

Mar 6, 2025 - 04:00 pm GMT

DDB ID		8000
	•	0QCQ
EMDB ID	:	EMD-18332
Title	:	B. subtilis ApdA-stalled ribosomal complex
Authors	:	Morici, M.; Wilson, D.N.
Deposited on	:	2023-08-28
Resolution	:	2.30 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$		
Clashscore	210492	15764		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	0	59	88%	5% 7%
2	1	49	98%	·
3	2	44	95%	5%
4	3	66	92%	5% • •
5	4	37	100%	
6	6	65	63% 6% •	29%
7	А	2925	72% 18	3% • 6%

Continued on next page...

\mathbf{Mol}	Chain	Length	Quality of chain				
8	В	119	75%	13%	69	% 69	%
9	С	277	93%			5%	•
10	D	209	93%			6%	. •
11	Е	207	97%				•
12	F	179	97%				•••
13	G	179	95%			•	•
14	J	145	98%				••
15	Κ	122	95%			5	%
16	L	146	97%				•
17	М	144	90%			• 6%)
18	Ν	120	96%				•••
19	0	120	98%				•
20	Р	115	94%			69	%
21	Q	119	94%			5%	6•
22	R	102	97%				•
23	S	113	96%			-	•
24	Т	95	92%			• 69	%
25	U	103	98%				••
26	W	94	90%			10%	_
27	Х	62	89%			10%	·
28	Y	66	98%				·
29	Z	59	98%				·
30	a	1554	76%	21	1%		••
31	е	166	90%		ļ	5% 5	%
32	k	131	85%	•	•	12%	-

Mol	Chain	Length	Quality of chain	
33	1	138	93%	
34	0	89	98%	·
35	q	87	92%	6% •
36	\mathbf{t}	88	97%	•••
37	W	77	81%	18% •
37	у	77	83%	17%
38	8	6	83%	17%
39	с	206	99%	
40	g	156	94%	
41	i	130	98%	•
42	j	102	96%	•
43	m	121	96%	•••
44	n	61	97%	• •
45	\mathbf{S}	92	90%	10%
46	h	132	80%	11% • 8%
47	r	79	81%	• 18%
48	f	95	92%	• • •
49	7	9	100%	

2 Entry composition (i)

There are 54 unique types of molecules in this entry. The entry contains 136664 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	0	55	Total 433	$\begin{array}{c} \mathrm{C} \\ 267 \end{array}$	N 87	0 72	${ m S} 7$	0	0

• Molecule 2 is a protein called 50S ribosomal protein L33 1.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
9	1	18	Total	С	Ν	Ο	\mathbf{S}	0	0
	1	40	403	245	81	74	3	0	0

• Molecule 3 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
3	2	44	Total	С	N	0	S	0	0
_			368	222	89	55	2	_	-

• Molecule 4 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	3	65	Total 522	C 327	N 109	0 84	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 5 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
5	4	37	Total 297	C 186	N 60	O 46	${ m S}{ m 5}$	0	0

• Molecule 6 is a protein called Large ribosomal subunit protein bL31-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
6	6	46	Total 356	C 222	N 63	O 66	${f S}{5}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
6	?	-	GLN	deletion	UNP Q03223

• Molecule 7 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
7	А	2745	Total 58964	C 26308	N 10911	O 19002	Р 2743	0	0

• Molecule 8 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		At	AltConf	Trace			
8	В	112	Total 2392	C 1068	N 435	O 778	Р 111	0	0

• Molecule 9 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
9	С	273	Total 2094	C 1302	N 412	0 374	S 6	0	0

• Molecule 10 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	D	207	Total 1575	C 988	N 290	O 292	${f S}{5}$	0	0

• Molecule 11 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	Е	206	Total 1567	C 983	N 290	O 292	${ m S} { m 2}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	F	178	Total 1405	C 893	N 245	O 260	S 7	0	0

• Molecule 13 is a protein called Large ribosomal subunit protein uL6.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	G	175	Total 1342	C 835	N 248	O 257	${ m S} { m 2}$	0	0

• Molecule 14 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	J	144	Total 1142	С 720	N 211	O 206	${ m S}{ m 5}$	0	0

• Molecule 15 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	K	122	Total 921	C 571	N 173	0 173	S 4	0	0

• Molecule 16 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	L	146	Total 1082	C 671	N 207	O 202	${ m S} { m 2}$	0	0

• Molecule 17 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	М	135	Total 1076	C 690	N 205	0 176	${ m S}{ m 5}$	0	0

• Molecule 18 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	N	119	Total 954	C 583	N 186	0 181	$\frac{S}{4}$	0	0

• Molecule 19 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	О	120	Total 913	C 564	N 176	0 172	S 1	0	0

• Molecule 20 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Р	115	Total 945	C 600	N 185	O 159	S 1	0	0

• Molecule 21 is a protein called Large ribosomal subunit protein bL20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Q	118	Total 950	C 597	N 191	0 158	$\frac{S}{4}$	0	0

• Molecule 22 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	R	102	Total 795	C 506	N 140	0 148	S 1	0	0

• Molecule 23 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	S	110	Total 850	C 530	N 165	0 151	${f S}$ 4	0	0

• Molecule 24 is a protein called Large ribosomal subunit protein uL23.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	Т	89	Total 716	С 447	N 133	0 133	${ m S} { m 3}$	0	0

• Molecule 25 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	U	102	Total 770	C 482	N 143	0 141	${f S}$ 4	0	0

• Molecule 26 is a protein called Large ribosomal subunit protein bL27.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
26	W	85	Total 650	C 401	N 127	O 122	0	0

• Molecule 27 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
27	Х	61	Total 468	C 289	N 98	O 79	${ m S} { m 2}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
28	Y	65	Total 532	C 329	N 103	O 99	S 1	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
29	Z	58	Total 456	C 281	N 89	O 85	S 1	0	0

• Molecule 30 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		I	Atoms			AltConf	Trace
30	a	1533	Total 32891	C 14667	N 6034	O 10657	Р 1533	0	0

• Molecule 31 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms			AltConf	Trace
31	е	158	Total 1170	C 737	N 215	0 216	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 32 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
32	k	115	Total 847	C 520	N 166	O 159	${ m S} { m 2}$	0	0

• Molecule 33 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	1	135	Total 1047	C 650	N 210	0 185	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 34 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	0	87	Total 730	C 448	N 149	0 132	S 1	0	0

• Molecule 35 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	q	85	Total 699	C 441	N 129	0 127	${S \over 2}$	0	0

• Molecule 36 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	t	86	Total 658	C 402	N 134	0 121	S 1	0	0

• Molecule 37 is a RNA chain called Pro-tRNA.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
37	У	77	Total 1645	C 733	N 293	0 542	Р 77	0	0
37	W	77	Total 1645	C 733	N 293	0 542	Р 77	0	0

• Molecule 38 is a RNA chain called mRNA.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
38	8	6	Total 120	С 54	N 16	0 44	Р 6	0	0

• Molecule 39 is a protein called Small ribosomal subunit protein uS3.

Mol	Chain	Residues		At	AltConf	Trace			
39	с	204	Total 1607	C 1003	N 302	O 299	${ m S} { m 3}$	0	0

• Molecule 40 is a protein called Small ribosomal subunit protein uS7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	g	151	Total 1199	C 751	N 225	0 217	S 6	0	0

• Molecule 41 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	i	128	Total 994	C 615	N 198	0 180	S 1	0	0

• Molecule 42 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	j	98	Total 788	C 497	N 144	0 145	${ m S} { m 2}$	0	0

• Molecule 43 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
43	m	118	Total 942	C 578	N 194	O 170	0	0

• Molecule 44 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
4.4	n	60	Total	С	Ν	Ο	\mathbf{S}	0	0
44	11	00	498	317	98	78	5	0	0

• Molecule 45 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	s	83	Total 668	C 429	N 122	0 115	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 46 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	h	122	Total 958	C 601	N 181	0 174	${ m S} { m 2}$	0	0

• Molecule 47 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
47	r	65	Total 522	C 334	N 97	O 89	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 48 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
48	f	92	Total 755	C 476	N 132	0 146	S 1	0	0

• Molecule 49 is a protein called ApdA nascent chain.

Mol	Chain	Residues		Ator	ns		AltConf	Trace
49	7	9	Total 67	C 41	N 15	O 11	0	0

• Molecule 50 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
50	0	1	Total Zn 1 1	0
50	1	1	Total Zn 1 1	0
50	4	1	Total Zn 1 1	0
50	6	1	Total Zn 1 1	0
50	n	1	Total Zn 1 1	0

• Molecule 51 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
51	А	155	Total Mg 155 155	0
51	В	1	Total Mg 1 1	0
51	С	1	Total Mg 1 1	0
51	D	1	Total Mg 1 1	0
51	a	40	TotalMg4040	0
51	W	1	Total Mg 1 1	0

• Molecule 52 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
52	А	40	Total K 40 40	0
52	С	2	Total K 2 2	0
52	U	1	Total K 1 1	0

• Molecule 53 is PROLINE (three-letter code: PRO) (formula: $C_5H_9NO_2$).

Mol	Chain	Residues	A	ton	ns		AltConf
53	У	1	Total 7	С 5	N 1	0 1	0

• Molecule 54 is water.

Mol	Chain	Residues	Atoms	AltConf
54	3	3	Total O 3 3	0
54	А	811	Total O 811 811	0
54	В	5	Total O 5 5	0
54	С	15	Total O 15 15	0
54	D	1	Total O 1 1	0
54	Е	5	Total O 5 5	0

Mol	Chain	Residues	Atoms	AltConf
54	L	5	Total O 5 5	0
54	Ν	3	Total O 3 3	0
54	Р	3	Total O 3 3	0
54	Q	3	Total O 3 3	0
54	Т	1	Total O 1 1	0
54	a	132	Total O 132 132	0
54	k	1	Total O 1 1	0
54	У	3	Total O 3 3	0
54	W	21	Total O 21 21	0
54	i	1	Total O 1 1	0
54	j	1	Total O 1 1	0
54	7	8	Total O 8 8	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L32

Chain 0:	88%	5% 7%
MET A2 R6 R41 N50 N50	L VS SER ASN	
• Molecule 2:	: 50S ribosomal protein L33 1	
Chain 1:	98%	·
MET R2 K49		
• Molecule 3:	: 50S ribosomal protein L34	
Chain 2:	95%	5%
M1 K25 R36 A44		
• Molecule 4:	: 50S ribosomal protein L35	
Chain 3:	92%	5% ••
MET P2 R13 H26 H31 H31 K46	New York Control of the Control of t	
• Molecule 5:	: 50S ribosomal protein L36	
Chain 4:	100%	
There are no	outlier residues recorded for this chain.	
• Molecule 6:	: Large ribosomal subunit protein bL31-A	
Chain 6:	63% 6% ·	29%

 \bullet Molecule 7: 23S rRNA

97%

••

• Molecule 12: 50S ribosomal protein L5

Chain F:

• Molecule 13: Large ribosomal subunit protein uL6

Chain G:	95%	
MET 82 18 18 18 18 18 18 18 18 18 18 18 18 18		
• Molecule 14: 50S ribos	somal protein L13	
Chain J:	98%	
MET 82 61 45 6145 6145		
• Molecule 15: 50S ribos	somal protein L14	
Chain K:	95%	5%
M1 K23 V24 828 833 833 135 135 135 135 1122		
• Molecule 16: 50S ribos	somal protein L15	
Chain L:	97%	.
M1 N17 N27 G28 K29 K29 K29 L146		
• Molecule 17: 50S ribos	somal protein L16	
Chain M:	90%	• 6%
M1 R6 R5 R5 R5 R5 R5 R5 R1 R5 R5 R1 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5 R5	SER ASN GLU SER	
• Molecule 18: 50S ribos	somal protein L17	
Chain N:	96%	•••

MET S2 R41 R59 R59 R59 R59 R108 N120

• Molecule 19: 50S ribosomal protein L18

Chain O: 98% • Molecule 20: 50S ribosomal protein L19 Chain P: 94% 6% • Molecule 21: Large ribosomal subunit protein bL20 Chain Q: 94% 5%• Q37 R51 R58 R58 W61 MEJ • Molecule 22: 50S ribosomal protein L21 Chain R: 97% • Molecule 23: 50S ribosomal protein L22 Chain S: 96% CLV GLV GLV • Molecule 24: Large ribosomal subunit protein uL23 Chain T: 92% • 6% GLU TLE PHE GLU ALA • Molecule 25: 50S ribosomal protein L24 Chain U: ••• 98%

	5	02	ß
M1	R3	<u>1</u>	Γλ

• Molecule 26: Large ribosomal subunit protein bL27

Chain W:	90%	10%
MET LEU ARG ARG ARG ALEU CLEU CLEU PHE PHE PHE PHE PHE PHE		
• Molecule 27: 5	0S ribosomal protein L28	
Chain X:	89%	10% •
MET A2 R3 V6 N12 N32 N32		
• Molecule 28: 5	0S ribosomal protein L29	
Chain Y:	98%	·
MET K2 K66		
• Molecule 29: L	arge ribosomal subunit protein uL30	
Chain Z:	98%	·
MET A2 959		
• Molecule 30: 1	6S rRNA	
Chain a:	76%	21% ••
U U U 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U19 C24 C24 C24 C33 C49 C49 C49 C49 C50 C68 C68 C68 C70 C77 C77 C77 C88 C88 C88 C88 C88 C88 C88	C90 693 693 694 195 195 6113 6114 6114 6114 114
6122 0123 0127 0128 0128 0128 0133 0133 0133	0145 0146 0158 0158 0159 0162 0172 0172 0180 0196 0196 0196 0197 0196 0197 0196 0197 0197 0197 0197 0197 0197 0197 0197	0223 U224 U231 A234 A234 C245 0245 C245 C245 C248 U253
A254 G255 G255 G272 G274 G274 G274 A281 A281	C383 C396 C297 C396 C397 C396 C338 C338 C338 C338 C338 C338 C338 C33	C377 C380 C380 C385 C385 C385 C385 C385 C385 C385 C385
6412 0413 6414 6414 6419 0420 6421 7422 6421 6421 6421 6421	6432 6435 0435 0436 0444 04442 04445 04445 04445 0445 0445	6483 1484 1484 6493 6493 6494 6494 6497 6505 6505 8505
A507 A508 G510 G514 G514 A519 U522 U522	6525 6530 6530 6536 6536 6536 6536 6536 6544 6544 6544	6586 C589 6595 6597 0607 0607 0621

A6 30 A6 31 A6 31 A6 37 A6 37 A6 41 A6 44 A6 44 A6 64 A6 65 A6 75 A6 73 A7 11 A7 27 A7 30 C7 70 C7 70	U822 A823 A824 A825 C826 U829
(3945) (3945) (3956) (3956) (3956) (3956) (3956) (3956) (3956) (3956) (3976) (3	U1010 A1014 C1015 A1016 G1030
G1033 G1033 U1035 C1035 C1035 C1035 C1035 C1035 C1035 C1035 C1041 G1042 G1045 G1044 G1046 G1045 G1046 G1045 G1046 G1046 G1051 G1046 G1063 G1064 G1064 G1056 G1065 G1066 G1066 G1056 G1067 G1056 G1064 A1056 G1065 G1066 G1074 U105 U1105 U1136 U1136 U1136 U1149 U1149 U1149 U1146 U1156 U1149 U1165 U1149 U1165 U1149	41176 C1177 A1178 A1178 G1193 A1205
A1 206 U1 221 U1 222 1 A1 222 1 A1 222 1 A1 223 A1 247 A1 267 A1 266 A1 266 A1 266 A1 266 C1 269 C1	U1402 U1402 C1406 A1407 U1415
A1427 G1432 1449 U1449 A1451 A1455 A1455 G1497 G1464 G1464 G1545 G1504 G1504 G1515 G1504 G1515 G1515 G1515 G1529 G1529 G1529 G1529 G15300 G1530 G1530 G1530 G15300 G15300 G15300 G15300 G15300 G15300 G15300 G15300 G15300 G15300 G1	~
• Molecule 31: 30S ribosomal protein S5	
Chain e: 90% 59	6 5%
MET ARG ARG ARG ASP ASP ASP ASP SER SER LIS F133 F133 F133 F133 F133 F133 F133 F13	
• Molecule 32: 30S ribosomal protein S11	
Chain k: 85% •• 1	2%
MET ALA ALA ALA ALA ARG SER SER ARG ARG ARG ARG ARG ARG ARG ARG ARG AR	
• Molecule 33: 30S ribosomal protein S12	
Chain I: 93%	
MET P2 MET V50	
• Molecule 34: 30S ribosomal protein S15	
Chain o: 98%	•
MET ALA 111 123 139 130	
• Molecule 35: 30S ribosomal protein S17	
Chain q: 92%	6% ·

• Molecule 36: 30S ribosomal protein S20

Chain t:	97%	
MET P2 B59 ALA ALA		
• Molecule 37: Pro-	-tRNA	
Chain y:	83%	17%
C1 A9 A14 C19 C19 C19 C19 C19 C19 C147 C148 C148 C148 C148 C148 C148 C148 C148	A59 A77 A77	
• Molecule 37: Pro-	-tRNA	
Chain w:	81%	18% •
C1 A14 A14 C20 C20 C20 C20 C20 C20 C20 C20 C20 C20	044 049 A59 A77 A77	
• Molecule 38: mRI	NA	
Chain 8:	83%	17%
C10 C20 U21 U21		
• Molecule 39: Sma	ll ribosomal subunit protein uS3	
Chain c:	99%	
MET GLY Q3 V206		
• Molecule 40: Sma	ll ribosomal subunit protein uS7	
Chain g:	94%	• •
MET P14 V23 L43 M59 M59 M53 M52 M138	TYR ARG TRP	
• Molecule 41: 30S	ribosomal protein S9	
Chain i:	98%	

_	_		ð
ME	AL/	ß	Ĥ

• Molecule 42: 30S ribosomal protein S10

Molecule 43: 30S ribosomal protein S13 Chain m: 96% 96% 96	Chain j:	96%	•
 Molecule 43: 30S ribosomal protein S13 Chain m: 96% Molecule 44: 30S ribosomal protein S14 Chain n: 97% Molecule 45: 30S ribosomal protein S19 Chain s: 90% 10% Molecule 45: 30S ribosomal protein S19 Chain s: 90% 10% Molecule 46: 30S ribosomal protein S8 Chain h: 80% 11% 8% Chain h: 80% 11% 8% Molecule 47: 30S ribosomal protein S18 Chain r: 81% 18% Chain r: 81% 18% Molecule 48: 30S ribosomal protein S6 Chain f: 92% 	MET LYS CLN GLN L102		
Chain m: 96%	• Molecule 43: 30S ribos	omal protein S13	
Image:	Chain m:	96%	
 Molecule 44: 30S ribosomal protein S14 Chain n: 97% . Molecule 45: 30S ribosomal protein S19 Chain s: 90% 10% Molecule 46: 30S ribosomal protein S8 Chain h: 80% 11% 8% Molecule 46: 30S ribosomal protein S8 Chain h: 80% 11% 8% Molecule 47: 30S ribosomal protein S18 Chain r: 81% 18% Molecule 48: 30S ribosomal protein S6 Chain f: 92% 	MET A2 R107 K114 K119 LYS LYS		
Chain n: 97% .	• Molecule 44: 30S ribos	omal protein S14	
 Molecule 45: 30S ribosomal protein S19 Chain s: 90% 10% Molecule 46: 30S ribosomal protein S8 Chain h: 80% 11% 8% Molecule 47: 30S ribosomal protein S18 Chain r: 81% 18% Molecule 48: 30S ribosomal protein S18 Chain r: 81% 18% 	Chain n:	97%	
 Molecule 45: 30S ribosomal protein S19 Chain s: 90% 10% Molecule 46: 30S ribosomal protein S8 Chain h: 80% 11% 8% Molecule 47: 30S ribosomal protein S18 Chain r: 81% 18% Molecule 47: 30S ribosomal protein S18 Chain r: 81% 18% Molecule 48: 30S ribosomal protein S6 Chain f: 92% 	MET 749 161		
Chain s: 90% 10% Image: Simple	• Molecule 45: 30S ribos	omal protein S19	
 	Chain s:	90%	10%
 Molecule 46: 30S ribosomal protein S8 Chain h: 80% 11% · 8% Set Set Set Set Set Set Set Set Set Set	MET A2 A84 A84 A85 A85 LYS LYS THR ARG ARG		
Chain h: 80% 11% <td>• Molecule 46: 30S ribos</td> <td>omal protein S8</td> <td></td>	• Molecule 46: 30S ribos	omal protein S8	
<p< td=""><td>Chain h:</td><td>80%</td><td>11% • 8%</td></p<>	Chain h:	80%	11% • 8%
 Molecule 47: 30S ribosomal protein S18 Chain r: 81% 18% State State S	MET VAL MET THR THR THR PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	146 766 871 879 174 174 174 1113 174 1113 1113 1113 111	
Chain r: 81% 18% Image: State S	• Molecule 47: 30S ribos	omal protein S18	
93358월55월338월 200 - 50 - 50 - 50 - 50 - 50 - 50 - 50	Chain r:	81%	• 18%
Molecule 48: 30S ribosomal protein S6 Chain f: 92%	MET ALA GLY GLY ARG GLY GLY ARG GLY ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	GLU	
Chain f: 92% ····	• Molecule 48: 30S ribos	omal protein S6	
	Chain f:	92%	

• Molecule 49: ApdA nascent chain

Chain 7:

100%

There are no outlier residues recorded for this chain.

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	142978	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	75.6	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	1800	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: K, PSU, OMG, 2MA, ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	0	0.42	0/440	0.84	0/584	
2	1	0.30	0/408	0.65	0/541	
3	2	0.44	0/371	0.79	0/483	
4	3	0.47	0/529	0.74	0/691	
5	4	0.38	0/300	0.75	0/393	
6	6	0.33	0/363	0.67	0/485	
7	А	0.60	1/65970~(0.0%)	1.29	312/102904~(0.3%)	
8	В	0.50	0/2675	1.21	10/4170~(0.2%)	
9	С	0.39	0/2131	0.73	0/2859	
10	D	0.39	0/1597	0.72	0/2140	
11	Е	0.38	0/1586	0.66	0/2139	
12	F	0.28	0/1424	0.62	0/1910	
13	G	0.30	0/1360	0.65	0/1832	
14	J	0.36	0/1165	0.67	0/1566	
15	K	0.36	0/928	0.73	0/1245	
16	L	0.37	0/1094	0.69	0/1457	
17	М	0.38	0/1099	0.72	0/1468	
18	N	0.35	0/961	0.67	0/1284	
19	0	0.30	0/922	0.62	0/1236	
20	Р	0.33	0/958	0.75	0/1279	
21	Q	0.41	0/962	0.73	0/1277	
22	R	0.34	0/806	0.68	0/1080	
23	S	0.39	0/859	0.73	0/1156	
24	Т	0.32	0/722	0.68	0/962	
25	U	0.32	0/780	0.65	0/1043	
26	W	0.40	0/658	0.71	0/873	
27	Х	0.42	0/472	0.68	0/627	
28	Y	0.27	0/533	0.55	0/708	
29	Ζ	0.32	0/458	0.65	0/613	
30	a	0.55	0/36826	1.17	$6\overline{4/57450}~(0.1\%)$	
31	е	0.35	0/1181	0.74	0/1588	
32	k	0.36	0/861	0.72	0/1164	

Mol	Mol Chain		ond lengths	Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	1	0.31	0/1064	0.75	1/1428~(0.1%)	
34	0	0.29	0/738	0.62	0/985	
35	q	0.28	0/707	0.69	0/944	
36	t	0.27	0/661	0.62	0/882	
37	W	0.59	0/1838	1.14	3/2864~(0.1%)	
37	У	0.57	0/1838	1.13	1/2864~(0.0%)	
38	8	0.73	0/131	1.05	0/200	
39	с	0.29	0/1629	0.61	0/2192	
40	g	0.35	0/1215	0.62	0/1629	
41	i	0.32	0/1007	0.66	0/1351	
42	j	0.29	0/800	0.65	0/1077	
43	m	0.31	0/948	0.67	0/1267	
44	n	0.30	0/508	0.72	2/672~(0.3%)	
45	s	0.32	0/685	0.61	0/920	
46	h	0.33	0/966	0.80	2/1292~(0.2%)	
47	r	0.28	0/530	0.66	0/710	
48	f	0.27	0/766	0.65	0/1031	
49	7	0.42	0/67	0.85	0/89	
All	All	0.53	1/147497~(0.0%)	1.14	395/221604~(0.2%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	0	0	2
3	2	0	1
4	3	0	1
7	А	0	5
9	С	0	10
10	D	0	3
11	Е	0	2
16	L	0	1
19	0	0	1
20	Р	0	2
21	Q	0	1
25	U	0	1
27	Х	0	2
33	1	0	1
35	q	0	1
40	g	0	2

Continued from previous page...

Mol	Chain	#Chirality outliers	#Planarity outliers
46	h	0	2
48	f	0	2
All	All	0	40

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
7	А	2090	G	C8-N7	6.26	1.34	1.30

All (395) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	619	А	O5'-P-OP1	-26.46	78.95	110.70
7	А	2090	G	O5'-P-OP2	-21.68	84.68	110.70
7	А	1199	С	O5'-P-OP2	-19.86	86.87	110.70
7	А	1681	U	O5'-P-OP2	-19.42	87.40	110.70
7	А	1315	G	O5'-P-OP2	-15.09	92.12	105.70
7	А	733	U	O5'-P-OP1	14.57	128.19	110.70
7	А	866	А	O5'-P-OP1	-14.27	92.86	105.70
7	А	1185	G	O5'-P-OP2	-14.02	93.08	105.70
7	А	1007	G	O5'-P-OP2	-13.93	93.17	105.70
7	А	46	С	O5'-P-OP2	-13.18	93.83	105.70
7	А	732	А	O3'-P-O5'	-13.01	79.28	104.00
30	a	1432	G	O5'-P-OP2	-12.92	94.07	105.70
7	А	1042	А	O5'-P-OP1	-12.78	94.19	105.70
7	А	1199	С	O5'-P-OP1	12.73	125.97	110.70
7	А	991	А	O5'-P-OP1	-12.35	94.59	105.70
7	А	2583	U	O5'-P-OP1	-12.29	94.64	105.70
7	А	225	А	O3'-P-O5'	-11.91	81.38	104.00
7	А	258	А	O5'-P-OP1	-11.84	95.04	105.70
7	А	1375	А	O3'-P-O5'	-11.58	82.00	104.00
7	А	992	G	O5'-P-OP1	-11.28	95.55	105.70
7	А	491	С	O5'-P-OP1	11.15	124.08	110.70
7	А	1819	С	O5'-P-OP2	-11.08	95.73	105.70
7	А	1278	G	O5'-P-OP2	-10.70	96.07	105.70
7	А	346	G	O5'-P-OP1	-10.67	96.09	105.70
7	А	2090	G	O5'-P-OP1	10.56	123.37	110.70
7	A	490	A	O3'-P-O5'	-10.34	84.35	104.00
30	a	1507	G	O5'-P-OP2	-10.29	96.44	105.70
7	А	864	С	O5'-P-OP2	-10.26	96.47	105.70
7	A	2233	С	05'-P-OP1	-10.11	96.60	105.70
7	А	1278	G	O5'-P-OP1	9.74	122.39	110.70

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	987	А	O5'-P-OP1	-9.73	96.94	105.70
7	А	1867	С	O5'-P-OP1	-9.67	97.00	105.70
7	А	558	G	O4'-C1'-N9	9.61	115.88	108.20
7	А	556	С	O5'-P-OP2	-9.60	97.06	105.70
7	А	183	A	C1'-O4'-C4'	-9.43	102.35	109.90
7	А	794	U	O5'-P-OP1	-9.28	97.35	105.70
7	А	2616	А	O5'-P-OP2	-8.92	97.67	105.70
30	a	1313	G	O3'-P-O5'	-8.91	87.06	104.00
7	А	2382	G	O3'-P-O5'	-8.77	87.34	104.00
7	А	1277	A	O3'-P-O5'	-8.59	87.67	104.00
7	А	874	U	O5'-P-OP1	8.52	120.92	110.70
7	А	2026	А	O5'-P-OP1	8.29	120.65	110.70
7	А	1340	А	O3'-P-O5'	-8.22	88.38	104.00
7	А	2308	G	O3'-P-O5'	-8.15	88.50	104.00
7	А	2764	G	O3'-P-O5'	-8.11	88.60	104.00
7	А	2873	G	O4'-C1'-N9	7.98	114.58	108.20
7	А	2375	А	O5'-P-OP1	-7.95	98.55	105.70
7	А	2525	С	O5'-P-OP2	-7.94	98.56	105.70
30	a	899	A	O3'-P-O5'	-7.92	88.96	104.00
7	А	2603	G	O5'-P-OP2	-7.83	98.66	105.70
7	А	2260	U	O5'-P-OP2	-7.70	98.78	105.70
7	А	2534	G	O5'-P-OP2	-7.66	98.81	105.70
7	А	2026	А	O5'-P-OP2	-7.66	98.81	105.70
7	А	2435	С	O5'-P-OP1	-7.62	98.84	105.70
7	А	1389	С	O5'-P-OP2	-7.58	98.88	105.70
7	А	2324	С	O5'-P-OP2	-7.56	98.89	105.70
7	А	2482	A	O4'-C1'-N9	7.54	114.23	108.20
30	а	585	G	O5'-P-OP1	7.52	119.72	110.70
7	А	1606	А	O3'-P-O5'	-7.51	89.73	104.00
7	А	2015	G	O5'-P-OP2	-7.47	98.97	105.70
7	А	1244	А	O4'-C1'-N9	7.43	114.14	108.20
7	А	1845	А	O5'-P-OP1	-7.39	99.05	105.70
7	А	986	G	O3'-P-O5'	7.36	117.98	104.00
7	А	795	G	C1'-O4'-C4'	-7.33	104.03	109.90
7	А	1988	G	O5'-P-OP2	-7.33	99.10	105.70
7	А	274	А	O3'-P-O5'	-7.33	90.08	104.00
7	А	1398	A	O3'-P-O5'	-7.30	90.12	104.00
7	A	1340	A	O5'-P-OP1	-7.29	99.14	105.70
7	А	844	U	05'-P-OP2	-7.26	99.17	105.70
7	А	2420	G	O4'-C1'-N9	7.25	114.00	108.20
7	А	988	G	O5'-P-OP2	-7.25	99.18	105.70
7	А	1032	С	O5'-P-OP2	-7.22	99.20	105.70

Conti	nued from	n previo	ous page.	
Mol	Chain	Ros	Type	Ato

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
30	a	1501	G	O3'-P-O5'	-7.21	90.31	104.00
7	А	1363	G	O4'-C1'-N9	7.20	113.96	108.20
7	А	1751	U	P-O3'-C3'	7.15	128.28	119.70
8	В	54	U	O3'-P-O5'	-7.15	90.42	104.00
7	А	1998	А	O3'-P-O5'	-7.14	90.42	104.00
7	А	1317	G	O5'-P-OP2	-7.13	99.28	105.70
7	А	207	А	O3'-P-O5'	-7.12	90.48	104.00
30	a	1504	G	O5'-P-OP2	-7.12	99.30	105.70
7	А	1798	G	O5'-P-OP2	-7.10	99.31	105.70
7	А	373	А	O3'-P-O5'	-7.10	90.51	104.00
8	В	48	G	C2'-C3'-O3'	7.05	125.01	109.50
7	А	2340	А	O3'-P-O5'	-6.99	90.72	104.00
7	А	964	А	O5'-P-OP1	-6.98	99.42	105.70
7	А	1018	G	O5'-P-OP2	-6.95	99.44	105.70
8	В	13	А	O4'-C1'-N9	6.93	113.74	108.20
7	А	874	U	OP1-P-OP2	-6.91	109.23	119.60
7	А	1374	С	O3'-P-O5'	-6.88	90.92	104.00
7	А	2090	G	C5-N7-C8	-6.87	100.87	104.30
7	А	2090	G	C8-N9-C4	-6.85	103.66	106.40
7	А	2307	А	O3'-P-O5'	-6.84	91.00	104.00
7	А	2361	С	O3'-P-O5'	-6.82	91.05	104.00
7	А	2032	А	O3'-P-O5'	-6.80	91.07	104.00
7	А	119	U	O3'-P-O5'	-6.78	91.12	104.00
30	a	245	С	O3'-P-O5'	-6.77	91.14	104.00
7	А	373	А	O5'-P-OP2	-6.76	99.62	105.70
7	А	202	А	C1'-O4'-C4'	-6.73	104.52	109.90
7	А	608	С	O5'-P-OP2	-6.68	99.69	105.70
30	a	566	G	O3'-P-O5'	-6.65	91.36	104.00
30	a	1148	G	P-O3'-C3'	6.65	127.68	119.70
30	a	923	А	O3'-P-O5'	-6.64	91.38	104.00
30	a	1361	С	O3'-P-O5'	-6.64	91.39	104.00
7	А	2633	U	O5'-P-OP2	-6.62	99.74	105.70
30	a	782	G	O5'-P-OP2	-6.62	99.74	105.70
7	А	2347	G	O3'-P-O5'	-6.62	91.42	104.00
7	А	1857	G	C5-C6-O6	-6.62	124.63	128.60
7	А	618	А	OP1-P-O3'	6.59	119.71	105.20
7	А	567	U	O4'-C1'-N1	6.59	113.47	108.20
7	A	1884	G	03'-P-O5'	-6.58	91.49	104.00
7	A	1245	G	C5-N7-C8	-6.55	101.03	104.30
46	h	66	TYR	CB-CG-CD2	6.54	124.92	121.00
7	A	182	C	$\overline{C4'}$ - $\overline{C3'}$ - $O3'$	6.53	126.07	113.00
7	А	1934	С	03'-P-O5'	-6.52	91.61	104.00

Continued	fmom	manious	2000
Commune	jiom	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	1655	А	O5'-P-OP2	-6.49	99.86	105.70
7	А	1417	А	O3'-P-O5'	-6.44	91.76	104.00
7	А	644	G	O5'-P-OP2	-6.43	99.91	105.70
30	a	558	С	O4'-C1'-N1	6.36	113.29	108.20
30	a	246	G	O3'-P-O5'	-6.34	91.95	104.00
7	А	2480	А	O5'-P-OP2	-6.29	100.03	105.70
30	а	801	А	O4'-C1'-N9	6.29	113.23	108.20
7	А	958	А	O3'-P-O5'	-6.28	92.07	104.00
7	А	2026	А	C5'-C4'-O4'	6.27	116.63	109.10
7	А	2818	С	O4'-C1'-N1	6.27	113.22	108.20
7	А	1886	G	O3'-P-O5'	-6.27	92.09	104.00
7	А	746	А	O3'-P-O5'	-6.23	92.16	104.00
7	А	2105	U	O4'-C1'-N1	6.22	113.17	108.20
30	а	581	А	O3'-P-O5'	-6.21	92.20	104.00
30	а	589	С	O3'-P-O5'	-6.21	92.21	104.00
7	А	1966	А	O3'-P-O5'	-6.19	92.24	104.00
30	a	1504	G	O3'-P-O5'	-6.17	92.27	104.00
30	а	336	С	C1'-O4'-C4'	-6.17	104.96	109.90
7	А	1525	G	C2'-C3'-O3'	6.15	123.54	113.70
30	а	1502	А	O5'-P-OP1	6.15	118.08	110.70
7	А	794	U	O5'-P-OP2	6.14	118.06	110.70
7	А	1244	А	C5-N7-C8	-6.12	100.84	103.90
7	А	2088	А	O5'-P-OP2	-6.12	100.20	105.70
7	А	2029	G	O5'-P-OP2	-6.11	100.20	105.70
8	В	37	А	P-O3'-C3'	6.11	127.03	119.70
7	А	470	А	O3'-P-O5'	-6.11	92.39	104.00
7	А	1616	G	O5'-P-OP2	-6.11	100.20	105.70
7	А	784	С	O5'-P-OP1	6.11	118.03	110.70
30	a	1266	А	P-O3'-C3'	6.09	127.01	119.70
7	А	1179	А	C1'-O4'-C4'	-6.06	105.05	109.90
7	А	1276	G	O4'-C1'-N9	6.05	113.04	108.20
7	А	851	А	O5'-P-OP2	-6.05	100.26	105.70
7	А	2474	G	C2-N3-C4	6.04	114.92	111.90
7	А	1359	G	C5-C6-O6	-6.03	124.98	128.60
7	А	1543	U	P-O3'-C3'	6.02	126.93	119.70
30	a	607	U	O3'-P-O5'	-6.02	92.56	104.00
7	А	1692	U	O5'-P-OP1	-6.01	100.29	105.70
7	A	517	A	O5'-P-OP1	6.01	117.91	110.70
7	A	183	A	N9-C1'-C2'	6.00	121.81	114.00
8	В	10	G	O3'-P-O5'	-5.99	92.62	104.00
7	A	$2\overline{456}$	C	O3'-P-O5'	-5.97	92.65	104.00
7	A	182	C	C3'-C2'-C1'	-5.95	96.74	101.50

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	9	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	2511	А	O5'-P-OP1	5.95	117.84	110.70
7	А	1071	G	N3-C2-N2	-5.95	115.74	119.90
7	А	1246	G	O4'-C1'-N9	5.94	112.95	108.20
7	А	1435	U	O4'-C1'-N1	5.94	112.95	108.20
30	a	1340	G	O4'-C1'-N9	5.92	112.94	108.20
30	a	557	G	O3'-P-O5'	-5.91	92.77	104.00
7	А	2496	С	O5'-P-OP2	-5.90	100.39	105.70
7	А	2658	А	O5'-P-OP1	-5.90	100.39	105.70
7	А	498	U	C1'-O4'-C4'	-5.90	105.18	109.90
7	А	2891	G	O3'-P-O5'	-5.88	92.84	104.00
7	А	1045	U	O5'-P-OP2	5.86	117.74	110.70
7	А	1381	А	O5'-P-OP2	-5.85	100.43	105.70
7	А	793	U	OP1-P-O3'	5.85	118.06	105.20
7	А	2842	U	O3'-P-O5'	-5.84	92.91	104.00
7	А	1244	А	O5'-P-OP2	-5.83	100.45	105.70
7	А	2911	G	C5-N7-C8	-5.83	101.38	104.30
7	А	673	А	O3'-P-O5'	-5.83	92.92	104.00
7	А	1244	А	N7-C8-N9	5.83	116.71	113.80
30	a	296	А	O3'-P-O5'	-5.83	92.93	104.00
30	a	673	G	O3'-P-O5'	-5.82	92.94	104.00
7	А	700	U	C1'-O4'-C4'	-5.81	105.25	109.90
7	А	1856	U	O5'-P-OP2	-5.81	100.47	105.70
7	А	1071	G	N9-C4-C5	5.80	107.72	105.40
30	a	1090	А	O3'-P-O5'	-5.77	93.04	104.00
7	А	2525	С	P-O5'-C5'	-5.75	111.69	120.90
7	А	721	G	O5'-P-OP2	-5.75	100.53	105.70
7	А	123	G	O3'-P-O5'	-5.75	93.08	104.00
7	А	2414	С	O3'-P-O5'	-5.75	93.08	104.00
30	a	50	С	O3'-P-O5'	-5.74	93.09	104.00
7	А	1004	U	O3'-P-O5'	-5.74	93.09	104.00
7	А	44	А	O3'-P-O5'	-5.74	93.10	104.00
7	А	539	G	O3'-P-O5'	-5.74	93.10	104.00
8	В	11	А	O4'-C1'-N9	5.74	112.79	108.20
7	А	132	С	O3'-P-O5'	-5.74	93.10	104.00
7	А	2524	G	O3'-P-O5'	5.73	114.88	104.00
7	А	1246	G	O4'-C4'-C3'	-5.71	98.29	104.00
30	a	1356	G	C3'-C2'-C1'	-5.71	96.93	101.50
7	A	1662	C	05'-P-OP2	-5.70	100.57	105.70
7	А	516	G	O3'-P-O5'	-5.69	93.19	104.00
30	a	896	G	O3'-P-O5'	-5.69	93.19	104.00
7	А	2267	G	O5'-P-OP1	-5.68	100.58	105.70
7	А	1876	A	O3'-P-O5'	-5.68	93.21	104.00

α \cdots 1	c		
Continued	trom	previous	page
• • • • • • • • • • • •	J	<i>r</i> · · · · · · · · · · · · · · · · · · ·	r - g - · · ·

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	831	U	O3'-P-O5'	-5.68	93.21	104.00
7	А	700	U	O4'-C1'-N1	5.67	112.74	108.20
7	А	822	G	O4'-C1'-N9	5.67	112.73	108.20
7	А	1181	С	OP2-P-O3'	-5.67	92.73	105.20
7	А	1227	G	O5'-P-OP1	-5.65	100.61	105.70
30	a	127	U	C2'-C3'-O3'	5.65	122.74	113.70
30	a	337	А	O3'-P-O5'	-5.64	93.29	104.00
7	А	257	G	OP2-P-O3'	5.64	117.60	105.20
7	А	1180	С	OP2-P-O3'	5.63	117.58	105.20
7	А	378	С	O3'-P-O5'	-5.62	93.31	104.00
7	А	872	С	O5'-P-OP2	-5.62	100.64	105.70
7	А	1369	С	P-O5'-C5'	-5.62	111.91	120.90
7	А	2009	G	O5'-P-OP2	-5.61	100.65	105.70
7	А	468	С	O3'-P-O5'	-5.61	93.34	104.00
7	А	2497	А	O4'-C1'-N9	5.61	112.69	108.20
44	n	49	TYR	CB-CG-CD1	5.60	124.36	121.00
46	h	66	TYR	CB-CG-CD1	-5.60	117.64	121.00
7	А	2056	G	O5'-P-OP2	-5.60	100.66	105.70
7	А	2746	G	O3'-P-O5'	-5.58	93.40	104.00
30	a	360	С	O3'-P-O5'	-5.58	93.41	104.00
7	А	1526	G	O3'-P-O5'	-5.57	93.41	104.00
7	А	1751	U	OP1-P-O3'	5.57	117.44	105.20
7	А	2776	G	OP2-P-O3'	5.57	117.44	105.20
8	В	37	А	C4'-C3'-C2'	-5.57	97.03	102.60
30	а	664	А	O3'-P-O5'	-5.57	93.43	104.00
7	А	1704	U	O3'-P-O5'	-5.56	93.44	104.00
7	А	1808	U	C5-C6-N1	-5.56	119.92	122.70
7	А	1424	А	O3'-P-O5'	-5.55	93.44	104.00
33	1	123	ARG	CG-CD-NE	5.55	123.46	111.80
7	А	1866	С	O3'-P-O5'	-5.55	93.46	104.00
7	А	1867	С	O5'-P-OP2	5.55	117.36	110.70
7	А	1958	G	O3'-P-O5'	-5.54	93.47	104.00
8	В	37	А	C2'-C3'-O3'	5.54	122.57	113.70
30	a	988	А	OP1-P-O3'	5.54	117.38	105.20
7	А	2849	U	O5'-P-OP2	-5.53	100.72	105.70
30	a	789	G	O3'-P-O5'	-5.52	93.50	104.00
7	А	1969	U	O5'-P-OP2	-5.52	100.73	105.70
7	A	1359	G	03'-P-O5'	-5.52	93.51	104.00
7	А	1036	A	O3'-P-O5'	-5.51	93.52	104.00
7	А	1173	А	O3'-P-O5'	-5.51	93.52	104.00
7	А	2609	U	O5'-P-OP2	-5.51	100.74	105.70
7	А	831	U	P-O3'-C3'	5.51	126.31	119.70

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
		1	1 0

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	a	113	G	O5'-P-OP2	-5.50	100.75	105.70
7	А	1935	G	O3'-P-O5'	-5.50	93.56	104.00
7	А	2520	U	O5'-P-OP1	-5.48	100.77	105.70
7	А	2595	А	O3'-P-O5'	-5.48	93.59	104.00
7	А	1246	G	C5'-C4'-O4'	5.47	115.66	109.10
7	А	2722	А	O5'-P-OP2	-5.47	100.78	105.70
7	А	2777	А	O5'-P-OP2	-5.47	100.78	105.70
7	А	2904	А	O3'-P-O5'	-5.46	93.62	104.00
7	А	810	G	O3'-P-O5'	-5.46	93.63	104.00
7	А	1177	G	O3'-P-O5'	-5.46	93.63	104.00
7	А	590	U	O3'-P-O5'	-5.45	93.64	104.00
7	А	740	А	O5'-P-OP2	-5.45	100.80	105.70
7	А	2459	А	C1'-O4'-C4'	-5.45	105.54	109.90
7	А	2805	А	OP1-P-O3'	5.43	117.15	105.20
30	a	338	С	OP2-P-O3'	5.42	117.14	105.20
7	А	1188	А	O4'-C1'-N9	5.42	112.53	108.20
30	a	882	А	O3'-P-O5'	-5.42	93.70	104.00
30	a	887	С	O3'-P-O5'	-5.42	93.71	104.00
7	А	2917	G	O4'-C1'-N9	5.41	112.53	108.20
7	А	2911	G	N7-C8-N9	5.40	115.80	113.10
7	А	868	А	O5'-P-OP2	-5.39	100.84	105.70
7	А	2354	G	O5'-P-OP1	5.39	117.17	110.70
7	А	2098	G	O3'-P-O5'	-5.38	93.77	104.00
7	А	2074	С	O3'-P-O5'	-5.38	93.78	104.00
7	А	2273	U	O5'-P-OP1	-5.38	100.86	105.70
7	А	354	А	O3'-P-O5'	-5.38	93.79	104.00
7	А	2639	С	O3'-P-O5'	-5.38	93.79	104.00
7	А	2094	С	OP2-P-O3'	5.37	117.02	105.20
7	А	1965	А	C1'-O4'-C4'	-5.37	105.61	109.90
30	а	1041	С	P-O3'-C3'	5.36	126.14	119.70
30	а	1090	А	OP1-P-O3'	5.36	117.00	105.20
7	А	845	G	O5'-P-OP2	-5.36	100.88	105.70
30	а	304	U	O5'-P-OP2	-5.35	100.88	105.70
7	А	2049	А	O3'-P-O5'	-5.35	93.83	104.00
30	a	785	G	O3'-P-O5'	-5.35	93.83	104.00
30	a	1402	U	05'-P-OP2	-5.34	100.89	105.70
7	A	504	A	O4'-C1'-N9	5.34	112.47	108.20
7	A	1417	A	<u>OP1-P-O3</u> '	5.34	116.94	105.20
7	A	875	U	O4'-C1'-N1	-5.33	103.94	108.20
30	a	1313	G	OP2-P-O3'	5.33	116.93	105.20
7	А	245	G	O5'-P-OP1	5.32	117.08	110.70
7	А	751	G	O4'-C1'-N9	5.31	112.45	108.20

α \cdots 1	C		
Continued	trom	previous	page
	9	1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	1257	С	O5'-P-OP1	5.31	117.07	110.70
7	А	2602	С	OP2-P-O3'	5.31	116.87	105.20
7	А	2662	А	O3'-P-O5'	-5.30	93.92	104.00
37	W	46	G	O3'-P-O5'	-5.30	93.92	104.00
7	А	183	А	C4-N9-C1'	5.30	135.84	126.30
7	А	1167	С	O3'-P-O5'	-5.29	93.95	104.00
7	А	2629	А	O3'-P-O5'	-5.29	93.95	104.00
37	У	76	С	OP2-P-O3'	5.28	116.82	105.20
7	А	2030	А	O3'-P-O5'	-5.28	93.97	104.00
7	А	1231	G	C4'-C3'-C2'	-5.28	97.32	102.60
30	a	9	G	C1'-O4'-C4'	-5.28	105.68	109.90
7	А	632	U	OP2-P-O3'	5.28	116.81	105.20
7	А	1480	А	O3'-P-O5'	-5.28	93.98	104.00
7	А	2473	G	O3'-P-O5'	-5.27	93.98	104.00
7	А	2334	U	O4'-C1'-N1	5.27	112.42	108.20
7	А	2003	С	O5'-P-OP2	-5.27	100.96	105.70
7	А	2270	А	O5'-P-OP2	-5.26	100.96	105.70
7	А	208	G	O5'-P-OP1	5.26	117.01	110.70
7	А	2029	G	C3'-C2'-C1'	-5.26	97.29	101.50
7	А	864	С	C4'-C3'-C2'	-5.26	97.34	102.60
7	А	2793	А	O3'-P-O5'	-5.26	94.01	104.00
7	А	1966	А	OP2-P-O3'	5.25	116.74	105.20
8	В	49	G	C2'-C3'-O3'	5.24	122.09	113.70
7	А	1245	G	C4-C5-N7	5.24	112.90	110.80
7	А	1276	G	O5'-P-OP1	-5.24	100.98	105.70
30	a	1415	U	O5'-P-OP2	-5.23	100.99	105.70
7	А	27	G	O4'-C1'-N9	5.23	112.38	108.20
7	А	2389	А	O3'-P-O5'	-5.22	94.09	104.00
7	А	188	С	O3'-P-O5'	-5.21	94.10	104.00
7	А	987	А	OP2-P-O3'	5.21	116.66	105.20
7	А	1785	G	O5'-P-OP2	-5.21	101.01	105.70
37	W	77	А	C1'-O4'-C4'	-5.21	105.73	109.90
7	А	1284	А	O5'-P-OP2	-5.21	101.01	105.70
7	А	960	U	O3'-P-O5'	-5.20	94.12	104.00
7	А	2504	С	O3'-P-O5'	-5.20	94.12	104.00
7	A	2090	G	N7-C8-N9	5.20	115.70	113.10
7	А	1719	G	C3'-C2'-C1'	5.19	105.66	101.50
7	А	523	G	OP2-P-O3 ⁷	5.19	116.61	105.20
7	A	2270	A	OP2-P-O3 ⁷	5.19	116.61	105.20
7	А	18	C	O5'-P-OP2	-5.18	101.04	105.70
7	А	1644	C	O3'-P-O5'	-5.18	94.16	104.00
7	А	1690	G	O3'-P-O5'	-5.18	94.16	104.00

-				
Continued	from	mrowing	naac	
Comunueu	110111	previous	page	

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
44	n	49	TYR	CB-CG-CD2	-5.18	117.89	121.00
7	А	2911	G	O4'-C1'-N9	5.17	112.34	108.20
7	А	2638	U	O5'-P-OP2	-5.17	101.04	105.70
7	А	183	А	C8-N9-C1'	-5.17	118.39	127.70
7	А	1958	G	O5'-P-OP1	5.17	116.90	110.70
7	А	776	G	C1'-O4'-C4'	-5.17	105.77	109.90
7	А	254	A	O3'-P-O5'	-5.17	94.19	104.00
7	А	854	U	C4'-C3'-C2'	-5.17	97.44	102.60
8	В	107	G	O4'-C1'-N9	5.16	112.33	108.20
7	А	1245	G	O5'-P-OP2	5.16	116.89	110.70
7	А	2014	G	O5'-P-OP2	-5.16	101.06	105.70
7	А	2304	С	C6-N1-C2	-5.15	118.24	120.30
7	А	1480	А	O4'-C1'-N9	5.15	112.32	108.20
7	А	1246	G	C4'-C3'-C2'	-5.15	97.45	102.60
37	W	75	С	O3'-P-O5'	-5.15	94.22	104.00
30	a	822	U	O5'-P-OP2	-5.14	101.07	105.70
30	a	1313	G	C2'-C3'-O3'	5.14	121.92	113.70
7	А	2601	А	C2'-C3'-O3'	-5.14	98.20	109.50
7	А	2886	С	O5'-P-OP2	-5.13	101.08	105.70
30	a	1512	А	O4'-C1'-N9	5.13	112.30	108.20
30	a	1514	G	O3'-P-O5'	-5.13	94.25	104.00
7	А	436	А	O3'-P-O5'	-5.13	94.26	104.00
7	А	123	G	OP2-P-O3'	5.12	116.47	105.20
7	А	1406	А	O3'-P-O5'	-5.12	94.27	104.00
30	a	987	А	O3'-P-O5'	-5.12	94.27	104.00
7	А	223	G	OP2-P-O3'	5.11	116.45	105.20
7	А	2457	G	P-O3'-C3'	5.11	125.83	119.70
7	А	2695	С	O4'-C1'-N1	5.11	112.29	108.20
7	А	1207	С	OP2-P-O3'	5.11	116.44	105.20
7	А	1559	C	O3'-P-O5'	-5.11	94.30	104.00
30	а	829	U	OP2-P-O3'	5.10	116.43	105.20
7	А	297	G	O3'-P-O5'	-5.10	94.31	104.00
7	А	2458	G	O3'-P-O5'	-5.10	94.31	104.00
7	А	2601	А	C1'-O4'-C4'	-5.10	105.82	109.90
7	А	1030	G	O4'-C1'-N9	5.09	112.28	108.20
7	A	2720	С	05'-P-OP1	-5.09	101.12	105.70
30	a	410	G	C3'-C2'-C1'	5.09	105.57	101.50
30	a	650	A	C3'-C2'-C1'	5.09	105.57	101.50
30	a	254	A	O3'-P-O5'	-5.08	94.34	104.00
7	A	481	U	O3'-P-O5'	-5.08	94.35	104.00
7	А	543	A	O3'-P-O5'	-5.08	94.35	104.00
7	А	1197	A	O3'-P-O5'	-5.07	94.36	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	2638	U	O4'-C1'-N1	5.07	112.26	108.20
7	А	679	A	O3'-P-O5'	5.07	113.63	104.00
7	А	1293	A	O4'-C1'-N9	-5.07	104.15	108.20
7	А	2259	G	OP2-P-O3'	5.07	116.35	105.20
7	А	996	G	OP2-P-O3'	5.06	116.33	105.20
7	А	1279	С	O3'-P-O5'	-5.06	94.39	104.00
7	А	2457	G	OP2-P-O3'	5.06	116.33	105.20
7	А	1514	С	C1'-O4'-C4'	-5.05	105.86	109.90
7	А	583	G	O3'-P-O5'	-5.05	94.41	104.00
30	a	762	А	C3'-C2'-C1'	-5.05	97.46	101.50
7	А	2271	G	O3'-P-O5'	-5.04	94.42	104.00
30	a	122	G	O5'-P-OP2	-5.04	101.16	105.70
7	А	626	G	O5'-P-OP2	-5.04	101.17	105.70
7	А	345	A	OP1-P-O3'	5.04	116.28	105.20
7	А	1501	U	O3'-P-O5'	-5.04	94.43	104.00
30	a	707	G	O3'-P-O5'	-5.04	94.43	104.00
7	А	2057	U	O3'-P-O5'	-5.03	94.44	104.00
7	А	208	G	C3'-C2'-C1'	-5.03	97.47	101.50
30	a	474	A	C3'-C2'-C1'	5.03	105.53	101.50
7	А	2622	U	O3'-P-O5'	-5.03	94.44	104.00
7	А	1072	A	OP2-P-O3'	5.03	116.26	105.20
7	А	528	G	O4'-C1'-N9	5.02	112.22	108.20
7	А	1018	G	O3'-P-O5'	-5.02	94.47	104.00
7	А	1067	А	O3'-P-O5'	-5.01	94.47	104.00
30	a	19	U	C4'-C3'-C2'	-5.01	97.59	102.60
7	А	705	A	O5'-P-OP2	-5.01	101.19	105.70
7	А	896	A	OP2-P-O3'	5.01	116.22	105.20
30	a	16	U	O4'-C1'-N1	5.01	112.21	108.20
7	А	1851	G	O5'-P-OP1	5.00	116.71	110.70

There are no chirality outliers.

All (40) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	0	41	ARG	Sidechain
1	0	6	ARG	Sidechain
3	2	36	ARG	Sidechain
4	3	13	ARG	Sidechain
7	А	1363	G	Sidechain
7	А	2497	А	Sidechain
7	А	2593	А	Sidechain
7	А	510	G	Sidechain

	3	1	1 0	
Mol	Chain	Res	Type	Group
7	А	558	G	Sidechain
9	С	13	ARG	Sidechain
9	С	14	ARG	Sidechain
9	С	156	ARG	Sidechain
9	С	189	ARG	Sidechain
9	С	212	ARG	Sidechain
9	С	217	ARG	Sidechain
9	С	238	ARG	Sidechain
9	С	274	ARG	Sidechain
9	С	43	ARG	Sidechain
9	С	87	ARG	Sidechain
10	D	130	ARG	Sidechain
10	D	57	ARG	Sidechain
10	D	8	ARG	Sidechain
11	Е	106	ARG	Sidechain
11	Е	107	ARG	Sidechain
16	L	60	ARG	Sidechain
19	0	17	ARG	Sidechain
20	Р	104	ARG	Sidechain
20	Р	94	ARG	Sidechain
21	Q	51	ARG	Sidechain
25	U	32	ARG	Sidechain
27	Х	16	ASN	Peptide
27	Х	3	ARG	Sidechain
48	f	77	ARG	Sidechain
48	f	87	ARG	Sidechain
40	g	138	ARG	Sidechain
40	g	14	PRO	Peptide
46	h	42	ARG	Sidechain
46	h	79	ARG	Sidechain
33	1	123	ARG	Sidechain
35	q	4	ARG	Sidechain

Continued from previous page...

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	0	433	0	450	0	0

	Chain	Non H	$\mathbf{H}(\mathbf{modol})$	H(addad)	Clashos	Symm Clashos
		402				Symm-Clashes
	1	400	0	411	0	0
3		508	0	410 577	0	0
4	3	02Z	0	077	4	0
	4	297	0	209 246		0
0	0	300 50004	0	340	5	0
<u> </u>	A	58904 9209	0	29002	59	0
8	B	2392	0	1213	1	0
9	C	2094	0	2181	2	0
10	D	1575	0	1642	5	0
11	E	1567	0	1652	2	0
12	F'	1405	0	1467	4	0
13	G	1342	0	1388	1	0
14	J	1142	0	1182	1	0
15	K	921	0	977	4	0
16	L	1082	0	1132	2	0
17	М	1076	0	1145	3	0
18	N	954	0	983	3	0
19	0	913	0	947	1	0
20	Р	945	0	1020	2	0
21	Q	950	0	1018	4	0
22	R	795	0	838	2	0
23	S	850	0	911	1	0
24	Т	716	0	764	1	0
25	U	770	0	824	0	0
26	W	650	0	662	0	0
27	Х	468	0	514	3	0
28	Y	532	0	569	0	0
29	Z	456	0	491	0	0
30	a	32891	0	16559	0	0
31	е	1170	0	1247	0	0
32	k	847	0	860	0	0
33	1	1047	0	1107	0	0
34	0	730	0	759	0	0
35	q	699	0	739	0	0
36	t	658	0	715	0	0
37	W	1645	0	829	0	0
37	у	1645	0	829	0	0
38	8	120	0	65	0	0
39	с	1607	0	1644	0	0
40	g	1199	0	1256	0	0
41	i	994	0	1035	0	0
42	j	788	0	832	0	0

			<i>puye</i>			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
43	m	942	0	1006	0	0
44	n	498	0	529	0	0
45	S	668	0	682	0	0
46	h	958	0	1020	0	0
47	r	522	0	558	0	0
48	f	755	0	746	0	0
49	7	67	0	71	0	0
50	0	1	0	0	0	0
50	1	1	0	0	0	0
50	4	1	0	0	0	0
50	6	1	0	0	0	0
50	n	1	0	0	0	0
51	А	155	0	0	0	0
51	В	1	0	0	0	0
51	С	1	0	0	0	0
51	D	1	0	0	0	0
51	a	40	0	0	0	0
51	W	1	0	0	0	0
52	А	40	0	0	0	0
52	С	2	0	0	0	0
52	U	1	0	0	0	0
53	У	7	0	7	0	0
54	3	3	0	0	0	0
54	7	8	0	0	0	0
54	А	811	0	0	0	0
54	В	5	0	0	0	0
54	С	15	0	0	0	0
54	D	1	0	0	0	0
54	Е	5	0	0	0	0
54	L	5	0	0	0	0
54	Ν	3	0	0	0	0
54	Р	3	0	0	0	0
54	Q	3	0	0	0	0
54	Т	1	0	0	0	0
54	a	132	0	0	0	0
54	i	1	0	0	0	0
54	j	1	0	0	0	0
54	k	1	0	0	0	0
54	W	21	0	0	0	0
54	У	3	0	0	0	0
All	All	136664	0	88810	91	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including

hydrogen atoms). The all-atom clashscore for this structure is 1.

All (91) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:A:1808:U:H5	7:A:1813:A:N7	1.91	0.69
7:A:790:A:O2'	7:A:1704:U:OP1	2.13	0.63
7:A:1411:U:HO2'	7:A:2241:A:H8	1.46	0.63
11:E:32:VAL:HG21	11:E:108:LEU:HD23	1.82	0.61
7:A:761:U:H2'	7:A:763:A:H2	1.66	0.61
17:M:77:LYS:NZ	17:M:86:GLY:O	2.34	0.60
7:A:2435:C:C6	16:L:69:ILE:HD13	2.37	0.59
7:A:2906:U:O2	18:N:41:ARG:NH2	2.36	0.58
7:A:1327:U:H5	7:A:1365:U:O2	1.87	0.57
27:X:6:VAL:HG21	27:X:47:VAL:HB	1.88	0.55
7:A:2590:A:N3	15:K:23:LYS:NZ	2.55	0.54
13:G:51:LEU:HD21	13:G:73:LEU:HD13	1.92	0.51
7:A:761:U:H2'	7:A:763:A:C2	2.46	0.49
7:A:840:A:OP2	7:A:2100:A:O2'	2.28	0.49
7:A:2595:A:N1	15:K:28:SER:OG	2.39	0.49
4:3:31:HIS:HD2	7:A:2450:G:N7	2.10	0.49
6:6:33:VAL:HG11	12:F:106:VAL:HG13	1.95	0.49
7:A:1028:C:O2	7:A:1028:C:O5'	2.30	0.49
7:A:1947:A:H8	7:A:1948:A:H62	1.62	0.48
7:A:1066:A:N1	7:A:1187:U:O2'	2.40	0.47
7:A:2785:U:H5	7:A:2787:A:N7	2.13	0.47
16:L:17:ASN:HD21	16:L:27:ASN:HD22	1.61	0.47
9:C:144:ILE:HG21	9:C:184:ILE:HD13	1.97	0.47
24:T:58:ASN:ND2	24:T:77:ARG:HH11	2.12	0.47
7:A:2320:U:OP1	7:A:2409:U:O2'	2.30	0.47
23:S:10:VAL:HG11	23:S:46:ILE:HG21	1.97	0.47
7:A:1681:U:H2'	7:A:1682:C:C6	2.50	0.47
10:D:110:VAL:HG13	10:D:200:ILE:HG23	1.97	0.46
7:A:140:A:N1	7:A:1640:G:O2'	2.44	0.46
7:A:1074:A:N3	7:A:2515:G:O2'	2.39	0.46
10:D:28:ILE:HD13	10:D:188:ILE:HD12	1.96	0.46
7:A:2229:C:O2	7:A:2255:C:N4	2.48	0.46
7:A:999:A:OP2	17:M:18:ARG:NH2	2.49	0.46
7:A:2498:A:H4'	17:M:56:ARG:HD2	1.98	0.45
10:D:126:HIS:CD2	10:D:159:LEU:HB3	2.51	0.45
22:R:25:LEU:HD13	22:R:33:VAL:HG21	1.98	0.45
7:A:1292:G:H1	21:Q:37:GLN:HE21	1.64	0.45
7:A:183:A:OP1	7:A:184:G:H5"	2.17	0.45

Atom-1	Atom-2	Interatomic $(\overset{1}{\lambda})$	Clash
7. A . 1074. A . N6	$7 \cdot \Lambda \cdot 1171 \cdot C \cdot H2^{\prime}$	2 32	$\frac{0.45}{0.45}$
6.6.14.VAL:HG11	$12 \cdot \text{F} \cdot 106 \cdot \text{VAL} \cdot \text{HC} 21$	1.98	0.45
7. A. 00.0. C. H2'	$\frac{12.1.100.}{7.4.010} \times \frac{10.11021}{7.4}$	2.17	0.45
7.A.1350.C.C2	7.A.910.A.04 7.A.1368.U.H5"	2.17	0.45
$7.\Lambda.1335.0.02$ $7.\Lambda.1480.\Lambda.H2^{\prime}$	$7 \cdot \Lambda \cdot 1481 \cdot G \cdot \Omega A'$	2.01	0.45
7.1.1400.11.112 7.4.2006.C.02'	7·Δ·2098·C·H5'	2.17	0.45
7.Δ.760.C.H2 [']	7·Δ·761·U·C6	2.17	0.45
0.C.20.PRO.HC2	9.C.34.LEU.HD11	1 00	0.45
7·A·2092·C·O2	7·A·2479·A·N1	2.49	0.49
7.A.1618.A.H2'	7:A:1619:A:C8	2.49	0.44
10·D·17·ALA·HB2	10·D·23·ILE·HD13	1.98	0.44
4·3·31·HIS·HE1	$7 \cdot \Delta \cdot 2421 \cdot \Delta \cdot OP2$	1.90	0.44
7·Δ·2055·U·H2 [']	$7:\underline{A}:2056:\underline{C}:\underline{O4}'$	2.17	0.44
20·P·100·LEU·HD11	20.P.110.ILE.HD11	2.11	0.44
18·N·59·ABG·HA	18·N·84·PHE·CZ	2.00	0.44
$\frac{10.10.09.1110.1111}{7\cdot\Delta\cdot210\cdot\Delta\cdotH2^{\prime}}$	$7 \cdot \Delta \cdot 211 \cdot C \cdot \Omega A'$	2.52	0.44
$7 \cdot \Lambda \cdot 1710 \cdot \Lambda \cdot H2$	$7 \cdot \Lambda \cdot 1711 \cdot G \cdot \Omega \Lambda'$	2.10	0.44
12·F·70·LEU·HD13	12·F·85·ILE·HC21	2.11	0.44
$\frac{12.1 \cdot 19.1110 \cdot 11013}{7 \cdot 4 \cdot 248 \cdot G \cdot \Omega^2}$	$7 \cdot 4 \cdot 431 \cdot 4 \cdot N1$	2.00	0.44
7:A:614:G:H2'	7.A.2059.A.N7	2.40	0.43
4·3·26·HIS·CD2	4:3:46:LVS:0	2.55	0.43
6:6:36:CYS:SG	6:6:37:SEB:N	2.91	0.43
$\frac{7 \cdot A \cdot 6 \cdot A \cdot O2}{7 \cdot A \cdot 6 \cdot A \cdot O2}$	14.J.136.GLN.NE2	2.51	0.43
7:A:1259:G:OP1	21:Q:22:LYS:NZ	2.02	0.43
15:K:24:VAL:HG13	15:K:33:ALA:HB2	2.00	0.43
4:3:26:HIS:HD2	4:3:46:LYS:O	2.02	0.43
7:A:1482:G:H2'	7:A:1483:A:O4'	2.19	0.43
7:A:2360:G:O2'	7:A:2365:A:N1	2.43	0.43
7:A:1512:G:H2'	7:A:1513:U:O4'	2.19	0.42
7:A:539:G:H2'	7:A:539:G:N3	3.22	0.42
7:A:1411:U:O2'	7:A:2241:A:H8	2.00	0.42
7:A:1066:A:C2	7:A:1187:U:C2	3.07	0.42
8:B:76:A:C2	8:B:97:A:C4	3.07	0.42
7:A:384:A:H2'	7:A:385:G:O4'	2.20	0.42
7:A:444:U:H5"	27:X:32:ASN:HB2	2.02	0.42
7:A:1961:A:H2'	7:A:1962:G:O4'	2.20	0.42
21:Q:94:MET:HE1	22:R:13:LYS:HB2	2.01	0.42
7:A:523:G:H4'	7:A:548:A:N1	2.35	0.42
7:A:576:G:N3	7:A:576:G:H2'	2.35	0.41
7:A:1807:U:H2'	7:A:1813:A:N6	2.35	0.41
21:Q:58:ARG:HA	21:Q:61:TRP:CE3	2.56	0.41

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
11:E:131:LEU:HD21	11:E:142:ILE:HD12	2.03	0.41
7:A:740:A:O2'	7:A:1392:A:N3	2.45	0.41
7:A:1404:A:OP1	27:X:12:THR:HG21	2.21	0.41
19:O:11:ARG:HD2	19:O:100:TYR:CZ	2.56	0.41
20:P:43:PHE:CE2	20:P:72:ARG:HG3	2.56	0.41
7:A:1366:C:O3'	18:N:108:ARG:NH2	2.48	0.41
10:D:49:ILE:HG23	10:D:88:MET:HE1	2.03	0.41
15:K:35:ILE:HG21	15:K:103:ALA:HB3	2.03	0.41
7:A:685:U:H2'	7:A:686:C:C6	2.56	0.40
7:A:1033:C:O2'	7:A:1046:A:N3	2.46	0.40
7:A:1877:A:H2'	7:A:1878:G:O4'	2.20	0.40
12:F:70:ALA:HB2	12:F:79:LEU:HD11	2.02	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	0	53/59~(90%)	50 (94%)	3~(6%)	0	100	100
2	1	46/49~(94%)	45~(98%)	1 (2%)	0	100	100
3	2	42/44~(96%)	41 (98%)	1 (2%)	0	100	100
4	3	63/66~(96%)	63 (100%)	0	0	100	100
5	4	35/37~(95%)	34~(97%)	1 (3%)	0	100	100
6	6	44/65~(68%)	39~(89%)	5 (11%)	0	100	100
9	С	271/277~(98%)	263 (97%)	8 (3%)	0	100	100
10	D	205/209~(98%)	200 (98%)	5 (2%)	0	100	100
11	Ε	204/207~(99%)	200 (98%)	4 (2%)	0	100	100
12	F	176/179~(98%)	167 (95%)	9 (5%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
13	G	173/179~(97%)	162 (94%)	10 (6%)	1 (1%)	22	27
14	J	142/145~(98%)	138 (97%)	4 (3%)	0	100	100
15	К	120/122 (98%)	113 (94%)	7 (6%)	0	100	100
16	L	144/146~(99%)	139 (96%)	4 (3%)	1 (1%)	19	23
17	М	133/144 (92%)	131 (98%)	2 (2%)	0	100	100
18	Ν	117/120~(98%)	113 (97%)	4 (3%)	0	100	100
19	О	118/120 (98%)	112 (95%)	6 (5%)	0	100	100
20	Р	113/115~(98%)	110 (97%)	3 (3%)	0	100	100
21	Q	116/119~(98%)	114 (98%)	2 (2%)	0	100	100
22	R	100/102~(98%)	99~(99%)	1 (1%)	0	100	100
23	S	108/113~(96%)	107 (99%)	1 (1%)	0	100	100
24	Т	87/95~(92%)	86 (99%)	1 (1%)	0	100	100
25	U	100/103~(97%)	99~(99%)	1 (1%)	0	100	100
26	W	83/94~(88%)	80 (96%)	3 (4%)	0	100	100
27	Х	59/62~(95%)	57 (97%)	2 (3%)	0	100	100
28	Y	63/66~(96%)	63 (100%)	0	0	100	100
29	Ζ	56/59~(95%)	55~(98%)	1 (2%)	0	100	100
31	е	156/166~(94%)	140 (90%)	14 (9%)	2(1%)	10	11
32	k	113/131~(86%)	95~(84%)	16 (14%)	2(2%)	7	6
33	1	133/138~(96%)	125~(94%)	8 (6%)	0	100	100
34	О	85/89~(96%)	78~(92%)	7 (8%)	0	100	100
35	q	83/87~(95%)	75~(90%)	8 (10%)	0	100	100
36	t	84/88~(96%)	80~(95%)	4 (5%)	0	100	100
39	с	202/206~(98%)	185 (92%)	17 (8%)	0	100	100
40	g	149/156~(96%)	140 (94%)	9 (6%)	0	100	100
41	i	126/130~(97%)	118 (94%)	8 (6%)	0	100	100
42	j	96/102~(94%)	91 (95%)	5 (5%)	0	100	100
43	m	$\overline{116/121} \ (96\%)$	115 (99%)	1 (1%)	0	100	100
44	n	58/61~(95%)	58 (100%)	0	0	100	100
45	s	81/92~(88%)	77~(95%)	4 (5%)	0	100	100
46	h	120/132~(91%)	95 (79%)	20 (17%)	5 (4%)	2	1

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
47	r	63/79~(80%)	61~(97%)	2(3%)	0	100 100
48	f	90/95~(95%)	85~(94%)	5~(6%)	0	100 100
49	7	7/9~(78%)	5 (71%)	2(29%)	0	100 100
All	All	4733/4978~(95%)	4503 (95%)	219 (5%)	11 (0%)	45 55

All (11) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
31	е	131	ASN
32	k	34	VAL
46	h	113	LEU
46	h	122	GLN
46	h	44	GLY
46	h	46	ILE
16	L	29	LYS
31	е	149	ARG
32	k	49	ALA
46	h	80	ILE
13	G	127	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	0	49/53~(92%)	48 (98%)	1 (2%)	50	68
2	1	46/47~(98%)	46 (100%)	0	100	100
3	2	39/39~(100%)	38~(97%)	1 (3%)	41	58
4	3	55/56~(98%)	54 (98%)	1 (2%)	54	71
5	4	35/35~(100%)	35~(100%)	0	100	100
6	6	39/54~(72%)	37~(95%)	2(5%)	20	29
9	С	221/225~(98%)	218 (99%)	3 (1%)	62	77
10	D	168/170~(99%)	168 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
11	Ε	169/170~(99%)	169 (100%)	0	100	100
12	F	153/154~(99%)	153 (100%)	0	100	100
13	G	148/151~(98%)	146~(99%)	2(1%)	62	77
14	J	122/123~(99%)	121 (99%)	1 (1%)	79	89
15	Κ	101/101 (100%)	101 (100%)	0	100	100
16	L	110/110 (100%)	110 (100%)	0	100	100
17	М	109/116~(94%)	108 (99%)	1 (1%)	75	87
18	Ν	99/100~(99%)	99 (100%)	0	100	100
19	О	93/93~(100%)	93 (100%)	0	100	100
20	Р	100/100 (100%)	99~(99%)	1 (1%)	73	85
21	Q	97/98~(99%)	97 (100%)	0	100	100
22	R	84/84 (100%)	84 (100%)	0	100	100
23	S	91/93~(98%)	91 (100%)	0	100	100
24	Т	80/85~(94%)	80 (100%)	0	100	100
25	U	86/87~(99%)	86 (100%)	0	100	100
26	W	65/74~(88%)	65 (100%)	0	100	100
27	Х	49/50~(98%)	49 (100%)	0	100	100
28	Y	56/57~(98%)	56 (100%)	0	100	100
29	Z	52/53~(98%)	52 (100%)	0	100	100
31	е	122/130~(94%)	115 (94%)	7 (6%)	17	25
32	k	87/100 (87%)	84 (97%)	3 (3%)	32	47
33	1	114/116 (98%)	108 (95%)	6(5%)	19	28
34	0	82/83~(99%)	82 (100%)	0	100	100
35	q	78/80~(98%)	74 (95%)	4 (5%)	20	29
36	t	69/70~(99%)	68~(99%)	1 (1%)	62	77
39	с	167/168~(99%)	167 (100%)	0	100	100
40	g	127/132~(96%)	124 (98%)	3 (2%)	44	61
41	i	101/102~(99%)	101 (100%)	0	100	100
42	j	89/92~(97%)	89 (100%)	0	100	100
43	m	101/104 (97%)	99~(98%)	2 (2%)	50	68
44	n	53/54~(98%)	53 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
45	S	72/81~(89%)	72~(100%)	0	100 100
46	h	102/112~(91%)	93~(91%)	9~(9%)	8 10
47	r	56/64~(88%)	55~(98%)	1 (2%)	54 71
48	f	81/84~(96%)	77~(95%)	4(5%)	21 31
49	7	6/6~(100%)	6 (100%)	0	100 100
All	All	4023/4156 (97%)	3970(99%)	53 (1%)	64 79

All (53) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	0	50	ASN
3	2	25	LYS
4	3	31	HIS
6	6	36	CYS
6	6	39	CYS
9	С	63	ARG
9	С	87	ARG
9	С	262	LYS
13	G	8	LEU
13	G	18	THR
14	J	61	GLU
17	М	6	ARG
20	Р	39	ARG
31	е	133	PRO
31	е	136	MET
31	е	137	ILE
31	е	140	THR
31	е	146	GLU
31	е	148	LYS
31	е	155	LYS
32	k	34	VAL
32	k	38	ASP
32	k	44	ILE
33	1	5	ASN
33	1	10	LYS
33	1	50	VAL
33	l	123	ARG
33	1	127	ARG
33	1	128	SER
35	q	8	LYS

Mol	Chain	Res	Type
35	q	13	ARG
35	q	56	LYS
35	q	59	ASP
36	t	59	ASP
40	g	23	VAL
40	g	43	LEU
40	g	59	MET
43	m	107	ARG
43	m	114	ARG
46	h	9	ASP
46	h	26	GLU
46	h	34	ARG
46	h	45	PHE
46	h	66	TYR
46	h	71	GLU
46	h	74	ILE
46	h	110	GLN
46	h	112	VAL
47	r	53	ASN
48	f	11	ARG
48	f	33	ASN
48	f	52	ILE
48	f	77	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (31) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	0	40	HIS
1	0	50	ASN
1	0	55	ASN
4	3	26	HIS
4	3	31	HIS
4	3	35	ASN
4	3	60	GLN
11	Ε	10	ASN
11	Ε	46	GLN
13	G	129	GLN
14	J	136	GLN
15	Κ	3	GLN
16	L	27	ASN
18	Ν	76	ASN
21	Q	37	GLN

Mol	Chain	Res	Type
23	S	95	GLN
24	Т	58	ASN
27	Х	17	ASN
27	Х	23	ASN
29	Z	59	GLN
32	k	121	ASN
33	1	59	ASN
33	1	86	ASN
34	0	51	HIS
39	с	133	GLN
42	j	56	HIS
42	j	78	ASN
43	m	118	ASN
46	h	122	GLN
47	r	21	ASN
47	r	69	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
30	a	1532/1554~(98%)	306~(19%)	0
37	W	76/77~(98%)	13 (17%)	0
37	У	76/77~(98%)	12 (15%)	0
38	8	5/6~(83%)	1 (20%)	0
7	А	2736/2925~(93%)	341 (12%)	82 (2%)
8	В	111/119~(93%)	16 (14%)	5(4%)
All	All	4536/4758~(95%)	689~(15%)	87 (1%)

All (689) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
7	А	12	А
7	А	13	А
7	А	34	U
7	А	45	G
7	А	46	С
7	А	60	G
7	А	63	G
7	А	71	А
7	А	74	U
7	А	75	G

Mol	Chain	Res	Type
7	А	93	С
7	А	118	A
7	А	119	U
7	А	163	U
7	А	164	U
7	А	166	А
7	А	175	G
7	А	176	А
7	А	177	G
7	А	183	А
7	А	184	G
7	А	199	А
7	А	202	А
7	A	203	U
7	А	216	А
7	A	219	А
7	А	224	А
7	А	225	А
7	А	226	А
7	А	232	U
7	А	233	G
7	А	236	А
7	А	248	G
7	А	251	G
7	А	258	А
7	А	268	А
7	А	275	А
7	А	284	С
7	А	285	U
7	А	288	С
7	А	300	G
7	A	301	U
7	А	302	A
7	А	308	С
7	А	309	U
7	А	310	С
7	А	334	G
7	А	345	A
7	А	346	G
7	А	355	A
7	А	373	A
7	А	374	А

Mol	Chain	Res	Type
7	А	407	А
7	А	408	G
7	А	410	G
7	А	418	A
7	А	419	G
7	А	433	G
7	А	458	G
7	А	459	А
7	А	471	G
7	А	487	G
7	А	491	С
7	А	498	U
7	А	503	С
7	A	504	A
7	A	528	G
7	A	551	A
7	А	554	U
7	А	555	С
7	А	556	С
7	А	568	G
7	А	576	G
7	А	577	U
7	А	578	A
7	А	579	G
7	А	584	A
7	А	591	U
7	А	595	G
7	А	600	А
7	А	607	G
7	A	615	U
7	A	616	A
7	A	617	G
7	A	619	A
7	A	630	A
7	A	631	G
7	A	647	A
7	A	658	A
7	A	659	A
7	A	673	A
7	A	680	G
7	A	683	A
7	A	691	U

Mol	Chain	Res	Type
7	А	692	А
7	А	700	U
7	А	701	G
7	А	732	А
7	А	733	U
7	А	761	U
7	А	762	А
7	А	764	С
7	А	777	С
7	А	793	U
7	А	794	U
7	А	811	А
7	А	812	G
7	А	822	G
7	А	829	А
7	А	831	U
7	А	832	G
7	А	852	G
7	А	859	С
7	А	866	А
7	А	874	U
7	А	875	U
7	А	892	U
7	А	906	G
7	А	913	А
7	А	924	U
7	А	931	С
7	А	940	G
7	А	943	А
7	A	944	С
7	А	947	A
7	A	957	A
7	A	959	C
7	A	964	A
7	A	973	G
7	A	976	U
7	A	987	A
7	A	991	A
7	A	992	G
7	A	1005	A
7	A	1007	G
7	А	1020	A

Mol	Chain	Res	Type
7	А	1029	А
7	А	1042	А
7	А	1051	С
7	А	1058	U
7	А	1059	А
7	А	1068	G
7	А	1072	А
7	А	1079	U
7	А	1084	А
7	А	1093	G
7	А	1099	С
7	А	1153	G
7	A	1154	U
7	А	1155	С
7	A	1156	G
7	A	1157	A
7	А	1158	G
7	А	1174	А
7	А	1178	U
7	А	1179	А
7	А	1180	С
7	А	1181	С
7	А	1185	G
7	А	1188	А
7	А	1199	С
7	А	1278	G
7	А	1293	А
7	А	1296	G
7	А	1311	G
7	А	1312	А
7	А	1315	G
7	A	1339	A
7	А	1340	A
7	A	1341	U
7	А	1342	G
7	А	1346	A
7	А	1389	С
7	А	1391	U
7	A	1404	A
7	А	1418	U
7	A	1423	A
7	А	1435	U

Mol	Chain	Res	Type
7	А	1450	С
7	А	1457	U
7	А	1458	U
7	А	1459	U
7	А	1460	G
7	А	1461	А
7	А	1465	А
7	А	1473	А
7	А	1474	С
7	А	1489	U
7	А	1490	А
7	А	1499	А
7	А	1507	U
7	A	1514	С
7	А	1525	G
7	A	1526	G
7	А	1528	U
7	А	1529	G
7	А	1531	G
7	А	1536	А
7	А	1539	С
7	А	1542	А
7	А	1543	U
7	А	1544	С
7	А	1557	G
7	А	1558	G
7	А	1595	U
7	А	1607	C
7	А	1608	А
7	А	1617	А
7	A	1626	U
7	A	1632	G
7	A	1653	A
7	A	1654	A
7	A	1691	A
7	A	1692	U
7	А	1693	С
7	A	1719	G
7	A	1752	G
7	A	1758	U
7	A	1759	U
7	А	1779	G

Mol	Chain	Res	Type
7	А	1791	А
7	А	1792	G
7	А	1793	G
7	А	1802	А
7	А	1811	С
7	А	1820	А
7	А	1829	С
7	А	1830	G
7	А	1845	А
7	А	1858	А
7	А	1877	А
7	А	1887	G
7	А	1899	U
7	А	1900	А
7	А	1902	G
7	A	1935	G
7	А	1943	С
7	А	1948	А
7	А	1958	G
7	А	1959	G
7	А	1966	А
7	А	1967	А
7	А	1984	U
7	А	1992	С
7	А	1996	С
7	А	1999	А
7	А	2000	A
7	А	2001	G
7	А	2011	U
7	А	2020	U
7	А	2022	U
7	А	2026	A
7	А	2052	А
7	A	2060	A
7	A	2061	G
7	A	2062	A
7	А	2072	С
7	A	2084	С
7	А	2085	G
7	A	$2\overline{089}$	A
7	A	2090	G
7	А	2098	G

Mol	Chain	Res	Type
7	А	2122	G
7	А	2126	G
7	А	2128	U
7	А	2131	U
7	А	2132	А
7	А	2218	U
7	А	2227	А
7	А	2232	G
7	А	2233	С
7	А	2240	U
7	А	2254	А
7	А	2267	G
7	А	2268	G
7	А	2297	А
7	А	2312	С
7	А	2316	А
7	А	2318	G
7	А	2334	U
7	А	2337	G
7	А	2341	U
7	А	2348	С
7	А	2349	А
7	А	2350	G
7	А	2351	А
7	А	2354	G
7	А	2356	А
7	А	2363	С
7	А	2364	А
7	А	2376	С
7	A	2379	С
7	А	2408	G
7	А	2412	G
7	A	2414	C
7	А	2431	U
7	A	2435	C
7	A	2453	С
7	A	2454	A
7	A	2458	G
7	A	2459	A
7	A	2464	A
7	A	2470	C
7	А	2476	G

Mol	Chain	Res	Type
7	А	2477	А
7	А	2505	А
7	А	2531	G
7	А	2534	G
7	А	2547	А
7	А	2558	G
7	А	2583	U
7	А	2595	А
7	А	2596	G
7	А	2602	С
7	А	2631	А
7	А	2632	G
7	А	2638	U
7	A	2642	U
7	А	2690	G
7	А	2692	G
7	А	2718	PSU
7	А	2720	С
7	А	2743	G
7	А	2755	U
7	А	2764	G
7	А	2773	G
7	А	2777	А
7	А	2786	А
7	А	2794	А
7	А	2807	А
7	А	2819	А
7	А	2824	G
7	А	2826	А
7	А	2828	G
7	А	2845	А
7	А	2848	А
7	А	2860	А
7	А	2892	G
7	А	2893	А
7	А	2897	G
7	А	2918	G
8	В	10	G
8	В	12	U
8	В	14	G
8	В	15	С
8	В	23	U

Mol	Chain	Res	Type
8	В	38	U
8	В	43	А
8	В	49	G
8	В	50	А
8	В	54	U
8	В	55	А
8	В	87	U
8	В	88	С
8	В	97	А
8	В	107	G
8	В	108	С
30	a	9	G
30	a	11	G
30	a	24	G
30	a	33	G
30	a	34	А
30	a	41	G
30	a	49	C
30	a	50	С
30	a	51	U
30	a	52	А
30	a	53	А
30	a	61	А
30	a	63	G
30	a	68	G
30	a	70	G
30	a	72	А
30	a	77	U
30	a	83	С
30	a	84	U
30	a	85	U
30	a	87	С
30	a	89	С
30	a	90	С
30	a	93	G
30	a	95	U
30	a	99	A
30	a	113	G
30	a	114	A
30	a	119	C
30	a	123	U
30	a	127	U

Mol	Chain	Res	Type
30	a	128	А
30	a	130	С
30	a	133	G
30	a	143	С
30	a	144	U
30	a	145	G
30	a	146	G
30	a	158	G
30	a	159	А
30	a	160	А
30	a	161	А
30	a	162	С
30	a	168	С
30	a	172	U
30	a	173	A
30	a	180	G
30	a	181	G
30	a	188	G
30	a	189	А
30	a	192	С
30	a	194	С
30	a	195	А
30	a	197	G
30	a	209	А
30	a	213	G
30	a	218	U
30	a	219	U
30	a	222	G
30	a	224	U
30	a	231	U
30	a	234	А
30	a	248	С
30	a	253	U
30	a	255	G
30	a	259	G
30	a	272	C
30	a	274	G
30	a	275	С
30	a	281	А
30	a	283	G
30	a	297	G
30	a	313	G

Mol	Chain	Res	Type
30	a	314	А
30	a	329	А
30	a	332	G
30	a	335	А
30	a	336	С
30	a	337	А
30	a	340	G
30	a	347	С
30	a	353	С
30	a	355	G
30	a	359	G
30	a	360	С
30	a	362	G
30	a	374	С
30	a	375	U
30	a	376	U
30	a	377	С
30	a	380	С
30	a	385	G
30	a	391	А
30	a	405	А
30	a	406	С
30	a	410	G
30	a	411	С
30	a	412	G
30	a	414	G
30	a	419	А
30	a	421	G
30	a	422	А
30	a	429	U
30	a	430	С
30	a	431	G
30	a	432	G
30	a	435	C
30	a	436	G
30	a	437	U
30	a	441	G
30	a	442	C
30	a	444	С
30	a	445	U
30	a	450	U
30	a	451	U

Mol	Chain	Res	Type
30	a	456	А
30	a	461	С
30	a	463	А
30	a	465	U
30	a	467	С
30	a	470	U
30	a	471	U
30	a	474	А
30	a	475	А
30	a	477	A
30	a	479	G
30	a	483	G
30	a	485	A
30	a	493	G
30	a	494	G
30	a	497	C
30	a	503	С
30	a	504	A
30	a	505	G
30	a	507	A
30	a	508	A
30	a	509	G
30	a	510	С
30	a	514	G
30	a	519	A
30	a	520	С
30	a	521	U
30	a	525	U
30	a	526	G
30	a	527	C
30	a	530	G
30	a	536	G
30	a	539	G
30	a	540	U
30	a	541	A
30	a	542	A
30	a	544	A
30	a	546	G
30	a	551	U
30	a	552	G
30	a	553	G
30	a	556	A

Mol	Chain	Res	Type
30	a	558	С
30	a	568	А
30	a	569	А
30	a	571	U
30	a	581	А
30	a	582	А
30	a	585	G
30	a	586	G
30	a	596	G
30	a	597	G
30	a	621	С
30	a	624	С
30	a	630	А
30	a	631	А
30	a	632	С
30	a	633	С
30	a	637	G
30	a	641	G
30	a	642	U
30	a	643	С
30	a	651	А
30	a	659	А
30	a	674	А
30	a	675	G
30	a	709	G
30	a	711	А
30	a	727	А
30	a	730	А
30	a	732	U
30	a	733	G
30	a	758	A
30	a	762	А
30	a	764	G
30	a	786	A
30	a	803	A
30	a	824	A
30	a	826	С
30	a	845	G
30	a	849	G
30	a	850	U
30	a	853	С
30	a	856	С

Mol	Chain	Res	Type
30	a	869	С
30	a	880	U
30	a	924	А
30	a	925	А
30	a	936	G
30	a	941	С
30	a	944	С
30	a	945	А
30	a	970	U
30	a	971	U
30	a	976	G
30	a	978	А
30	a	979	A
30	a	981	G
30	a	985	А
30	a	986	G
30	a	987	А
30	a	994	С
30	a	1002	U
30	a	1003	G
30	a	1010	U
30	a	1014	А
30	a	1016	A
30	a	1030	G
30	a	1033	G
30	a	1035	С
30	a	1036	С
30	a	1039	U
30	a	1040	U
30	a	1041	С
30	a	1042	G
30	a	1044	G
30	a	1046	G
30	a	1049	G
30	a	1050	A
30	a	1051	G
30	a	1056	A
30	a	1058	G
30	a	1063	G
30	a	1065	A
30	a	1074	G
30	a	1075	U

Mol	Chain	Res	Type
30	a	1096	U
30	a	1099	G
30	a	1104	G
30	a	1105	U
30	a	1111	А
30	a	1134	G
30	a	1136	U
30	a	1140	А
30	a	1148	G
30	a	1149	U
30	a	1155	А
30	a	1168	U
30	a	1176	А
30	a	1177	C
30	a	1178	A
30	a	1193	G
30	a	1205	А
30	a	1206	А
30	a	1221	U
30	a	1222	А
30	a	1223	U
30	a	1236	А
30	a	1237	С
30	a	1247	А
30	a	1257	А
30	a	1266	А
30	a	1267	G
30	a	1269	G
30	a	1289	А
30	a	1296	А
30	a	1307	C
30	a	1309	G
30	a	1311	U
30	a	1314	G
30	a	1328	A
30	a	1329	C
30	a	1331	С
30	a	1344	С
30	a	1345	U
30	a	1347	G
30	a	1355	A
30	a	1373	U

Mol	Chain	Res	Type
30	a	1389	U
30	a	1390	U
30	a	1406	С
30	a	1407	А
30	a	1415	U
30	a	1427	А
30	a	1449	U
30	a	1451	А
30	a	1455	А
30	a	1459	U
30	a	1462	U
30	a	1464	G
30	a	1497	G
30	a	1502	A
30	a	1504	G
30	a	1513	A
30	a	1515	G
30	a	1516	U
30	a	1527	G
30	a	1529	А
30	a	1530	G
30	a	1539	G
30	a	1540	G
37	У	9	А
37	У	14	А
37	У	18	U
37	У	19	G
37	У	20	G
37	У	21	U
37	У	22	A
37	У	47	G
37	У	48	U
37	У	49	C
37	У	59	A
37	У	75	C
37	W	9	A
37	W	14	A
37	W	18	U
37	W	19	G
37	W	20	G
37	W	21	U
37	W	22	A

Continued from previous page...

Mol	Chain	Res	Type
37	W	23	G
37	W	47	G
37	W	48	U
37	W	49	С
37	W	59	А
37	W	77	А
38	8	19	С

All (87) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
7	А	12	A
7	А	60	G
7	А	67	А
7	А	92	G
7	А	98	U
7	А	172	U
7	А	176	А
7	А	183	А
7	А	184	G
7	A	202	A
7	А	224	А
7	А	299	U
7	А	300	G
7	А	337	А
7	А	389	А
7	А	406	G
7	А	407	А
7	А	410	G
7	А	493	G
7	А	504	А
7	А	549	А
7	А	558	G
7	A	599	G
7	A	615	U
7	A	662	U
7	A	691	U
7	A	727	А
7	А	732	A
7	A	793	U
7	A	811	A
7	A	831	U

Mol	Chain	Res	Type
7	А	852	G
7	А	855	G
7	А	874	U
7	А	990	С
7	А	1001	U
7	А	1004	U
7	А	1030	G
7	А	1041	С
7	А	1071	G
7	А	1092	А
7	А	1179	А
7	А	1180	С
7	А	1187	U
7	A	1188	A
7	А	1244	А
7	A	1246	G
7	А	1266	А
7	А	1278	G
7	А	1341	U
7	А	1344	С
7	А	1525	G
7	А	1530	G
7	А	1535	U
7	А	1543	U
7	А	1602	U
7	А	1653	А
7	А	1691	А
7	А	1751	U
7	А	1791	А
7	А	1876	А
7	A	1942	A
7	А	1947	А
7	A	2010	A
7	А	2026	А
7	А	2064	G
7	A	2127	U
7	А	2311	G
7	A	2315	A
7	А	2316	A
7	A	2348	С
7	А	2349	A
7	А	2435	С

Mol	Chain	Res	Type
7	А	2459	А
7	А	2476	G
7	А	2533	U
7	А	2558	G
7	А	2610	G
7	А	2631	А
7	А	2785	U
7	А	2819	А
7	А	2892	G
8	В	37	А
8	В	48	G
8	В	49	G
8	В	85	U
8	В	106	C

5.4 Non-standard residues in protein, DNA, RNA chains (i)

3 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal Truna	Turne	Chain	Dec	Tink	Bo	ond leng	ths	Bond angles		
INIOI	Ioi Type Chain I	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
7	2MA	А	2532	52,51,7	19,25,26	0.86	0	21,37,40	2.03	4 (19%)
7	PSU	А	2718	7	18,21,22	0.93	1 (5%)	22,30,33	0.82	0
7	OMG	А	2280	52,37,7	18,26,27	0.94	1 (5%)	19,38,41	0.97	2 (10%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
7	2MA	А	2532	52,51,7	-	2/3/25/26	0/3/3/3
7	PSU	А	2718	7	-	1/7/25/26	0/2/2/2
7	OMG	А	2280	52,37,7	-	1/5/27/28	0/3/3/3

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
7	А	2718	PSU	C6-C5	3.35	1.39	1.35
7	А	2280	OMG	C5-C6	-2.53	1.42	1.47

All (2) bond length outliers are listed below:

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	А	2532	2MA	C5-C6-N1	-6.87	116.50	121.01
7	А	2532	2MA	C5-C6-N6	3.44	125.58	120.35
7	А	2532	2MA	CM2-C2-N1	3.36	122.40	117.15
7	А	2532	2MA	C2-N1-C6	2.62	122.16	118.08
7	А	2280	OMG	O2'-C2'-C1'	2.20	113.45	109.09
7	А	2280	OMG	O6-C6-C5	2.14	128.56	124.37

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
7	А	2280	OMG	C1'-C2'-O2'-CM2
7	А	2718	PSU	O4'-C4'-C5'-O5'
7	А	2532	2MA	C4'-C5'-O5'-P
7	А	2532	2MA	O4'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 248 ligands modelled in this entry, 247 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Typ	Tuno	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Dec	Link	Bond lengths			Bond angles		
	туре		nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2						
53	PRO	У	101	37	5,7,8	0.67	0	7,8,10	0.87	0						

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
53	PRO	У	101	37	-	0/0/9/11	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

