ν	2383	G
25	Ν	2385	С
25	Ν	2402	U
25	Ν	2406	А
25	Ν	2422	С
25	Ν	2423	U
25	N	2425	A
25	N	2429	G
25	N	2430	A
25	N	2441	U
25	N	2447	G
25	N	2448	A
25	N	2473	U
25	N	2476	A
25	N	2484	G
25	N	2494	G

Mol	Chain	Res	Type
25	Ν	2498	С
25	Ν	2502	G
25	Ν	2503	А
25	N	2504	U
25	Ν	2518	А
25	N	2520	С
25	N	2529	G
25	Ν	2547	А
25	Ν	2554	U
25	Ν	2566	А
25	N	2567	G
25	N	2572	А
25	Ν	2585	U
25	N	2602	A
25	N	2609	U
25	N	2613	U
25	Ν	2615	U
25	N	2621	G
25	Ν	2629	U
25	Ν	2630	G
25	Ν	2635	А
25	Ν	2645	G
25	N	2646	С
25	N	2655	G
25	Ν	2656	U
25	N	2663	G
25	Ν	2689	U
25	N	2690	U
25	N	2714	G
25	N	2726	A
25	N	2729	G
25	N	2732	G
25	N	2733	А
25	Ν	2739	U
25	Ν	2744	G
25	Ν	2748	A
25	Ν	2757	А
25	Ν	2777	G
25	N	2778	А
25	N	2779	U
25	Ν	2780	G
25	N	2794	С

Mol	Chain	Res	Type
25	N	2798	U
25	N	2800	А
25	N	2818	U
25	N	2820	А
25	N	2833	U
25	N	2834	G
25	N	2849	U
25	N	2871	U
25	N	2872	А
25	Ν	2873	А
25	Ν	2880	С
25	N	2883	A
25	Ν	2884	U
25	N	2891	U
25	Ν	2895	G
25	Ν	2903	U
26	0	13	G
26	0	15	A
26	0	16	G
26	0	24	G
26	0	25	U
26	0	35	С
26	0	41	G
26	0	42	С
26	0	44	G
26	0	67	G
26	0	87	U
26	0	88	С
26	0	89	U
26	0	90	С
26	0	99	А
26	0	108	А
26	0	109	A
26	0	$11\overline{2}$	G
62	W	525	A
62	W	529	A
62	W	530	С
62	W	531	G
62	W	532	U
62	W	533	С
62	W	534	G
62	W	535	С

Mol	Chain	Res	Type
62	W	538	U
62	W	540	А
62	W	541	А
62	W	542	U
62	W	543	А
62	W	544	G
62	W	545	U
62	W	555	G
62	W	556	U
62	W	558	U
62	W	559	U
62	W	560	U
62	W	561	U
62	W	563	U
62	W	564	U
62	W	569	U
62	W	571	U
62	W	572	U
62	W	573	U

Continued from previous page...

All (77) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	0	96	U
1	0	115	G
1	0	439	U
1	0	517	G
1	0	620	С
1	0	812	G
1	0	1182	G
1	0	1190	G
1	0	1197	А
1	0	1201	А
1	0	1300	G
1	0	1345	U
1	0	1491	G
1	0	1493	А
11	А	16	U
11	A	19	G
11	A	21	А
11	A	46	G
11	A	54	U

Mol	Chain	Res	Type
13	A3	16	U
13	A3	22	А
13	A3	50	А
13	A3	51	С
13	A3	66	U
13	A3	76	С
1	AA	96	U
1	AA	115	G
1	AA	388	G
1	AA	518	С
1	AA	812	G
1	AA	890	G
1	AA	965	U
1	AA	1026	G
1	AA	1182	G
1	AA	1201	А
1	AA	1300	G
1	AA	1345	U
1	AA	1347	G
1	AA	1451	U
25	AV	227	А
25	AV	242	G
25	AV	372	G
25	AV	404	А
25	AV	421	С
25	AV	481	G
25	AV	670	А
25	AV	746	U
25	AV	784	G
25	AV	859	G
$\overline{25}$	AV	960	A
$\overline{25}$	AV	1095	А
25	AV	1142	A
25	AV	1900	A
25	AV	$2\overline{125}$	G
25	AV	2225	A
25	AV	2286	G
25	AV	$2\overline{311}$	A
25	AV	2655	G
25	AV	2756	U
25	AV	2776	A
59	М	44	А

	3	1	1 5
\mathbf{Mol}	Chain	Res	Type
25	N	84	А
25	N	277	G
25	Ν	404	А
25	N	421	С
25	N	481	G
25	Ν	670	А
25	N	784	G
25	N	1109	С
25	N	1900	А
25	N	2225	А
25	N	2311	А
25	N	2655	G
25	Ν	2756	U
25	N	2776	А
25	N	2832	U
26	0	24	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-51318. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 350

Z Index: 350

6.2.2 Raw map

X Index: 350

Y Index: 350

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 355

Z Index: 446

6.3.2 Raw map

X Index: 0

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.165. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 2494 nm^3 ; this corresponds to an approximate mass of 2253 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.323 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.10	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	6.53	10.71	6.90

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 6.53 differs from the reported value 3.1 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-51318 and PDB model 9GFT. Per-residue inclusion information can be found in section 3 on page 21.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.165 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.165).

9.4 Atom inclusion (i)

At the recommended contour level, 83% of all backbone atoms, 78% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.165) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7850	0.3850
0	0.9350	0.4290
1	0.6270	0.3960
2	0.6800	0.4380
3	0.6550	0.3780
4	0.7290	0.4460
5	0.7000	0.4350
6	0.6630	0.4130
7	0.7240	0.4480
8	0.7050	0.4210
9	0.5660	0.4050
A	0.8770	0.4200
A1	0.4960	0.3940
A3	0.6190	0.3180
AA	0.8990	0.3990
AB	0.5230	0.3490
AC	0.5870	0.4120
AD	0.5790	0.4140
AE	0.5890	0.4050
AF	0.5890	0.3590
AG	0.6480	0.3750
AH	0.5800	0.3680
AI	0.6320	0.3690
AJ	0.6030	0.4190
AK	0.1120	0.1620
AL	0.5970	0.3250
AM	0.6060	0.3700
AN	0.6250	0.3540
AO	0.6240	0.3910
AP	0.5970	0.3730
AQ	0.5990	0.3760
AR	0.5890	0.3300
AS	0.6090	0.3140
AT	0.4690	0.3030
AU	0.7460	0.3420

Chain	Atom inclusion	Q-score
AV	0.8490	0.3450
AW	0.7780	0.2440
AX	0.6080	0.4290
AY	0.5270	0.3630
AZ	0.3710	0.3120
Aa	0.4650	0.2850
Ab	0.3150	0.2550
Ac	0.2020	0.2500
Ad	0.0810	0.1470
Ae	0.5090	0.3040
Af	0.5290	0.4120
Ag	0.5430	0.3420
Ah	0.4580	0.3460
Ai	0.6700	0.3670
Aj	0.4700	0.2680
Ak	0.5040	0.3570
Al	0.5660	0.2940
Am	0.4440	0.2700
An	0.6380	0.3840
Ao	0.5620	0.3390
Ap	0.2530	0.2670
Aq	0.4590	0.2570
Ar	0.6100	0.2990
As	0.6140	0.3800
At	0.5710	0.2760
Au	0.5440	0.3220
Av	0.6990	0.3690
Aw	0.5610	0.3330
Ax	0.6870	0.4140
Ay	0.6050	0.3870
Az	0.5620	0.3460
B	0.1950	0.1830
C	0.0920	0.1490
D	0.6690	0.4580
E	0.7590	0.4890
<u> </u>	0.7520	0.4030
G	0.7210	0.4080
H	0.7540	0.4430
	0.7010	0.4090
J	0.7250	0.4380
K	0.6980	0.4560
	0.6310	0.3590

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	trom	nremous	ทก.กค
Contracta	110110	proceeduo	pagem

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
М	0.8960	0.4310
N	0.9340	0.4420
0	0.9470	0.3970
Р	0.7830	0.5070
Q	0.8050	0.4730
R	0.7450	0.4310
S	0.6690	0.3770
Т	0.7650	0.3990
U	0.6200	0.3700
V	0.1950	0.1520
W	0.8310	0.4510
X	0.7590	0.4910
Y	0.7690	0.4550
Z	0.7950	0.4950
a	0.8340	0.4380
b	0.7290	0.3770
С	0.7790	0.4550
d	0.8120	0.4590
е	0.7790	0.4440
f	0.7740	0.4700
g	0.7380	0.4310
h	0.7410	0.4060
i	0.7630	0.4060
j	0.8160	0.4780
k	0.7540	0.4720
1	0.7060	0.3630
m	0.8080	0.4560
n	0.8140	0.4590
0	0.6660	0.4190
р	0.7910	0.5110
q	0.7880	0.4950
r	0.7880	0.4700
S	0.7920	0.4990
t	0.8000	0.4300
u	0.7060	0.3500
V	0.5470	0.4110
W	0.3900	0.2920
X	0.3530	0.2100
У	0.6440	0.4020
Z	0.6430	0.4370

