

Full wwPDB X-ray Structure Validation Report (i)

Sep 18, 2025 – 02:25 PM EDT

PDB ID : 9E5Q / pdb_00009e5q

Title : env2 cobalamin riboswitch aptamer domain in complex with ethynyl-N-phen

ylpropiolamide-cobalamin

Authors: Olenginski, L.T.; Batey, R.T.

Deposited on : 2024-10-28

Resolution : 1.36 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

 $Mol Probity \quad : \quad \text{4-5-2 with Phenix 2.0 rc1}$

Mogul : 2022.3.0, CSD as543be (2022)

Xtriage (Phenix) : 2.0rc1

EDS : 3.0

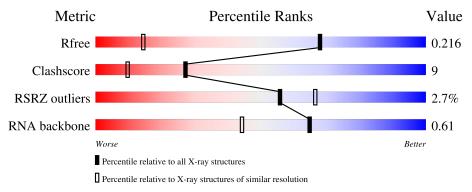
buster-report : 1.1.7 (2018)

Percentile statistics : 20231227.v01 (using entries in the PDB archive December 27th 2023)

CCP4 : 9.0.006 (Gargrove)

Density-Fitness : 1.0.12

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.45.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 1.36 Å.

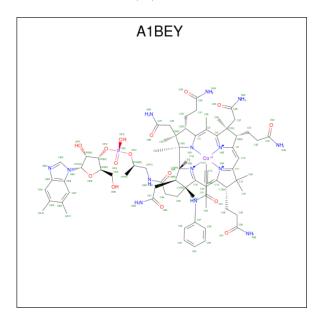
Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
Metric	$(\# ext{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
R_{free}	164625	1089 (1.36-1.36)
Clashscore	180529	1157 (1.36-1.36)
RSRZ outliers	164620	1088 (1.36-1.36)
RNA backbone	3690	1007 (2.16-0.62)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain				
1	A	76	72%	16%	7% 5%		
1	В	76	66%	24%	7% •		

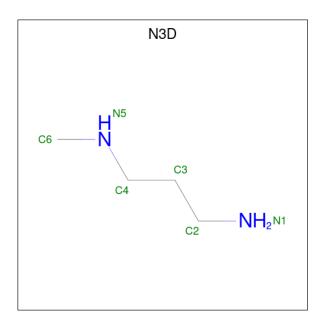
2 Entry composition (i)


There are 7 unique types of molecules in this entry. The entry contains 4077 atoms, of which 0 are hydrogens and 0 are deuteriums.

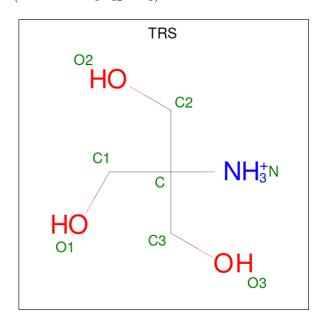
In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called RNA (76-MER).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	Λ	76	Total	С	N	О	Р	0	0	0
I A	10	1640	730	306	526	78	0	0	U	
1	D	76	Total	С	N	O P	0	0		
1		76	1640	730	306	526	78	0	U	U


• Molecule 2 is ethynyl-N-phenylpropiolamide-cobalamin (CCD ID: A1BEY) (formula: $C_{71}H_{95}CoN_{14}O_{15}P$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf				
9	ο Δ	Λ 1	Total	С	Со	N	О	Р	0	0	
	1	102	71	1	14	15	1	0	0		
9	9 D	D	1	Total	С	Со	N	О	Р	0	0
	Б	1	102	71	1	14	15	1	0	U	


• Molecule 3 is N-methylpropane-1,3-diamine (CCD ID: N3D) (formula: C₄H₁₂N₂).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	1	Total C N 6 4 2	0	0
3	В	1	Total C N 6 4 2	0	0

• Molecule 4 is 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL (CCD ID: TRS) (formula: $C_4H_{12}NO_3$).

\mathbf{Mol}	Chain	Residues	Atoms		ZeroOcc	AltConf		
4	A	1	Total 8	C 4	N 1	O 3	0	0

 $Continued\ from\ previous\ page...$

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf		
4	В	1	Total 8	C 4	N 1	O 3	0	0

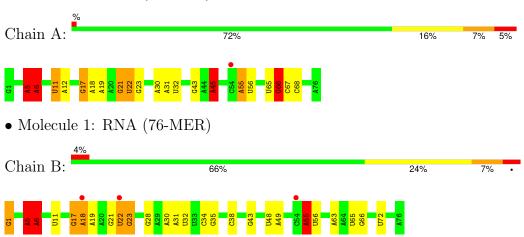
• Molecule 5 is MAGNESIUM ION (CCD ID: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	A	9	Total Mg 9 9	0	0
5	В	10	Total Mg 10 10	0	0

• Molecule 6 is POTASSIUM ION (CCD ID: K) (formula: K).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	A	1	Total K 1 1	0	0
6	В	1	Total K 1 1	0	0

• Molecule 7 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	A	280	Total O 280 280	0	0
7	В	264	Total O 264 264	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RNA (76-MER)

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	P 1 21 1	Depositor	
Cell constants	41.57Å 78.45Å 80.01Å	Donositon	
a, b, c, α , β , γ	90.00° 90.42° 90.00°	Depositor	
Resolution (Å)	41.57 - 1.36	Depositor	
rtesolution (A)	41.57 - 1.36	EDS	
% Data completeness	92.0 (41.57-1.36)	Depositor	
(in resolution range)	92.0 (41.57-1.36)	EDS	
R_{merge}	0.04	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	1.00 (at 1.36Å)	Xtriage	
Refinement program	PHENIX 1.19.2_4158	Depositor	
R, R_{free}	0.191 , 0.212	Depositor	
, and the second	0.197 , 0.216	DCC	
R_{free} test set	2007 reflections (1.82%)	wwPDB-VP	
Wilson B-factor (Å ²)	23.0	Xtriage	
Anisotropy	0.139	Xtriage	
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.36, 40.1	EDS	
L-test for twinning ²	$< L > = 0.50, < L^2> = 0.33$	Xtriage	
	0.000 for -h,l,k		
Estimated twinning fraction	0.011 for -h, -l, -k	Xtriage	
	0.000 for h,-k,-l		
F_o, F_c correlation	0.97	EDS	
Total number of atoms	4077	wwPDB-VP	
Average B, all atoms (\mathring{A}^2)	36.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.60% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: TRS, A1BEY, N3D, MG, K, GTP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain		nd lengths	Bond angles		
Wioi Chan		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.74	2/1802 (0.1%)	0.99	8/2807 (0.3%)	
1	В	0.67	1/1802 (0.1%)	0.94	6/2807~(0.2%)	
All	All	0.71	3/3604 (0.1%)	0.96	$14/5614 \ (0.2\%)$	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a maintenain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	A	0	1
1	В	0	2
All	All	0	3

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(\text{\AA})$	Ideal(Å)
1	A	66	G	O5'-C5'	-11.88	1.25	1.42
1	A	5	A	C3'-O3'	6.63	1.52	1.42
1	В	5	A	C3'-O3'	5.03	1.49	1.42

All (14) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$Ideal(^{o})$
1	A	5	A	C2'-C3'-O3'	13.24	133.56	113.70
1	В	5	A	C2'-C3'-O3'	12.25	132.08	113.70
1	A	66	G	C5'-C4'-C3'	-11.93	97.31	115.20
1	A	5	A	OP1-P-O3'	-9.66	79.02	108.00
1	В	5	A	OP1-P-O3'	-9.19	80.43	108.00
1	A	5	A	OP2-P-O3'	7.96	131.89	108.00

Continued from previous page...

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$\operatorname{Ideal}({}^{o})$
1	A	45	A	C5'-C4'-C3'	-6.98	105.53	116.00
1	В	5	A	OP2-P-O3'	6.96	128.88	108.00
1	В	31	A	O3'-P-O5'	-6.86	93.71	104.00
1	A	31	A	O3'-P-O5'	-6.79	93.82	104.00
1	A	6	A	OP1-P-OP2	-5.96	101.73	119.60
1	A	19	A	N9-C1'-C2'	5.18	119.77	112.00
1	В	6	A	OP1-P-OP2	-5.15	104.16	119.60
1	В	55	A	C5'-C4'-C3'	-5.12	107.52	115.20

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	A	43	G	Sidechain
1	В	28	G	Sidechain
1	В	43	G	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	1640	0	822	14	0
1	В	1640	0	822	14	0
2	A	102	0	0	11	0
2	В	102	0	0	6	0
3	A	6	0	12	0	0
3	В	6	0	12	0	0
4	A	8	0	9	2	0
4	В	8	0	9	1	0
5	A	9	0	0	0	0
5	В	10	0	0	0	0
6	A	1	0	0	0	0
6	В	1	0	0	0	0
7	A	280	0	0	9	2
7	В	264	0	0	5	1
All	All	4077	0	1686	47	2

The all-atom clash score is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clash score for this structure is 9.

All (47) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:B:101:A1BEY:CPR2	2:B:101:A1BEY:CPR1	1.52	1.51
2:A:101:A1BEY:CPR2	2:A:101:A1BEY:CPR1	1.53	1.50
2:B:101:A1BEY:CPR2	2:B:101:A1BEY:CPR3	1.51	1.50
2:A:101:A1BEY:CPR2	2:A:101:A1BEY:CPR3	1.51	1.50
1:B:1:GTP:O3G	7:B:201:HOH:O	1.65	1.14
2:A:101:A1BEY:CPR1	2:A:101:A1BEY:CPR3	2.51	1.07
2:B:101:A1BEY:CPR1	2:B:101:A1BEY:CPR3	2.55	1.04
1:A:45:A:H5"	1:A:45:A:H8	1.29	0.98
1:A:17:G:H8	1:A:17:G:H5"	1.36	0.91
2:A:101:A1BEY:CPR2	2:A:101:A1BEY:N59	2.44	0.90
1:B:38:C:OP2	7:B:202:HOH:O	1.92	0.86
2:B:101:A1BEY:CPR2	2:B:101:A1BEY:N59	2.48	0.86
1:B:63:A:OP2	7:B:203:HOH:O	1.95	0.85
1:B:17:G:H8	1:B:17:G:H5"	1.42	0.84
2:A:101:A1BEY:C61	7:A:210:HOH:O	2.26	0.82
1:A:45:A:H5"	1:A:45:A:C8	2.16	0.81
2:B:101:A1BEY:CPR1	2:B:101:A1BEY:OP3	2.38	0.80
2:A:101:A1BEY:O62	7:A:201:HOH:O	2.00	0.79
2:A:101:A1BEY:CPR1	2:A:101:A1BEY:OP3	2.40	0.79
1:A:12:A:OP2	7:A:202:HOH:O	2.02	0.77
1:A:17:G:H5"	1:A:17:G:C8	2.21	0.73
1:A:68:C:O2'	7:A:203:HOH:O	2.07	0.72
1:A:11:U:OP1	7:A:202:HOH:O	2.07	0.70
1:A:21:G:O6	7:A:204:HOH:O	2.08	0.70
2:B:101:A1BEY:CPR3	2:B:101:A1BEY:OP3	2.47	0.70
1:B:22:U:O2'	1:B:23:G:OP1	2.10	0.68
2:A:101:A1BEY:CPR3	2:A:101:A1BEY:OP3	2.47	0.67
1:B:1:GTP:O1G	7:B:205:HOH:O	2.14	0.65
1:B:17:G:H5"	1:B:17:G:C8	2.29	0.64
1:A:5:A:H2'	1:A:6:A:C8	2.36	0.60
1:A:66:G:H5"	1:A:67:C:H5	1.65	0.60
1:B:1:GTP:O2A	1:B:1:GTP:H3'	2.02	0.58
1:B:30:A:H2	1:B:55:A:H5"	1.71	0.55
1:A:45:A:C8	1:A:45:A:C5'	2.90	0.55
1:A:30:A:H2	1:A:55:A:H5"	1.75	0.52
4:A:103:TRS:O1	7:A:205:HOH:O	2.18	0.51
2:A:101:A1BEY:C25	2:A:101:A1BEY:N63	2.75	0.50

Continued from previous page...

Atom-1	Atom-2	$egin{array}{c} ext{Interatomic} \ ext{distance } (ext{Å}) \end{array}$	Clash overlap (Å)
1:B:48:U:H5"	1:B:49:A:H5'	1.94	0.50
1:B:5:A:H2'	1:B:6:A:C8	2.47	0.50
1:A:21:G:H3'	1:A:22:U:H5"	1.94	0.49
1:A:45:A:N1	7:A:208:HOH:O	2.35	0.47
1:B:17:G:H5'	1:B:18:A:OP1	2.15	0.46
2:A:101:A1BEY:C60	7:A:210:HOH:O	2.61	0.44
2:A:101:A1BEY:CB7	4:A:103:TRS:H32	2.48	0.42
1:B:34:C:H2'	1:B:35:G:C8	2.54	0.42
4:B:103:TRS:O2	7:B:204:HOH:O	2.12	0.41
1:B:34:C:H2'	1:B:35:G:H8	1.86	0.41

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	$egin{aligned} ext{Clash} \ ext{overlap } (ext{Å}) \end{aligned}$
7:A:206:HOH:O	7:B:279:HOH:O[2_756]	2.14	0.06
7:A:206:HOH:O	7:A:207:HOH:O[1_655]	2.14	0.06

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

There are no protein molecules in this entry.

5.3.2 Protein sidechains (i)

There are no protein molecules in this entry.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	A	74/76 (97%)	13 (17%)	4 (5%)
1	В	75/76 (98%)	14 (18%)	6 (8%)
All	All	149/152 (98%)	27 (18%)	10 (6%)

All (27) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1		5	A
1	A A A A A A B B B B B B	6	A
1	A	17	G
1	A	18	A
1	A	21	G
1	A	18 21 22 23 32 45	U
1	A	23	G
1	A	32	U
1	A	45	A
1	A	55	A
1	A	56	U
1	A	65	U
1	A	66	G
1	В	5	A
1	В	6	A
1	В	17	G
1	В	18	A
1	В	19	A
1	B B	18 19 21 22 23	G
1	В	22	U
1	B B	23	G
1	В	32	U
1	B B	55	A
1	В	56	Type A A G A G U A U G A A A G A G U G U A U G U G U G
1	В	65	U
1	В	66	G
1	В	72	U

All (10) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	A	5	A
1	A	11	U
1	A	17	G
1	A	21	G
1	В	1	GTP
1	В	5	A
1	В	11	U
1	В	18	A
1	В	21	G
1	В	72	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 27 ligands modelled in this entry, 21 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trme	Chain	Res	Res Link	Boi	Bond lengths			Bond angles		
Mol	Mol Type	Chain			Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
2	A1BEY	В	101	-	97,113,113	1.62	6 (6%)	138,184,184	1.12	9 (6%)	
2	A1BEY	A	101	-	97,113,113	1.54	6 (6%)	138,184,184	1.31	16 (11%)	
3	N3D	A	102	-	5,5,5	0.57	0	4,4,4	0.99	0	
4	TRS	A	103	-	7,7,7	2.19	1 (14%)	9,9,9	1.35	1 (11%)	
3	N3D	В	102	_	5,5,5	0.55	0	4,4,4	1.27	0	
4	TRS	В	103	-	7,7,7	2.31	1 (14%)	9,9,9	1.24	1 (11%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	A1BEY	В	101	-	-	3/56/242/242	0/4/12/12
2	A1BEY	A	101	-	-	5/56/242/242	0/4/12/12
3	N3D	A	102	-	-	0/3/3/3	-
4	TRS	A	103	-	-	2/9/9/9	-
3	N3D	В	102	-	-	0/3/3/3	-
4	TRS	В	103	-	-	6/9/9/9	-

All (14) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(A)	$Ideal(\AA)$
2	В	101	A1BEY	O01-C01	13.52	1.41	1.23
2	A	101	A1BEY	O01-C01	12.07	1.39	1.23
4	В	103	TRS	C-N	-5.95	1.30	1.49
4	A	103	TRS	C-N	-5.71	1.30	1.49
2	A	101	A1BEY	C6-C5	-2.44	1.37	1.44
2	A	101	A1BEY	C03-C02	2.43	1.43	1.38
2	В	101	A1BEY	C07-N01	2.38	1.46	1.41
2	В	101	A1BEY	CB11-CB6	2.34	1.55	1.51
2	В	101	A1BEY	C6-C5	-2.23	1.38	1.44
2	A	101	A1BEY	C54-C17	2.18	1.58	1.54
2	A	101	A1BEY	C07-N01	2.16	1.46	1.41
2	В	101	A1BEY	C4-C5	2.12	1.47	1.38
2	A	101	A1BEY	CR1-NB1	-2.02	1.44	1.49
2	В	101	A1BEY	CB4-CB9	-2.00	1.38	1.41

All (27) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$\operatorname{Ideal}({}^{o})$
2	A	101	A1BEY	O62-C61-C60	5.21	131.76	120.87
2	A	101	A1BEY	O62-C61-N63	-4.45	110.65	122.53
2	В	101	A1BEY	C20-C1-C2	3.59	117.73	113.66
2	A	101	A1BEY	C14-N23-C11	3.50	110.21	105.44
2	A	101	A1BEY	C18-C60-C61	-3.42	105.35	114.04
2	A	101	A1BEY	CB5-CB4-CB9	-3.12	117.04	121.30
2	A	101	A1BEY	C06-C07-C02	3.00	123.03	119.04
2	В	101	A1BEY	C14-N23-C11	2.75	109.19	105.44
2	A	101	A1BEY	C60-C61-N63	-2.74	109.61	116.19
2	В	101	A1BEY	C04-C03-C02	-2.63	116.99	120.24
4	A	103	TRS	C3-C-C2	2.61	117.62	110.66
2	A	101	A1BEY	C18-C17-C16	-2.57	97.58	100.69
4	В	103	TRS	C3-C-C2	2.53	117.38	110.66
2	В	101	A1BEY	CB5-CB4-CB9	-2.53	117.85	121.30
2	A	101	A1BEY	C3-C4-N21	2.45	112.89	109.21
2	В	101	A1BEY	C06-C07-C02	2.43	122.27	119.04
2	A	101	A1BEY	CR4-OR6-CR1	2.37	112.09	109.92
2	В	101	A1BEY	C47-C12-C46	-2.34	105.52	109.41
2	A	101	A1BEY	CPR2-CPR1-N59	-2.32	109.51	112.92
2	A	101	A1BEY	C06-C07-N01	-2.28	112.74	120.41
2	В	101	A1BEY	C06-C07-N01	-2.13	113.25	120.41
2	A	101	A1BEY	C46-C12-C11	-2.10	103.03	110.31
2	A	101	A1BEY	OP5-P1-OP4	2.10	122.22	112.44
2	В	101	A1BEY	C30-C3-C4	2.10	113.72	108.51
						Continued on n	t

Continued from previous page...

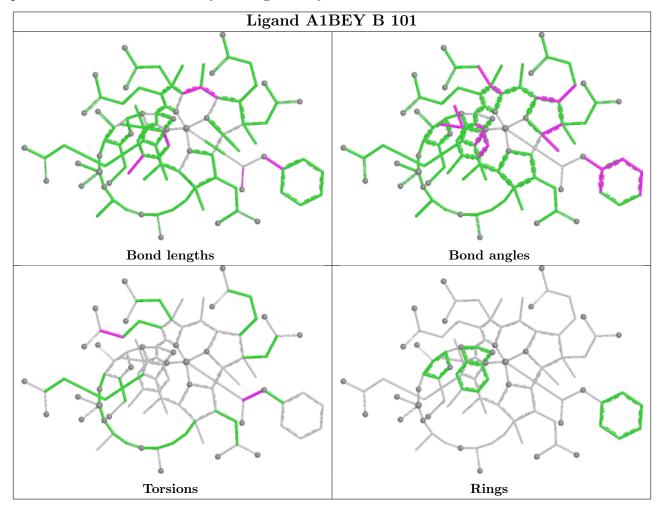
Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$\operatorname{Ideal}({}^{o})$
2	A	101	A1BEY	C2-C3-C4	-2.09	99.14	101.68
2	В	101	A1BEY	C37-C7-C6	-2.05	100.77	107.11
2	A	101	A1BEY	C5-C6-N22	-2.01	122.33	126.52

There are no chirality outliers.

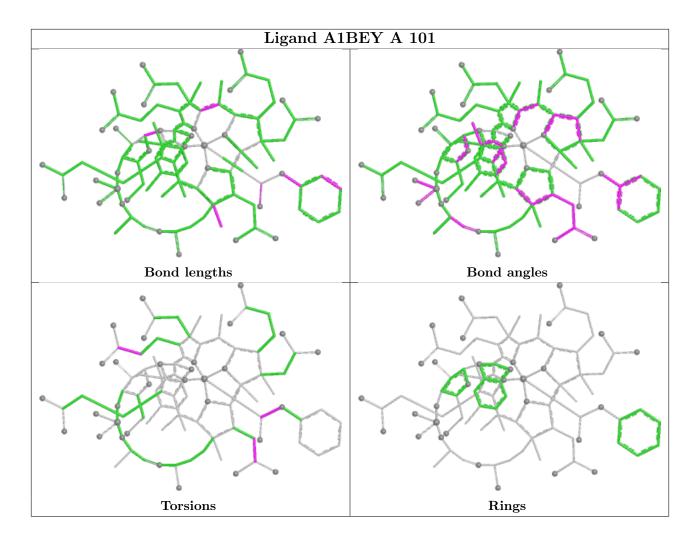
All (16) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	A	101	A1BEY	O01-C01-N01-C07
2	В	101	A1BEY	O01-C01-N01-C07
4	В	103	TRS	C3-C-C1-O1
4	В	103	TRS	N-C-C1-O1
4	В	103	TRS	C2-C-C3-O3
4	В	103	TRS	N-C-C3-O3
4	В	103	TRS	C2-C-C1-O1
2	В	101	A1BEY	C41-C42-C43-N45
2	A	101	A1BEY	C18-C60-C61-N63
4	В	103	TRS	C1-C-C3-O3
2	A	101	A1BEY	C41-C42-C43-N45
4	A	103	TRS	C3-C-C2-O2
2	A	101	A1BEY	C2L-C01-N01-C07
2	В	101	A1BEY	C2L-C01-N01-C07
4	A	103	TRS	C1-C-C3-O3
2	A	101	A1BEY	C41-C42-C43-O44

There are no ring outliers.


4 monomers are involved in 19 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	В	101	A1BEY	6	0
2	A	101	A1BEY	11	0
4	A	103	TRS	2	0
4	В	103	TRS	1	0


The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the

average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	$\#\mathrm{RSRZ}{>}2$	$OWAB(A^2)$	Q<0.9
1	A	75/76 (98%)	0.29	1 (1%) 74 85	27, 33, 47, 58	0
1	В	75/76~(98%)	0.30	3 (4%) 43 53	28, 35, 46, 64	0
All	All	150/152 (98%)	0.30	4 (2%) 56 66	27, 34, 47, 64	0

All (4) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	18	A	3.8
1	В	22	U	3.3
1	В	54	С	2.7
1	A	54	С	2.4

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

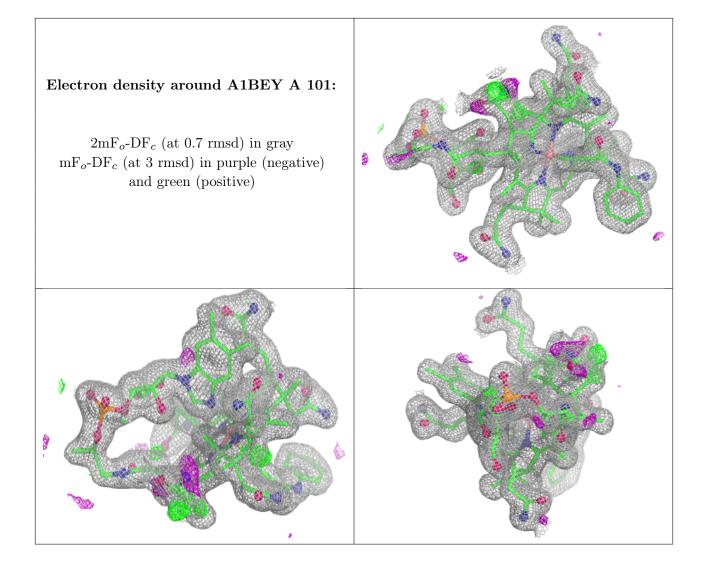
6.3 Carbohydrates (i)

There are no oligosaccharides in this entry.

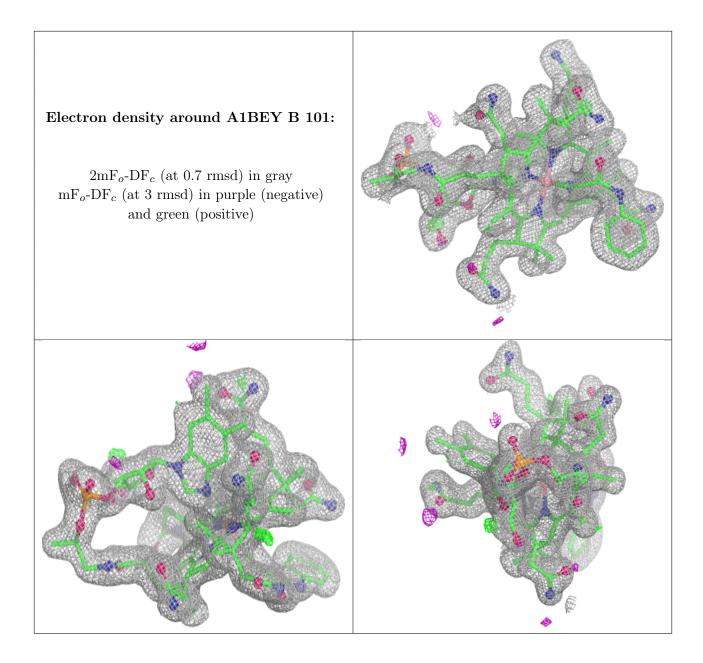
6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
4	TRS	A	103	8/8	0.74	0.18	55,57,59,60	0



Continued from previous page...


Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\operatorname{B-factors}(\mathring{\mathbf{A}}^2)$	Q<0.9
4	TRS	В	103	8/8	0.83	0.17	54,58,58,60	0
5	MG	В	105	1/1	0.89	0.11	69,69,69,69	0
3	N3D	В	102	6/6	0.91	0.11	30,30,31,31	0
5	MG	A	105	1/1	0.92	0.17	44,44,44,44	0
5	MG	В	104	1/1	0.92	0.09	56,56,56,56	0
3	N3D	A	102	6/6	0.92	0.10	28,29,29,30	0
5	MG	В	112	1/1	0.94	0.13	39,39,39,39	0
5	MG	A	104	1/1	0.95	0.09	53,53,53,53	0
5	MG	В	107	1/1	0.96	0.10	36,36,36,36	0
5	MG	В	108	1/1	0.96	0.06	33,33,33,33	0
5	MG	В	106	1/1	0.96	0.07	30,30,30,30	0
2	A1BEY	A	101	102/102	0.97	0.08	25,29,35,37	0
2	A1BEY	В	101	102/102	0.97	0.07	26,29,33,36	0
5	MG	A	110	1/1	0.97	0.12	37,37,37,37	0
5	MG	A	109	1/1	0.98	0.04	32,32,32,32	0
5	MG	A	106	1/1	0.98	0.04	32,32,32,32	0
5	MG	A	111	1/1	0.98	0.04	28,28,28,28	0
5	MG	A	112	1/1	0.98	0.04	29,29,29,29	0
5	MG	В	109	1/1	0.98	0.04	33,33,33,33	0
5	MG	В	110	1/1	0.98	0.04	38,38,38,38	0
5	MG	В	111	1/1	0.98	0.05	33,33,33,33	0
5	MG	A	107	1/1	0.98	0.12	38,38,38,38	0
6	K	A	113	1/1	0.98	0.07	34,34,34,34	0
5	MG	В	113	1/1	0.99	0.03	31,31,31,31	0
5	MG	A	108	1/1	0.99	0.06	32,32,32,32	0
6	K	В	114	1/1	0.99	0.07	38,38,38,38	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

