

Dec 31, 2024 – 06:19 PM EST

PDB ID	:	8JXE
EMDB ID	:	EMD-36698
Title	:	rat megalin RAP complex head
Authors	:	Goto, S.; Tsutsumi, A.; Lee, Y.; Hosojima, M.; Kabasawa, H.; Komochi, K.;
		Yun-san, L.; Nagatoshi, S.; Tsumoto, K.; Nishizawa, T.; Kikkawa, M.; Saito,
		А.
Deposited on	:	2023-06-30
Resolution	:	3.20 Å(reported)
Based on initial model	:	

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$		
Clashscore	210492	15764		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	4660	26% 5% 68%			
1	В	4660	27% 5% 68%			
2	С	6	83%	17%		
2	Ι	6	83%	17%		
3	D	3	33%			
3	J	3	33%			
4	G	5	40%	20%		
4	К	5	80%	20%		

Mol	Chain	Length	Quality of chain	
_		_	60%	
5	H	5	100%	
5	т	Б	20%	
0	L	0	50%	
6	Е	2	100%	
			50%	
6	М	2	50%	50%
	ЪŢ	2	50%	
6	N	2	100%	
6	Р	2	50%	E00/
0	1		50%	50%
6	S	2	100%	
			100%	
6	Т	2	50%	50%
C	V	0		
0	V	2	100%	
6	W	2	100%	
			50%	
6	Y	2	100%	
		2	50%	
6	a	2	100%	
6	h	2	100%/	
0			33%	
7	F	3	33% 33%	33%
			33%	
7	U	3	33% 67%	
0	0	F	40%	
0	0	0	60%	40%
8	Q	5	80%	20%
	~		80%	
8	Х	5	60%	40%
		0	50%	
9	R	2	100%	
10	Z	5	600/	409/
10		5	00%	40%

2 Entry composition (i)

There are 14 unique types of molecules in this entry. The entry contains 23977 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called LDL receptor related protein 2.

Mol	Chain	Residues	Atoms					AltConf	Trace
1 A	1469	Total	С	Ν	0	\mathbf{S}	0	0	
	1405	11477	7193	2014	2187	83	0	0	
1 B	1468	Total	С	Ν	Ο	\mathbf{S}	0	0	
	1400	11468	7187	2013	2185	83	0	U	

• Molecule 2 is a protein called unclear peptide.

Mol	Chain	Residues	Atoms	AltConf	Trace
2	Ι	6	Total C N O 33 21 6 6	0	0
2	С	6	Total C N O 33 21 6 6	0	0

• Molecule 3 is a protein called unclear peptide.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
2		2	Total	С	Ν	Ο	\mathbf{S}	0	0
9 1	5	16	9	3	3	1	0	0	
2	2 D	2	Total	С	Ν	0	S	0	0
3 D	5	16	9	3	3	1	0	0	

• Molecule 4 is a protein called unclear peptide.

Mol	Chain	Residues	Atoms	AltConf	Trace
4	K	5	Total C N O 33 19 5 9	0	0
4	G	5	Total C N O 33 19 5 9	0	0

• Molecule 5 is a protein called unclear peptide.

Mol	Chain	Residues	Atoms	AltConf	Trace
5	L	5	Total C N O 28 16 6 6	0	0
5	Н	5	Total C N O 28 16 6 6	0	0

• Molecule 6 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
6	E	2	Total C N O	0	0
0	Ľ		28 16 2 10	0	0
6	М	2	Total C N O	0	0
0	111		28 16 2 10	0	0
6	Ν	2	Total C N O	0	0
0			28 16 2 10	0	0
6	Р	2	Total C N O	0	0
	1		28 16 2 10	0	0
6	S	2	Total C N O	0	0
	2	-	28 16 2 10	Ŭ	
6	Т	2	Total C N O	0	0
		_	28 16 2 10	, in the second	0
6	V	2	Total C N O	0	0
	•	-	28 16 2 10	Ŭ	Ŭ
6	W	2	Total C N O	0	0
	••	-	28 16 2 10	Ŭ	Ŭ
6	Y	2	Total C N O	0	0
	-	-	28 16 2 10	Ŭ	Ŭ
6	a	2	Total C N O	0	0
		-	28 16 2 10	Ŭ.	, in the second
6	b	2	Total C N O	0	0
	N	-	28 16 2 10		

• Molecule 7 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
7	F	3	Total C N O 39 22 2 15	0	0
7	U	3	Total C N O 39 22 2 15	0	0

• Molecule 8 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyran ose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
8	О	5	Total C N O 61 34 2 25	0	0
8	Q	5	Total C N O 61 34 2 25	0	0
8	Х	5	Total C N O 61 34 2 25	0	0

• Molecule 9 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-3)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	A	4ton	ns		AltConf	Trace
9	R	2	Total 28	C 16	N 2	O 10	0	0

• Molecule 10 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyra nose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-3)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	I	Aton	ns		AltConf	Trace
10	Z	5	Total 61	С 34	N 2	O 25	0	0

• Molecule 11 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	A	ton	ns		AltConf
11	Λ	1	Total	С	Ν	0	0
	A	1	14	8	1	5	0
11	Λ	1	Total	С	Ν	Ο	0
	A	1	14	8	1	5	0
11	Δ	1	Total	С	Ν	0	0
	A	1	14	8	1	5	0
11	Λ	1	Total	С	Ν	Ο	0
	Л	1	14	8	1	5	0
11	В	1	Total	С	Ν	Ο	0
11	D	1	14	8	1	5	0
11	В	1	Total	С	Ν	Ο	0
11	D	T	14	8	1	5	0
11	В	1	Total	С	Ν	Ο	0
	D	1	14	8	1	5	0
11	B	1	Total	С	Ν	Ο	0
	D	1	14	8	1	5	0

• Molecule 12 is 2-acetamido-2-deoxy-alpha-D-galactopyranose (three-letter code: A2G) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Α	ton	ns		AltConf
19	Λ	1	Total	С	Ν	Ο	0
12	Л	1	14	8	1	5	0
10	В	1	Total	С	Ν	Ο	0
12	D	1	14	8	1	5	0

• Molecule 13 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	AltConf
13	А	6	Total Ca 6 6	0
13	В	6	Total Ca 6 6	0

• Molecule 14 is NICKEL (II) ION (three-letter code: NI) (formula: Ni).

Mol	Chain	Residues	Atoms	AltConf
14	А	1	Total Ni 1 1	0
14	В	1	Total Ni 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: LDL receptor related protein 2

			•	••	•	٠				•		•		••	•																								
P2756	Y2759	R2760	D2762	Y2763 VD764	Y2764 N2765	D2766	C2767	G2768	6972U	S2771	D2772	E2773	A2714	G2776 C2776	LEU	ARG	ASN	CYS	SER	THR	GLU	PHE	THR	SER	ASN GLV	ARG	CYS TLE	PRO	LEU	TYR	CYS	ASN CT V	ILE	ASN	CYS	ASP	ASN	THR SER	ASP GLU LYS
ASN	PRO	PRO HTS	THR	PRO	ASP	PHE	THR LYS	CYS	GLN	THR	ASN	TLE	VAL	PRO ARG	ALA	PHE	CYS	ASP	ASP	ASN	ASP CYS	GLY	ASP GLY	SER	ASP	ASN	PRO TI F	TYR	CYS AL.A	SER	THR	CYS	SER	ASN	PHE	GLN CYS	LEU	PRO GLN	
ARG	ILE	PRO SER	TYR	PHE	CYS	GLY	GLU ALA	ASP	CYS	ASP	GLY	ASP	GLU	PRO ASP	THR	CYS GLY	SIH	SER	ASN	THR	CYS	ALA	GLN	PHE	GLN	ASP	ASN	ARG	CYS TLE	SER	ASN	TRP	CYS	ASP	ASP	ASN	CYS	GLY ASP MET	
SER	GLU	ASP GLN	ARG	SIH	CYS GLU	LEU	GLN	CYS	SER	THR	GLN	PHE THR	CYS	VAL	SER	ARG PRO	PRO	ASN	ARG	CYS	TLE PRO	GLN	TRP	VAL	CYS	GLY	ASP	ASP	CYS SFR	ASP	ALA LEU	ASP	LEU	GLN	CYS	THR MET	ARG	CYS SER	
ALA	GLU	PHE SER	CYS	ASN	GLY ARG	CYS	VAL ARG	GLN	SER	ARG	CYS	ASP ARG	ARG	ASN	CYS	GLY	TYR	SER	GLU	ARG	GLY CYS	SER	TYR PRO	PRO	CYS	ALA	ASN GI M	PHE	THR	GLN	GLY	ARG	ILE	PRO	PHE	PHE VAL	CYS	GLU ASP ASP	
ASN	CYS	GLY ASP	GLY	ASP	GLU GLN	GLU	HIS	CYS	HIS	PRO	GLU	THR	CYS	PRO LEU	HIS	GLN	ARG	CYS	ASP	GLY	HIS CYS	ILE	GLU MET	GLY	ARG	CYS	ASN	VAL	ASP	CYS	ASP	ASN	ASP	GLU	GLY	CYS GLY	ILE	GLU CYS	
LEU	SER	SER TLE	SER	CYS	ASP HTS	ASN	CYS THR	ASP	THR	THR	SER	PHE TYR	CYS	SER	LEU	PRO GLY	TYR	LYS	MET	SER	ASP LYS	ARG	SER CYS	VAL	ASP	ASP	GLU	LYS	GLU	PRO	GLN	CYS	GLN	LYS	GLU	ASN VAL	VAL	GLY SER TYR	
ILE	LYS	CYS ALA	PRO	TYR	ILE ARG	GLU	ASP	GLY	LYS	CYS	ARG	GLN	SER	ASN	GLU	PRO TYR	LEU	ILE	SER	ASN	ARG TYR	TYR	ILE ARG	ASN	LEU	THR	ASP	SER	SER TVR	SER	TLE	LEU	GLY	LEU	ASN	VAL VAL	ALA	ASP PHE	
ASP	VAL	GLU LYS	ARG	TYR	TRP TLE	ASP	ALA GLU	LYS	GLN	ILE	GLU	ARG MET	PHE	LEU	LYS	ASN	ARG	GLU	TLE	ILE	ASN	ARG	LEU ARG	ARG	ALA	SER	LEU	VAL	ASP TRP	VAL	ARG	LYS	TYR	TRP	ASP	ALA ILE	LEU	ASP CYS LEU	
PHE	VAL SER	ASP	GLU	ARG	ARG	LYS	MET ILE	ALA	GLN	CVS	VAL	ASP ALA	ASN	ASN THR	PHE	CYS PHE	GLU	SIH	ARG	GLY	ILE VAL	LEU	PRO	GLN	ARG	HIS	VAL TVP	TRP	ALA	TRP	GLY VAL	HIS	TYR	ILE	GLY ARG	ILE GLY	MET	ASP GLY THR	
ASN	SER	VAL TLF.	ILE	THR	LYS TLE	GLU	TRP PRO	ASN	ALA	THR	ILE	ASP TYR	THR	ASN	LEU	LEU TYR	TRP	ALA	ASP	HIS	GLY	TYR	GLU	PHE	SER	LEU	GLU GLU	SIH	HIS ARG	HIS	THR VAL	TYR	GLY	SER	PRO	HIS PRO	PHE	ALA LEU THR	
ILE	GLU	ASP THR	VAL	TRP	ASP	TRP	ASN THR	ARG	THR	GLU	LYS	GLY ASN	LYS	TYR ASP	GLY	SER GLY	ARG	VAL	VAL LEU	VAL	ASN THR	THR	T.YS LYS	PRO	PHE	ILE	HIS VAT	TYR	PRO	TYR	GLN	PRO	MET	SER	PRO	CYS GLY	THR	ASN ASN GLY	
GLY	SER	HIS	CYS	ILE	LYS AI.A	GLY	GLY ARG	GLY	PHE	CYS	ALA	CYS	ASP	ASP PHF	GLN	THR VAL.	GLN	LEU	ARG	ARG	THR LEU	CYS	MET PRO	MET	CYS	SER	THR	PHE	LEU	GLY	ASN	GLU	CYS	ILE	TLE	TRP TRP	LYS	CYS ASP GLY	
GLN	ASP	CYS SFR	ASP	SER	ASP GLU	PRO	ASP LEU	CYS	PRO	ARG	PHE	CYS ARG	TEU	GL Y GL N	PHE	GLN	ARG	ASP	GLY	CYS	THR SER	PRO	GLN ALA	LEU	CYS	ALA	ARG	ASP	CYS AL-A	ASP	GLY SER	ASP	ASP	ARG	VAL LEU	CYS GLU	HIS	ARG CYS	
GLU	ASN	GLU TRP	GLN	ALA	ASN LYS	ARG	CYS ILE	PRO	GLN	TRP	GLN	CYS ASP	SER	VAL	ASP	CYS LEU	ASP	ASN	ASP	GLU	ASP THR	SER	HIS CYS	ALA	SER	THR	CYS	PRO	GLY	PHE	LYS CYS	ASN	GLY	ARG	ILE	PRO GLN	SER	LYS CYS	
ASP	ASP	ASN	CYS	ASP	TYR Sfr	ASP	GLU PRO	ILE	ASP	CYS	THR	THR ALA	ALA	TYR	CYS	ASP	SIH	THR	GLU PHE	SER	CYS LYS	THR	ASN TYR	ARG	CYS	PRO	GLN	ALA	VAL	ASN	GLY	ASP	CYS	ARG	ASP	SER ASP	GLU	GLY CYS	
3TU	VAL	PRO	SIH	SER	al Y ASP	PHE	ARG	ALA	ASN	SIF	SYS	ILE PRO	EU	ARG	YS	CYS	ATE	THR	ASP	CYS	ASP	ASN	SER	SLU	SLU SLU	SYS	VAL	ARG	JAS SAL	SER	3ER	BLU	ARG	CYS	ALA	SLN	CYS	PRO	
RG DD	AL	SP 1		I SI N	SP (ILY 1	SN	ER	SP	RG I	SP	SYS	ET	YS THR	YS I	RD 0	ITO OT	SI	ILN SHE	YS (THR (TA	SIIS	AL	R0 vc	T A	EU	XS	SP (RG	LA SP	YS (E C C C C C C C C C C C C C C C C C C C	TA	SP SP	ER (TA	RO HR	
RG	RO	NS NS		A SY	T.A	LA	HE A		YS I	A NS	T SI.	AL YS	LE	ER 1	E	RP I	AS 1	SP		SN NS	YS SP	AL	LY	ER	SP	TTO T	LE I	En	TYS I	NS	E CE	YS C	ER	RO	IRG F	HE RC	T SA.	SN ER	
ARG A	VAL P	TYR A GLY G	L SIH	LEU LEU	CYS F ASN A	GLY A	ASP P	ASP G	CYS C	ASP A	GLY H	ASP	GLU I	CLTS C	GLU P	HIS 1	ARG	LYS A	THR	HIS A	LYS A	CYS V	ASP G	THR S	GLU A	T T T T	CYS I SFP	ASN	GLY C	CYS	LLE P	GLN G	TYR S	VAL P	ASP A	ASN F VAL A	ASN C	CYS A GLY S	

CVS A SAG A

ASN MET VAL MET VAL MET ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	LEU
TYR LEU VAL VAL VAL VAL VAL VAL ASN VAL ASN VAL ASN VAL ASN VAL ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ALA
PHE MET ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	VAL
PRO PHE PHE PHE PHE PHE PHE PHE PHE PHE PHE	ASN
PR0 CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	GLY
TLE THE THE THE THE THE THE THE ASP THE THE THE THE THE THE THE THE THE THE	ASN
ARG CICU SER VILL CYS CUU CYS CUU CYS CUU CICU CICU CICU CICU CICU CICU CICU	ы Жа
LEU TRP TRP TRP ARF ARF ARF ARF ARF ARF ARF ARF ARF ARF	GLY
LEU LEU LYS ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	LYS
ALA ALA ALA ALA ALA ALA ALA ALA CTYR CTYR CTYR CTYR CTYR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	РКО
PRO CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	
PR0 TRP TRP TRP ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	ASP
CLU LYS CYS CYS CYS CYS CYS CYS CYS CYS CYS C	B B B B B B B B B B B B B B B B B B B
CYSS 1111 ASR ARG CYSS ARG CYS CYS ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	GLY
SER ASP ASP HIS CYS CYS CYS CYS CYS PRO CYS CYS PRO CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	¥1318 ♦ Q1320 ♦
P1321 P1322 C1322 C1325 C1325 C1325 C1325 C1325 C1325 C1325 C1332 C1332 C1332 C1333 C1333 C1333 C1333 C1333 C1333 C1333 C1333 C1335 C13555 C1355 C1355 C13555 C13555 C13555 C135555 C13555 C13555 C135	A1372 A1372 T1373 C1374 C1374 C1374 C1375 C1375 C1375 C1375 C1381 L1382 L1382 L1382 L1385 T1386 T1385 C1381 C1385
88 88 88 88 88 88 88 88 88 88 88 88 88	
T13 T13 113 113 114 114 114 114 114 114 115 114 116 115 117 114 118 114 119 115 115 115 116 115 115 115 116 115 116 115 116 115 116 115 116 116 116 116 116 116 116 116 116 116 116 116	-

L1886	H1891	S1895	K1900 11901	A1902 S1903	A1904 N1905	M1906 D1907	11913 11914			E1923	W1936 A1937	R1954	M1955	P1964	G1966 11067		S19/2		000 1 /	D2000	N2001		G2007 L2008	6003H		P2036	M2041	Y2062	M2066		
M2070	L2071 P2072 A2073	F2077	D2083	G2142	L2160	T2163 N2164	L2171	V2174	10177		V2184	D2191 M2192	P2193 R2194	H2195 I2196	D2199	соссн	R2203	L2205	Y2210	12234 V2235	T2236 P2237	44 0011	H2244	D'2254		P2270	V2286	T 2291	N2297		
	N2322	L2323	Q2349		P2365	N2378	L2391	S2401	L2402	D2405	P2406 R2407		F2413	A2419	D2 <mark>426</mark> Y2427	D2428	F2 <mark>435</mark>	<mark>Q2438</mark>	N2 <mark>441</mark>	R2444	S2456	V2468	12469 D2470	R2480	S2484	F2486	<mark>զ2</mark> 489	S2493	R2506 V2507		
	R2511	P2517 C2518	R2519	M2522 Y2523 U2524	T2525	G2528	12533	L2538	12546	V2547	L2551 V2552	S2572	E2577	R2578	T2582	R2586	E2587 V2588 10550		D2610	Y2612	12616	M2630	T2643	<mark>զշ651</mark>	H2665	A2668 P2669		H2680	E2681 G2682		
	L2000 A2687 N2688	D2689 N2690	K2691 Y2692	C2693	T2697	F2706 T2707	N2710	C2713	I2714 N2715	q2716	D2717	K2719	N2722	D2731	C2737	но740	T2741 C2742	R2743	A2746	T2748	G2750	N2751	G2752 R2753	C2754	Y2757 H2758	Y2759 R2760	C2761	V2763	Y2764	D2766 C2767	G2768 D2769 N2770
S2771	A2774	G2776	LEU PHE	ASN	ASN	THR	GLU	THR	SER	GLY	ARG CYS	ILE PRO	LEU SER	TYR VAT.	CYS	GLY TI F	ASN	CYS	ASP	ASP THR	SER	0TD	ASN	PRO	HIS	CYS PRO	PRO ASP	PHE THR	LYS CYS GI N	1770	
THR	ASN ILE	CYS VAL	PRO ARG	ALA PHE I ETI	CYS	GLY ASP	ASN ASP	CYS GLY	ASP	SER	GLU	PRO	TYR	CYS ALA	SER	THR	ARG	ASN GLU	PHE GLN	CYS LEU	SER PRO	GLN	CYS	PRO	TYR	PHE CYS	ASP GLY	GLU ALA	ASP CYS		
ALA	GLY SER	ASP GLU	PRO ASP	CYS	HIS	VAL ASN	THR CYS	ARG ALA	SER	PHE	GLN	ASP ASN	GLY ARG	CYS ILE	SER	ASN TRP	VAL	ASP GLY	ASP ASN	ASP CYS	GLY ASP	MET	ASP GLU	ASP	ARG HIS	HIS CYS	GLU LEU	GLN ASN	CYS SER		
SER	GLN	THR CYS	VAL ASN	ARG	PRO	ARG	CYS ILE	PRO GLN	TYR	VAL	CYS ASP	GLY ASP	ALA ASP	CYS SER	ASP	LEU	GLU	GLN ASN	CYS THR	MET ARG	THR CYS	SER	GLU	PHE	CYS ALA	ASN GLY	ARG CYS	VAL ARG	GLN SER		
PHE	CYS ASP	ARG ARG	ASN	GLY ASD	TYR	ASP GLU	ARG GLY	CYS SFR	TYR	PRO	CYS HIS	ALA ASN	GLN	THR CYS	GLN	GLY	CYS	PRO ARG	PHE	VAL CYS	ASP GLU	ASP	ASP CYS	GLY	GLY SER	ASP GLU	GLU	HIS LEU	CYS HIS		
THR	GLU PRO	THR CYS	PRO LEU	GLN	ARG	ASP ASN	GLY HIS	CYS TLF	GLU	GLY	ARG VAL	ASN	VAL	ASP ASP	CYS SER	ASP	SER	GLU LYS	GLY CYS	GLY ILE	ASN	CYS LEU	ASP SER	SER	SER	CYS ASP	HIS ASN	CYS THR	ASP THR		
ILE	L HA SER PHE	TYR CYS	SER CYS	PRO PLEU	TYR	LEU MET	SER ASP	LYS ARG	SER	VAL	ASP	GLU	CYS	GLU SER	PROGLN	LEU	SER	LYS CYS	GLU ASN	VAL VAL	GLY SER	TYR	CYS LYS	CYS ALA	PRO GLY	TYR ILE	ARG GLU	PRO ASP	LYS GLY		
SER	ARG GLN	ASN SER	ASN ILE	PRO TVB	LEU	PHE SER	ASN ARG	TYR TYR	ILE	ASN	THR	ASP	GLY SER	SER TYR	SER LEU	ILE	GLN GLN	CLY GLY	ASN VAL	VAL ALA	LEU ASP	PHE	ARG	GLU GLU	ARG	TYR TRP	ILE ASP	ALA GLU	GLN		
ILE	GLU ARG	MET PHE	ASN	THR	ARG	THR	ILE ASN	HIS ARG	LEU	ARG	ALA GLU	SER LEU	ALA VAL	ASP TRP	VAL SER	ARG	LEU	TRP LEU	ASP	ILE LEU	ASP CYS	LEU	VAL SER	ASP	GL Y GL Y	ARG HIS	ARG LYS	MET ILE	ALA GLN		
HIS	VAL ASP	ALA ASN	ASN THR	CYS DHE	GLU	PRO	GLY ILE	VAL LEIJ	HIS	GLN	ARG GLY	VAL	TRP	ALA ASP	TRP GLY	VAL	ALA TYR	ILE GLY	ARG ILE	GLY MET	ASP GLY	THR	LYS SFR	VAL TLF	ILE SER	THR LYS	ILE GLU	TRP PRO	ASN ALA		
ILE	ILE ASP	TYR THR	ASN ASP	LEU TVB	TRP	ASP ALA	HIS LEU	GLY TYR	ILE	PHE	SER	GLU GLU	SIH GLY	HIS ARG	HIS THR	VAL	ASP GLY	SER LEU	PRO HIS	PRO PHE	ALA LEU	THR	PHE	ASP THR	VAL PHE	TRP THR	ASP TRP	ASN THR	ARG THR		
VAL	GLY GLY	ASN LYS	TYR ASP	GL Y SER CI V	ARG	VAL VAL LEU	VAL ASN	THR	HIS	PRO	ASP	ILE HIS	VAL TYR	HIS PRO	TYR ARG	GLN	ILE	SER	PR0 CYS	GL Y THR	ASN	GL Y GL Y	CYS SER	HIS	CYS LEU	ILE LYS	ALA GLY	GL Y ARG	GLY		

THR	CYS ALA	CYS	ASP	ASP DHF	GLN	THR VAL	GLN	LEU ARG	ASP	ARG	TEU	CYS	PRO	MET	CYS	SER	THR	GLN	LEU	GLY	ASN	GLU	LYS	CYS ILE	PRO	TRP	TRP I VS	CYS	ASP GLY	GLN L.YS	ASP	CYS SER	ASP	SER	ASP GLU	PRO	LEU	PRO
SIH	ARG PHE	CYS	ARG	GLY	PHE	GLN	ARG	ASP GLY	ASN	CYS	SER	PRO	GLN AL.A	TEU	CYS	ALA	ARG	GLN	CYS	ALA	GLY	ASP	GLU	ASP ARG	VAL	CYS	GLU	SIH	ARG CYS	GLU SER	ASN	GLU TRP	GLN	ALA	ASN LYS	ARG	ILE	GLN
SER	GLN	CYS	ASP SER	VAL	ASP	CYS LEU	ASP	ASN SER	ASP	GLU	THR	SER	HIS	ALA	SER	THR	CYS	PRO	ALD ST	PHE	LYS	ASN	ASN	GLY ARG	CYS	PRO	GLN	TRP	LYS CYS	ASP VAL	ASP	ASN ASP	CYS	ASP	TYR SER	ASP	PRO	ASP
GLU	CYS THR	THR	ALA ALA	TYR	CYS	ASP ASN	HIS	GLU	PHE	SER	LYS	THR	ASN TYR	ARG	CYS	PRO	GLN	ALA	VAL	ASN	GLY	ASP	ASP	CYS ARG	ASP	ASN SER	ASP	GLN	GLY CYS	GLU SER	VAL	PRO CYS	SIH	SER	GLY ASP	PHE	CYS	ALA
SIH	HIS CYS	ILE	LEU	ARG TRP	LYS	CYS ASP	GLY	ASP	ASP	CYS	ASP	ASN	ASP	GLU	GLU	CYS	VAL	ARG	GLU	SER	GLU	GLU	PHE	ARG CYS	ALA	GLN	GLN	ILE	PRO SER	ARG TRP	VAL	CYS ASP	GLN	ASN	ASP CYS	GLY	ASN	ASP
GLU	ARG ASP	CYS	GLU	LYS THR	CYS	HIS PRO	GLU	PHE	GLN	CYS	SER	GLY	HIS	VAL	PRO	ALA	LEU	ALA CYS	ASP	GLY ARG	ALA	CYS	LEU	ASP ALA	SER	GLU	SER	CYS	PRO THR	ARG PHE	PRO	ASN GLY	THR	CYS	PRO ALA	ALA	PHE	CYS
LYS	ASN HIS	VAL	CYS	GLN	PHE	TRP ILE	CYS	ASP GLY	GLU	ASN	CYS	VAL	ASP GLY	SER	ASP	GLU	ILE	LEU	CYS	ASN	ILE	CYS	GLU	PRO	GLN	ARG PHE	ARG	ASP	ASN SER	ARG	VAL	TYR GLY	HIS	GLN	CYS ASN	GLY	ASP	CYS
GLY	ASP GLY	SER	GLU	CI II	GLU	HIS CYS	ARG	LYS PRO	THR	HIS	PRO	CYS	ASP	THR	GLU	LYS	CYS	ASN	GLY	CYS	ILE	GLN	SIH	TYR VAL	CYS	ASP	VAL	ASP	GLY GLY	ASP	SER	ASP GLU	THR	CYS	ASN LEU	GLY	ASN	THR
CYS	ALA GLU	ASN	CYS	GLU	ASN	CYS THR	GLN	LEU SER	SER	GLY	PHE	ILE	CYS SER	CYS	ARG	GLY	PHE	LYS PRO	SER	LEU	ASP	ASN	SER	GLN	ASP	ASN	GLU	GLU	GLU	GLY TI.F.	CYS	PRO GLN	SER	ARG	ASN SER	LYS	SER	GLU
CYS	PHE CYS	VAL	GLY	PHE I VS	SER	MET SER	THR	HIS TYR	GLY	GLU	CYS	ALA	ALA	GLY	SER	PRO	LEU	LEU	LEU	GLU	ASN	VAL ARG	ILE	ARG LYS	TYR	ASN THR	SER	GLU	LYS PHE	SER	TYR	GLU	GLU	GLU	HIS ILE	GLN	ILE .	TYR
ASP	TRP ASP	PRO GI II	SIH	ILE CI V	TEU	SER VAL	VAL	TYR TYR	THR	VAL	ALA	GLN	GLY SER	GLN	PHE	ALA	ILE	LYS ARG	ALA	ITE	PRO	ASN PHE	GLU	SER GLY	SER	ASN	PRO TI F	ARG	GLU VAL	ASP	GLY	LEU LYS	TYR	MET	GLN PRO	ASP	TEU	VAL
ASP	TRP VAL	GLY	AKG	TVR	TRP	SER ASP	ALA	LYS SER	GLN	ARG	GLU	VAL	ALA THR	TEU	ASP	ARG	TYR	ARG LYS	TRP	ILE	THR	UHI.	LEU	GLN	PRO	ALA ALA	ILE	VAL	ASN PRO	LYS LEU	GLY	LEU MET	PHE	THR	GLN	GLY GLY	CIN	LYS
ILE	GLU SER	ALA	MET	ASN GI V	GLU	HIS ARG	SER	VAL LEU	VAL	SER	ASN	LEU	GLY TRP	PRO	ASN	LEU	SER	ASP	TYR	ASN	ASP	ASP ARG	VAL	TYR TRP	SER	ASP SER	TYS	ASP	VAL ILE	GLU ALA	ILE	LYS TYR	ASP	THR	ASP ARG	ARG	ILE	ASN
GLU	ALA MET	LYS	PHE	SER I FII	ASP	TLE PHE	GLU	ASP LYS	TEU	TYR	VAL	ALA	CLU	LYS	GLY	VAL	TRP	GLN	ASN	PHE	GLY	GLU	ASN	GLU	LYS	VAL LEU	VAL	ASN	PRO TRP	LEU THR	GLN	VAL ARG	ILE	HIS	GLN	ARG TVR	ASN	SER
VAL	SER	PRO	CYS LYS	GLN	CYS	SER HIS	LEU	CYS	LEU	ARG	GLY	GLY	TYR SER	CYS	ALA	PRO	0TN	GLY SER	ASP	VAL	THR	GLY SER	THR	VAL GLN	CYS	ASP ALA	ALA	GLU	LEU PRO	VAL THR	MET	PRO PRO	PRO	ARG	CYS MET	HIS	GLY GLY	CYS
TYR	PHE ASP	GLU	GLU	LEU	LYS	CYS LYS	CYS	SER	GLY	TYR	GLY	GLU	TYR	GLU	VAL	LEU	SER	GLY	ILE	PR0 PR0	GLY	THR	MET	ALA VAL	LEU	THR	PHE	ILE	VAL ILE	ILE VAI.	GLY	ALA LEU	VAL	VAL	GLY LEU	PHE	TYR	LYS
THR	GLY SER	LEU	PRO	THR	PRO	LYS LEU	PRO	SER	SER	SER 1 ETI	ALA	LYS	PRO SER	GLU	ASN	ASN	GLY	VAL THR	PHE	SER	GLY	ALA ASP	VAL	ASN MET	ASP	GLY	VAL	PRO	PHE	PRO GLU	THR	ILE	ASP	SER	MET ALA	MET	GLU	PHE
VAL	GLU	VAL	GLY	GLN	VAL	TLE PHE	GLU	ASN PRO	MET	TYR	ALA	LYS	ASP	THR	SER	VAL	ALA	LEU ALA	VAL	GLY	PRO	THR	GLY	GLN	VAL	THR VAL	PRO	ASN	VAL GLU	ASN GLN	ASN	TYR GLY	ARG	ILE	ASP PRO	SER	ILE	VAL PRO
GLU	PRO LYS	PRO	ALA SER	PRO GI V	ALA	ASP GLU	ILE	GLY GLN	TAS	LYS	ASN	ILE	PHE	ARG	LYS	LYS	CLN	THR	ASN	GLU	ASN	TLE	TYR	ALA GLU	MET	ASP SER	GLU	LYS	ASP ALA	VAL AL.A	VAL	ALA PRO	PRO	SER	PRO SER	LEU	ALA	ALA
SER	LYS ARG	ASN	THR	PRO 21 V	TYR	THR ALA	THR	GLU	THR	PHE	ASP	THR	ALA ASN	LEU	VAL	GLU	ASP	ASP	VAL																			

• Molecule 2: unclear peptide

Chain I:	83%	17%
X1 13 X6		
• Molecule 2: unclear peptide		
Chain C:	83%	17%
\bullet Molecule 3: unclear peptide		
Chain J:	100%	
X3 X3		
• Molecule 3: unclear peptide		
Chain D:	100%	
X1 X3		
• Molecule 4: unclear peptide		
Chain K:	80%	20%
• Molecule 4: unclear peptide		
40% Chain G:	80%	20%
\bullet Molecule 5: unclear peptide		
Chain L:	100%	
X5 X5		

• Molecule 5: unclear peptide

NAG1 NAG2

	60%		
Chain H:		100%	
X1 X4 X5 X5			
• Molecule 6: opyranose	2-acetamido-2-deoxy-beta	-D-glucopyranose-(1-4)-2-acetamic	lo-2-deoxy-beta-D-gluc
Chain E:	50%	100%	
NAG1 NAG2			
• Molecule 6: opyranose	2-acetamido-2-deoxy-beta	-D-glucopyranose-(1-4)-2-acetamic	lo-2-deoxy-beta-D-gluc
Chain M:	50% 50%	50%	-
NAG1			
• Molecule 6: opyranose	2-acetamido-2-deoxy-beta	-D-glucopyranose-(1-4)-2-acetamic	lo-2-deoxy-beta-D-gluc
Chain N:	50%	100%	
NA G2 NA G2			
• Molecule 6: opyranose	2-acetamido-2-deoxy-beta	-D-glucopyranose-(1-4)-2-acetamic	lo-2-deoxy-beta-D-gluc
Chain P·	50%	50%	
	30 /8	50 /8	
• Molecule 6: opyranose	2-acetamido-2-deoxy-beta	-D-glucopyranose-(1-4)-2-acetamic	lo-2-deoxy-beta-D-gluc
	50%	_	
Chain S:		100%	

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100%			
Chain T:	50%	50%		
NAG1				

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain V:	100%	

NAG1 NAG2

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	50%
Chain W:	100%
NAG1 NAG2	
-	

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	50%	
Chain Y:	1	00%
•		
AG1 AG2		
N N		

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain a:	50% 100%	
NAG1 NAG2		

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain b:

100%

NAG1 NAG2

 \bullet Molecule 7: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 7: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

 \bullet Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

 \bullet Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

Chain Q:	80%	20%
NAG1 NAG2 BMA3 MAN4 MAN5		

 • Molecule 8: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyrano
 se-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

• Molecule 9: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-3)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain R: 100%

 \bullet Molecule 10: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-3)-2-acetamido-2-deoxy-beta-D-glucopyranose nose

40%

60%

Chain Z:

NAG1 NAG2 BMA3 MAN4 MAN5

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	67775	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING ONLY	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	1600	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.196	Depositor
Minimum map value	-0.098	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.0285	Depositor
Map size (Å)	366.86002, 366.86002, 366.86002	wwPDB
Map dimensions	260, 260, 260	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.411, 1.411, 1.411	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CA, NAG, BMA, NI, A2G, MAN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.25	0/11766	0.51	0/16026
1	В	0.26	0/11757	0.52	0/16013
2	С	0.29	0/7	1.26	0/8
2	Ι	0.25	0/7	0.87	0/8
3	D	0.27	0/5	0.16	0/5
3	J	0.26	0/5	0.05	0/5
4	G	0.24	0/17	0.35	0/21
4	Κ	0.31	0/17	0.51	0/21
5	Н	0.19	0/7	0.26	0/8
5	L	0.21	0/7	0.52	0/8
All	All	0.26	0/23595	0.52	0/32123

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	11477	0	10926	128	0
1	В	11468	0	10914	111	0
2	С	33	0	18	2	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	Ι	33	0	18	1	0
3	D	16	0	8	0	0
3	J	16	0	8	0	0
4	G	33	0	17	0	0
4	Κ	33	0	18	1	0
5	Н	28	0	13	0	0
5	L	28	0	12	0	0
6	Е	28	0	25	0	0
6	М	28	0	25	0	0
6	Ν	28	0	25	0	0
6	Р	28	0	25	0	0
6	S	28	0	25	0	0
6	Т	28	0	25	0	0
6	V	28	0	25	0	0
6	W	28	0	25	0	0
6	Y	28	0	25	0	0
6	a	28	0	25	0	0
6	b	28	0	25	0	0
7	F	39	0	34	1	0
7	U	39	0	34	0	0
8	0	61	0	52	0	0
8	Q	61	0	52	0	0
8	Х	61	0	52	0	0
9	R	28	0	25	0	0
10	Ζ	61	0	52	0	0
11	А	56	0	52	0	0
11	В	56	0	52	0	0
12	А	14	0	12	0	0
12	В	14	0	12	0	0
13	А	6	0	0	0	0
13	В	6	0	0	0	0
14	А	1	0	0	0	0
14	В	1	0	0	0	0
All	All	23977	0	22656	238	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (238) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:2507:VAL:HG21	1:B:2524:TRP:HE1	1.52	0.74
1:A:2708:CYS:SG	1:A:2730:SER:OG	2.45	0.74
1:B:1900:LYS:HE2	1:B:1902:ALA:HB2	1.71	0.71
1:B:2203:ARG:NH1	1:B:2361:LEU:O	2.27	0.68
1:B:2651:GLN:N	1:B:2651:GLN:OE1	2.27	0.68
1:B:2349:GLN:OE1	1:B:2349:GLN:N	2.27	0.67
1:A:1435:GLU:OE1	1:A:1435:GLU:N	2.24	0.67
1:A:2705:GLN:HB3	1:A:2713:CYS:HB3	1.78	0.65
1:A:1719:GLN:HG3	1:A:1721:PRO:HD2	1.79	0.65
1:B:2489:GLN:O	1:B:2506:ARG:NH1	2.29	0.65
1:A:2463:LEU:HD11	1:A:2501:ARG:HD2	1.78	0.65
1:A:2391:LEU:HD21	1:A:2641:ILE:HD11	1.77	0.64
1:A:2609:THR:HG22	1:A:2616:ILE:HG12	1.78	0.64
1:B:1923:GLU:HB2	1:B:1937:ALA:HB3	1.80	0.64
1:A:2726:CYS:SG	1:A:2730:SER:OG	2.57	0.63
1:A:1595:GLN:HA	1:A:1598:ILE:HD11	1.80	0.62
1:A:2760:ARG:HA	1:A:2772:ASP:HB2	1.81	0.62
1:B:1382:LEU:HD12	1:B:1386:THR:HA	1.81	0.62
1:A:1853:GLY:O	1:A:1856:ARG:NH2	2.26	0.61
1:A:2149:ARG:NH2	4:K:2:GLU:O	2.33	0.61
1:B:2546:ILE:HD12	1:B:2582:THR:HA	1.83	0.61
1:A:2361:LEU:HD21	1:A:2368:ARG:HG3	1.81	0.60
1:B:2361:LEU:HD12	1:B:2364:LEU:HD22	1.83	0.60
1:B:1614:TYR:HB3	1:B:1649:LEU:HD21	1.83	0.60
1:A:1442:ALA:HB2	1:A:1472:LEU:HD23	1.84	0.60
1:A:2484:SER:HB3	1:A:2513:ILE:HD11	1.83	0.60
1:B:1607:ASP:OD2	1:B:1671:LYS:NZ	2.33	0.60
1:B:1543:HIS:HB3	1:B:1729:PRO:HG3	1.84	0.59
1:A:2363:GLU:OE2	1:A:2363:GLU:N	2.34	0.59
1:A:2648:GLN:HB3	1:A:2651:GLN:HE21	1.67	0.59
1:B:2062:TYR:OH	1:B:2083:ASP:OD2	2.20	0.59
1:B:1864:ASN:ND2	1:B:2319:ASP:OD1	2.35	0.59
1:A:1367:GLN:NE2	1:A:1371:GLY:O	2.30	0.58
1:A:2767:CYS:SG	1:A:2771:SER:OG	2.62	0.58
1:A:2185:LEU:HB3	1:A:2223:CYS:HB2	1.84	0.58
1:B:2525:THR:HG22	1:B:2533:ILE:HD12	1.86	0.58
1:B:2609:THR:HG22	1:B:2616:ILE:HG12	1.86	0.57
1:B:2737:CYS:HA	1:B:2740:HIS:HB3	1.85	0.57
1:B:2070:MET:HG3	1:B:2072:PRO:HD2	1.86	0.57
1:B:1550:LYS:O	1:B:1590:ARG:NH1	2.34	0.57
1:A:2285:THR:HG21	1:A:2328:THR:HA	1.87	0.56
1:B:1966:GLY:HA3	1:B:2007:GLY:HA2	1.85	0.56

	jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:1473:ASP:OD1	1:B:1474:PHE:N	2.38	0.56
1:A:2511:ARG:NH2	1:A:2555:ASN:OD1	2.38	0.56
1:A:2484:SER:HB2	1:A:2510:PRO:HB2	1.87	0.56
1:B:2234:ILE:HD11	1:B:2237:PRO:HG3	1.87	0.56
1:A:2546:ILE:HG22	1:A:2547:VAL:HG13	1.87	0.56
1:A:2601:VAL:HB	1:A:2606:ILE:HG22	1.87	0.55
1:A:1981:TYR:HA	1:B:2279:PRO:HG3	1.88	0.55
1:A:1873:PHE:HB3	1:A:1891:HIS:HB2	1.90	0.54
1:B:2742:CYS:HB3	1:B:2746:ALA:HB3	1.90	0.54
1:A:2500:ASN:HB2	1:A:2666:ILE:HD11	1.90	0.54
1:B:1937:ALA:HB1	1:B:1964:PRO:HG2	1.89	0.54
1:A:1497:ASN:OD1	7:F:1:NAG:N2	2.41	0.54
1:B:2199:ASP:OD2	1:B:2202:HIS:ND1	2.40	0.54
1:A:2139:VAL:HG22	1:A:2175:LEU:HD13	1.90	0.53
1:A:2740:HIS:CD2	1:A:2741:THR:H	2.26	0.53
1:A:2194:ARG:HG3	1:A:2210:TYR:CZ	2.44	0.53
1:B:2722:ASN:HB2	1:B:2753:ARG:CZ	2.39	0.53
1:B:1514:MET:HG3	1:B:1556:ARG:O	2.09	0.52
1:A:1495:PHE:HD2	1:A:1499:THR:HG23	1.74	0.52
1:A:2468:VAL:HG12	1:A:2486:PHE:HB3	1.89	0.52
1:A:1550:LYS:O	1:A:1590:ARG:NH1	2.27	0.52
1:B:1363:HIS:ND1	1:B:1389:CYS:SG	2.83	0.52
1:B:1972:SER:HA	1:B:1989:LYS:HD2	1.92	0.52
1:B:1903:SER:HB3	1:B:1914:LEU:HD11	1.91	0.52
1:B:1442:ALA:HB3	1:B:1689:GLY:H	1.75	0.51
1:B:2468:VAL:HG23	1:B:2486:PHE:HB3	1.92	0.51
1:B:1598:ILE:HD11	1:B:1601:PRO:HB3	1.91	0.51
1:A:1659:THR:HG22	1:A:1666:VAL:HG22	1.91	0.51
1:A:1636:VAL:HG23	1:A:1637:ILE:HG13	1.92	0.51
1:A:2547:VAL:HG23	1:A:2551:LEU:HD11	1.92	0.51
1:B:1381:GLN:HB3	1:B:1392:ILE:HD11	1.92	0.51
1:A:2519:ARG:HG3	1:A:2519:ARG:HH11	1.76	0.50
1:A:1802:ILE:HG23	1:A:1815:PHE:HB3	1.94	0.50
1:B:1668:GLN:HG2	1:B:1669:ALA:N	2.26	0.50
1:A:2724:ASN:OD1	1:A:2724:ASN:N	2.40	0.50
1:A:1416:CYS:SG	1:A:1420:TYR:HB2	2.52	0.50
1:B:2194:ARG:HG3	1:B:2210:TYR:CZ	2.47	0.50
1:B:1667:MET:SD	1:B:1679:VAL:HG22	2.52	0.50
1:A:1926:THR:HG22	1:A:1935:TYR:HB2	1.92	0.50
1:A:2402:LEU:HD21	1:A:2630:MET:HB3	1.92	0.50
1:A:2756:PRO:HD2	1:A:2759:TYR:CD2	2.47	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:2706:PHE:HB2	1:A:2716:GLN:HA	1.94	0.49
1:B:1785:GLU:OE2	1:B:2009:ARG:NH1	2.45	0.49
1:B:2507:VAL:HG21	1:B:2524:TRP:NE1	2.24	0.49
1:A:1907:ASP:HA	1:A:2035:LEU:HD13	1.93	0.49
1:A:1966:GLY:HA2	1:A:2007:GLY:HA2	1.94	0.49
1:B:1412:PHE:O	1:B:1413:ARG:NH1	2.45	0.49
1:B:2286:VAL:HG22	1:B:2291:ILE:HG22	1.94	0.49
1:B:2506:ARG:NH1	1:B:2506:ARG:HB3	2.26	0.49
1:A:2426:ASP:OD2	1:A:2474:PHE:N	2.39	0.49
1:A:2722:ASN:HB3	1:A:2753:ARG:HG3	1.93	0.49
1:A:2740:HIS:CG	1:A:2741:THR:N	2.80	0.49
1:B:2210:TYR:HB2	1:B:2236:THR:HA	1.95	0.49
1:A:2363:GLU:HG2	1:A:2364:LEU:HD22	1.95	0.49
1:A:2573:LEU:HB3	1:A:2575:LYS:HE2	1.95	0.49
1:B:2480:ARG:NH1	1:B:2493:SER:OG	2.46	0.49
1:A:1404:HIS:HB2	1:A:1415:ALA:HB3	1.94	0.49
1:B:1616:MET:CE	1:B:1646:PRO:HB2	2.43	0.49
1:A:1616:MET:HG2	1:A:1623:ILE:HG12	1.94	0.48
1:B:2000:ASP:OD1	1:B:2001:ASN:ND2	2.41	0.48
1:A:1495:PHE:CD2	1:A:1499:THR:HG23	2.48	0.48
1:A:2663:CYS:SG	1:A:2664:SER:N	2.86	0.48
1:B:2419:ALA:O	1:B:2438:GLN:NE2	2.42	0.48
1:B:2610:ASP:OD1	1:B:2612:TYR:N	2.47	0.48
1:A:1368:GLY:H	1:A:1372:ALA:HA	1.79	0.48
1:A:1775:ILE:HG22	1:A:1778:ILE:HD11	1.96	0.47
1:A:2516:ASP:OD2	1:A:2519:ARG:NH2	2.47	0.47
1:B:1600:TRP:CG	2:C:3:LEU:HD12	2.49	0.47
1:A:2489:GLN:NE2	1:A:2508:SER:O	2.46	0.47
1:A:2766:ASP:OD1	1:A:2766:ASP:N	2.46	0.47
1:B:2210:TYR:CB	1:B:2236:THR:HA	2.44	0.47
1:A:2614:ARG:HG2	1:A:2637:GLN:HA	1.96	0.47
1:B:1616:MET:SD	1:B:1649:LEU:HD13	2.55	0.47
1:A:1734:LEU:HD11	1:A:1738:SER:HA	1.97	0.47
1:A:1754:ASP:HB2	1:A:2004:TYR:HB3	1.96	0.47
1:B:2578:ARG:HD2	1:B:2589:VAL:HG22	1.96	0.47
1:A:2210:TYR:HB2	1:A:2236:THR:HA	1.96	0.47
1:B:2441:ASN:OD1	1:B:2444:ARG:N	2.44	0.47
1:A:1477:VAL:HG23	1:A:1478:THR:HG23	1.97	0.46
1:A:1543:HIS:HB3	1:A:1729:PRO:HG3	1.95	0.46
1:A:2286:VAL:HG22	1:A:2291:ILE:HG22	1.96	0.46
1:A:1734:LEU:CD1	1:A:1738:SER:HA	2.45	0.46

	Jus page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:1442:ALA:HB3	1:A:1689:GLY:H	1.79	0.46
1:B:1710:CYS:HB3	1:B:1726:CYS:HB3	1.80	0.46
1:B:2547:VAL:HG12	1:B:2551:LEU:HD11	1.96	0.46
1:A:2120:ARG:HA	1:A:2120:ARG:HD3	1.75	0.46
1:B:2070:MET:HG2	1:B:2073:ALA:O	2.16	0.46
1:B:2163:THR:HG21	1:B:2193:PRO:O	2.16	0.46
1:A:2259:ILE:HB	1:A:2273:ARG:HB2	1.98	0.45
1:B:1859:LYS:HE3	1:B:1861:LEU:HD23	1.99	0.45
1:B:2066:MET:HG2	1:B:2077:PHE:O	2.16	0.45
1:A:1752:VAL:HG23	1:A:1757:ILE:HG12	1.97	0.45
1:A:1837:TYR:CZ	1:A:1906:MET:HG2	2.52	0.45
1:A:2666:ILE:O	1:A:2677:GLN:N	2.49	0.45
1:B:1788:ASP:OD2	1:B:2013:ARG:HA	2.16	0.45
1:B:2668:ALA:HB2	1:B:2677:GLN:HE22	1.80	0.45
1:B:2688:ASN:HD22	1:B:2692:TYR:HB2	1.81	0.45
1:B:2707:THR:HA	1:B:2713:CYS:HA	1.98	0.45
1:A:1923:GLU:HB2	1:A:1937:ALA:HB3	1.98	0.45
1:A:2406:PRO:HG2	1:A:2618:ARG:HH21	1.82	0.45
1:A:2600:THR:HG21	1:A:2643:THR:HG23	1.98	0.45
1:B:2470:ASP:OD2	1:B:2511:ARG:NH1	2.49	0.45
1:A:2152:ALA:O	1:A:2161:TYR:N	2.43	0.45
1:B:2402:LEU:HD21	1:B:2630:MET:HB3	1.99	0.45
1:A:1560:LEU:HD22	1:A:1585:MET:HE2	1.99	0.45
1:A:1847:GLU:HB3	1:A:1860:THR:HA	1.99	0.45
1:B:2160:LEU:HB2	1:B:2177:ILE:HD11	1.97	0.45
1:A:1484:SER:HB3	1:A:1515:ILE:HD11	1.98	0.44
1:A:2164:ASN:ND2	1:A:2173:GLU:OE2	2.51	0.44
1:A:1465:ASP:OD1	1:A:1465:ASP:N	2.51	0.44
1:A:1476:SER:HB3	1:A:1698:GLN:HG3	1.98	0.44
1:B:2715:ASN:OD1	1:B:2716:GLN:N	2.49	0.44
1:A:1623:ILE:HD12	1:A:1637:ILE:HD12	1.98	0.44
1:B:2426:ASP:OD1	1:B:2427:TYR:N	2.49	0.44
1:B:1775:ILE:HG22	1:B:1778:ILE:HD11	1.98	0.44
1:B:1596:GLU:O	1:B:1633:ARG:NH1	2.34	0.44
1:A:1599:TYR:HB3	1:A:1619:TYR:HB3	2.00	0.44
1:A:2772:ASP:OD1	1:A:2772:ASP:N	2.50	0.44
1:A:1413:ARG:HB3	1:A:1413:ARG:NH1	2.32	0.44
1:A:2685:TYR:CE2	1:A:2687:ALA:HB2	2.52	0.44
1:B:2192:MET:O	1:B:2192:MET:HG3	2.18	0.44
1:A:1412:PHE:HE2	1:A:1427:ARG:HG2	1.83	0.44
1:B:2484:SER:HB2	1:B:2510:PRO:HG2	2.00	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:2235:VAL:HG12	1:B:2236:THR:HG23	2.00	0.43
1:A:2249:ILE:HD13	1:A:2249:ILE:HA	1.84	0.43
1:A:2709:LEU:HD12	1:A:2730:SER:HB2	2.01	0.43
1:A:1439:LEU:HB3	1:A:1450:ASP:HB2	2.00	0.43
1:A:2192:MET:HG3	1:A:2192:MET:O	2.18	0.43
1:B:2578:ARG:HG2	1:B:2587:GLU:HG2	2.00	0.43
1:A:1450:ASP:OD1	1:A:1459:LEU:HB3	2.18	0.43
1:A:2441:ASN:HD21	1:A:2444:ARG:HD3	1.83	0.43
1:A:2703:GLN:HE21	1:A:2704:LEU:HG	1.83	0.43
1:A:2357:PHE:HE2	1:A:2372:ALA:HB2	1.84	0.43
1:B:1975:TYR:CE2	1:B:1986:ARG:HD3	2.54	0.43
1:A:1651:LEU:HG	1:A:1656:VAL:HG12	2.01	0.43
1:B:2401:SER:HB2	1:B:2413:PHE:CZ	2.54	0.43
1:A:1600:TRP:CG	2:I:3:LEU:HD22	2.54	0.43
1:A:2740:HIS:CG	1:A:2741:THR:H	2.37	0.43
1:B:1584:SER:HB3	1:B:1589:MET:HE2	2.00	0.43
1:B:1906:MET:SD	1:B:2036:PRO:HG2	2.59	0.43
1:B:1376:CYS:SG	1:B:1382:LEU:HD22	2.59	0.42
1:B:2753:ARG:HD3	1:B:2767:CYS:HA	2.00	0.42
1:A:2152:ALA:HB3	1:A:2161:TYR:HB2	2.01	0.42
1:A:2658:GLN:HG3	1:A:2659:PHE:CD2	2.54	0.42
1:A:2319:ASP:OD1	1:A:2320:LYS:N	2.53	0.42
1:A:2602:TYR:HB2	1:A:2643:THR:HG21	2.01	0.42
1:A:2756:PRO:HD2	1:A:2759:TYR:HD2	1.83	0.42
1:B:1622:TYR:CD1	1:B:1624:GLU:HG3	2.55	0.42
1:B:2196:ILE:HD11	1:B:2205:LEU:HD21	2.00	0.42
1:A:1650:THR:HG22	1:A:1657:TYR:HB2	2.02	0.42
1:B:2142:GLY:O	1:B:2164:ASN:ND2	2.52	0.42
1:B:2391:LEU:HD23	1:B:2643:THR:HG22	2.02	0.42
1:A:1375:LEU:HA	1:A:1382:LEU:HD21	2.02	0.42
1:A:1838:TYR:CZ	1:A:1847:GLU:HG3	2.54	0.42
1:B:2686:LEU:HD21	1:B:2690:ASN:HB3	2.01	0.42
1:A:1680:VAL:HG12	1:A:1681:MET:HG2	2.02	0.42
1:A:2719:LYS:HE2	1:A:2740:HIS:CG	2.54	0.42
1:B:2428:ASP:HB2	1:B:2435:PHE:HE2	1.83	0.42
1:A:1827:LEU:HD23	1:A:1838:TYR:HB3	2.02	0.42
1:B:2071:LEU:HD12	1:B:2323:LEU:HG	2.00	0.42
1:A:2533:ILE:HB	1:A:2547:VAL:HG22	2.02	0.41
1:B:1596:GLU:HA	1:B:1596:GLU:OE1	2.20	0.41
1:B:2322:ASN:HB3	1:B:2323:LEU:HD22	2.01	0.41
1:B:2538:LEU:HD12	1:B:2669:PRO:O	2.20	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:2577:GLU:OE2	1:B:2586:ARG:NH2	2.39	0.41
1:B:2665:HIS:CD2	1:B:2693:CYS:HB2	2.55	0.41
1:A:1797:GLU:HG3	1:A:1803:HIS:CD2	2.55	0.41
1:B:1507:SER:O	1:B:1544:ARG:NH1	2.42	0.41
1:B:1547:LEU:HD11	1:B:1586:ASP:HA	2.02	0.41
1:B:1900:LYS:HD2	1:B:1913:ILE:HG23	2.01	0.41
1:A:1437:PRO:HB3	1:A:1652:PHE:CZ	2.56	0.41
1:A:2613:THR:O	1:A:2615:LYS:N	2.54	0.41
1:B:1907:ASP:HA	1:B:2035:LEU:HD13	2.02	0.41
1:A:2254:ASP:OD1	1:A:2254:ASP:N	2.41	0.41
1:A:2428:ASP:HB3	1:A:2433:ARG:HG2	2.03	0.41
1:B:1785:GLU:CG	1:B:1829:LEU:HB2	2.50	0.41
1:B:1886:LEU:N	1:B:1904:ALA:O	2.45	0.41
1:B:2517:PRO:HA	1:B:2538:LEU:HD11	2.01	0.41
1:B:1574:TRP:CE3	2:C:3:LEU:HD13	2.56	0.41
1:B:2706:PHE:HE2	1:B:2731:ASP:HB3	1.84	0.41
1:B:1564:MET:HE1	1:B:1702:ARG:HE	1.85	0.41
1:B:2405:ASP:HB3	1:B:2408:ASP:HB2	2.02	0.41
1:A:2618:ARG:O	1:A:2627:LEU:HA	2.21	0.41
1:A:1401:CYS:HB3	1:A:1414:CYS:HB3	1.98	0.40
1:A:2578:ARG:HD2	1:A:2589:VAL:HG22	2.04	0.40
1:A:2714:ILE:HB	1:A:2718:TRP:CE3	2.57	0.40
1:B:1919:LEU:HD21	1:B:1954:ARG:HH12	1.86	0.40
1:B:2552:VAL:HB	1:B:2572:SER:HB3	2.03	0.40
1:B:1480:ARG:NH2	1:B:1500:ASP:O	2.54	0.40
1:A:2204:TYR:CD1	1:A:2218:ARG:HD3	2.56	0.40
1:A:2519:ARG:NH2	1:A:2564:ASP:OD1	2.54	0.40
1:A:2663:CYS:HB3	1:A:2667:CYS:HB3	2.04	0.40
1:B:1873:PHE:HB3	1:B:1891:HIS:HB2	2.03	0.40
1:B:2171:LEU:HD22	1:B:2184:VAL:HG11	2.03	0.40
1:B:2268:GLU:OE2	1:B:2268:GLU:HA	2.22	0.40
1:A:1611:ARG:HG2	1:A:1628:TYR:CE2	2.57	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM

entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	1467/4660~(32%)	1401 (96%)	66 (4%)	0	100	100
1	В	1466/4660~(32%)	1394 (95%)	70~(5%)	2~(0%)	48	80
2	С	1/6~(17%)	1 (100%)	0	0	100	100
2	Ι	1/6~(17%)	1 (100%)	0	0	100	100
3	D	1/3~(33%)	1 (100%)	0	0	100	100
3	J	1/3~(33%)	0	1 (100%)	0	100	100
4	G	2/5~(40%)	2 (100%)	0	0	100	100
4	К	2/5~(40%)	1 (50%)	1 (50%)	0	100	100
5	Н	1/5~(20%)	0	1 (100%)	0	100	100
5	L	1/5~(20%)	1 (100%)	0	0	100	100
All	All	2943/9358~(31%)	2802 (95%)	139 (5%)	2(0%)	50	80

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	1500	ASP
1	В	2743	ARG

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	1274/4089~(31%)	1233~(97%)	41 (3%)	34	65
1	В	1272/4089~(31%)	1234~(97%)	38~(3%)	36	66
2	С	1/1~(100%)	1 (100%)	0	100	100
2	Ι	1/1~(100%)	1 (100%)	0	100	100
3	D	1/1~(100%)	1 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
3	J	1/1~(100%)	1 (100%)	0	100	100
4	G	2/2~(100%)	1 (50%)	1 (50%)	0	0
4	Κ	2/2~(100%)	2(100%)	0	100	100
5	Н	1/1~(100%)	1 (100%)	0	100	100
5	L	1/1~(100%)	1 (100%)	0	100	100
All	All	2556/8188 (31%)	2476 (97%)	80 (3%)	37	66

All (80) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	1343	THR
1	А	1364	GLN
1	А	1366	MET
1	А	1449	VAL
1	А	1465	ASP
1	А	1468	PHE
1	А	1473	ASP
1	А	1569	MET
1	А	1636	VAL
1	А	1656	VAL
1	А	1728	CYS
1	А	1743	ARG
1	А	1745	ASP
1	А	1782	TYR
1	А	1969	VAL
1	А	2002	VAL
1	А	2070	MET
1	А	2126	ARG
1	А	2170	THR
1	А	2174	VAL
1	А	2210	TYR
1	А	2230	VAL
1	А	2232	GLU
1	A	2242	MET
1	A	2338	SER
1	A	2350	SER
1	А	2394	SER
1	А	2444	ARG
1	А	2497	ASP
1	А	2507	VAL

Mol	Chain	Res	Type
1	А	2532	LYS
1	А	2561	LEU
1	А	2570	ASP
1	А	2578	ARG
1	А	2626	ASP
1	А	2633	ARG
1	А	2636	THR
1	А	2657	ASP
1	А	2701	CYS
1	А	2741	THR
1	А	2743	ARG
1	В	1349	CYS
1	В	1352	ASP
1	В	1409	ARG
1	В	1449	VAL
1	В	1457	HIS
1	В	1504	VAL
1	В	1517	VAL
1	В	1550	LYS
1	В	1666	VAL
1	В	1728	CYS
1	В	1783	ASP
1	В	1791	GLN
1	В	1851	LEU
1	В	1854	ASP
1	В	1936	TRP
1	В	1955	MET
1	В	1967	LEU
1	В	2002	VAL
1	В	2041	MET
1	В	2070	MET
1	В	2174	VAL
1	В	2191	ASP
1	В	2254	ASP
1	В	2258	LEU
1	В	2297	ASN
1	В	2366	THR
1	В	2378	ASN
1	В	2407	ARG
1	В	2444	ARG
1	В	2506	ARG
1	В	2519	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (15) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	1393	ASN
1	А	1891	HIS
1	А	1963	HIS
1	А	2333	HIS
1	А	2489	GLN
1	А	2651	GLN
1	А	2703	GLN
1	А	2765	ASN
1	В	1891	HIS
1	В	1980	GLN
1	В	2297	ASN
1	В	2378	ASN
1	В	2500	ASN
1	В	2665	HIS
1	В	2710	ASN

RNA (i) 5.3.3

There are no RNA molecules in this entry.

Non-standard residues in protein, DNA, RNA chains (i) 5.4

There are no non-standard protein/DNA/RNA residues in this entry.

5.5Carbohydrates (i)

50 monosaccharides are modelled in this entry.

Chain Type Mol \mathbf{Res} В 2522 MET 1 1 В 2677 GLN В 1 2680HIS 1 В 2706 PHE 1 В 2741 THR TYR 27571 В 1 В 2759 TYR 4 G 3 GLU

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Res	Link	Bond lengths			Bond angles		
					Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
6	NAG	Е	1	1,6	14,14,15	0.43	0	$17,\!19,\!21$	1.52	2 (11%)
6	NAG	Е	2	6	14,14,15	0.34	0	17,19,21	0.74	1 (5%)
7	NAG	F	1	1,7	14,14,15	0.44	0	17,19,21	0.94	1 (5%)
7	NAG	F	2	7	14,14,15	0.31	0	17,19,21	0.73	0
7	BMA	F	3	7	11,11,12	0.24	0	$15,\!15,\!17$	1.01	1 (6%)
6	NAG	М	1	1,6	14,14,15	0.32	0	17,19,21	0.75	1 (5%)
6	NAG	М	2	6	14,14,15	0.32	0	17,19,21	0.67	0
6	NAG	N	1	1,6	14,14,15	0.30	0	17,19,21	0.52	0
6	NAG	N	2	6	14,14,15	0.32	0	17,19,21	0.79	0
8	NAG	0	1	8,1	14,14,15	0.42	0	17,19,21	1.51	5 (29%)
8	NAG	0	2	8	14,14,15	0.28	0	17,19,21	1.14	2 (11%)
8	BMA	0	3	8	11,11,12	0.23	0	15,15,17	0.77	0
8	MAN	0	4	8	11,11,12	0.24	0	15,15,17	0.51	0
8	MAN	0	5	8	11,11,12	0.22	0	15,15,17	0.50	0
6	NAG	Р	1	1,6	14,14,15	0.31	0	17,19,21	0.86	1 (5%)
6	NAG	Р	2	6	14,14,15	0.35	0	17,19,21	0.58	0
8	NAG	Q	1	8,1	14,14,15	0.32	0	17,19,21	0.56	0
8	NAG	Q	2	8	14,14,15	0.29	0	17,19,21	0.66	0
8	BMA	Q	3	8	11,11,12	0.22	0	$15,\!15,\!17$	0.96	1 (6%)
8	MAN	Q	4	8	11,11,12	0.22	0	$15,\!15,\!17$	0.58	0
8	MAN	Q	5	8	11,11,12	0.23	0	$15,\!15,\!17$	0.50	0
9	NAG	R	1	1,9	14,14,15	0.45	0	17,19,21	0.91	0
9	NAG	R	2	9	14,14,15	0.28	0	17,19,21	0.89	0
6	NAG	S	1	1,6	14,14,15	0.47	0	17,19,21	1.34	2 (11%)
6	NAG	S	2	6	14,14,15	0.30	0	17,19,21	0.91	1 (5%)
6	NAG	Т	1	1,6	14,14,15	0.30	0	17,19,21	0.65	0
6	NAG	Т	2	6	14,14,15	0.33	0	17,19,21	0.76	1 (5%)
7	NAG	U	1	1,7	14,14,15	0.40	0	17,19,21	0.79	1 (5%)
7	NAG	U	2	7	14,14,15	0.48	0	17,19,21	0.74	0
7	BMA	U	3	7	11,11,12	0.23	0	$15,\!15,\!17$	0.87	1 (6%)
6	NAG	V	1	1,6	14,14,15	0.64	0	17,19,21	1.58	1 (5%)
6	NAG	V	2	6	14,14,15	0.45	0	17,19,21	1.03	1 (5%)

Mal	Tune	Chain	Dog	Link	Bo	ond leng	ths	Bond angles		
WIOI	or Type Cham		nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
6	NAG	W	1	1,6	$14,\!14,\!15$	0.39	0	17,19,21	0.80	0
6	NAG	W	2	6	$14,\!14,\!15$	0.31	0	17,19,21	0.63	0
8	NAG	Х	1	8,1	14,14,15	0.39	0	17,19,21	0.81	1 (5%)
8	NAG	Х	2	8	14,14,15	0.32	0	17,19,21	0.80	0
8	BMA	Х	3	8	11,11,12	0.26	0	15,15,17	1.10	2 (13%)
8	MAN	Х	4	8	11,11,12	0.26	0	15,15,17	0.52	0
8	MAN	Х	5	8	11,11,12	0.24	0	$15,\!15,\!17$	0.63	0
6	NAG	Y	1	1,6	$14,\!14,\!15$	0.30	0	17,19,21	0.49	0
6	NAG	Y	2	6	14,14,15	0.31	0	17,19,21	0.69	0
10	NAG	Ζ	1	10,1	$14,\!14,\!15$	0.63	0	17,19,21	1.29	2 (11%)
10	NAG	Z	2	10	14,14,15	0.36	0	17,19,21	1.14	1 (5%)
10	BMA	Ζ	3	10	11,11,12	0.21	0	$15,\!15,\!17$	0.91	0
10	MAN	Ζ	4	10	$11,\!11,\!12$	0.22	0	$15,\!15,\!17$	0.49	0
10	MAN	Ζ	5	10	$11,\!11,\!12$	0.22	0	$15,\!15,\!17$	0.51	0
6	NAG	a	1	1,6	14,14,15	0.49	0	17,19,21	1.14	3 (17%)
6	NAG	a	2	6	14,14,15	0.30	0	17,19,21	0.88	1 (5%)
6	NAG	b	1	1,6	14,14,15	0.28	0	17,19,21	0.81	0
6	NAG	b	2	6	14,14,15	0.31	0	17,19,21	0.79	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	NAG	Е	1	1,6	-	0/6/23/26	0/1/1/1
6	NAG	Е	2	6	-	0/6/23/26	0/1/1/1
7	NAG	F	1	1,7	-	0/6/23/26	0/1/1/1
7	NAG	F	2	7	-	2/6/23/26	0/1/1/1
7	BMA	F	3	7	-	0/2/19/22	0/1/1/1
6	NAG	М	1	1,6	-	0/6/23/26	0/1/1/1
6	NAG	М	2	6	-	1/6/23/26	0/1/1/1
6	NAG	Ν	1	1,6	-	0/6/23/26	0/1/1/1
6	NAG	Ν	2	6	-	3/6/23/26	0/1/1/1
8	NAG	0	1	8,1	-	0/6/23/26	0/1/1/1
8	NAG	Ο	2	8	-	2/6/23/26	0/1/1/1
8	BMA	0	3	8	-	0/2/19/22	0/1/1/1
8	MAN	0	4	8	-	0/2/19/22	0/1/1/1
8	MAN	0	5	8	-	0/2/19/22	0/1/1/1
6	NAG	Р	1	1,6	-	2/6/23/26	0/1/1/1

OOnu	naca jio		is puye	• • •			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
6	NAG	Р	2	6	-	0/6/23/26	0/1/1/1
8	NAG	Q	1	8,1	-	0/6/23/26	0/1/1/1
8	NAG	Q	2	8	-	2/6/23/26	0/1/1/1
8	BMA	Q	3	8	-	0/2/19/22	0/1/1/1
8	MAN	Q	4	8	-	0/2/19/22	0/1/1/1
8	MAN	Q	5	8	-	0/2/19/22	0/1/1/1
9	NAG	R	1	1,9	-	0/6/23/26	0/1/1/1
9	NAG	R	2	9	-	0/6/23/26	0/1/1/1
6	NAG	S	1	1,6	-	0/6/23/26	0/1/1/1
6	NAG	S	2	6	-	0/6/23/26	0/1/1/1
6	NAG	Т	1	1,6	-	1/6/23/26	0/1/1/1
6	NAG	Т	2	6	-	1/6/23/26	0/1/1/1
7	NAG	U	1	1,7	-	2/6/23/26	0/1/1/1
7	NAG	U	2	7	-	3/6/23/26	0/1/1/1
7	BMA	U	3	7	-	1/2/19/22	0/1/1/1
6	NAG	V	1	1,6	-	0/6/23/26	0/1/1/1
6	NAG	V	2	6	-	0/6/23/26	0/1/1/1
6	NAG	W	1	1,6	-	3/6/23/26	0/1/1/1
6	NAG	W	2	6	-	0/6/23/26	0/1/1/1
8	NAG	Х	1	8,1	-	2/6/23/26	0/1/1/1
8	NAG	Х	2	8	-	2/6/23/26	0/1/1/1
8	BMA	Х	3	8	-	2/2/19/22	0/1/1/1
8	MAN	Х	4	8	-	0/2/19/22	0/1/1/1
8	MAN	Х	5	8	-	0/2/19/22	0/1/1/1
6	NAG	Y	1	1,6	-	2/6/23/26	0/1/1/1
6	NAG	Y	2	6	-	1/6/23/26	0/1/1/1
10	NAG	Z	1	10,1	-	4/6/23/26	0/1/1/1
10	NAG	Z	2	10	-	2/6/23/26	0/1/1/1
10	BMA	Z	3	10	-	0/2/19/22	0/1/1/1
10	MAN	Z	4	10	-	1/2/19/22	0/1/1/1
10	MAN	Z	5	10	-	1/2/19/22	0/1/1/1
6	NAG	a	1	1,6	-	0/6/23/26	0/1/1/1
6	NAG	a	2	6	-	3/6/23/26	0/1/1/1
6	NAG	b	1	1,6	-	3/6/23/26	0/1/1/1
6	NAG	b	2	6	-	1/6/23/26	0/1/1/1

There are no bond length outliers.

All (33) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	V	1	NAG	C1-O5-C5	6.30	120.63	112.19
6	Е	1	NAG	C1-O5-C5	4.57	118.31	112.19
6	S	1	NAG	C1-O5-C5	4.35	118.01	112.19
8	0	2	NAG	C1-O5-C5	3.46	116.83	112.19
6	V	2	NAG	C1-O5-C5	3.24	116.53	112.19
8	0	1	NAG	O5-C1-C2	-2.98	106.68	111.29
10	Ζ	1	NAG	C3-C4-C5	2.80	115.31	110.23
7	F	3	BMA	C1-O5-C5	2.67	115.76	112.19
7	F	1	NAG	C1-O5-C5	2.65	115.74	112.19
8	Х	3	BMA	C1-O5-C5	2.58	115.65	112.19
8	0	1	NAG	C1-O5-C5	2.57	115.63	112.19
8	0	1	NAG	C6-C5-C4	-2.56	106.72	113.02
10	Ζ	1	NAG	O3-C3-C4	-2.56	104.35	110.38
8	0	2	NAG	C2-N2-C7	-2.50	119.55	122.90
6	S	2	NAG	C1-O5-C5	2.37	115.37	112.19
7	U	1	NAG	O5-C1-C2	-2.35	107.66	111.29
8	0	1	NAG	C2-N2-C7	-2.30	119.81	122.90
8	Q	3	BMA	C1-C2-C3	2.29	112.98	109.64
8	Х	1	NAG	O5-C1-C2	-2.27	107.78	111.29
6	а	1	NAG	C1-O5-C5	2.25	115.20	112.19
6	Ε	2	NAG	C1-O5-C5	2.24	115.19	112.19
6	S	1	NAG	C2-N2-C7	-2.23	119.91	122.90
10	Ζ	2	NAG	O5-C1-C2	-2.21	107.88	111.29
8	0	1	NAG	C3-C4-C5	2.19	114.21	110.23
7	U	3	BMA	C1-O5-C5	2.18	115.11	112.19
6	а	2	NAG	O5-C1-C2	-2.18	107.92	111.29
6	a	1	NAG	C4-C3-C2	2.14	114.16	111.02
6	a	1	NAG	O5-C1-C2	2.14	114.60	111.29
6	М	1	NAG	C1-O5-C5	2.11	115.01	112.19
6	Е	1	NAG	O5-C1-C2	2.08	114.51	111.29
6	Т	2	NAG	C1-O5-C5	2.07	114.96	112.19
8	Х	3	BMA	C1-C2-C3	2.07	112.65	109.64
6	Р	1	NAG	O5-C1-C2	-2.04	108.14	111.29

There are no chirality outliers.

All (47) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
6	Ν	2	NAG	C1-C2-N2-C7
6	W	1	NAG	C3-C2-N2-C7
6	W	1	NAG	C8-C7-N2-C2
6	W	1	NAG	O7-C7-N2-C2
6	a	2	NAG	C1-C2-N2-C7

Continued on next page...

Mol	Chain	Res	Type	Atoms
6	b	1	NAG	C1-C2-N2-C7
10	Ζ	1	NAG	C1-C2-N2-C7
10	Ζ	1	NAG	C8-C7-N2-C2
10	Ζ	1	NAG	O7-C7-N2-C2
8	0	2	NAG	C8-C7-N2-C2
8	0	2	NAG	O7-C7-N2-C2
8	Х	3	BMA	O5-C5-C6-O6
6	b	1	NAG	O7-C7-N2-C2
8	Х	3	BMA	C4-C5-C6-O6
6	b	1	NAG	C8-C7-N2-C2
7	U	1	NAG	C8-C7-N2-C2
7	U	1	NAG	07-C7-N2-C2
6	a	2	NAG	C8-C7-N2-C2
6	a	2	NAG	O7-C7-N2-C2
7	F	2	NAG	C8-C7-N2-C2
10	Ζ	1	NAG	O5-C5-C6-O6
8	Q	2	NAG	O5-C5-C6-O6
7	F	2	NAG	O7-C7-N2-C2
7	U	2	NAG	C8-C7-N2-C2
10	Ζ	2	NAG	O5-C5-C6-O6
7	U	2	NAG	O5-C5-C6-O6
10	Ζ	4	MAN	O5-C5-C6-O6
10	Ζ	5	MAN	O5-C5-C6-O6
7	U	3	BMA	O5-C5-C6-O6
6	М	2	NAG	O5-C5-C6-O6
6	b	2	NAG	O5-C5-C6-O6
7	U	2	NAG	O7-C7-N2-C2
6	Р	1	NAG	C8-C7-N2-C2
8	Х	2	NAG	C8-C7-N2-C2
6	Ν	2	NAG	C8-C7-N2-C2
8	Х	1	NAG	C8-C7-N2-C2
6	N	2	NAG	07-C7-N2-C2
6	Р	1	NAG	O7-C7-N2-C2
8	X	2	NAG	O7-C7-N2-C2
6	Т	1	NAG	C1-C2-N2-C7
6	Т	2	NAG	C1-C2-N2-C7
6	Y	2	NAG	C1-C2-N2-C7
8	X	1	NAG	07-C7-N2-C2
10	Ζ	2	NAG	C3-C2-N2-C7
6	Y	1	NAG	C8-C7-N2-C2
6	Y	1	NAG	07-C7-N2-C2
8	Q	2	NAG	C4-C5-C6-O6

Continued from previous page...

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
7	F	1	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

Of 24 ligands modelled in this entry, 14 are monoatomic - leaving 10 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trune	Chain	Dec	T inl.	Bo	ond leng	ths	В	ond ang	les
NIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
11	NAG	В	4701	1	14,14,15	0.33	0	$17,\!19,\!21$	0.72	1 (5%)
11	NAG	А	4703	1	14,14,15	0.30	0	17,19,21	0.71	0
11	NAG	А	4704	1	14,14,15	0.54	0	17,19,21	2.13	2 (11%)
11	NAG	В	4702	1	14,14,15	0.30	0	17,19,21	0.67	1 (5%)
11	NAG	В	4703	1	14,14,15	0.87	1 (7%)	17,19,21	1.14	2 (11%)
11	NAG	В	4704	1	14,14,15	0.35	0	17,19,21	0.66	0
11	NAG	А	4702	1	14,14,15	0.31	0	17,19,21	0.52	0
12	A2G	В	4705	1	14,14,15	0.45	0	17,19,21	1.32	1 (5%)
12	A2G	А	4705	1	14,14,15	0.38	0	17,19,21	0.45	0
11	NAG	А	4701	1	14,14,15	0.41	0	17,19,21	1.20	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	NAG	В	4701	1	-	0/6/23/26	0/1/1/1
11	NAG	А	4703	1	-	3/6/23/26	0/1/1/1
11	NAG	А	4704	1	-	3/6/23/26	0/1/1/1
11	NAG	В	4702	1	-	0/6/23/26	0/1/1/1
11	NAG	В	4703	1	-	0/6/23/26	0/1/1/1
11	NAG	В	4704	1	-	3/6/23/26	0/1/1/1
11	NAG	А	4702	1	-	0/6/23/26	0/1/1/1
12	A2G	В	4705	1	-	0/6/23/26	0/1/1/1
12	A2G	А	4705	1	-	2/6/23/26	0/1/1/1
11	NAG	А	4701	1	-	0/6/23/26	0/1/1/1

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
11	В	4703	NAG	C1-C2	2.70	1.56	1.52

All (8) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	А	4704	NAG	C1-O5-C5	7.34	122.02	112.19
12	В	4705	A2G	O5-C1-C2	4.70	118.57	111.29
11	А	4701	NAG	C1-O5-C5	3.84	117.33	112.19
11	А	4704	NAG	O5-C1-C2	3.83	117.21	111.29

Continued on next page...

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$\mathbf{Ideal}(^{o})$
11	В	4703	NAG	O5-C5-C4	-2.38	105.04	110.83
11	В	4703	NAG	C1-O5-C5	-2.37	109.01	112.19
11	В	4701	NAG	C1-O5-C5	2.21	115.15	112.19
11	В	4702	NAG	C1-O5-C5	2.02	114.89	112.19

Continued from previous page...

There are no chirality outliers.

All (11) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
11	А	4703	NAG	C1-C2-N2-C7
11	А	4704	NAG	C3-C2-N2-C7
11	А	4704	NAG	C8-C7-N2-C2
11	А	4704	NAG	O7-C7-N2-C2
11	В	4704	NAG	C1-C2-N2-C7
12	А	4705	A2G	O7-C7-N2-C2
12	А	4705	A2G	C8-C7-N2-C2
11	А	4703	NAG	C8-C7-N2-C2
11	А	4703	NAG	O7-C7-N2-C2
11	В	4704	NAG	C8-C7-N2-C2
11	В	4704	NAG	07-C7-N2-C2

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-36698. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 130

Y Index: 130

Z Index: 130

6.2.2 Raw map

X Index: 130

Y Index: 130

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 130

Y Index: 133

Z Index: 215

6.3.2 Raw map

X Index: 130

Y Index: 133

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0285. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

emd_36698_msk_1.map (i) 6.6.1

Υ

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 159 $\rm nm^3;$ this corresponds to an approximate mass of 144 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)				
resolution estimate (A)	0.143	0.5	Half-bit			
Reported by author	3.20	-	-			
Author-provided FSC curve	3.20	3.75	3.24			
Unmasked-calculated*	3.87	6.83	3.97			

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.87 differs from the reported value 3.2 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-36698 and PDB model 8JXE. Per-residue inclusion information can be found in section 3 on page 9.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0285 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0285).

9.4 Atom inclusion (i)

At the recommended contour level, 90% of all backbone atoms, 83% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0285) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8330	0.5390
А	0.8460	0.5460
В	0.8410	0.5400
С	0.9090	0.5340
D	0.6250	0.3670
Ε	0.4640	0.4280
F	0.6920	0.4410
G	0.4850	0.5190
Н	0.4640	0.4700
Ι	0.8790	0.5360
J	0.5620	0.4460
К	0.6360	0.4830
L	0.6430	0.5130
М	0.5360	0.4340
Ν	0.3930	0.4270
0	0.4750	0.4460
Р	0.4640	0.4690
Q	0.8030	0.5310
R	0.3930	0.2750
S	0.5360	0.4280
Т	0.2140	0.3370
U	0.5900	0.3980
V	0.6430	0.4140
W	0.3570	0.4020
X	0.3610	0.4140
Y	0.5000	0.4420
Z	0.7870	0.4670
a	0.3570	0.3360
b	0.7500	0.4560

