

May 21, 2024 – 10:12 AM JST

PDI	B ID	:	8HYJ
EMDI	B ID	:	EMD-35086
r	Title	:	A cryo-EM structure of KTF1-bound polymerase V transcription elongation
			complex
Aut	thors	:	Zhang, H.; Zhang, Y.
Deposite	d on	:	2023-01-06
Resolu	ition	:	4.30 Å(reported)
Т	his is	a F	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 4.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive}\ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
1	А	1976	45% 13%	42%	
2	В	1172	73%	16%	• 10%
3	С	319	70%	18%	• 11%
4	D	205	39% 18%	43%	
5	Е	222	71%	23%	6%
6	F	144	43% 10%	47%	
7	G	178	75%	25	5%
8	Н	146	69%	15%	16%

Conti	nued fron	<i>i</i> previous	page			
Mol	Chain	Length		Quality of chair	1	
9	I	114		73%	12%	14%
	-				12.70	- 100
10	J	71	70)%	15%	• 13%
11	Κ	116	7	2%	12%	• 14%
12	L	51	63%		20%	18%
13	Ν	48	38%	35%	·	25%
14	Р	30	10% 23%		67%	
15	Т	48	33%	44%		23%
16	W	1493	•••	97%		

2 Entry composition (i)

There are 18 unique types of molecules in this entry. The entry contains 28568 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called DNA-directed RNA polymerase V subunit 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	1141	Total 8794	C 5540	N 1526	O 1672	S 56	0	0

• Molecule 2 is a protein called DNA-directed RNA polymerases IV and V subunit 2.

Mol	Chain	Residues		Α	AltConf	Trace			
2	В	1054	Total 7912	C 5047	N 1426	O 1400	S 39	0	0

• Molecule 3 is a protein called DNA-directed RNA polymerases IV and V subunit 3B.

Mol	Chain	Residues		At	AltConf	Trace			
3	С	285	Total 2123	C 1351	N 360	O 398	S 14	0	0

• Molecule 4 is a protein called DNA-directed RNA polymerases IV and V subunit 4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	D	117	Total 896	C 566	N 142	0 181	${f S}{7}$	0	0

• Molecule 5 is a protein called DNA-directed RNA polymerase V subunit 5A.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	209	Total 1652	C 1050	N 283	0 316	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called DNA-directed RNA polymerases II, IV and V subunit 6A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
6	F	76	Total 554	C 355	N 97	O 99	S 3	0	0

• Molecule 7 is a protein called DNA-directed RNA polymerase V subunit 7.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	G	178	Total 1417	C 926	N 227	O 253	S 11	0	0

• Molecule 8 is a protein called DNA-directed RNA polymerases II and V subunit 8A.

Mol	Chain	Residues	Atoms			AltConf	Trace		
8	Н	123	Total 904	C 597	N 142	O 160	${ m S}{ m 5}$	0	0

• Molecule 9 is a protein called DNA-directed RNA polymerases II, IV and V subunit 9A.

Mol	Chain	Residues	Atoms			AltConf	Trace		
9	Ι	98	Total 702	C 436	N 131	0 124	S 11	0	0

• Molecule 10 is a protein called DNA-directed RNA polymerases II, IV and V subunit 10.

Mol	Chain	Residues	Atoms				AltConf	Trace	
10	J	62	Total	С	N	0	S	0	0
			484	316	83	79	6	, i i i i i i i i i i i i i i i i i i i	, in the second

• Molecule 11 is a protein called DNA-directed RNA polymerases II, IV and V subunit 11.

Mol	Chain	Residues	Atoms			AltConf	Trace		
11	K	100	Total 756	C 482	N 138	0 135	S 1	0	0

• Molecule 12 is a protein called DNA-directed RNA polymerases II, IV and V subunit 12.

Mol	Chain	Residues	Atoms			AltConf	Trace		
12	L	42	Total 309	C 192	N 54	O 59	S 4	0	0

• Molecule 13 is a DNA chain called DNA (48-MER).

Mol	Chain	Residues	Atoms			AltConf	Trace		
13	Ν	36	Total 749	C 356	N 139	0 218	Р 36	0	0

• Molecule 14 is a RNA chain called RNA (30-MER).

Mol	Chain	Residues	Atoms			AltConf	Trace		
14	Р	10	Total 218	C 97	N 42	O 69	Р 10	0	0

• Molecule 15 is a DNA chain called DNA (48-MER).

Mol	Chain	Residues	Atoms			AltConf	Trace		
15	Т	37	Total 746	$\begin{array}{c} \mathrm{C} \\ 356 \end{array}$	N 133	O 220	Р 37	0	0

• Molecule 16 is a protein called Protein RNA-directed DNA methylation 3.

Mol	Chain	Residues	Atoms			AltConf	Trace		
16	W	4.4	Total	С	Ν	Ο	\mathbf{S}	0	0
10	vv	44	347	223	63	60	1	0	0

• Molecule 17 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
17	А	1	Total Mg 1 1	0

• Molecule 18 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
18	С	1	Total Zn 1 1	0
18	Ι	1	Total Zn 1 1	0
18	J	1	Total Zn 1 1	0
18	L	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA-directed RNA polymerase V subunit 1

ALA GLN GLN SER PRO SER SER CLN SER PRO GLN THR THR THR

• Molecule 2: DNA-directed RNA polymerases IV and V subunit 2

DB

• Molecule 3: DNA-directed RNA polymerases IV and V subunit 3B

Chain C:	70%	18% •	11%
MET ASP GLY VAL TS D20 P21 A22 L26 L26 L26 L26 R27	E28 A34 A34 A34 V46 V45 V45 F46 H51 H51 H51 H51 H51 H55 B56 S50 S60 V61 V61 V61 V61 V61	M82 M82 C87 C87 C87 C87 C80 C98 C98 C90 C100 C100 C102 C102 C102 C102 C102	K111 8122 8123 8123 0124 0128 0128
THR SER ASN ASN SER SER ASP ASP CLU CLU CLU	1152 1152 1158 1158 1164 1164 1194 1194 1194 1194 1194 1194	F221 F221 D224 C228 C228 F243 F268 F268 F268	1269 1270 1271 1273 1273 1273 1273 1274 1275 1273 1275 1274 12775 12755 12775
q280 [281 [284 [293 [296 [296 [296 [296 [296 [296] [296] [296] [296] [296] [296] [296] [296] [200] [20	VAL VAL ALA ASP ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU		
• Molecule 4: D	NA-directed RNA polymerase	s IV and V subunit 4	
Chain D:	39% 18%	43%	
MET SER CIU CIU CIU CIU CIU CIU CIU CIU CIU CIU	LEU LEU SER SER SER LYS GLY GLY GLY CLU CVS CLVS CLVS CLVS CLVS CLVS CLVS CLVS	PHE ASP GLM CLM CLM ARC PRO PRO PRO PRO PRO PRO PRO ACM LVS LVS LVS CLEU VAL SER VAL	SER ASP GLN GLN PHC CLN SER SER SER
ALA LYS CYS CYS GLY GLY SER ASP LYS PRO LYS SER SER SER	SER LYS ASN SER LEU LEU LEU LEU LYS AS PR6 M92 M92 M92 M92 M92 M92 M92 M92 M92 M92	L101 1104 K106 L108 L111 L108 L111 P120 P120 R123 R123 R123 L123	A128 Y129 V130 E131 V142 V145 L146 E147
P148 L149 L149 T151 T151 D156 G157 G157 G157 C160 V161 V161	E168 E174 F175 F176 F176 F176 F176 F176 F176 F176 C175 C175 C175 C175 C175 C175 C175 C175		
• Molecule 5: D	NA-directed RNA polymerase	V subunit 5A	
Chain E:	71%	23%	6%
MET GLU VAL LYS LYS GLY GLU THR ALA SER VAL LAU LEU	CYS E24 E24 R27 R27 R27 C7 N34 N34 F27 N34 R27 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9 C9	A105 1106 1106 11106 1111 1113 1113 1114 1115 1115 1115 1115	A128 1132 1132 1132 1135 1143 0143
1144 1145 1146 1147 1148 1148 1148 1148 1151 1151 1151 1152 1152 1152 1152	K157 K168 K168 L171 L172 L172 R181 F183 F183 F183 F183 F183 F183 F183 F	E210 E211 F218 F218 R219 V221 W222	
• Molecule 6: D	NA-directed RNA polymerase	s II, IV and V subuni	t 6A
Chain F:	43% 10%	47%	
MET ALA ASP ASP GLU GLU ASP VAL ASP ASP ASP LEU	GLY TYR GTV GTV GIU GLU PRO PRO PRO GLU GLU GLU GLU GLU GLU GLU MAL GLU MAL CTU MAL	GLU ASP ASP ASP ASP ASP CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GILL THR CILU PRO VAL GILN ARG PRO PRO

• Molecule 7: DNA-directed RNA polymerase V subunit 7

• Molecule 8: DNA-directed RNA polymerases II and V subunit 8A

D126 P127 S131 S131 L141 L146

• Molecule 9: DNA-directed RNA polymerases II, IV and V subunit 9A

Chain I:	73%	12% •	14%
MET S2 C32 D33 R45 R45 H50	VAL VAL SER CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	N105 P106 N107 R111 E114	
• Molecule 1	0: DNA-directed RNA polymerases II, IV	and V subu	unit 10

• Molecule 11: DNA-directed RNA polymerases II, IV and V subunit 11

• Molecule 12: DNA-directed RNA polymerases II, IV and V subunit 12

Chain I.			/
Unam L:	63%	20%	18%

• Molecule 13: DNA (48-MER)

Chain N:	389	%	35%	• 25%	
DC DC DT DT DC DT	DA DG DC A-14 A-6 A-6 A-6	T-5 G-4 G-4 G-3 G-3 G-3 G-3 G-3 G-3 G-3 G-3 C-3 G-4 G-4 G-4 G-4 G-4 G-4 G-4 G-4 G-4 G-4	111 112 113 115 115 116 117 116 117 117 122 122 122		
• Molecule	14: RNA (3	80-MER)			
Chain P:	10% 2	23%	67%		
A D O D D Q A A	000 4 0000	и и 866 85 86 86 87 87 87 87 87 87 87 87 87 87 87 87 87	000 010 010		
• Molecule	15: DNA (4	48-MER)			
Chain T:	33%		44%	23%	
C-22 A-21 C-20 C-19 C-18 A-16 A-16 C-15	C-14 G-13 A-12 A-10 G-8 G-8 A-6 C-7 A-6	C1 C1 C2 C2 C4 C4 C4 C4 C4 C4 C2 C2 C2 C2 C2 C2 C1 C2 C2 C1 C2 C1 C2 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2			
• Molecule	16: Protein	RNA-directed	DNA methylation	n 3	
Chain W:			97%		
MET ASP ARG LYS GLY GLY CLYS CLY	GLN VAL ALA ALA GLY SER ASP SER TYR SER	GLY GLY GLN GLN CLNS CLN CLYS ASR ASN SER VAL SER VAL	ARG ASP GLV GLV GLY CLV CLV LVS LVS LVS LVS ASN ASN	GLU LEU LEU GLU GLU GLU GLU SER ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	SER
ASP GLU ASP ASP GLY LEU GLY GLY	PHE LEU ASN ASP MET GLU GLU PRO	GLU VAL GLU GLU GLU EVS ALA ALA GLY CLYS	GLU CALU CALU CALU CALU CALU PHE PHE PHE CALU GLU GLU	ASP LEU ASP ADD GLU GLU ARG TLLE ARG CLU GLU GLU CYS CLU	GLY SER
GLY PHE LEU ARG ALA ASP ASP	ASP ILE LYS ASP ALA ILE GLU MET ASP	ALA LEU ALA ALA PRO SER LYS ASP PRO PRO	TLE TYP LYS LYS LYS CYS CYS ALA TILE GLY GLY ARG GLU SER	VAL PHE CYS CYS CYS CHE CYS LEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	GLU
ILE ILE SER VAL PHE SER VAL ASP	HIS VAL LYS GLY PHE TLE TLE TLE GLU	ALA ASP LYS CYS GLU GLU GLU ALA	CTS CTS SER SER LEU CLEU CLEU TLE TTR ALA ALA MET VAL	LEU PRO LYS ALA ALA ALA ALA PRO ALA ASN LU VAL CLU SC LYS THR	LYS
SER GLU GLY TRP ALA ARG VAL	LYS ASN GLY LYS LYS LYS GLY ASP LEU	ALA GLN TLE VAL ALA VAL SER ASP THR ARC	ASN LYS ALA ALA LEU LYS LEU TLE PRO ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	ALA LEU THR GLN GLN GLY GLY VAL CLY VAL CLY GLN GLN GLN	PRO ALA
PRO LEU LLEU SER SER SER GLU	LEU GLU GLU PHE ARG PRO LEU LLE GLN	VAL ARG ARG ASP ASP ASP THR CLY THR THR	CLU CLU CLU CLU ASP SER SER SER CLU CLU CLU CLU CLU CLU CLU	TYR LYS LYS LYS VAL SER ASP SER SER SER SER SER SER TRP GLY VAL TIE	LYS ASP
GLU LEU LEU LYS PHE PRO VAL	ASP ARG CLV GLV GLV ASP VAL GLU	TRP ILE SER SER CLU ILE TYR GLU GLU GLU	LYS LYS LYS LYS LYS LEU FRO PRO PRO CYS GLU GLV GLV GLY GLY	CLU SER GLY SER GLY GLY GLY GLY GLY GLY GLY GLY GLY GLY	GLY SER
ARG GLY CLY CLY CLY GLY GLY SER	SER ASP PHE LYS SER GLU SER SER TYR	GLU LEU TYR ASN ASN LEU VAL CYS SER ARG	LTS ASP PHE CLEU LEU TLE VAL CLY ASP CLY ASP CLY ASP ASP ASP	CLY TYR LYS VAL LEU LEU LYS GLY GLY CLY GLY ASP CLY VAL VAL VAL VAL VAL	GLY GLY
LYS GLU GLU GLN ASN GLY PRO PHE	ASP SER LYS PHE THR ALA LEU LEU	ASN LYS LYS CLN GLN TLE SER VAL ASN ASP	VAL LYS SER SER LYS GLY GLY GLY GLV GLV GLV VAL VAL	VAL ARG VAL TYR TYR ARG GLY TILE PHE LEU TILE TYR SER SER CUU	GLU ASN

GLY	GLY TYR	PHE	CYS	LYS	SER	GLN	CYS	GLU	LYS	VAL	LTU	PHE	THR	GLU	GLU	ASN	GLU	LYS	THR	A IU	PHE	ASP	GLY	THR	ALA	PHE	ASP	PHE	VAL	SER	DRU	LYS	SER	PR0	SER	PRO	GLU		TRP	GLN	PRO	ARG	GLU	TYR	ASN	SER	ASN
CLN GLN	GLY ASP	ILE	GLY SFR	T607	L C C	K615 T616		R627	V628	1629	Ab 30	ARG	TYR	SER	ASP	VAL TG37	V638	K639		2642 0643	H644		V649		A655	E656	ARG	ASP	ARG	ASN	VAL	TEU	SER	THR	GLY	ASP	ALA	TUD (GL Y	GLY	SER	PHE	GLN	PHE	GLY	MET	LEU	THR
GLU	SER	THR	GLY	TRP	ALA	A 10	ALA	GLY	THR	SER	SER	GLY	GLY	ASN	d'H.I.	TLF	GLY	GLY	PRO	NEK THB	ASP	SER	SIH	GLU	SER	LEU	ASN ILE	GLU	ARG	ASN	VAL	GLN	LEU	CYS	GLU	LYS	ASN	TED	GLY	GLY	SER	LYS	P R O	SER	ASP	VAL	PRO
HHT.	VAL ALA	ASP	ASP	THR	SER	TRD	ALA	ASN	ALA	ALA	GLII	ASN	LYS	PRO	ALA	AL.A	SER	ASP	GLN	P.KU	GLY	TRP	ASN	PRO	TRP	GLY	THR	PRO	ALA	SER	GLU	GLY	THR	VAL	GLY	TRP	GLY	TUD	SER	ALA	SER	ASN	CLIT	ALA	SER	SER	GLU
LYS	GLY	ALA	SER THR	SER	ASN	VAL AT A	ASP	LEU	GLY	SER	TRP GL.Y	THR	HIS	GLY	GLY	SER	GLY	GLY	ASN	CI N	ASP	GLU	ASP	SER	VAL	TRP 21 11	GLY	LEU	CYS	GLU	ALA SER	GLU	SER	SER	LYS	LYS	CL U	GLU	SER	TRP	GLY	LYS	LYS	GLY	SER	ASP	GLU
SER	SER TRP	GLY	ASN	ASP	GLY	ASN	SER	ALA	SER	LYS	LYS ASP	GLY	VAL	SER	U.Y.	GL.N	GLN	ASP	LYS	GLY SFR	ASP	GLU	SER	LYS	GLY	GLY	SER	TRP	SER	ASN	GLN	GLY	ASP	PHE	SER	GLY	LYS	LYS LVS	ASP	GLY	SER	SER	GLY TRP	ASN	LYS	SER AT A	GLU
ASP	SER ASN	ALA	ASN	LYS	GLY	VAL	ASP	TRP	GLY	GLN	ASN	ASP	GLY	SER	TER	GL.Y	LYS	LYS	GLY	ASP GI V	ALA	ALA	SER	TRP	GLY	LYS	LYS ASP	ASP	GLY	GLY	TRP	GLY	LYS	LYS	ASP	GLY	ASN	LYS	ASP	GLY	GLY	SER	TRP	GLY	LYS	LYS	ASP
GLY	GLN	ASP	ASP 21 V	3LY	SER	TRD	3LU	LYS	LYS	PHE	ASP GLY	GLY	SER	SER	AH.I	ULYS	LYS	ASP	ASP	21 V	SER	SER	TRP	GLY	LYS	LYS	ASP	GLY	GLY	SER	LEU TRP	GLY	LYS	LYS	ASP	GLY	GLY	SER.	TRP	GLY	LYS	GLU	ASP	GLY	GLY	SER	IRP
	XS	SP	I V	TI	SER.	HI CH	TY	XS	XS	SP	Y.I.	ITO I	ER	SER.	T V	TLI SY	XS	SP	ISP	I A	EB	E H	RP	TY	XS	XS	ILU	TA	TY	TR	ELU EL	ILN	HR	E	IRG	TX	TLY	T V	E E	TX	TY	IRG	LRG	TY	TY	IRG	TY
X 1	SP I	N.	I IIII	50	7.1		- O	I I	SN I	E E			A.	02			SO I	ER I	λ.			dr.	Х.	rs o	N	I I	A D	X.	.Y		4 6 7 0	RP 0	Т Х.	I S I	NS NS	SP (A.	χ	I A	ER 0	ER (RP	A S	N	SP	NS	AL A
۲. ۲.	R AI	P CI	PI PI	N	E E	7 > 2 0	R PI	Y G1	Y AS	Υ S	R GI	PI PI	Y AI	S :	N N	а <u>г</u>	A PI	Y SI	۲ 5		4 4		Y G	S	N G	P AS	Y AS	Y GI	P GI	۲ CD	* # 8	E E	Y GI	0 F	P AS	Y AS	Y W	50		Y SI	R	L I	а х а х	. N	N	N AS	R R
	SE	TR	GL	CTD .	AS	AS	SE	GL	GL	15	J N N	TR	GL	LY.	19	CH AS	AL	CL.	dL GL	35	SE	TR	GL	TX.	GL	AS	3.15	GL	AS	GL.	J HS	TR	GL	ΓΛ	AS	GL	GL	19	SE SE	CL.	SE.	AL .	TR.	TX .	GL	AS	TH
NEX	GLY GLY	SER	SER	GLY	TAS	GLN	ASP	ALA	GLY	GLY	GLY	SER	TRP	GLY	TIN	ASP	GLY	GLY	GLY	A ID	SER	SER	TRP	GLY	TAS	GLN	GLY	GLY	GLY	GLY	ATD SER	SER	ALA	TRP	TAS	GLN	ASN	dur GLU	LIII	ASN	GLY	SEI	TRP	GLY	LYS	GLN	ASP
NHX I	GLY	GLY	SER	TRP	GLY	CT N	ASP	GLY	GLY	GLY	CLLY CLLY	SER	SER	TRP	1 AG	CI.U GI.N	ASN	ASP	GLY	A LD	GL.Y	SER	SER	TRP	GLY	LYS	GLY GLA	ASP	GLY	GLY	LYS	PRO	TRP	ASN	SIH	SER	GLY	A LU	ARG	GLY	PHE	GLY	GLU ARG	ARG	GLY	GLY	GLY
ЭНА	ARG GLY	GLY	ARG	CLN	SER	ARC ARC	CLY	GLY	ARG	SER	ASP	CLY GLY	GLY	ARG	SER	SER	TRP	LYS	THR	ASM	CI.N	CLU	ASN	THR	TRP	LYS	ASP	GLN	SER	GLY	GLY	ASP	TRP	LYS	GLY	TRP	GLY	0 TE	SER	ASN	ASN	SER	LYS PRO	SER	GLY	SER	ALA
GLY GLY	GLY	ALA	GLY	TRP	PRO	TRD	ASP	THR	ASN	SER	LYS	CLU	THR	ASN	ASP	PRO	GLY	ASP	ASP	N I V C	SER	ALA	TRP	GLY	THR	SER	ASP	GLN	VAL	ASN	ASP	ASN	ASN	ASN	SER	TRP	ASN	LYS	PRO	ASN	ASN	ASP	CLV	THR	SER	GLY	ALA
ASP	ASN	TRP	GLY	TAS	THR	AJN	VAL	ALA	PRO	SER	SER	GLY	SER	ALA	ALA	GL.Y	THR	GLY	ASP	L VS	THR	GLY	TRP																								

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	30359	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING ONLY	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1200	Depositor
Maximum defocus (nm)	2200	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	B	ond angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.39	0/8949	0.52	4/12093~(0.0%)
2	В	1.02	0/8074	0.90	15/10929~(0.1%)
3	С	1.11	0/2156	0.93	3/2929~(0.1%)
4	D	0.27	0/909	0.45	0/1232
5	Ε	0.24	0/1678	0.42	0/2271
6	F	0.25	0/564	0.41	0/767
7	G	0.27	0/1448	0.46	0/1951
8	Н	0.26	0/919	0.42	0/1244
9	Ι	0.28	0/716	0.52	0/973
10	J	1.20	0/492	1.01	2/666~(0.3%)
11	Κ	1.06	0/770	0.82	0/1045
12	L	1.07	0/312	1.05	2/420~(0.5%)
13	Ν	0.54	1/840~(0.1%)	0.83	1/1295~(0.1%)
14	Р	0.25	0/244	0.66	0/379
15	Т	0.54	0/834	0.85	0/1281
16	W	0.88	1/351~(0.3%)	0.98	1/470~(0.2%)
All	All	0.73	2/29256~(0.0%)	0.72	28/39945~(0.1%)

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
16	W	642	SER	CA-CB	-5.84	1.44	1.52
13	Ν	2	DT	O3'-P	5.41	1.67	1.61

All (28) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	В	304	ASP	N-CA-C	-7.36	91.14	111.00
2	В	72	GLY	N-CA-C	7.34	131.45	113.10
2	В	798	GLY	N-CA-C	6.89	130.33	113.10

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
12	L	44	ARG	N-CA-C	-6.70	92.92	111.00
1	А	903	LEU	CA-CB-CG	6.40	130.02	115.30
16	W	627	ARG	N-CA-C	6.39	128.25	111.00
3	С	99	CYS	N-CA-C	-6.38	93.76	111.00
2	В	197	LYS	N-CA-C	-6.26	94.11	111.00
2	В	252	LEU	CA-CB-CG	6.17	129.49	115.30
10	J	33	ASP	N-CA-C	-5.92	95.01	111.00
2	В	778	VAL	CB-CA-C	-5.76	100.45	111.40
2	В	727	ILE	CB-CA-C	-5.75	100.11	111.60
2	В	116	PHE	N-CA-C	-5.67	95.70	111.00
1	А	913	VAL	CB-CA-C	-5.64	100.68	111.40
2	В	356	LEU	N-CA-C	5.63	126.20	111.00
1	А	619	LEU	CA-CB-CG	5.54	128.05	115.30
2	В	268	LEU	CA-CB-CG	5.53	128.03	115.30
2	В	634	VAL	N-CA-C	5.53	125.93	111.00
2	В	842	LEU	CA-CB-CG	5.47	127.89	115.30
3	С	102	CYS	N-CA-C	5.45	125.71	111.00
2	В	730	SER	N-CA-C	5.39	125.56	111.00
10	J	59	LEU	CA-CB-CG	5.33	127.57	115.30
1	А	1039	GLY	N-CA-C	5.27	126.27	113.10
2	В	128	TYR	N-CA-C	-5.22	96.90	111.00
12	L	26	VAL	N-CA-C	-5.17	97.03	111.00
3	С	129	ASP	C-N-CD	5.16	139.23	128.40
13	Ν	2	DT	P-O3'-C3'	5.09	125.81	119.70
2	В	557	MET	N-CA-C	-5.07	97.31	111.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	8794	0	8748	214	0
2	В	7912	0	7591	148	0
3	С	2123	0	2089	42	0
4	D	896	0	899	25	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	Е	1652	0	1634	58	0
6	F	554	0	516	12	0
7	G	1417	0	1459	31	0
8	Н	904	0	851	13	0
9	Ι	702	0	609	9	0
10	J	484	0	486	7	0
11	Κ	756	0	716	9	0
12	L	309	0	282	5	0
13	Ν	749	0	409	20	0
14	Р	218	0	109	3	0
15	Т	746	0	416	31	0
16	W	347	0	366	6	0
17	А	1	0	0	0	0
18	С	1	0	0	0	0
18	Ι	1	0	0	0	0
18	J	1	0	0	0	0
18	L	1	0	0	0	0
All	All	28568	0	27180	541	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10.

All (541) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:116:PHE:CZ	2:B:121:ALA:HB2	1.36	1.56
1:A:1060:ARG:NH2	5:E:210:GLU:HG2	1.47	1.29
1:A:1060:ARG:HH22	5:E:210:GLU:CG	1.47	1.27
2:B:116:PHE:CZ	2:B:121:ALA:CB	2.20	1.25
2:B:116:PHE:HZ	2:B:121:ALA:CB	1.51	1.23
13:N:-9:DG:H4'	13:N:-8:DA:H5'	1.18	1.14
2:B:116:PHE:CD2	2:B:128:TYR:HD1	1.65	1.12
2:B:116:PHE:CD2	2:B:128:TYR:CD1	2.38	1.10
2:B:116:PHE:CE2	2:B:128:TYR:HD1	1.72	1.08
1:A:1060:ARG:CZ	5:E:210:GLU:HG2	1.92	0.98
2:B:116:PHE:HD2	2:B:128:TYR:CD1	1.78	0.98
2:B:116:PHE:CE2	2:B:121:ALA:HB2	2.00	0.97
2:B:92:TYR:HB2	2:B:141:PHE:HB2	1.44	0.97
1:A:1060:ARG:HH22	5:E:210:GLU:HG2	1.00	0.96
2:B:116:PHE:CE2	2:B:128:TYR:CD1	2.52	0.94
13:N:-9:DG:C4'	13:N:-8:DA:H5'	2.02	0.90

	A construction of the second sec	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:116:PHE:HD2	2:B:128:TYR:CE1	1.90	0.89
1:A:1085:GLY:HA3	1:A:1114:GLN:HE22	1.37	0.89
15:T:-12:DA:H2"	15:T:-11:DT:O4'	1.73	0.88
1:A:950:ASN:C	1:A:952:SER:H	1.76	0.88
2:B:672:THR:HG22	2:B:688:HIS:HB2	1.57	0.85
3:C:34:ALA:HB1	3:C:268:PHE:HE1	1.43	0.83
3:C:34:ALA:HB1	3:C:268:PHE:CE1	2.14	0.82
1:A:1060:ARG:NH2	5:E:210:GLU:CG	2.20	0.82
3:C:54:LYS:HG3	12:L:47:GLN:HG2	1.61	0.82
1:A:1085:GLY:HA3	1:A:1114:GLN:NE2	1.96	0.80
2:B:76:VAL:HB	2:B:93:ALA:HB3	1.64	0.80
1:A:908:LEU:HB3	1:A:1030:PRO:HA	1.64	0.80
15:T:-1:DT:H5"	15:T:-1:DT:C6	2.17	0.79
4:D:168:GLU:HB2	4:D:195:LEU:HD13	1.66	0.77
1:A:805:VAL:HB	5:E:181:GLN:O	1.84	0.77
1:A:1060:ARG:HH22	5:E:210:GLU:CD	1.87	0.77
15:T:-19:DT:H2"	15:T:-18:DC:H5'	1.66	0.77
4:D:101:LEU:HB3	4:D:127:LEU:HD12	1.67	0.76
3:C:98:HIS:CE1	3:C:128:ALA:HB3	2.21	0.76
1:A:1060:ARG:NH1	5:E:210:GLU:HG2	2.00	0.76
2:B:714:ARG:HG3	2:B:919:GLY:HA3	1.66	0.75
15:T:-7:DC:H2'	15:T:-6:DA:C8	2.24	0.73
1:A:950:ASN:C	1:A:952:SER:N	2.40	0.72
1:A:808:PHE:HE2	5:E:217:ALA:O	1.72	0.72
1:A:325:ARG:HH22	15:T:3:DT:H5'	1.55	0.72
2:B:515:GLY:HA3	2:B:629:ARG:HH11	1.58	0.69
1:A:808:PHE:CZ	5:E:183:PRO:HD2	2.28	0.69
1:A:775:PRO:HG2	1:A:844:VAL:HG11	1.75	0.69
7:G:96:VAL:HG13	7:G:101:VAL:HG12	1.75	0.69
4:D:92:MET:HB2	7:G:2:PHE:HB2	1.75	0.69
5:E:24:GLU:HB3	5:E:66:PRO:HG2	1.75	0.68
2:B:236:THR:HG22	2:B:251:ARG:HG3	1.76	0.68
4:D:89:ALA:HB1	7:G:3:LEU:HD11	1.76	0.68
1:A:1048:ILE:HB	1:A:1070:TRP:HB3	1.77	0.67
2:B:855:SER:HA	16:W:644:HIS:CE1	2.30	0.67
1:A:725:CYS:SG	2:B:511:PRO:HB3	2.35	0.66
1:A:808:PHE:CE2	5:E:217:ALA:O	2.48	0.66
1:A:954:GLN:HE21	1:A:958:GLN:HE21	1.44	0.66
1:A:487:LEU:HD23	1:A:586:THR:HG22	1.77	0.66
1:A:721:MET:HB3	2:B:511:PRO:HG2	1.77	0.66
4:D:105:LYS:HD2	4:D:127:LEU:HD13	1.77	0.66

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:D:93:MET:HG2	4:D:94:ASP:H	1.62	0.65
2:B:116:PHE:HE2	2:B:128:TYR:CD1	2.09	0.65
1:A:808:PHE:HZ	5:E:182:LEU:HG	1.60	0.65
7:G:10:ASN:HD21	7:G:71:LEU:HD13	1.62	0.65
3:C:54:LYS:HG2	12:L:45:VAL:HG22	1.79	0.65
1:A:134:ARG:NH1	1:A:143:GLU:OE2	2.30	0.64
13:N:-4:DG:H2"	13:N:-3:DG:C8	2.32	0.64
6:F:110:ILE:HB	6:F:128:VAL:HG21	1.80	0.64
2:B:67:VAL:HG21	2:B:411:ILE:HD11	1.80	0.64
5:E:71:LEU:HD22	5:E:89:PHE:HB2	1.80	0.64
1:A:808:PHE:CZ	5:E:182:LEU:HG	2.32	0.64
15:T:-1:DT:H5"	15:T:-1:DT:H6	1.63	0.64
9:I:75:ARG:NH2	9:I:76:CYS:O	2.31	0.63
1:A:950:ASN:HB3	1:A:952:SER:HB3	1.81	0.63
7:G:48:TYR:HB3	7:G:81:PHE:HB3	1.80	0.63
6:F:65:MET:HB2	6:F:131:LEU:HD21	1.80	0.62
3:C:26:LEU:CB	3:C:268:PHE:HE2	2.13	0.62
2:B:862:GLY:HA2	2:B:872:SER:HB3	1.82	0.61
1:A:90:LEU:HA	1:A:93:MET:HG2	1.81	0.61
8:H:112:LEU:HB2	8:H:123:LEU:HB2	1.82	0.61
1:A:141:TYR:HE1	1:A:269:MET:HG2	1.65	0.61
2:B:949:HIS:H	2:B:949:HIS:CD2	2.16	0.61
1:A:903:LEU:O	1:A:1043:ILE:HD12	2.01	0.61
2:B:741:LEU:HD12	2:B:806:ARG:HG2	1.81	0.60
13:N:-9:DG:H4'	13:N:-8:DA:C5'	2.13	0.60
2:B:930:GLN:HG3	2:B:941:VAL:HG21	1.84	0.60
3:C:26:LEU:HB3	3:C:268:PHE:HE2	1.66	0.60
1:A:176:LEU:HG	1:A:178:ARG:H	1.67	0.60
1:A:1106:ARG:H	5:E:154:HIS:CD2	2.19	0.60
1:A:1229:LEU:HD21	6:F:76:THR:HG21	1.83	0.60
3:C:253:LYS:H	3:C:253:LYS:HD2	1.65	0.60
1:A:319:GLY:HA3	2:B:1063:PRO:HD2	1.84	0.60
15:T:-20:DC:H2'	15:T:-19:DT:C6	2.36	0.60
1:A:270:PHE:O	1:A:274:ASP:HB2	2.01	0.59
1:A:569:LYS:HB3	8:H:120:LEU:HD21	1.84	0.59
2:B:988:HIS:O	2:B:995:PRO:HD3	2.03	0.58
2:B:116:PHE:CZ	2:B:121:ALA:CA	2.86	0.58
2:B:116:PHE:HZ	2:B:121:ALA:HB1	1.57	0.58
1:A:1086:ASP:HA	1:A:1089:ARG:HD2	1.86	0.58
1:A:1058:TRP:HE3	5:E:210:GLU:CB	2.18	0.57
2:B:131:ARG:HB3	2:B:172:LEU:HD11	1.86	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:875:ARG:HH22	1:A:1078:LYS:HD3	1.69	0.57
2:B:268:LEU:HD12	2:B:315:ILE:HD11	1.86	0.57
1:A:1118:LEU:HG	1:A:1119:LEU:HD12	1.86	0.57
1:A:875:ARG:HH21	1:A:1080:ALA:HB3	1.69	0.57
2:B:880:ARG:HB2	16:W:644:HIS:CD2	2.40	0.57
1:A:337:ASN:O	1:A:427:ARG:N	2.36	0.56
7:G:96:VAL:HB	7:G:129:PRO:HG2	1.87	0.56
1:A:913:VAL:HG22	1:A:940:HIS:O	2.06	0.56
2:B:745:LEU:HB3	2:B:748:PRO:HG3	1.87	0.56
3:C:201:MET:HB2	3:C:256:LEU:HD11	1.87	0.56
1:A:808:PHE:HZ	5:E:183:PRO:HD2	1.71	0.56
5:E:192:VAL:HG23	5:E:197:LEU:HD12	1.87	0.56
2:B:784:GLN:HA	2:B:947:ASN:ND2	2.20	0.56
5:E:151:ILE:HG22	5:E:152:THR:H	1.69	0.56
7:G:32:GLU:HA	7:G:35:GLU:HG2	1.87	0.56
13:N:17:DA:H2"	13:N:18:DG:H5"	1.88	0.56
1:A:328:ILE:HG22	1:A:436:VAL:HB	1.88	0.56
13:N:2:DT:H2"	13:N:3:DG:O5'	2.06	0.56
13:N:-8:DA:H2"	13:N:-7:DA:H5'	1.87	0.56
4:D:174:LEU:HD13	4:D:184:LYS:HE3	1.87	0.56
4:D:100:ILE:O	4:D:104:ILE:HG12	2.06	0.55
1:A:951:ILE:C	1:A:953:MET:H	2.07	0.55
2:B:26:LEU:HD11	2:B:638:GLN:HA	1.87	0.55
5:E:121:GLN:HG2	5:E:144:ILE:HG21	1.86	0.55
9:I:81:HIS:HB3	9:I:83:GLU:HG2	1.88	0.55
1:A:707:SER:O	1:A:713:TYR:OH	2.20	0.55
2:B:1112:LYS:HB3	2:B:1166:ASN:HD22	1.71	0.55
4:D:127:LEU:HA	4:D:130:VAL:HG12	1.89	0.55
2:B:1057:HIS:N	2:B:1062:GLN:O	2.40	0.55
1:A:1026:ASN:O	1:A:1030:PRO:HD2	2.07	0.55
2:B:116:PHE:CD2	2:B:128:TYR:CE1	2.78	0.55
1:A:494:ASP:OD2	2:B:784:GLN:HB3	2.07	0.54
1:A:1027:THR:HG21	2:B:263:ARG:CZ	2.37	0.54
2:B:934:PRO:HB3	2:B:1017:VAL:CG1	2.37	0.54
1:A:18:THR:HB	2:B:1166:ASN:HB3	1.89	0.54
3:C:204:LEU:HD21	3:C:253:LYS:HD3	1.89	0.54
8:H:39:MET:HG2	8:H:125:GLY:HA2	1.89	0.54
1:A:793:ASN:ND2	6:F:117:TYR:O	2.41	0.54
2:B:279:VAL:HG13	2:B:280:TRP:HD1	1.73	0.54
2:B:260:ASP:HB2	2:B:264:ARG:HB2	1.88	0.54
4:D:108:LEU:HD23	4:D:111:LEU:HD23	1.90	0.54

	A h o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
15:T:-8:DG:H2"	15:T:-7:DC:H5"	1.90	0.54
1:A:938:HIS:CE1	1:A:1004:PRO:HB3	2.42	0.54
13:N:15:DG:H2"	13:N:16:DT:H5"	1.89	0.54
1:A:1120:GLY:HA2	5:E:189:ASP:HB3	1.90	0.54
2:B:722:HIS:HE1	2:B:921:LYS:HD2	1.72	0.54
1:A:951:ILE:C	1:A:953:MET:N	2.58	0.54
1:A:683:LEU:HD23	2:B:952:PRO:HG2	1.90	0.54
2:B:265:GLU:HB3	2:B:310:SER:HB3	1.90	0.54
1:A:1122:SER:HA	5:E:219:ARG:HH12	1.74	0.53
7:G:29:ILE:O	7:G:33:LEU:HG	2.08	0.53
1:A:1182:PHE:O	1:A:1186:THR:HG23	2.09	0.53
2:B:298:ILE:HG23	2:B:376:VAL:HG23	1.88	0.53
15:T:-14:DC:H2'	15:T:-13:DG:C8	2.44	0.53
1:A:1158:SER:HB3	1:A:1172:LEU:HD23	1.90	0.53
5:E:34:ASN:ND2	5:E:147:LEU:O	2.41	0.53
2:B:408:GLU:O	2:B:411:ILE:HG12	2.08	0.53
1:A:319:GLY:HA2	2:B:1074:LYS:HA	1.89	0.53
1:A:325:ARG:NH2	15:T:3:DT:H5'	2.24	0.53
4:D:157:GLY:O	4:D:161:VAL:HG23	2.09	0.53
1:A:354:ARG:NH1	6:F:83:MET:SD	2.82	0.53
1:A:501:VAL:HG21	1:A:612:LEU:HD13	1.91	0.53
1:A:505:ARG:NH2	8:H:48:GLU:OE2	2.41	0.53
5:E:119:VAL:HG12	5:E:142:PHE:HB2	1.90	0.53
1:A:1060:ARG:HH12	5:E:210:GLU:HG2	1.69	0.53
7:G:28:ALA:O	7:G:32:GLU:HG3	2.09	0.53
1:A:342:PRO:HB3	1:A:434:ASN:HA	1.91	0.52
1:A:456:HIS:HE1	15:T:1:DC:H2"	1.74	0.52
4:D:105:LYS:HA	4:D:108:LEU:HD12	1.91	0.52
7:G:93:VAL:HA	7:G:103:MET:HA	1.91	0.52
15:T:-12:DA:C5	15:T:-11:DT:C4	2.97	0.52
1:A:1001:SER:OG	1:A:1002:ASP:N	2.43	0.52
1:A:773:ALA:HA	15:T:-1:DT:C5	2.45	0.52
3:C:82:MET:HG3	3:C:284:ASN:HD21	1.74	0.52
1:A:1121:LEU:HD23	5:E:219:ARG:HD3	1.92	0.52
1:A:1225:SER:OG	1:A:1226:GLN:N	2.42	0.52
2:B:655:ASP:C	2:B:657:GLY:H	2.12	0.52
1:A:563:ASP:N	1:A:563:ASP:OD1	2.43	0.51
5:E:106:ASP:O	5:E:110:GLN:HB2	2.10	0.51
4:D:105:LYS:HG2	4:D:108:LEU:HD12	1.92	0.51
1:A:1088:TRP:CD1	1:A:1118:LEU:HD13	2.45	0.51
2:B:832:THR:O	2:B:833:HIS:C	2.48	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:296:ILE:HG13	11:K:91:ILE:HD13	1.93	0.51
8:H:93:MET:HB2	8:H:141:LEU:HB3	1.91	0.51
3:C:122:SER:C	3:C:124:ASP:H	2.14	0.51
5:E:172:LEU:HA	5:E:176:SER:HA	1.92	0.51
11:K:56:VAL:HA	11:K:77:THR:HG22	1.91	0.51
15:T:-12:DA:C8	15:T:-11:DT:C7	2.93	0.51
1:A:1060:ARG:NH2	5:E:210:GLU:CB	2.74	0.51
1:A:34:GLU:O	1:A:74:TYR:OH	2.29	0.51
1:A:648:ARG:NH1	1:A:658:GLN:OE1	2.43	0.50
3:C:158:ARG:H	3:C:161:GLN:NE2	2.09	0.50
2:B:1158:LEU:HD13	2:B:1165:LEU:HD21	1.93	0.50
10:J:34:ALA:C	10:J:36:ASP:H	2.15	0.50
2:B:1112:LYS:HB3	2:B:1166:ASN:ND2	2.25	0.50
3:C:20:ASP:O	3:C:271:GLU:HA	2.12	0.50
11:K:20:SER:HB2	11:K:34:THR:HG23	1.94	0.50
1:A:191:SER:HA	1:A:194:LYS:HG2	1.93	0.50
1:A:1122:SER:CA	5:E:219:ARG:HH12	2.24	0.50
1:A:956:ILE:HA	1:A:959:LYS:HG2	1.92	0.50
7:G:93:VAL:HG21	7:G:139:ILE:HD11	1.93	0.50
2:B:880:ARG:HB2	16:W:644:HIS:NE2	2.27	0.50
2:B:210:ILE:HG12	2:B:215:LYS:HG3	1.93	0.50
13:N:2:DT:H2'	13:N:3:DG:C8	2.47	0.50
16:W:629:ILE:HD11	16:W:639:LYS:HB2	1.94	0.50
1:A:805:VAL:CG2	5:E:181:GLN:CB	2.90	0.49
1:A:48:LEU:HA	1:A:71:HIS:HB2	1.95	0.49
1:A:938:HIS:HA	1:A:1005:CYS:H	1.76	0.49
1:A:1226:GLN:HB2	6:F:117:TYR:HB3	1.93	0.49
2:B:372:LEU:O	2:B:376:VAL:HG22	2.12	0.49
7:G:153:LYS:N	7:G:162:GLN:O	2.44	0.49
9:I:77:SER:OG	9:I:107:ASN:OD1	2.24	0.49
1:A:1058:TRP:HE3	5:E:210:GLU:HB2	1.77	0.49
6:F:129:ASP:OD1	6:F:129:ASP:N	2.45	0.49
1:A:1033:LEU:HB3	1:A:1036:VAL:HG13	1.94	0.49
1:A:50:LEU:HD13	1:A:62:ALA:O	2.12	0.49
1:A:139:ALA:HA	1:A:273:VAL:HG21	1.94	0.49
1:A:269:MET:O	1:A:273:VAL:HG22	2.13	0.49
1:A:723:ILE:H	1:A:723:ILE:HD12	1.78	0.49
1:A:805:VAL:HG23	5:E:181:GLN:CB	2.42	0.49
2:B:607:MET:HG3	2:B:622:THR:CG2	2.43	0.49
5:E:27:ARG:HG3	5:E:148:LEU:HD21	1.94	0.49
10:J:34:ALA:C	10:J:36:ASP:N	2.62	0.49

	• • • • • •	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
9:I:32:CYS:SG	9:I:33:ASP:N	2.84	0.49
1:A:1212:SER:HB2	1:A:1219:VAL:HG22	1.94	0.49
2:B:53:LEU:HD23	2:B:179:MET:SD	2.53	0.49
2:B:100:VAL:HG12	2:B:132:ILE:HD11	1.94	0.49
2:B:629:ARG:HH21	2:B:631:LEU:HD21	1.77	0.49
12:L:12:CYS:HA	12:L:37:LEU:HD23	1.95	0.49
2:B:839:VAL:HG12	2:B:842:LEU:HG	1.95	0.48
1:A:1103:ASP:OD1	5:E:149:VAL:HG22	2.13	0.48
2:B:704:VAL:HG13	2:B:917:MET:HG3	1.93	0.48
2:B:877:HIS:HB3	2:B:1068:LYS:O	2.12	0.48
7:G:40:LYS:HZ3	7:G:49:TYR:HD2	1.61	0.48
1:A:773:ALA:CA	15:T:-1:DT:H72	2.43	0.48
7:G:48:TYR:O	7:G:81:PHE:N	2.45	0.48
1:A:1194:PHE:HD2	2:B:1158:LEU:HD21	1.78	0.48
5:E:128:ALA:O	5:E:132:ILE:HG23	2.12	0.48
7:G:108:ILE:HD12	7:G:108:ILE:H	1.79	0.48
1:A:788:ASP:OD1	1:A:788:ASP:N	2.45	0.48
1:A:1058:TRP:CE3	5:E:210:GLU:HB3	2.49	0.48
1:A:920:ARG:H	1:A:934:CYS:HB2	1.77	0.48
2:B:774:VAL:O	2:B:1032:MET:HA	2.14	0.48
8:H:42:HIS:HD2	8:H:122:LEU:HD22	1.78	0.48
2:B:863:ARG:O	2:B:864:CYS:C	2.51	0.48
4:D:156:ASP:HA	4:D:159:MET:HB2	1.94	0.48
1:A:523:SER:OG	1:A:524:LEU:N	2.44	0.47
1:A:79:VAL:HG23	1:A:81:ILE:HD11	1.94	0.47
1:A:808:PHE:CZ	5:E:183:PRO:CD	2.95	0.47
1:A:906:VAL:HB	1:A:1037:ILE:O	2.14	0.47
1:A:1162:LEU:HD11	1:A:1172:LEU:HG	1.95	0.47
2:B:842:LEU:HD21	2:B:859:ILE:O	2.14	0.47
5:E:145:THR:HG23	5:E:148:LEU:HD12	1.96	0.47
1:A:964:ILE:HG21	1:A:974:LYS:HE3	1.96	0.47
1:A:1028:VAL:O	1:A:1032:LEU:HB2	2.15	0.47
15:T:3:DT:H2'	15:T:4:DC:C6	2.49	0.47
1:A:195:LEU:HD13	1:A:201:ILE:HA	1.96	0.47
1:A:762:ARG:HH22	2:B:520:LEU:C	2.18	0.47
4:D:149:LEU:HB2	4:D:159:MET:HE1	1.97	0.47
5:E:85:VAL:HA	5:E:115:GLY:O	2.14	0.47
1:A:349:ILE:HG21	1:A:459:TYR:CZ	2.49	0.47
1:A:938:HIS:N	1:A:1005:CYS:O	2.46	0.47
2:B:1080:ARG:O	2:B:1084:ILE:HG12	2.14	0.47
4:D:142:VAL:HA	4:D:145:VAL:HG12	1.96	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:263:LYS:HA	1:A:263:LYS:HD3	1.74	0.47
2:B:374:TYR:HD1	2:B:573:LYS:HZ2	1.63	0.47
6:F:73:ILE:HA	6:F:76:THR:HG22	1.97	0.47
1:A:321:GLY:HA3	2:B:1099:LEU:HD12	1.96	0.47
2:B:254:GLU:HG2	2:B:262:LYS:HA	1.97	0.47
2:B:1100:SER:OG	2:B:1101:ASP:N	2.47	0.47
4:D:176:PHE:CD2	7:G:88:ILE:HD13	2.50	0.47
13:N:11:DA:H2'	13:N:12:DT:H71	1.97	0.47
1:A:479:LEU:HD12	1:A:594:PRO:HB3	1.97	0.47
1:A:1058:TRP:HE3	5:E:210:GLU:HB3	1.79	0.47
8:H:127:PRO:O	8:H:131:SER:OG	2.28	0.47
14:P:5:A:H2'	14:P:6:G:C8	2.50	0.47
1:A:444:SER:OG	1:A:445:PRO:HD3	2.15	0.47
2:B:729:PHE:HZ	10:J:53:VAL:HG21	1.79	0.47
2:B:1056:VAL:HG21	2:B:1061:ARG:HD2	1.97	0.47
1:A:241:ASP:O	1:A:245:LYS:HG2	2.15	0.46
1:A:339:VAL:O	1:A:429:TYR:N	2.47	0.46
1:A:503:LEU:HD22	1:A:572:PHE:HE1	1.78	0.46
2:B:934:PRO:HB3	2:B:1017:VAL:HG13	1.96	0.46
2:B:105:PRO:HB3	2:B:129:SER:O	2.16	0.46
7:G:111:VAL:HG13	7:G:163:ALA:HB3	1.98	0.46
13:N:13:DC:H2"	13:N:14:DG:C8	2.50	0.46
3:C:194:ILE:HG12	3:C:259:ILE:HG23	1.96	0.46
4:D:128:ALA:O	4:D:131:GLU:HG2	2.16	0.46
13:N:2:DT:H3'	13:N:2:DT:H6	1.80	0.46
1:A:552:ARG:HA	1:A:564:GLY:HA2	1.97	0.46
1:A:750:ASP:HB2	1:A:753:GLU:HG3	1.96	0.46
15:T:-17:DT:H2"	15:T:-16:DA:C8	2.50	0.46
15:T:-14:DC:H2'	15:T:-13:DG:H8	1.81	0.46
2:B:56:TYR:C	2:B:58:TYR:H	2.18	0.46
2:B:660:GLU:OE2	2:B:688:HIS:HE1	1.99	0.46
3:C:22:ALA:HB3	3:C:270:VAL:HG22	1.97	0.46
1:A:683:LEU:HD21	2:B:949:HIS:HA	1.98	0.46
4:D:86:PRO:HG3	7:G:6:GLN:H	1.81	0.46
1:A:773:ALA:HB2	15:T:-1:DT:H72	1.98	0.46
5:E:111:GLU:HG3	5:E:113:ILE:HG12	1.97	0.46
7:G:19:ASP:H	7:G:25:LEU:HD11	1.80	0.46
10:J:48:MET:HE3	10:J:48:MET:HB3	1.67	0.46
3:C:34:ALA:HB2	3:C:268:PHE:HZ	1.81	0.46
3:C:59:SER:HB2	3:C:162:GLU:H	1.81	0.46
3:C:111:LYS:HB2	3:C:162:GLU:HG3	1.97	0.46

	At 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:363:LEU:HD11	1:A:400:VAL:HG21	1.96	0.46
1:A:440:PRO:HG2	2:B:784:GLN:NE2	2.31	0.46
1:A:503:LEU:HD23	1:A:541:VAL:HG21	1.98	0.46
1:A:1040:ASP:HB2	1:A:1043:ILE:HD11	1.97	0.46
1:A:1225:SER:HB3	1:A:1227:PHE:HE1	1.81	0.46
2:B:415:LEU:HG	2:B:419:ARG:HD2	1.98	0.46
1:A:875:ARG:HH22	1:A:1078:LYS:HA	1.81	0.45
2:B:320:ALA:O	2:B:321:VAL:C	2.55	0.45
2:B:916:SER:OG	2:B:917:MET:N	2.49	0.45
1:A:242:VAL:O	1:A:246:VAL:HG13	2.16	0.45
1:A:493:SER:OG	2:B:949:HIS:ND1	2.48	0.45
1:A:879:LEU:HB3	1:A:1072:LEU:HB2	1.97	0.45
9:I:77:SER:HB3	9:I:78:LYS:HE2	1.99	0.45
1:A:28:CYS:O	2:B:1134:ARG:NH1	2.50	0.45
1:A:473:PHE:O	1:A:478:GLN:NE2	2.50	0.45
1:A:335:HIS:HB2	1:A:338:GLU:HG2	1.97	0.45
2:B:1083:LEU:HD21	2:B:1091:ASN:HD21	1.81	0.45
3:C:41:MET:HE2	3:C:281:LEU:HG	1.99	0.45
5:E:103:VAL:O	5:E:107:ILE:HG12	2.17	0.45
2:B:727:ILE:HG23	2:B:743:GLN:HB3	1.99	0.45
1:A:1229:LEU:HD13	6:F:72:ARG:NH2	2.32	0.45
3:C:34:ALA:CB	3:C:268:PHE:CE1	2.95	0.45
7:G:44:LYS:HB3	7:G:44:LYS:HE2	1.73	0.45
7:G:170:ASP:N	7:G:170:ASP:OD1	2.50	0.45
1:A:781:ASN:HD21	1:A:1165:ASN:HA	1.82	0.45
1:A:907:SER:HA	1:A:1034:GLU:HA	1.98	0.45
1:A:947:GLN:O	1:A:948:ASP:HB2	2.17	0.45
1:A:1194:PHE:CD2	2:B:1158:LEU:HD21	2.51	0.45
1:A:362:TYR:HD1	1:A:365:LYS:HE2	1.82	0.45
1:A:528:ALA:HB2	1:A:543:GLN:HE21	1.82	0.45
1:A:185:ARG:NH1	1:A:186:ARG:HG3	2.32	0.45
1:A:542:PHE:HE1	1:A:570:PHE:HB3	1.81	0.45
1:A:773:ALA:HA	15:T:-1:DT:C6	2.52	0.45
1:A:1140:SER:OG	1:A:1141:LYS:N	2.49	0.45
2:B:729:PHE:CZ	10:J:53:VAL:HG11	2.52	0.45
2:B:888:LEU:HG	12:L:27:ILE:HG12	1.99	0.45
2:B:884:GLN:OE1	2:B:903:ARG:HB2	2.16	0.45
2:B:964:ALA:O	2:B:1004:LEU:HD11	2.16	0.45
3:C:34:ALA:CB	3:C:268:PHE:CZ	2.99	0.45
3:C:89:ASP:O	3:C:90:CYS:C	2.56	0.45
3:C:278:ALA:O	3:C:279:SER:C	2.55	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:D:179:SER:O	4:D:179:SER:OG	2.33	0.45
7:G:9:TRP:HD1	7:G:11:VAL:HG22	1.82	0.45
1:A:749:LEU:H	2:B:708:ASN:HD22	1.65	0.44
1:A:1106:ARG:N	5:E:154:HIS:NE2	2.53	0.44
2:B:59:PHE:HZ	2:B:411:ILE:HD13	1.82	0.44
7:G:140:GLN:O	7:G:143:THR:OG1	2.28	0.44
1:A:467:ALA:HA	1:A:470:MET:HG3	1.98	0.44
2:B:494:ARG:HG2	2:B:495:GLN:N	2.32	0.44
3:C:224:ASP:HB3	3:C:228:GLY:H	1.81	0.44
9:I:105:ASN:OD1	9:I:111:ARG:NH1	2.50	0.44
1:A:773:ALA:HA	15:T:-1:DT:H72	1.98	0.44
1:A:1185:ALA:HB1	1:A:1190:PRO:HB3	1.98	0.44
3:C:98:HIS:CE1	3:C:104:VAL:HG13	2.52	0.44
3:C:197:ASN:O	3:C:199:GLU:N	2.51	0.44
3:C:221:PHE:HZ	3:C:259:ILE:HD11	1.82	0.44
4:D:189:GLN:HB3	4:D:190:PRO:HD3	2.00	0.44
11:K:26:LYS:H	11:K:26:LYS:HG2	1.56	0.44
1:A:700:GLY:HA2	1:A:744:CYS:HB3	1.99	0.44
1:A:1173:THR:HG22	1:A:1178:ILE:HB	2.00	0.44
14:P:3:C:H2'	14:P:4:G:C8	2.53	0.44
1:A:684:ILE:HD11	2:B:952:PRO:HB3	2.00	0.44
2:B:196:LYS:O	2:B:197:LYS:C	2.53	0.44
3:C:56:GLU:HG3	3:C:164:LYS:HB3	1.99	0.44
3:C:57:VAL:O	3:C:163:LEU:HA	2.18	0.44
13:N:-8:DA:OP2	13:N:-8:DA:C8	2.70	0.44
1:A:875:ARG:HB2	1:A:1076:VAL:HB	1.99	0.44
3:C:61:VAL:HG23	3:C:62:LEU:HG	2.00	0.44
1:A:366:LEU:HG	1:A:371:LEU:HD21	2.00	0.44
2:B:402:LEU:HB3	2:B:403:ALA:H	1.60	0.44
2:B:1109:ARG:HD2	2:B:1109:ARG:HA	1.82	0.44
1:A:141:TYR:CE1	1:A:269:MET:HG2	2.49	0.43
1:A:245:LYS:HA	1:A:245:LYS:HD3	1.85	0.43
1:A:484:THR:HG23	1:A:486:GLN:H	1.83	0.43
1:A:683:LEU:HD11	2:B:949:HIS:ND1	2.33	0.43
5:E:86:LYS:H	5:E:116:LEU:HA	1.83	0.43
11:K:98:LEU:HD23	11:K:98:LEU:HA	1.84	0.43
12:L:21:LEU:HD12	12:L:21:LEU:HA	1.74	0.43
2:B:655:ASP:C	2:B:657:GLY:N	2.71	0.43
7:G:56:ASP:O	7:G:57:LYS:HD2	2.18	0.43
1:A:234:PRO:O	1:A:238:GLU:HG2	2.17	0.43
1:A:325:ARG:HB3	2:B:1067:ARG:HH12	1.82	0.43

	At 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:908:LEU:HB2	1:A:1033:LEU:HB2	2.00	0.43
4:D:158:GLU:O	4:D:162:ILE:HG12	2.18	0.43
6:F:66:THR:HG23	6:F:69:GLU:H	1.82	0.43
1:A:878:ILE:HD12	1:A:878:ILE:HA	1.91	0.43
2:B:29:GLY:O	2:B:30:PHE:C	2.56	0.43
2:B:267:VAL:CG2	2:B:315:ILE:HD12	2.49	0.43
2:B:514:TRP:HD1	2:B:629:ARG:HH12	1.64	0.43
2:B:789:VAL:HB	2:B:945:VAL:HG13	2.00	0.43
3:C:87:CYS:C	3:C:89:ASP:N	2.71	0.43
5:E:86:LYS:O	5:E:117:ILE:N	2.42	0.43
1:A:585:VAL:HG21	1:A:601:PHE:HE2	1.82	0.43
1:A:704:LEU:HG	1:A:739:GLY:HA3	2.01	0.43
1:A:1231:TRP:N	7:G:61:GLY:O	2.35	0.43
3:C:45:VAL:HG11	3:C:281:LEU:HD12	1.99	0.43
15:T:-11:DT:H2'	15:T:-10:DA:C8	2.53	0.43
1:A:830:VAL:HG11	2:B:1084:ILE:HD12	2.01	0.43
1:A:1035:ILE:H	1:A:1035:ILE:HG13	1.53	0.43
11:K:68:LYS:HE3	11:K:68:LYS:HB2	1.62	0.43
14:P:4:G:H2'	14:P:5:A:C8	2.54	0.43
1:A:956:ILE:HG13	1:A:1036:VAL:HA	2.00	0.43
1:A:958:GLN:O	1:A:961:GLU:HG2	2.18	0.43
1:A:1027:THR:HG21	2:B:263:ARG:NH2	2.33	0.43
2:B:267:VAL:HG23	2:B:315:ILE:HD12	2.00	0.43
5:E:152:THR:HA	5:E:157:LYS:HD2	2.01	0.43
1:A:529:LEU:HB3	1:A:538:ALA:HB3	2.01	0.43
1:A:605:GLN:HB3	1:A:606:PRO:HD3	2.00	0.43
1:A:861:VAL:HG11	1:A:1132:LEU:HD11	2.01	0.43
7:G:113:LEU:HD11	7:G:167:LEU:HD21	2.00	0.43
1:A:994:ASP:OD2	9:I:45:ARG:NH2	2.52	0.43
5:E:104:VAL:HG11	5:E:135:PHE:CD1	2.54	0.43
5:E:202:VAL:HG12	5:E:220:CYS:HB3	2.01	0.43
13:N:14:DG:H1	15:T:-14:DC:H42	1.67	0.43
15:T:-18:DC:H2'	15:T:-17:DT:C6	2.54	0.43
1:A:1014:ASP:N	1:A:1014:ASP:OD1	2.51	0.42
2:B:178:VAL:HG11	2:B:184:LEU:HB3	2.00	0.42
3:C:26:LEU:HB2	3:C:268:PHE:HE2	1.82	0.42
3:C:34:ALA:HB1	3:C:268:PHE:CZ	2.54	0.42
11:K:58:PHE:HB3	11:K:76:HIS:HB2	2.00	0.42
1:A:349:ILE:HD12	2:B:1052:ASN:HD22	1.84	0.42
1:A:562:VAL:HG12	1:A:567:LEU:HA	2.02	0.42
1:A:908:LEU:HD22	1:A:1033:LEU:HD12	2.02	0.42

	Atom 9	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:1099:LEU:HD23	1:A:1099:LEU:H	1.84	0.42
2:B:288:VAL:HG11	2:B:294:ALA:HB2	2.01	0.42
13:N:10:DT:H2"	13:N:11:DA:C8	2.54	0.42
1:A:262:HIS:HA	1:A:265:GLU:HB2	2.00	0.42
1:A:342:PRO:HG2	1:A:345:ILE:HB	2.02	0.42
1:A:641:GLU:O	1:A:644:PRO:HD2	2.19	0.42
2:B:70:SER:O	2:B:71:PHE:C	2.56	0.42
7:G:11:VAL:HG11	7:G:33:LEU:HD23	2.00	0.42
8:H:114:VAL:HG13	8:H:121:MET:HB3	2.01	0.42
1:A:23:SER:O	1:A:27:ILE:HG13	2.20	0.42
2:B:479:GLY:O	2:B:486:THR:HG22	2.19	0.42
3:C:51:HIS:O	3:C:51:HIS:CG	2.71	0.42
3:C:293:LEU:O	3:C:296:ILE:HG12	2.19	0.42
15:T:3:DT:H2'	15:T:4:DC:H6	1.84	0.42
1:A:277:LEU:HD23	1:A:277:LEU:H	1.85	0.42
1:A:987:SER:O	1:A:987:SER:OG	2.34	0.42
1:A:1106:ARG:CB	5:E:154:HIS:CE1	3.03	0.42
1:A:803:ASN:ND2	6:F:119:PRO:O	2.52	0.42
1:A:667:LYS:NZ	1:A:668:GLU:OE2	2.53	0.42
2:B:268:LEU:HB2	2:B:315:ILE:HD11	2.02	0.42
2:B:307:ILE:HG21	2:B:383:TYR:HD2	1.85	0.42
9:I:102:VAL:HG13	9:I:111:ARG:HE	1.84	0.42
13:N:-8:DA:OP2	13:N:-8:DA:H8	2.03	0.42
13:N:2:DT:C3'	13:N:2:DT:C6	3.02	0.42
1:A:104:ILE:HG13	1:A:186:ARG:HH21	1.85	0.42
1:A:355:VAL:HB	1:A:396:PRO:HA	2.01	0.42
2:B:56:TYR:O	2:B:58:TYR:N	2.51	0.42
2:B:515:GLY:HA3	2:B:629:ARG:NH1	2.29	0.42
2:B:852:ALA:O	2:B:882:ILE:HA	2.20	0.42
7:G:104:ARG:NE	7:G:109:GLU:HA	2.35	0.42
1:A:945:LEU:HA	1:A:945:LEU:HD23	1.63	0.41
2:B:452:LEU:HD23	2:B:452:LEU:HA	1.92	0.41
2:B:947:ASN:CG	2:B:949:HIS:HD2	2.24	0.41
8:H:22:LYS:HA	8:H:22:LYS:HD2	1.90	0.41
1:A:157:TRP:HE3	1:A:160:LEU:HB2	1.85	0.41
1:A:1141:LYS:HA	1:A:1141:LYS:HD3	1.94	0.41
2:B:282:LEU:HD23	2:B:372:LEU:HD11	2.01	0.41
2:B:399:ARG:CZ	2:B:626:ARG:HH11	2.33	0.41
5:E:129:LEU:O	5:E:132:ILE:HG12	2.19	0.41
8:H:99:LYS:HB3	8:H:113:TYR:HB2	2.02	0.41
1:A:998:SER:O	1:A:998:SER:OG	2.32	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
9:I:90:THR:HG23	9:I:96:GLY:H	1.85	0.41
15:T:-8:DG:H2"	15:T:-7:DC:H6	1.85	0.41
15:T:2:DC:H2'	15:T:3:DT:H71	2.01	0.41
1:A:128:GLN:N	1:A:128:GLN:OE1	2.54	0.41
1:A:345:ILE:O	1:A:349:ILE:HG22	2.21	0.41
1:A:773:ALA:HB1	15:T:-1:DT:OP1	2.21	0.41
2:B:512:SER:C	2:B:514:TRP:H	2.23	0.41
2:B:709:HIS:O	2:B:957:PRO:HD2	2.20	0.41
4:D:147:GLU:O	4:D:151:THR:HG23	2.21	0.41
1:A:551:GLU:HG2	1:A:552:ARG:H	1.85	0.41
2:B:204:GLN:H	2:B:204:GLN:HG2	1.70	0.41
2:B:839:VAL:HG22	2:B:840:ASP:H	1.86	0.41
5:E:107:ILE:HD12	5:E:114:THR:HA	2.02	0.41
8:H:34:SER:OG	8:H:39:MET:HB2	2.20	0.41
10:J:35:LEU:HD22	10:J:40:LEU:HD12	2.01	0.41
13:N:13:DC:H2"	13:N:14:DG:H5"	2.03	0.41
1:A:336:VAL:HA	1:A:439:ASN:ND2	2.35	0.41
1:A:477:LYS:HE3	1:A:477:LYS:HB3	1.92	0.41
1:A:797:VAL:HB	1:A:807:GLN:H	1.84	0.41
2:B:778:VAL:HA	2:B:783:ASN:HD21	1.85	0.41
1:A:900:ARG:HG3	1:A:1046:ALA:HB3	2.02	0.41
2:B:78:PRO:O	2:B:79:SER:C	2.58	0.41
2:B:399:ARG:HD3	2:B:399:ARG:HA	1.89	0.41
5:E:85:VAL:HG13	5:E:116:LEU:HA	2.02	0.41
7:G:60:GLU:CD	7:G:60:GLU:H	2.24	0.41
1:A:39:HIS:HB2	1:A:42:GLN:HG2	2.03	0.41
1:A:643:SER:HB2	1:A:644:PRO:HD3	2.01	0.41
1:A:1033:LEU:HD23	1:A:1033:LEU:HA	1.70	0.41
1:A:1086:ASP:HA	1:A:1089:ARG:CD	2.49	0.41
2:B:315:ILE:HG22	2:B:316:HIS:N	2.36	0.41
2:B:599:ARG:HE	2:B:599:ARG:HB3	1.70	0.41
3:C:273:THR:HG23	3:C:275:ALA:H	1.86	0.41
4:D:120:PRO:HG2	4:D:123:TYR:CE2	2.55	0.41
8:H:57:LYS:HB3	8:H:146:LEU:HD11	2.02	0.41
11:K:26:LYS:HE3	11:K:26:LYS:HB3	1.87	0.41
13:N:22:DG:H21	15:T:-22:DC:H42	1.67	0.41
15:T:12:DT:H2"	15:T:13:DG:C8	2.56	0.41
1:A:546:GLN:HG2	1:A:567:LEU:H	1.86	0.41
1:A:1228:GLU:HB2	6:F:115:ARG:HB3	2.03	0.41
2:B:178:VAL:CG1	2:B:184:LEU:HB3	2.51	0.41
2:B:916:SER:HB2	2:B:1037:TYR:CE1	2.56	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:G:150:ILE:HD12	7:G:150:ILE:HA	1.95	0.41
8:H:8:PHE:HB3	8:H:62:LEU:HB2	2.03	0.41
1:A:187:ILE:O	1:A:187:ILE:HG13	2.21	0.41
3:C:99:CYS:O	3:C:100:GLU:C	2.58	0.41
5:E:91:GLY:O	5:E:121:GLN:HB2	2.21	0.41
5:E:186:SER:O	5:E:192:VAL:HG11	2.21	0.41
13:N:-5:DT:H6	13:N:-5:DT:H2'	1.67	0.41
16:W:615:ARG:N	16:W:655:ALA:O	2.53	0.41
1:A:773:ALA:HA	15:T:-1:DT:C7	2.51	0.40
1:A:990:CYS:HB3	1:A:1004:PRO:HG3	2.02	0.40
2:B:33:SER:O	2:B:34:PHE:C	2.58	0.40
2:B:117:LEU:HD23	2:B:117:LEU:HA	1.65	0.40
2:B:268:LEU:HD12	2:B:315:ILE:CD1	2.50	0.40
5:E:171:LEU:HD23	5:E:171:LEU:HA	1.91	0.40
7:G:27:ARG:O	7:G:31:VAL:HG13	2.21	0.40
1:A:1048:ILE:HD12	1:A:1070:TRP:CG	2.57	0.40
2:B:71:PHE:O	2:B:419:ARG:NH1	2.55	0.40
2:B:484:LEU:O	2:B:485:GLN:C	2.57	0.40
2:B:594:LEU:HD12	2:B:594:LEU:HA	1.88	0.40
2:B:280:TRP:HB2	2:B:315:ILE:HG23	2.03	0.40
2:B:576:LEU:O	2:B:577:ASN:C	2.60	0.40
4:D:125:ARG:HA	4:D:125:ARG:HD2	1.94	0.40
16:W:628:VAL:HG22	16:W:638:VAL:HG12	2.03	0.40
1:A:318:LYS:HD3	2:B:1096:LEU:HD11	2.04	0.40
1:A:903:LEU:HD11	1:A:1095:CYS:SG	2.62	0.40
1:A:990:CYS:SG	1:A:1006:LEU:HD11	2.62	0.40
2:B:913:LYS:HD3	2:B:921:LYS:HZ1	1.86	0.40
3:C:152:ILE:HG21	10:J:5:VAL:HG13	2.02	0.40
2:B:313:ALA:O	2:B:317:VAL:HG23	2.22	0.40
2:B:339:ILE:O	2:B:342:THR:HG22	2.22	0.40
3:C:26:LEU:HB2	3:C:268:PHE:CE2	2.56	0.40
5:E:168:LYS:HE3	5:E:202:VAL:HG13	2.04	0.40
11:K:30:ALA:HA	11:K:75:ILE:O	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	1131/1976~(57%)	1077 (95%)	54 (5%)	0	100	100
2	В	1032/1172~(88%)	966 (94%)	66 (6%)	0	100	100
3	С	281/319~(88%)	233 (83%)	48 (17%)	0	100	100
4	D	115/205~(56%)	109~(95%)	6 (5%)	0	100	100
5	Е	207/222~(93%)	189 (91%)	18 (9%)	0	100	100
6	F	74/144~(51%)	74 (100%)	0	0	100	100
7	G	176/178~(99%)	166 (94%)	10 (6%)	0	100	100
8	Н	117/146 (80%)	114 (97%)	3 (3%)	0	100	100
9	Ι	94/114~(82%)	86 (92%)	8 (8%)	0	100	100
10	J	60/71~(84%)	52 (87%)	8 (13%)	0	100	100
11	Κ	98/116 (84%)	96 (98%)	2 (2%)	0	100	100
12	L	40/51~(78%)	40 (100%)	0	0	100	100
16	W	40/1493~(3%)	39~(98%)	1 (2%)	0	100	100
All	All	3465/6207~(56%)	3241 (94%)	224 (6%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	974/1710~(57%)	967~(99%)	7(1%)	84 90

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
2	В	786/1029~(76%)	764~(97%)	22 (3%)	43	65
3	С	221/282~(78%)	214 (97%)	7 (3%)	39	62
4	D	103/181~(57%)	103 (100%)	0	100	100
5	Е	181/204 (89%)	181 (100%)	0	100	100
6	F	50/128~(39%)	50 (100%)	0	100	100
7	G	154/155~(99%)	154 (100%)	0	100	100
8	Н	84/127~(66%)	84 (100%)	0	100	100
9	Ι	66/104~(64%)	65~(98%)	1 (2%)	65	80
10	J	49/66~(74%)	45 (92%)	4 (8%)	11	37
11	K	72/105~(69%)	66~(92%)	6 (8%)	11	37
12	L	30/45~(67%)	28 (93%)	2(7%)	16	43
16	W	38/1156~(3%)	35 (92%)	3 (8%)	12	38
All	All	2808/5292~(53%)	2756 (98%)	52 (2%)	59	75

All (52) residues with a non-rotameric sidechain are listed below:

\mathbf{Mol}	Chain	Res	Type
1	А	162	ARG
1	А	552	ARG
1	А	852	ASN
1	А	872	THR
1	А	946	LEU
1	А	1027	THR
1	А	1035	ILE
2	В	64	LEU
2	В	71	PHE
2	В	101	THR
2	В	178	VAL
2	В	372	LEU
2	В	380	LEU
2	В	419	ARG
2	В	426	MET
2	В	458	THR
2	В	461	TRP
2	В	492	ARG
2	В	496	GLN
2	В	601	SER
2	В	658	ILE

Mol	Chain	Res	Type
2	В	755	THR
2	В	776	VAL
2	В	784	GLN
2	В	812	VAL
2	В	888	LEU
2	В	945	VAL
2	В	973	ILE
2	В	1046	ASP
3	С	28	GLU
3	С	40	VAL
3	С	47	THR
3	С	98	HIS
3	С	181	SER
3	С	202	ASN
3	С	243	GLU
9	Ι	32	CYS
10	J	10	CYS
10	J	49	LEU
10	J	53	VAL
10	J	58	LYS
11	K	26	LYS
11	K	27	ILE
11	K	34	THR
11	K	41	THR
11	K	49	GLN
11	К	109	VAL
12	L	15	CYS
12	L	18	GLU
16	W	616	ILE
16	W	643	GLN
16	W	649	VAL

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (59) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	25	HIS
1	А	258	ASN
1	А	364	GLN
1	А	391	HIS
1	А	424	GLN
1	А	456	HIS
1	А	478	GLN

Mol	Chain	Res	Type
1	А	664	HIS
1	А	781	ASN
1	А	869	GLN
1	А	947	GLN
1	А	958	GLN
1	А	1100	HIS
1	А	1114	GLN
1	А	1153	ASN
1	А	1165	ASN
1	А	1226	GLN
2	В	54	ASN
2	В	57	ASN
2	В	65	GLN
2	В	69	GLN
2	В	135	ASN
2	В	204	GLN
2	В	246	ASN
2	В	397	ASN
2	В	441	HIS
2	В	510	HIS
2	В	513	HIS
2	В	678	GLN
2	В	688	HIS
2	В	711	HIS
2	В	722	HIS
2	В	768	ASN
2	В	770	GLN
2	В	932	ASN
2	В	955	GLN
2	В	1038	GLN
2	В	1052	ASN
2	В	1057	HIS
2	В	1156	GLN
2	В	1166	ASN
3	С	7	GLN
3	С	88	GLN
3	С	161	GLN
3	C	280	GLN
3	С	284	ASN
3	С	291	GLN
4	D	164	ASN
7	G	128	ASN

Mol	Chain	Res	Type
8	Н	46	ASN
8	Н	67	ASN
9	Ι	11	ASN
9	Ι	88	GLN
10	J	16	ASN
10	J	61	ASN
11	Κ	55	ASN
12	L	47	GLN
16	W	612	GLN
16	W	644	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
14	Р	9/30~(30%)	3 (33%)	0

All (3) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
14	Р	8	G
14	Р	9	G
14	Р	10	U

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 5 ligands modelled in this entry, 5 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers. There are no torsion outliers. There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

