

Nov 3, 2024 – 11:18 pm GMT

PDB ID	:	7B9V
EMDB ID	:	EMD-12106
Title	:	Yeast C complex spliceosome at 2.8 Angstrom resolution with Prp18/Slu7
		bound
Authors	:	Wilkinson, M.E.; Fica, S.M.; Galej, W.P.; Nagai, K.
Deposited on	:	2020-12-14
Resolution	:	2.80 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for ≥ 3 , 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain							
1	2	1175	6% 9% 5% • 83%							
2	5	214	39% 47% 30%	6% 17%						
3	6	112	67%	20% • 9%						
4	А	2413	9%	• 9%						
5	В	2163	25%	• 21%						
6	С	1008		• 11%						
7	D	291	9%	33%						

Continued from previous page...

Mol	Chain	Length	Quality of chain							
8	Е	47	21% 6% · 70%	6						
9	F	179	9%	64%						
10	G	235	58%	41%						
11	Н	577	77%	• 21%						
12	Ι	95	24% 26% 19% 13%	42%						
13	J	451	80%	• 18%						
14	K	379	6% 47% •	52%						
15	L	157	• 99%							
16	М	339	• 74%	• 25%						
17	Ν	364	13%	27%						
18	Ο	590	47%	53%						
19	Р	175	41%	58%						
20	Q	1071	55% •	42%						
21	R	135	37% 59%	40%						
22	S	687	<u>6%</u> 78%	• 20%						
23	Т	859	5% 81%	• 16%						
24	W	238	● 87%	• 10%						
25	Х	240	5% 30% 70	%						
26	Y	111	77%	• 21%						
27	Z	140	39%	61%						
28	a	251	55%	45%						
29	b	196	5% 46% •	53%						
29	k	196	52%	48%						
30	с	382	8% 10% 90%							
31	d	101	81%	19%						

Mol	Chain	Length	Quality of chain	
31	n	101	80%	• 19%
32	е	94	80%	• 18%
32	р	94	80%	• 18%
33	f	86	87%	13%
33	q	86	86%	• 13%
34	g	77	13%	5% 6%
34	r	77	• 92%	• 6%
35	h	146	14% 71%	27%
35	1	146	• 71% •	27%
36	j	110	85%	• 12%
36	m	110	• 85%	• 12%
37	0	455	48% 70%	27%
38	s	175	6% 31% • 65%	
39	t	503	12% 21% • 79%	
39	u	503	8% 	
39	V	503	22% 78%	
39	W	503	50%	• 13%
40	У	215	9% 61% •	38%

Continued from previous page...

2 Entry composition (i)

There are 45 unique types of molecules in this entry. The entry contains 109105 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called U2 snRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	2	196	Total 4120	C 1846	N 681	O 1399	Р 194	0	0

• Molecule 2 is a RNA chain called U5 snRNA.

Mol	Chain	Residues		А	AltConf	Trace			
2	5	178	Total 3777	C 1691	N 660	O 1249	Р 177	0	0

• Molecule 3 is a RNA chain called U6 snRNA.

Mol	Chain	Residues		A	toms	AltConf	Trace		
3	6	102	Total 2170	C 972	N 386	O 710	Р 102	0	0

• Molecule 4 is a protein called Pre-mRNA-splicing factor 8.

Mol	Chain	Residues		At	AltConf	Trace			
4	А	2191	Total 18036	C 11598	N 3079	O 3295	S 64	0	0

• Molecule 5 is a protein called Pre-mRNA-splicing helicase BRR2.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	В	1707	Total 13675	C 8758	N 2279	O 2583	${f S}$ 55	0	0

• Molecule 6 is a protein called Pre-mRNA-splicing factor SNU114.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	С	898	Total	C 4614	N 1190	0	S 27	0	0
			7139	4014	1189	1309	27		

• Molecule 7 is a protein called Splicing factor YJU2.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
7	D	194	Total 1547	C 956	N 280	O 298	S 13	0	0

There are 21 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	218	UNK	-	insertion	UNP A0A6L1B9A1
D	219	UNK	-	insertion	UNP A0A6L1B9A1
D	220	UNK	-	insertion	UNP A0A6L1B9A1
D	221	UNK	-	insertion	UNP A0A6L1B9A1
D	222	UNK	-	insertion	UNP A0A6L1B9A1
D	223	UNK	-	insertion	UNP A0A6L1B9A1
D	224	UNK	-	insertion	UNP A0A6L1B9A1
D	225	UNK	-	insertion	UNP A0A6L1B9A1
D	226	UNK	-	insertion	UNP A0A6L1B9A1
D	227	UNK	-	insertion	UNP A0A6L1B9A1
D	228	UNK	-	insertion	UNP A0A6L1B9A1
D	229	UNK	-	insertion	UNP A0A6L1B9A1
D	230	UNK	-	insertion	UNP A0A6L1B9A1
D	231	UNK	-	insertion	UNP A0A6L1B9A1
D	232	UNK	-	insertion	UNP A0A6L1B9A1
D	233	UNK	-	insertion	UNP A0A6L1B9A1
D	234	UNK	-	insertion	UNP A0A6L1B9A1
D	?	-	ASP	deletion	UNP A0A6L1B9A1
D	?	-	ASN	deletion	UNP A0A6L1B9A1
D	?	-	ASN	deletion	UNP A0A6L1B9A1
D	?	-	ASP	deletion	UNP A0A6L1B9A1

• Molecule 8 is a RNA chain called 5' exon of UBC4 mRNA.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
8	Е	14	Total 304	C 136	N 59	O 95	Р 14	0	0

• Molecule 9 is a protein called Pre-mRNA-splicing factor CWC25.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
0	Б	64	Total	С	Ν	Ο	\mathbf{S}	0	0
9	Г	04	505	314	92	98	1	0	0

There are 10 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
F	72	UNK	LYS	conflict	UNP A0A6A5Q526
F	73	UNK	LYS	conflict	UNP A0A6A5Q526
F	74	UNK	SER	conflict	UNP A0A6A5Q526
F	75	UNK	GLY	conflict	UNP A0A6A5Q526
F	76	UNK	LEU	conflict	UNP A0A6A5Q526
F	77	UNK	GLU	conflict	UNP A0A6A5Q526
F	78	UNK	TRP	conflict	UNP A0A6A5Q526
F	79	UNK	MET	conflict	UNP A0A6A5Q526
F	80	UNK	TYR	conflict	UNP A0A6A5Q526
F	81	UNK	GLN	conflict	UNP A0A6A5Q526

• Molecule 10 is a protein called Pre-mRNA-splicing factor ISY1.

Mol	Chain	Residues		At	AltConf	Trace			
10	G	138	Total 1090	C 679	N 209	0 199	${ m S} { m 3}$	0	0

There are 11 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	163	UNK	ARG	conflict	UNP A0A6V8S636
G	164	UNK	ASN	conflict	UNP A0A6V8S636
G	165	UNK	ASP	conflict	UNP A0A6V8S636
G	166	UNK	PHE	conflict	UNP A0A6V8S636
G	167	UNK	TYR	conflict	UNP A0A6V8S636
G	168	UNK	TYR	conflict	UNP A0A6V8S636
G	169	UNK	HIS	conflict	UNP A0A6V8S636
G	170	UNK	GLY	conflict	UNP A0A6V8S636
G	171	UNK	LYS	conflict	UNP A0A6V8S636
G	172	UNK	VAL	conflict	UNP A0A6V8S636
G	173	UNK	THR	conflict	UNP A0A6V8S636

• Molecule 11 is a protein called CWC22 isoform 1.

Mol	Chain	Residues		At	AltConf	Trace			
11	Н	453	Total 3705	C 2383	N 612	O 692	S 18	0	0

• Molecule 12 is a RNA chain called Branched intron and 3' exon of UBC4 pre-mRNA.

Mol	Chain	Residues		A	AltConf	Trace			
12	Ι	55	Total 1068	С 476	N 159	0 378	Р 55	0	0

• Molecule 13 is a protein called BJ4_G0054360.mRNA.1.CDS.1.

Mol	Chain	Residues		At	AltConf	Trace			
13	J	370	Total 2926	C 1849	N 513	O 553	S 11	0	0

• Molecule 14 is a protein called Pre-mRNA-processing protein 45.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	K	182	Total 1455	C 911	N 268	0 270	S 6	0	0

• Molecule 15 is a protein called BUD31 isoform 1.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
15	L	156	Total 1283	C 803	N 239	O 231	S 10	0	0

• Molecule 16 is a protein called Pre-mRNA-splicing factor CWC2.

Mol	Chain	Residues		At	AltConf	Trace			
16	М	255	Total 2048	C 1297	N 362	0 378	S 11	0	0

• Molecule 17 is a protein called Pre-mRNA-splicing factor SLT11.

Mol	Chain	Residues		At	AltConf	Trace			
17	Ν	264	Total 2092	C 1331	N 364	O 382	S 15	0	0

• Molecule 18 is a protein called Y55_G0042700.mRNA.1.CDS.1.

Mol	Chain	Residues	Atoms					AltConf	Trace
18	О	280	Total 2143	C 1347	N 390	O 399	S 7	0	0

There are 25 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
0	125	ALA	VAL	conflict	UNP A0A6L0ZW46
0	304	UNK	THR	conflict	UNP A0A6L0ZW46
0	305	UNK	LYS	conflict	UNP A0A6L0ZW46
0	306	UNK	GLN	conflict	UNP A0A6L0ZW46

Chain	Residue	Modelled	Actual	Comment	Reference
0	307	UNK	GLY	conflict	UNP A0A6L0ZW46
0	308	UNK	LYS	conflict	UNP A0A6L0ZW46
0	309	UNK	VAL	conflict	UNP A0A6L0ZW46
0	310	UNK	THR	conflict	UNP A0A6L0ZW46
0	311	UNK	TYR	conflict	UNP A0A6L0ZW46
0	312	UNK	LYS	conflict	UNP A0A6L0ZW46
0	313	UNK	LYS	conflict	UNP A0A6L0ZW46
0	314	UNK	LYS	conflict	UNP A0A6L0ZW46
0	315	UNK	LEU	conflict	UNP A0A6L0ZW46
0	316	UNK	GLU	conflict	UNP A0A6L0ZW46
0	317	UNK	SER	conflict	UNP A0A6L0ZW46
0	318	UNK	LYS	conflict	UNP A0A6L0ZW46
0	319	UNK	ARG	conflict	UNP A0A6L0ZW46
0	320	UNK	GLN	conflict	UNP A0A6L0ZW46
0	321	UNK	LYS	conflict	UNP A0A6L0ZW46
0	322	UNK	LEU	conflict	UNP A0A6L0ZW46
0	323	UNK	ILE	conflict	UNP A0A6L0ZW46
0	324	UNK	GLU	conflict	UNP A0A6L0ZW46
0	325	UNK	ALA	conflict	UNP A0A6L0ZW46
0	326	UNK	GLN	conflict	UNP A0A6L0ZW46
0	327	UNK	ALA	conflict	UNP A0A6L0ZW46

Continued from previous page...

• Molecule 19 is a protein called Pre-mRNA-splicing factor CWC15.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
19	Р	74	Total 607	C 382	N 120	0 104	S 1	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Р	49	ARG	LYS	conflict	UNP A0A6L0Y8G8
Р	68	MET	VAL	conflict	UNP A0A6L0Y8G8
Р	99	VAL	ILE	conflict	UNP A0A6L0Y8G8

• Molecule 20 is a protein called Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16.

Mol	Chain	Residues		At	AltConf	Trace			
20	Q	624	Total 4959	C 3184	N 833	0 921	S 21	0	0

• Molecule 21 is a protein called Pre-mRNA-splicing factor CWC21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	R	81	Total 555	C 336	N 109	O 109	S 1	0	0

• Molecule 22 is a protein called CLF1 isoform 1.

Mol	Chain	Residues		At	AltConf	Trace			
22	S	549	Total 4170	C 2663	N 732	О 762	S 13	0	0

• Molecule 23 is a protein called SYF1 isoform 1.

Mol	Chain	Residues		A	AltConf	Trace			
23	Т	720	Total 5387	C 3441	N 914	O 1015	${ m S}$ 17	0	0

• Molecule 24 is a protein called HLJ1_G0053790.mRNA.1.CDS.1.

Mol	Chain	Residues	Atoms					AltConf	Trace
24	W	214	Total 1734	C 1084	N 317	0 324	S 9	0	0

• Molecule 25 is a protein called Unassigned structure.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
25	Х	71	Total 355	C 213	N 71	0 71	0	0

• Molecule 26 is a protein called BJ4_G0027490.mRNA.1.CDS.1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	Y	88	Total 713	C 457	N 124	0 129	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called NTC20 isoform 1.

Mol	Chain	Residues		Atc	\mathbf{ms}		Atoms						
27	Ζ	55	Total 446	C 276	N 85	O 83	${S \over 2}$	0	0				

• Molecule 28 is a protein called Pre-mRNA-splicing factor 18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	a	138	Total 1132	C 729	N 195	O 205	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called Small nuclear ribonucleoprotein-associated protein B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	h	03	Total	С	Ν	0	S	0	0
29 0	90	752	477	138	134	3	0	0	
20	1.	109	Total	С	Ν	0	S	0	0
- 29	K	K 102	830	526	155	146	3	0	0

• Molecule 30 is a protein called Pre-mRNA-splicing factor SLU7.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
30	С	37	Total 293	C 180	N 52	O 56	${f S}{5}$	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
с	9	GLU	LYS	conflict	UNP A0A6V8RGB0
с	154	ASN	THR	conflict	UNP A0A6V8RGB0

• Molecule 31 is a protein called Small nuclear ribonucleoprotein Sm D3.

Mol	Chain	Residues		At	oms		AltConf	Trace	
31	d	82	Total 633	C 404	N 109	O 118	S 2	0	0
31	n	82	Total 633	C 404	N 109	0 118	S 2	0	0

• Molecule 32 is a protein called Small nuclear ribonucleoprotein E.

Mol	Chain	Residues		Ate	\mathbf{oms}		AltConf	Trace	
30	0	77	Total	С	Ν	Ο	S	0	Ο
52 e	е	11	606	398	94	111	3	0	0
30	n	77	Total	С	Ν	Ο	S	0	0
52	р	11	606	398	94	111	3	0	U

• Molecule 33 is a protein called Small nuclear ribonucleoprotein F.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	f	75	Total	С	Ν	0	\mathbf{S}	0	0
00 1	10	601	385	105	110	1	0	0	
22	a	75	Total	С	Ν	Ο	\mathbf{S}	0	0
00	Ч	10	601	385	105	110	1		

• Molecule 34 is a protein called Small nuclear ribonucleoprotein G.

Mol	Chain	Residues		At	oms		AltConf	Trace	
34	ď	72	Total	С	Ν	Ο	S	0	0
- 54 g	g	12	557	351	97	107	2	0	0
24	r	79	Total	С	Ν	0	S	0	0
- 34	ſ	r (2	557	351	97	107	2	U	0

• Molecule 35 is a protein called Small nuclear ribonucleoprotein Sm D1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	h	106	Total	С	Ν	0	S	0	0
			819	516	144	156	3	_	_
35	1	106	Total	С	Ν	Ο	\mathbf{S}	0	0
- 55	I	100	819	516	144	156	3	0	0

• Molecule 36 is a protein called Small nuclear ribonucleoprotein Sm D2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
36	i	07	Total	С	Ν	0	S	0	0
- 50	J	91	795	506	144	141	4	0	0
36	m	07	Total	С	Ν	0	S	0	0
- 30	111	m 97	795	506	144	141	4	0	0

• Molecule 37 is a protein called CDC40 isoform 1.

Mol	Chain	Residues	Atoms					AltConf	Trace	
37	О	330	Total 2673	C 1696	N 475	0 493	Р 1	S 8	0	0

• Molecule 38 is a protein called SNT309 isoform 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
38	S	61	Total 426	C 277	N 76	0 72	S 1	0	0

• Molecule 39 is a protein called Pre-mRNA-processing factor 19.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	+	107	Total	С	Ν	0	S	0	0
- 39	U	107	794	511	128	152	3	0	0
20	.,,	117	Total	С	Ν	0	S	0	0
39 u	117	856	551	138	164	3	0	0	
20	17	110	Total	С	Ν	0	S	0	0
- 39	V	115	827	532	134	158	3	0	0
20		128	Total	С	Ν	0	S	0	0
39	W	w 438	3405	2167	551	670	17	U	0

• Molecule 40 is a protein called Pre-mRNA-splicing factor SYF2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
40	У	134	Total 1003	C 618	N 187	0 197	S 1	0	0

• Molecule 41 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
41	6	5	Total Mg 5 5	0
41	С	1	Total Mg 1 1	0

• Molecule 42 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
42	6	1	Total K 1 1	0

• Molecule 43 is D-chiro inositol hexakisphosphate (three-letter code: KGN) (formula: $C_6H_{18}O_{24}P_6$).

Mol	Chain	Residues	Atoms				AltConf
43	А	1	Total 36	C 6	0 24	Р 6	0

• Molecule 44 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues	Atoms					AltConf
44	С	1	Total	С	Ν	Ο	Р	0
44 0	U	1	32	10	5	14	3	0

• Molecule 45 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
45	D	1	Total Zn 1 1	0
45	L	3	Total Zn 3 3	0
45	М	1	Total Zn 1 1	0
45	Ν	2	Total Zn 2 2	0
45	с	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

 \bullet Molecule 1: U2 snRNA

R709 6773 8773 8773 8775 8775 8775 8775 8776 8776 8776 8776	H928 E941 E945 E1036 E1036 E1036 E1037	D1 166 D1 192 E1 195 E1 196 H1 296 V1 286	11 302 11 302 11 347 11 412 11 412 11 465 11 468	Q1470 Q1471 N1472 R1473 R1473 R1474 L1475
A1476 F1477 E1477 E1478 E1495 A1496 R1496 R1496 R1496 R1499 R1499 R1499 R1499 R1499 R1499 R1499 R1499 R1477 A1577	81579	D1722 K1725 A1785 A1786 Q1831 Q1831 E1832	L1355 N1356 S1837 S1837 S1838 N13845 A1841 A1841 E1842 N1845 N1845 D1847	11843
T1861 V1862 H1863 F1865 F1865 F1865 F1865 G1865 G1865 V1870 V1870 A1871 K1873 A1871	11875 11876 G1877 F1880 F1880 F1884 K1885 H1888 H1888	K1892 (* 11894 * 11895 * 11895 * 11895 * 11895 * 11895 * 11895 * 11895 * 11895 * 11895 * 11899	R1903 R1904 L1905 R1905 L1908 E1915 R1922 R1922 R1922 R1922	K1926 E1928 E1928 P1929 K1921 K1931 K1931 K1937 D1942
D1950	M1979 M1979 K11900 K11900 M1981 H1982 P1984 P1984 Q1985 P1984 Q1985 M1986 M1986 M1986 Y1987 T11998 Y1992 M1992 P1992 P19	L1996 ← S2000 ← Y2002 ← F2005 ← Y2067 ←	C2064 C2065 K2066 Y2066 V2069 N2069 N2069 N2069 C2071 S2072 A2073 A2073 A2073	12075 12076 12077 12079 12089 12081 12082 12082 12083 12083 12083
q2085 M2087 M2087 ALA LYS ALA PRO PRO PRO CLN GLN GLU GLU	ALA ALA ALA ALA SER SER SEU CLYS GLU GLU ALA ALA ALA ALA ALA	SER THR THR MET MET LYS LYS THR THR THR THR ALA GLY GLY	GLU GLU TLE VAL VAL VAL VAL VAL VAL ALA ALA ALA GLN GLN GLN THR	1
PHE SER SER SER ISS ASN A2173 D2174 D2175 E2175 E2175 12189 12189	K2181 K2182 F2193 V2203 K2213 K2223 T2223 T2223 T2224	V2233	D2287 K2319 D2320 12321 M2322 N2323 V2324 L2326 S2326	F2334 52334 12339 12340 12340 12343
R2344 R2370 R2370 R2371 Y2372 Y2372 R2377 R2379 R2379 R2379 R2379 R2379 R2379 R2379 R2379 R2394	P.2365 P.2365 GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	ASP VAL SER SER		
• Molecule 5: Pre-mRM	NA-splicing helicase	BRR2		
Chain B:	77%	·	21%	
MET THR THR GLU GLU CYS CLYS ALA ALA ALA ALA ALA ALA CLY TTR TTLE	ARG TYR ASP GLU MET SER ASN VAL LYS VAL LYS VAL LYS ASP ASP	PHE MET ASN THR SER GLN ASN PRO GLN ARG ARG ALA ALA CLU	SER PRO LLYS SER MET SER ARG ARG ILE SER ALA ASP	
MET MET GLY GLY GLY GLY GLY CYS ASN ASN LLEU LLYS GLY ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	VAL ALA VAL VAL CLU CLU CLY CLY SLY SER ALA SER LLY SLIV SLIV SLIV	GLN GLN HIS HRN ASN ILE LLEU LLEU LLEU ASN SER SER SER SER SER ASP	LEU HIS TYR TYR TYR PRO PRO ASP ASR ASR ASR ASU ASLU CUU TYR	
CLU CLU CLEU CLEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	ASP LEU LEU TLE TLE GLY ALA ASP TLE PHE TLE GLN CLU	GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	GLU LYS LYS CLA GLN HIS GLU CLU CLV CLY CLY CLY SER ASN ILE LEU	
LYS PHE ASN GLU GLU LEU VAL LVAL LVA LEU ASN ASN ASN ASN ASN ASN TYR TYR TYR TYR TYR	HIS PRO ASP ASP ASN ASN ASN ASN ASN GIA ALA ALA ALA ASL ASL ASL ASA	ASP ASP CLU CLU SER ASP CLU CLU CLU CLU MET ASN ASN	ASN ALA ALA ASN VAL LEU CLV CLV CLV CLV CLU TLE ASN ASN ASN ASP	
ASP ASP GLU GLU GLU TYR ASP ASP ASP ASP ASP ASN ASP CLV SER CV SER CV SER CV SC CV CV SC CV CV SC CV CV CV CV CV CV CV CV CV CV CV CV CV	ASN LYS LYS ARG ALA ARU PRO PRO ASN ASP TLE TLE LYS LYS	SER SER ASP SER LYS SER SER SER CLU SER VAL SER VAL STLE TLE	SER ILE ASP ASP CLU CLU CLU CLU CLU ARC CLU ARC SER SER CLU	
LEU GLY TYR CLY KSP KSP TYR SER CLN CLN CLN CLN CLN SER CLN CLN SER CLU	ASN ASP ALC CLU CLU CLU CLU CLU ALX ALX ALX ALX CLU CLU	LYS LYS LEU VAL ASP ASP LEU LEU CLU ASN ASN ASN ASN LLE ALU ALLU	GLU PHE ILLE LEU LEU LEU LEU ASN ASN ASN ASN THR THR THR THR TLE TLE	
ARG LEU ALA ALA ALA THR SER GLU GLU TLE FRO GLU TLE CLU CLU CLU MET	VAL ALA LYS GLY GLY ASP ASP ASP CLU GLU GLU GLU GLU CYS PHE	GLU GLU ASP GLU CLU GLU GLU GLY ASP GLY ASP	GLN PRO GLN SER SER GLN GLN GLN GLN CLYS LYS THR LYS PHE SER ASN	

PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0	T481 5482 1483 1483
R4 50 R4 50 F4 51 F4 51 F4 51 F4 51 F4 52 S4 56 F4 56 F5 56	L563 K564 A565 L566 R572
Q575 4 R576 8 R576 8 R576 8 R576 8 R576 8 R576 8 R582 8 R592 8 R593 8 R594 8 R595 8 R595 8 R595 8 R595 8 R595 8 R613 8 R614 8 R613 8 R614 8 R613 8 R614 8 R623 8 R614 8 R624 8 R634 8	A657
06652 0665 E663 6669 1667 5671 5671 5671 5671 5671 5671 5671 5671 5671 5671 5671 5671 5671 7665 6681 6681 6681 6681 6681 6683 6681 6684 6689 6689 6690 6690 6690 6705 6705 6706 6705 6705 6706 6706 6707 6705 6703 6705 6704 6705 6705 6706 6705 6707 6706 6708 6705 6709 6705 6705 6705 6705 6705 6706 6705 6707 6705 6708 6705 6709 6705 6705 6705 6705 <th>A/62 E763 E764 T767 H767</th>	A/62 E763 E764 T767 H767
K7769 K7771 K7771 K7771 K7775 K775 K775 A775 A775 A775 C776 A775 C776 C776 C776 C776 C776 C779 C779 C789 C793 C793 C793 C800	P855
1872 1887 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 8910 8911 8911 8911 8911 8911 8911 8911 8911 8911 8911 8911 8911 8911 8912 8913 8914 8914 8915 8916 8916 8916 8916 8916 8916 8917 8916 8917 8918 8918 8918 8918 8918 8918 8918 89205	1023 1023 R1033 11034
F1 1355 F1 1355 F1 1355 F1 1359 F1 1359 F1 1358 F1 159 F1 150 F1 15	E1174
R1184 K1187 Y1188 G1189 G1189 G1224 M1207 M1208 M1230 U1223 D1246 D1247 G1248 G1248 G1265 F1310 F1311 F1312<	L1324 E1325 N1326 I1327 S1328
I1229 ← I1229 ← I1335 ← I1335 ← I1335 ← I1335 ← I1335 ← I1335 ← I1355 ← I1361 ← I1365 ← I1365 ← I1365 ← I1405 ← I1405 ← I1405 ← I1405 ← I1405 ← I1405 ← I1435 ← I1	Y1488
At 513 At 514	D1608 N1611 V1612 E1613 E1613
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11727 11728 11729 11733
7 7 <th>8755 8775</th>	8755 8775
8 8	

ALA ALA ALA ARIA SPEC CUU DILL CLUYS CLUY CLUYS CLUYS

GLY THR LYS GLN SER GLU GLU GLU HIS LEU LYS ASN LEU LYS ASP LEU LYS CLY

 \bullet Molecule 31: Small nuclear ribonucleoprotein Sm D3

Chain d:	81%	19%
MET THR MET ASN GS GS ASN X866 ASN ASS ASS ASS ASS ASS ASS ASS ASS ASS	PRO TLE ARG GLY PRO LYS ARG ARG	
• Molecule 31: Small r	uclear ribonucleoprotein Sm D3	}
Chain n:	80%	• 19%
TTR MST ASN ASN 065 Def C Bef XSN SER SER SER SER SER	ARG PRO NETT PRO PRO PRO PRO ARG ARG ARG ARG ARG ARG	
Molecule 32: Small 1	uclear ribonucleoprotein E	
Chain e:	80%	• 18%
SER SER ASIN LYS LYS LYS LYS ALA ALA ALA MIO F20 F20 F21	K42 143 143 645 645 746 164 164 164 164 164 758 858 A58 V62 A58 V62 A58 A58 A58 A58 A58 A58 A58 A58 A58 A58	E72 K73 K79 L81 L81 L81 B85 A1A ALA
Molecule 32: Small 1	uclear ribonucleoprotein E	
Chain p:	80%	• 18%
SER LYS LYS LYS LYS LYS LYS ALA MIO MIO ALA ALA ASN	ALM ASP E69 ASP ASP ASP	
Molecule 33: Small 1	uclear ribonucleoprotein F	
Chain f:	87%	13%
SER SER SER SER SER SER SER ASP TILE CLU CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2 CL2	E37 6 Q52 6 E55 6 E58 6 A61 6 C66 6 C70 6 R74 6 R72 6 R7	
• Molecule 33: Small r	uclear ribonucleoprotein F	
Chain q:	86%	• 13%
SER SER SER SER SER SER SER ALA ALA ALA MET CLU MET CLU MET CLU MET CLU MET CLU MET CLU MET CLU MET CLU MET CLU MET CLU MET CLU MET CLU MET CLU SER SER SER SER SER SER SER SER SER SER		
• Molecule 34: Small 1	uclear ribonucleoprotein G	

BANK

	13%	
Chain g:	88%	5% 6%
MET VAL SER THR P5 L29	R30 D41 D41 D42 A75 A75 A75 A75 A75 A75 A75 A75 A75 A75	
• Molecul	e 34: Small nuclear ribonucleoprotein G	
Chain r:	• 92%	• 6%
MET VAL SER THR P5 D33	D42 A76 ITLE	
• Molecul	e 35: Small nuclear ribonucleoprotein Sm D1	
Chain h:	14% 71% • 27	7%
M1 L7 K8 K8 E18	q35 q35 q35 q35 q35 q35 q35 q35	SER LEU ARG ARG SER ARG GLY CLY ASP ASP ARG ARG ARG ARG ARG
ASP PHE GLY ALA PRO ASN	ARG ARG ARG GLY LEU	
• Molecul	e 35: Small nuclear ribonucleoprotein Sm D1	
Chain l:	71% • 27	7%
M1 V25 V43 L52	LIO6 LIO6 LEV VAL LEV CLIS CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLY	LEU
• Molecul	e 36: Small nuclear ribonucleoprotein Sm D2 20%	
Chain j:	85%	• 12%
MET SER SER GLN ILE ASP	ARG PARG LIYS LIYS AIG EIJ AIG EIZ EIS EIS EIS EIS EIS EIS EIS EIS EIS EIS	D99 K105 P108 GLU GLU
• Molecul	e 36: Small nuclear ribonucleoprotein Sm D2	
Chain m:	85%	• 12%
MET SER SER GLN TILE ASP	ANG PRD LIYS R15 A49 D62 D62 D62 C11 VAL	
• Molecul	e 37: CDC40 isoform 1	
Chain o:	48% 70% • 27	1%

Chain y: 61% · 38%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	403474	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE CORRECTION	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	140.475	Depositor
Minimum map value	-91.484	Depositor
Average map value	0.011	Depositor
Map value standard deviation	1.810	Depositor
Recommended contour level	5	Depositor
Map size (Å)	458.0, 458.0, 458.0	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.145, 1.145, 1.145	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN, K, GTP, SEP, KGN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	2	0.68	1/4585~(0.0%)	1.65	135/7114~(1.9%)	
2	5	0.66	2/4221~(0.0%)	1.60	118/6573~(1.8%)	
3	6	0.52	1/2427~(0.0%)	1.35	38/3778~(1.0%)	
4	А	0.45	0/18498	0.71	7/25078~(0.0%)	
5	В	0.55	2/13971~(0.0%)	0.86	28/18941~(0.1%)	
6	С	0.41	0/7291	0.69	1/9875~(0.0%)	
7	D	0.44	0/1478	0.73	1/1967~(0.1%)	
8	Ε	0.54	0/341	1.40	8/530~(1.5%)	
9	F	0.42	0/459	0.63	0/613	
10	G	0.41	0/1051	0.64	1/1406~(0.1%)	
11	Н	0.44	0/3767	0.73	3/5076~(0.1%)	
12	Ι	0.68	0/1187	1.67	38/1839~(2.1%)	
13	J	0.44	1/2989~(0.0%)	0.80	6/4055~(0.1%)	
14	Κ	0.40	0/1479	0.68	0/1995	
15	L	0.39	0/1307	0.70	1/1748~(0.1%)	
16	М	0.40	0/2094	0.76	4/2815~(0.1%)	
17	Ν	0.43	0/2124	0.73	0/2860	
18	0	0.44	0/2049	0.72	0/2748	
19	Р	0.42	0/623	0.75	1/832~(0.1%)	
20	Q	0.61	4/5056~(0.1%)	0.94	22/6846~(0.3%)	
21	R	0.42	0/557	0.69	0/750	
22	S	0.45	1/4248~(0.0%)	0.69	1/5759~(0.0%)	
23	Т	0.49	1/5482~(0.0%)	0.77	6/7438~(0.1%)	
24	W	0.44	0/1757	0.80	0/2372	
26	Y	0.45	0/722	0.86	2/963~(0.2%)	
27	Ζ	0.39	0/446	0.69	0/591	
28	a	0.48	0/1154	0.72	0/1561	
29	b	0.44	0/758	0.86	0/1018	
29	k	0.50	$\overline{1/836}~(0.1\%)$	0.96	0/1120	
30	с	0.39	0/295	0.65	0/386	
31	d	0.50	0/642	0.81	0/868	
31	n	0.56	0/642	0.90	0/868	

Mal	Chain	Bond lengths		Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
32	е	0.45	0/616	0.84	0/835	
32	р	0.51	0/616	0.88	0/835	
33	f	0.46	0/614	0.74	0/830	
33	q	0.46	0/614	0.79	0/830	
34	g	0.49	0/562	0.95	2/756~(0.3%)	
34	r	0.49	0/562	0.93	1/756~(0.1%)	
35	h	0.48	0/828	0.80	2/1124~(0.2%)	
35	1	0.59	2/828~(0.2%)	0.98	2/1124~(0.2%)	
36	j	0.46	0/807	0.86	2/1083~(0.2%)	
36	m	0.49	0/807	0.93	1/1083~(0.1%)	
37	0	0.50	1/2737~(0.0%)	0.88	2/3696~(0.1%)	
38	s	0.67	2/428~(0.5%)	0.95	3/577~(0.5%)	
39	\mathbf{t}	0.53	0/805	0.92	3/1094~(0.3%)	
39	u	0.57	0/867	0.98	3/1178~(0.3%)	
39	V	0.56	0/837	0.92	2/1137~(0.2%)	
39	W	0.48	0/3469	0.88	11/4707~(0.2%)	
40	У	0.38	0/1008	0.63	0/1350	
All	All	0.50	19/111541~(0.0%)	0.93	455/153378~(0.3%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
5	В	0	1
6	С	0	1
20	Q	0	2
23	Т	0	2
29	b	0	1
36	m	0	1
37	0	0	2
38	s	0	1
39	W	0	1
All	All	0	12

All (19) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
2	5	128	А	N9-C4	9.45	1.43	1.37
5	В	756	TRP	CB-CG	8.09	1.64	1.50
38	s	122	LYS	CB-CG	-7.31	1.32	1.52

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
20	Q	906	CYS	CB-SG	-6.53	1.71	1.82
37	0	352	CYS	CB-SG	-6.51	1.71	1.82
1	2	77	U	C2-N3	-6.41	1.33	1.37
20	Q	580	PHE	CB-CG	-6.29	1.40	1.51
5	В	500	ASN	C-N	6.20	1.46	1.34
2	5	129	G	N9-C4	6.19	1.42	1.38
20	Q	862	CYS	CB-SG	-6.17	1.71	1.82
35	l	25	VAL	CB-CG1	-6.04	1.40	1.52
22	S	242	GLU	CB-CG	-5.75	1.41	1.52
23	Т	149	ASP	C-N	5.61	1.45	1.34
13	J	327	CYS	CB-SG	-5.58	1.72	1.81
38	s	127	VAL	CB-CG2	-5.55	1.41	1.52
35	1	43	VAL	CB-CG1	-5.21	1.42	1.52
29	k	100	LYS	C-N	5.17	1.44	1.34
20	Q	580	PHE	CD2-CE2	-5.16	1.28	1.39
3	6	54	U	N1-C2	5.14	1.43	1.38

All (455) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	77	U	N1-C2-O2	15.45	133.62	122.80
1	2	1103	С	N1-C2-O2	15.07	127.94	118.90
1	2	77	U	N3-C4-O4	-14.99	108.91	119.40
3	6	54	U	N1-C2-O2	14.34	132.84	122.80
1	2	77	U	N3-C2-O2	-14.29	112.20	122.20
3	6	54	U	N3-C2-O2	-13.41	112.81	122.20
2	5	54	С	N1-C2-O2	13.19	126.82	118.90
1	2	1105	С	N1-C2-O2	12.31	126.29	118.90
1	2	1103	С	N3-C2-O2	-12.23	113.34	121.90
1	2	1134	С	C6-N1-C2	-12.00	115.50	120.30
2	5	54	С	N3-C2-O2	-11.96	113.53	121.90
12	Ι	57	С	N1-C2-O2	11.91	126.04	118.90
2	5	79	С	N1-C2-O2	11.84	126.01	118.90
1	2	77	U	C5-C4-O4	11.77	132.96	125.90
1	2	37	G	O5'-P-OP1	-11.65	95.22	105.70
2	5	129	G	N3-C4-C5	-11.64	122.78	128.60
2	5	129	G	C2-N3-C4	11.57	117.68	111.90
1	2	1103	С	C6-N1-C2	-11.46	115.72	120.30
1	2	44	U	N3-C2-O2	-11.34	114.27	122.20
12	Ι	61	U	N3-C2-O2	-11.24	114.33	122.20
2	5	101	С	N1-C2-O2	10.86	125.42	118.90
2	5	79	С	C2-N1-C1'	10.78	130.66	118.80

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
12	Ι	61	U	N1-C2-O2	10.77	130.34	122.80
2	5	128	А	C2-N3-C4	10.73	115.96	110.60
2	5	60	U	N3-C2-O2	-10.64	114.75	122.20
1	2	1103	С	C2-N1-C1'	10.52	130.37	118.80
2	5	128	А	P-O3'-C3'	10.50	132.30	119.70
12	Ι	57	С	N3-C2-O2	-10.39	114.63	121.90
2	5	60	U	N1-C2-O2	10.32	130.03	122.80
3	6	16	С	C6-N1-C2	-10.32	116.17	120.30
2	5	63	С	N1-C2-O2	10.30	125.08	118.90
1	2	1105	С	N3-C2-O2	-10.21	114.75	121.90
12	Ι	90	А	O4'-C1'-N9	10.20	116.36	108.20
1	2	120	G	P-O3'-C3'	10.12	131.84	119.70
1	2	1102	С	C5-C6-N1	9.96	125.98	121.00
3	6	54	U	C2-N1-C1'	9.81	129.47	117.70
1	2	74	С	C6-N1-C2	-9.79	116.38	120.30
1	2	44	U	N1-C2-O2	9.74	129.62	122.80
1	2	74	С	C5-C6-N1	9.70	125.85	121.00
39	W	270	ASP	CB-CG-OD1	9.67	127.00	118.30
2	5	129	G	N3-C4-N9	9.47	131.68	126.00
2	5	61	U	N3-C2-O2	-9.44	115.59	122.20
1	2	1102	С	C6-N1-C2	-9.43	116.53	120.30
2	5	79	С	N3-C2-O2	-9.42	115.31	121.90
2	5	142	С	C6-N1-C2	-9.39	116.54	120.30
2	5	4	С	C6-N1-C2	-9.36	116.56	120.30
2	5	79	С	C6-N1-C2	-9.35	116.56	120.30
1	2	113	U	C5-C6-N1	9.25	127.33	122.70
8	Ε	-12	U	N3-C2-O2	-9.22	115.75	122.20
1	2	41	С	N1-C2-O2	9.19	124.41	118.90
3	6	16	С	N1-C2-O2	9.19	124.41	118.90
2	5	145	U	N3-C2-O2	-9.05	115.86	122.20
1	2	120	G	O4'-C1'-N9	-9.03	100.97	108.20
1	2	7	С	N1-C2-O2	9.02	124.31	118.90
1	2	1134	С	C5-C6-N1	8.95	125.48	121.00
13	J	148	ASP	CB-CG-OD1	8.94	126.35	118.30
2	5	178	С	N1-C2-O2	8.94	124.27	118.90
8	Е	-12	U	C5-C6-N1	8.92	127.16	122.70
2	5	64	С	N1-C2-O2	8.91	124.25	118.90
1	2	1131	U	N3-C2-O2	-8.86	116.00	122.20
1	2	1103	C	C5-C6-N1	8.85	125.43	121.00
1	2	47	U	C5-C6-N1	8.78	127.09	122.70
1	2	1161	U	N3-C2-O2	-8.70	116.11	122.20
1	2	1119	C	C5-C6-N1	8.66	125.33	121.00

Continued	from	previous	page
contentaca	<i>J</i> · <i>O</i> · · · <i>O</i>	proceed ac	pagom

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	1131	U	N1-C2-O2	8.63	128.84	122.80
2	5	63	С	N3-C2-O2	-8.62	115.86	121.90
2	5	153	U	N3-C2-O2	-8.61	116.17	122.20
2	5	130	А	OP2-P-O3'	8.57	124.05	105.20
3	6	16	С	C5-C6-N1	8.52	125.26	121.00
1	2	1105	С	C2-N1-C1'	8.52	128.17	118.80
2	5	61	U	N1-C2-O2	8.50	128.75	122.80
8	Ε	-12	U	N1-C2-O2	8.50	128.75	122.80
4	А	2287	ASP	CB-CG-OD1	8.47	125.92	118.30
20	Q	768	ASP	CB-CG-OD1	8.45	125.91	118.30
12	Ι	90	A	N9-C1'-C2'	-8.42	102.74	112.00
8	Е	-12	U	C6-N1-C2	-8.42	115.95	121.00
1	2	121	C	O4'-C1'-N1	8.41	114.93	108.20
2	5	70	А	O5'-P-OP1	8.41	120.79	110.70
39	u	53	ILE	CG1-CB-CG2	-8.39	92.95	111.40
1	2	7	С	N3-C2-O2	-8.38	116.03	121.90
34	g	33	ASP	CB-CG-OD1	8.31	125.78	118.30
2	5	4	С	C5-C6-N1	8.31	125.15	121.00
3	6	43	С	N1-C2-O2	8.31	123.89	118.90
3	6	43	С	N3-C2-O2	-8.30	116.09	121.90
20	Q	712	TYR	CA-CB-CG	-8.28	97.68	113.40
2	5	108	С	N1-C2-O2	8.27	123.86	118.90
1	2	40	U	N3-C2-O2	-8.18	116.48	122.20
2	5	128	А	N3-C4-N9	8.15	133.92	127.40
1	2	1113	U	O4'-C1'-N1	8.12	114.69	108.20
39	W	451	ASP	CB-CG-OD1	8.06	125.55	118.30
2	5	79	C	C5-C6-N1	8.02	125.01	121.00
1	2	54	U	N3-C2-O2	-8.01	116.59	122.20
5	В	1689	ASP	CB-CG-OD1	8.00	125.50	118.30
1	2	1150	U	N3-C2-O2	-7.96	116.63	122.20
5	В	790	ASP	CB-CG-OD1	7.94	125.44	118.30
2	5	96	U	N3-C2-O2	-7.89	116.68	122.20
1	2	124	С	O4'-C1'-N1	7.87	114.49	108.20
2	5	60	U	C2-N1-C1'	7.83	127.10	117.70
2	5	146	C	C6-N1-C2	-7.83	117.17	120.30
37	0	244	LEU	CB-CG-CD2	-7.80	97.73	111.00
2	5	142	C	C5-C6-N1	7.78	124.89	121.00
36	m	62	ASP	CB-CG-OD1	7.76	125.29	118.30
1	2	1119	C	C6-N1-C2	-7.73	117.21	120.30
3	6	68	С	N1-C2-O2	7.72	123.53	118.90
12	Ι	12	G	C2-N3-C4	7.71	115.75	111.90
12	Ι	55	U	O4'-C1'-N1	7.68	114.34	108.20

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page
		1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	5	96	U	N1-C2-O2	7.66	128.16	122.80
12	Ι	71	С	N1-C2-O2	7.66	123.50	118.90
3	6	16	С	N3-C2-O2	-7.64	116.56	121.90
3	6	67	С	C6-N1-C2	-7.62	117.25	120.30
2	5	163	С	C6-N1-C2	-7.58	117.27	120.30
2	5	178	С	N3-C2-O2	-7.53	116.63	121.90
1	2	1161	U	N1-C2-O2	7.52	128.06	122.80
2	5	145	U	N1-C2-O2	7.52	128.06	122.80
5	В	1229	ASP	CB-CG-OD1	7.50	125.05	118.30
1	2	1105	С	C6-N1-C2	-7.49	117.30	120.30
15	L	25	ASP	CB-CG-OD1	7.49	125.04	118.30
1	2	40	U	N1-C2-O2	7.49	128.04	122.80
12	Ι	77	С	P-O3'-C3'	7.48	128.67	119.70
2	5	101	С	P-O3'-C3'	7.46	128.66	119.70
3	6	66	С	C6-N1-C2	-7.45	117.32	120.30
2	5	70	А	OP1-P-OP2	-7.43	108.46	119.60
2	5	151	А	C2-N3-C4	7.43	114.31	110.60
2	5	153	U	N1-C2-O2	7.42	128.00	122.80
1	2	105	А	OP1-P-O3'	7.42	121.53	105.20
1	2	1113	U	OP1-P-OP2	-7.39	108.51	119.60
2	5	64	С	N3-C2-O2	-7.37	116.74	121.90
1	2	41	С	N3-C2-O2	-7.36	116.75	121.90
2	5	96	U	C5-C6-N1	7.35	126.37	122.70
1	2	1089	G	OP1-P-OP2	-7.34	108.59	119.60
1	2	1096	С	C6-N1-C2	-7.33	117.37	120.30
12	Ι	89	G	O4'-C1'-N9	7.33	114.07	108.20
2	5	101	С	N3-C2-O2	-7.33	116.77	121.90
5	В	1626	ASP	CB-CG-OD1	7.33	124.90	118.30
1	2	1144	U	OP1-P-OP2	-7.33	108.61	119.60
2	5	108	С	N3-C2-O2	-7.30	116.79	121.90
1	2	69	G	OP1-P-OP2	-7.28	108.67	119.60
13	J	294	ASP	CB-CG-OD1	7.27	124.84	118.30
1	2	1150	U	N1-C2-O2	7.26	127.88	122.80
3	6	1	G	OP1-P-OP2	-7.26	108.71	119.60
1	2	4	А	OP1-P-OP2	-7.25	108.72	119.60
12	Ι	67	C	N1-C2-O2	7.25	123.25	118.90
2	5	70	А	C2-N3-C4	7.23	114.22	110.60
1	2	154	U	N3-C2-O2	-7.21	117.15	122.20
1	2	1081	U	OP1-P-OP2	-7.16	108.85	119.60
35	1	52	LEU	CA-CB-CG	7.16	131.77	115.30
2	5	161	U	C5-C6-N1	7.16	126.28	122.70
1	2	1160	C	O4'-C1'-N1	7.15	113.92	108.20

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
38	s	168	LEU	CB-CG-CD2	-7.14	98.86	111.00
12	Ι	12	G	O5'-P-OP2	-7.12	99.30	105.70
23	Т	483	ASP	CB-CG-OD1	7.11	124.70	118.30
39	W	401	ASP	CB-CG-OD1	7.09	124.68	118.30
2	5	11	А	N7-C8-N9	7.09	117.35	113.80
20	Q	461	ASP	CB-CG-OD1	7.09	124.68	118.30
1	2	79	A	N7-C8-N9	7.08	117.34	113.80
2	5	127	U	N3-C2-O2	-7.05	117.26	122.20
38	s	147	ILE	CG1-CB-CG2	-6.97	96.08	111.40
1	2	42	U	C5-C6-N1	6.95	126.18	122.70
23	Т	537	VAL	CA-CB-CG1	6.94	121.31	110.90
19	Р	159	ASP	CB-CG-OD1	6.93	124.54	118.30
5	В	1601	PHE	CB-CG-CD1	6.93	125.65	120.80
1	2	12	U	N3-C2-O2	-6.91	117.36	122.20
2	5	150	U	C5-C6-N1	6.89	126.14	122.70
5	В	990	ASP	CB-CG-OD1	6.88	124.50	118.30
36	j	62	ASP	CB-CG-OD1	6.88	124.50	118.30
1	2	123	С	C6-N1-C2	-6.88	117.55	120.30
20	Q	513	PHE	CB-CG-CD2	-6.88	115.99	120.80
20	Q	583	LEU	CB-CG-CD2	-6.86	99.34	111.00
3	6	16	С	C2-N1-C1'	6.85	126.33	118.80
1	2	4	А	O4'-C1'-N9	6.84	113.67	108.20
1	2	1160	С	OP1-P-OP2	-6.79	109.41	119.60
8	Е	-14	А	OP1-P-OP2	-6.79	109.41	119.60
20	Q	465	ASP	CB-CG-OD1	6.79	124.41	118.30
1	2	1162	U	N3-C2-O2	-6.78	117.46	122.20
2	5	79	С	C6-N1-C1'	-6.77	112.68	120.80
1	2	44	U	O4'-C1'-N1	6.76	113.61	108.20
6	С	202	ASP	CB-CG-OD1	6.76	124.38	118.30
20	Q	513	PHE	CB-CG-CD1	6.76	125.53	120.80
39	W	227	ASP	CB-CG-OD1	6.73	124.36	118.30
5	В	474	ASP	CB-CG-OD1	6.73	124.36	118.30
1	2	47	U	C6-N1-C2	-6.70	116.98	121.00
2	5	128	A	C5-C6-N1	6.69	121.04	117.70
20	Q	543	ASP	CB-CG-OD1	6.68	124.32	118.30
13	J	161	ASP	CB-CG-OD1	6.68	124.31	118.30
3	6	68	C	N3-C2-O2	-6.66	117.23	121.90
2	5	96	U	C6-N1-C2	-6.66	117.00	121.00
2	5	60	U	C6-N1-C2	-6.65	117.01	121.00
12	Ι	87	U	OP1-P-OP2	-6.65	109.62	119.60
13	J	287	ASP	CB-CG-OD1	6.65	124.28	118.30
2	5	74	U	C5-C6-N1	6.64	126.02	122.70

$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	from	previous	page
		1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	6	67	С	N1-C2-O2	6.63	122.88	118.90
23	Т	347	LEU	CA-CB-CG	6.63	130.55	115.30
8	Е	-12	U	C2-N1-C1'	6.61	125.63	117.70
2	5	54	С	O4'-C1'-N1	6.60	113.48	108.20
2	5	55	U	O4'-C1'-N1	6.59	113.47	108.20
1	2	1164	С	C6-N1-C2	-6.58	117.67	120.30
5	В	774	ASP	CB-CG-OD1	6.55	124.20	118.30
12	Ι	71	С	N3-C2-O2	-6.52	117.33	121.90
2	5	127	U	N1-C2-O2	6.51	127.36	122.80
1	2	1136	U	OP1-P-O3'	6.50	119.51	105.20
1	2	22	С	O5'-P-OP1	-6.50	99.85	105.70
1	2	43	G	C2-N3-C4	6.48	115.14	111.90
1	2	1096	С	C2-N1-C1'	6.48	125.93	118.80
2	5	56	U	OP1-P-O3'	6.48	119.46	105.20
11	Н	372	ASP	CB-CG-OD1	6.48	124.13	118.30
2	5	60	U	C5-C6-N1	6.47	125.94	122.70
2	5	7	С	C5-C6-N1	6.46	124.23	121.00
16	М	110	ASP	CB-CG-OD1	6.44	124.10	118.30
1	2	40	U	O4'-C1'-N1	6.44	113.35	108.20
12	Ι	62	А	OP1-P-O3'	6.43	119.36	105.20
3	6	15	С	N1-C2-O2	6.43	122.76	118.90
2	5	161	U	N3-C2-O2	-6.43	117.70	122.20
2	5	34	С	N1-C2-O2	6.41	122.75	118.90
2	5	129	G	C4-N9-C1'	6.41	134.83	126.50
1	2	98	U	OP1-P-OP2	-6.40	110.00	119.60
39	W	429	ASP	CB-CG-OD1	6.40	124.06	118.30
5	В	1601	PHE	CB-CG-CD2	-6.39	116.33	120.80
2	5	161	U	N1-C2-O2	6.38	127.26	122.80
12	Ι	89	G	C8-N9-C4	-6.38	103.85	106.40
1	2	15	С	P-O3'-C3'	6.37	127.34	119.70
1	2	106	А	OP1-P-OP2	-6.36	110.06	119.60
12	Ι	67	С	N3-C2-O2	-6.36	117.45	121.90
12	Ι	63	U	N3-C4-O4	-6.36	114.95	119.40
1	2	76	А	O4'-C1'-N9	6.35	113.28	108.20
5	В	1057	LEU	CB-CG-CD2	-6.35	100.21	111.00
2	5	58	U	C5-C6-N1	6.34	125.87	122.70
12	Ι	10	А	OP2-P-O3'	6.32	119.11	105.20
3	6	54	U	C5-C6-N1	6.31	125.86	122.70
5	В	1793	ASP	CB-CG-OD1	6.31	123.98	118.30
12	Ι	17	G	C8-N9-C4	-6.30	103.88	106.40
39	W	127	LEU	CA-CB-CG	6.29	129.78	115.30
3	6	54	U	C6-N1-C2	-6.25	117.25	121.00

Continued	from	previous	page
contentaca	<i>J</i> · <i>O</i> · · · <i>O</i>	proceed ac	pagom

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	2	14	С	C6-N1-C2	-6.25	117.80	120.30
1	2	54	U	N1-C2-O2	6.23	127.16	122.80
26	Y	99	LEU	CB-CG-CD1	-6.21	100.44	111.00
20	Q	480	LEU	CA-CB-CG	6.21	129.58	115.30
12	Ι	90	А	C1'-O4'-C4'	-6.20	104.94	109.90
3	6	66	С	N1-C2-O2	6.19	122.61	118.90
39	t	38	ASP	CB-CG-OD1	6.19	123.87	118.30
2	5	7	С	C6-N1-C2	-6.18	117.83	120.30
3	6	102	U	C5-C6-N1	6.16	125.78	122.70
10	G	28	ASP	CB-CG-OD1	6.16	123.85	118.30
20	Q	763	PHE	CB-CG-CD2	-6.16	116.49	120.80
2	5	43	G	C2-N3-C4	6.16	114.98	111.90
1	2	14	С	N1-C2-O2	6.15	122.59	118.90
1	2	1096	С	C5-C6-N1	6.14	124.07	121.00
39	W	124	ALA	N-CA-CB	6.14	118.70	110.10
1	2	12	U	N1-C2-O2	6.13	127.09	122.80
16	М	171	ASP	CB-CG-OD1	6.12	123.81	118.30
39	V	84	LEU	CB-CG-CD2	6.09	121.36	111.00
12	Ι	57	С	C6-N1-C2	-6.09	117.86	120.30
2	5	128	A	N3-C4-C5	-6.08	122.54	126.80
2	5	53	C	O4'-C1'-N1	6.08	113.06	108.20
1	2	121	С	C3'-C2'-C1'	-6.07	96.64	101.50
5	В	2147	ASP	CB-CG-OD1	6.07	123.76	118.30
1	2	154	U	N1-C2-O2	6.06	127.04	122.80
20	Q	401	VAL	CG1-CB-CG2	-6.05	101.22	110.90
38	S	132	LEU	N-CA-C	6.04	127.32	111.00
5	В	1673	PHE	CB-CG-CD1	6.04	125.03	120.80
12	Ι	62	A	P-O3'-C3'	6.01	126.92	119.70
3	6	36	U	O4'-C1'-N1	6.01	113.01	108.20
1	2	31	A	OP2-P-O3'	6.01	118.42	105.20
2	5	92	U	N3-C2-O2	-6.00	118.00	122.20
5	В	1673	PHE	CB-CG-CD2	-6.00	116.60	120.80
1	2	111	С	C5-C6-N1	5.99	124.00	121.00
1	2	121	С	C5'-C4'-O4'	5.98	116.27	109.10
3	6	15	C	C6-N1-C2	-5.97	117.91	120.30
20	Q	575	ASP	CB-CG-OD1	5.97	123.67	118.30
1	2	44	U	C6-N1-C2	-5.96	117.42	121.00
1	2	45	U	O4'-C1'-N1	5.96	112.97	108.20
1	2	77	U	C4-C5-C6	-5.95	116.13	119.70
11	Н	124	LEU	CA-CB-CG	5.95	128.98	115.30
1	2	19	U	O5'-P-OP1	-5.94	100.35	105.70
1	2	1131	U	C2-N1-C1'	5.94	124.82	117.70

Mol	Chain	\mathbf{Res}	Type	Atoms Z		$Observed(^{o})$	$Ideal(^{o})$
20	Q	751	LEU	CA-CB-CG	5.93	128.94	115.30
2	5	130	А	P-O3'-C3'	5.92	126.81	119.70
2	5	137	U	C5-C6-N1	5.92	125.66	122.70
1	2	112	А	O5'-P-OP1	-5.90	100.39	105.70
20	Q	846	LEU	CA-CB-CG	5.90	128.87	115.30
1	2	1164	С	C5-C6-N1	5.89	123.95	121.00
1	2	1151	U	N3-C2-O2	-5.89	118.08	122.20
4	А	289	ASP	CB-CG-OD1	5.89	123.60	118.30
2	5	56	U	P-O3'-C3'	5.87	126.75	119.70
3	6	72	С	N1-C2-O2	5.87	122.42	118.90
39	v	38	ASP	CB-CG-OD1	5.86	123.58	118.30
1	2	1162	U	N1-C2-O2	5.86	126.90	122.80
1	2	77	U	N3-C4-C5	5.86	118.11	114.60
3	6	67	С	N3-C2-O2	-5.85	117.80	121.90
5	В	1703	LEU	CB-CG-CD1	-5.84	101.08	111.00
1	2	1140	U	N3-C2-O2	-5.83	118.12	122.20
5	В	1612	VAL	CG1-CB-CG2	-5.81	101.61	110.90
2	5	94	С	C6-N1-C2	-5.80	117.98	120.30
2	5	129	G	C8-N9-C4	-5.80	104.08	106.40
2	5	147	С	C6-N1-C2	-5.78	117.99	120.30
1	2	1103	С	C6-N1-C1'	-5.77	113.88	120.80
1	2	1093	С	O4'-C1'-N1	5.76	112.81	108.20
12	Ι	57	С	O4'-C1'-N1	5.76	112.81	108.20
2	5	102	С	N3-C2-O2	-5.75	117.87	121.90
2	5	150	U	C6-N1-C2	-5.75	117.55	121.00
1	2	76	А	OP1-P-O3'	5.75	117.85	105.20
1	2	1096	С	N1-C2-O2	5.73	122.34	118.90
3	6	4	С	C5-C6-N1	5.73	123.86	121.00
1	2	1151	U	N1-C2-O2	5.72	126.81	122.80
20	Q	486	LEU	CB-CG-CD1	5.71	120.71	111.00
16	М	222	LEU	CA-CB-CG	5.71	128.43	115.30
3	6	54	U	C6-N1-C1'	-5.71	113.21	121.20
39	W	125	GLN	CA-CB-CG	5.69	125.92	113.40
2	5	152	С	O5'-P-OP1	-5.69	100.58	105.70
1	2	1108	А	C2-N3-C4	5.69	113.44	110.60
5	В	1658	TYR	CA-CB-CG	5.69	124.21	113.40
11	Н	110	ASP	CB-CG-OD1	5.69	123.42	118.30
12	Ι	63	U	C5-C4-O4	5.68	129.31	125.90
3	6	66	С	N3-C2-O2	-5.67	117.93	121.90
13	J	420	ASP	CB-CG-OD1	5.67	123.40	118.30
12	Ι	11	A	O4'-C1'-N9	5.66	112.73	108.20
2	5	128	A	N9-C4-C5	-5.65	103.54	105.80

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	5	1	1 5

Mol	Chain	Res	Type	Atoms	Atoms Z		$Ideal(^{o})$
5	В	1605	ILE	CA-CB-CG2	5.64	122.19	110.90
12	Ι	88	U	OP1-P-O3'	5.64	117.61	105.20
12	Ι	70	А	C8-N9-C4	-5.64	103.55	105.80
3	6	70	U	N3-C2-O2	-5.63	118.25	122.20
1	2	41	С	P-O3'-C3'	5.63	126.45	119.70
1	2	43	G	N3-C4-C5	-5.63	125.78	128.60
2	5	172	U	N1-C2-O2	5.63	126.74	122.80
5	В	1071	ASP	CB-CG-OD1	5.62	123.36	118.30
1	2	22	С	N1-C2-O2	5.62	122.27	118.90
39	t	1	MET	CG-SD-CE	5.62	109.19	100.20
5	В	953	MET	CG-SD-CE	5.61	109.18	100.20
3	6	43	С	O4'-C1'-N1	5.61	112.69	108.20
2	5	147	С	C2-N1-C1'	5.60	124.96	118.80
12	Ι	62	А	O4'-C1'-N9	-5.59	103.72	108.20
2	5	52	G	C2-N3-C4	5.59	114.70	111.90
1	2	120	G	C8-N9-C4	-5.57	104.17	106.40
1	2	1103	С	C2-N3-C4	5.56	122.68	119.90
2	5	161	U	C6-N1-C2	-5.56	117.67	121.00
2	5	170	U	OP1-P-O3'	5.56	117.43	105.20
1	2	1114	G	C2-N3-C4	5.56	114.68	111.90
2	5	146	С	C2-N1-C1'	5.55	124.91	118.80
2	5	34	С	N3-C2-O2	-5.55	118.02	121.90
35	h	52	LEU	CA-CB-CG	5.55	128.06	115.30
2	5	128	А	N1-C2-N3	-5.54	126.53	129.30
1	2	155	U	N3-C2-O2	-5.53	118.33	122.20
35	1	52	LEU	CB-CG-CD2	5.53	120.39	111.00
2	5	11	А	C8-N9-C4	-5.53	103.59	105.80
3	6	66	С	C5-C6-N1	5.53	123.76	121.00
5	В	1633	LEU	CA-CB-CG	5.52	128.00	115.30
3	6	67	С	C5-C6-N1	5.52	123.76	121.00
1	2	113	U	C6-N1-C2	-5.52	117.69	121.00
3	6	48	С	C6-N1-C2	-5.52	118.09	120.30
1	2	78	G	N3-C4-N9	-5.50	122.70	126.00
2	5	178	С	O4'-C1'-N1	5.50	112.60	108.20
26	Y	50	LEU	CB-CG-CD1	-5.50	101.65	111.00
1	2	19	U	O4'-C1'-C2'	-5.50	100.30	105.80
2	5	92	U	N1-C2-O2	5.49	126.64	122.80
2	5	64	С	O4'-C1'-N1	5.48	112.59	108.20
37	0	150	LEU	CA-CB-CG	5.46	127.87	115.30
1	2	6	U	N3-C2-O2	-5.45	118.38	122.20
2	5	146	С	C5-C6-N1	5.45	123.72	121.00
16	М	110	ASP	CB-CG-OD2	-5.44	113.40	118.30

12

Ι

89

G

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
20	Q	454	LEU	CB-CG-CD2	5.44	120.25	111.00
20	Q	386	TYR	CA-CB-CG	5.44	123.73	113.40
2	5	45	А	N7-C8-N9	5.43	116.52	113.80
2	5	96	U	C2-N1-C1'	5.43	124.22	117.70
12	Ι	12	G	O4'-C1'-N9	5.43	112.54	108.20
1	2	6	U	N1-C2-O2	5.43	126.60	122.80
3	6	23	G	N1-C6-O6	-5.42	116.65	119.90
12	Ι	17	G	N7-C8-N9	5.41	115.81	113.10
2	5	116	U	N1-C2-O2	5.41	126.59	122.80
2	5	127	U	C6-N1-C2	-5.41	117.76	121.00
2	5	61	U	C6-N1-C2	-5.40	117.76	121.00
1	2	69	G	O4'-C1'-N9	5.39	112.51	108.20
2	5	128	А	C4-N9-C1'	5.39	136.00	126.30
5	В	1339	PHE	CB-CG-CD1	5.39	124.57	120.80
13	J	148	ASP	CB-CG-OD2	-5.38	113.46	118.30
1	2	54	U	O4'-C1'-N1	5.38	112.50	108.20
1	2	1140	U	N1-C2-O2	5.38	126.56	122.80
1	2	1168	U	N3-C2-O2	-5.38	118.44	122.20
7	D	165	LEU	CA-CB-CG	5.37	127.64	115.30
1	2	42	U	C6-N1-C2	-5.37	117.78	121.00
1	2	1161	U	C6-N1-C2	-5.37	117.78	121.00
20	Q	660	LYS	CA-CB-CG	5.35	125.17	113.40
2	5	54	С	C6-N1-C2	-5.35	118.16	120.30
3	6	69	С	N1-C2-O2	5.34	122.11	118.90
2	5	62	G	N3-C4-C5	-5.34	125.93	128.60
1	2	1168	U	N1-C2-O2	5.34	126.54	122.80
23	Т	512	LEU	CB-CG-CD2	-5.34	101.93	111.00
3	6	15	С	N3-C2-O2	-5.33	118.17	121.90
2	5	65	U	O4'-C1'-N1	5.33	112.46	108.20
20	Q	724	LEU	CB-CG-CD1	-5.32	101.96	111.00
2	5	172	U	N3-C2-O2	-5.32	118.48	122.20
1	2	1131	U	C6-N1-C2	-5.31	117.81	121.00
2	5	61	U	O4'-C1'-N1	5.31	112.45	108.20
5	В	613	ASP	CB-CG-OD1	5.29	123.06	118.30
5	В	1876	LEU	CB-CG-CD1	-5.29	102.00	111.00
39	W	92	MET	CB-CG-SD	5.29	128.27	112.40
39	t	105	LEU	CA-CB-CG	5.29	127.47	115.30
2	5	164	С	C6-N1-C2	-5.28	118.19	120.30
39	u	38	ASP	CB-CG-OD1	5.27	123.05	118.30
20	Q	388	TYR	CA-CB-CG	5.27	123.42	113.40
20	Q	713	LEU	CB-CG-CD1	5.27	119.96	111.00

Continued from previous page...

Continued on next page...

113.10

115.73

5.26

N7-C8-N9

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
12	Ι	92	С	C5-C6-N1	5.26	123.63	121.00
35	h	50	PRO	CA-N-CD	-5.26	104.13	111.50
1	2	1105	С	C6-N1-C1'	-5.25	114.50	120.80
4	А	1166	ASP	CB-CG-OD1	5.25	123.02	118.30
1	2	1105	С	C5-C6-N1	5.24	123.62	121.00
1	2	1141	С	C6-N1-C2	-5.24	118.20	120.30
4	А	534	LEU	CB-CG-CD1	-5.23	102.11	111.00
5	В	684	LEU	CA-CB-CG	5.23	127.33	115.30
1	2	7	С	C6-N1-C2	-5.19	118.22	120.30
12	Ι	92	С	C6-N1-C2	-5.19	118.22	120.30
5	В	591	ASP	CB-CG-OD1	5.19	122.97	118.30
4	А	1035	LEU	CB-CG-CD1	-5.19	102.18	111.00
2	5	127	U	C5-C6-N1	5.18	125.29	122.70
22	S	269	ILE	CG1-CB-CG2	-5.18	100.00	111.40
2	5	102	С	N1-C2-O2	5.17	122.00	118.90
2	5	116	U	N3-C2-O2	-5.17	118.58	122.20
1	2	14	С	N3-C2-O2	-5.17	118.28	121.90
2	5	62	G	C2-N3-C4	5.16	114.48	111.90
1	2	78	G	N3-C4-C5	5.16	131.18	128.60
1	2	113	U	OP2-P-O3'	5.16	116.54	105.20
12	Ι	86	А	OP1-P-O3'	5.14	116.51	105.20
4	А	315	SER	CA-C-O	-5.14	109.31	120.10
34	r	33	ASP	CB-CG-OD1	5.14	122.92	118.30
2	5	116	U	O4'-C1'-N1	5.13	112.31	108.20
12	Ι	61	U	C6-N1-C2	-5.13	117.92	121.00
39	W	318	ASP	CB-CG-OD1	5.13	122.92	118.30
8	Е	-13	G	O4'-C1'-N9	5.13	112.30	108.20
34	g	71	LEU	CA-CB-CG	5.12	127.07	115.30
39	W	306	ASP	CB-CA-C	-5.11	100.18	110.40
8	E	-11	G	OP1-P-OP2	-5.11	111.94	119.60
2	5	128	A	C8-N9-C1'	-5.10	118.52	127.70
39	u	91	ILE	CA-CB-CG1	5.10	120.69	111.00
1	2	120	G	C2'-C3'-O3'	5.10	121.85	113.70
2	5	45	A	C2-N3-C4	5.09	113.14	110.60
4	А	1495	PHE	CB-CG-CD2	5.09	124.36	120.80
36	j	99	ASP	CB-CG-OD1	5.09	122.88	118.30
1	2	59	С	O4'-C1'-N1	5.08	112.27	108.20
23	Т	613	PRO	CA-N-CD	-5.08	104.39	111.50
2	5	142	С	C2-N1-C1'	5.07	124.38	118.80
23	Т	358	LEU	CB-CG-CD2	5.07	119.61	111.00
1	2	7	C	O4'-C1'-N1	5.06	112.25	108.20
5	В	1058	LEU	CA-CB-CG	5.06	126.93	115.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	5	63	С	O4'-C1'-N1	5.05	112.24	108.20
2	5	70	А	OP2-P-O3'	5.05	116.31	105.20
3	6	43	С	C6-N1-C2	-5.05	118.28	120.30
1	2	78	G	N3-C2-N2	-5.05	116.37	119.90
2	5	141	G	C2-N3-C4	5.04	114.42	111.90
1	2	1161	U	C2-N1-C1'	5.04	123.75	117.70
5	В	872	LEU	CB-CG-CD1	5.04	119.57	111.00
1	2	47	U	C6-N1-C1'	5.04	128.25	121.20
12	Ι	9	А	O4'-C1'-N9	5.03	112.22	108.20
1	2	1151	U	C5-C6-N1	5.02	125.21	122.70
1	2	1143	С	OP1-P-O3'	5.01	116.23	105.20
3	6	36	U	C2'-C3'-O3'	5.01	121.72	113.70
20	Q	388	TYR	CB-CG-CD1	5.00	124.00	121.00

There are no chirality outliers.

All ((12)	planarity	outliers	are	listed	below:
· · · · · /	_ _ _/	promotion	outitors	on o	incoa	001011.

Mol	Chain	Res	Type	Group
5	В	1519	ARG	Sidechain
6	С	132	ARG	Sidechain
20	Q	478	ARG	Sidechain
20	Q	496	ARG	Sidechain
23	Т	546	SER	Mainchain
23	Т	726	ARG	Mainchain
29	b	28	ARG	Sidechain
36	m	49	ARG	Sidechain
37	0	318	ARG	Sidechain
37	0	416	ARG	Sidechain
38	s	162	ARG	Sidechain
39	W	240	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	2	4120	0	2095	2	0
2	5	3777	0	1908	3	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	6	2170	0	1095	0	0
4	А	18036	0	17967	5	0
5	В	13675	0	13679	8	0
6	С	7139	0	7304	1	0
7	D	1547	0	1503	0	0
8	Е	304	0	151	0	0
9	F	505	0	485	0	0
10	G	1090	0	1000	0	0
11	Н	3705	0	3777	2	0
12	Ι	1068	0	538	0	0
13	J	2926	0	2918	2	0
14	K	1455	0	1482	1	0
15	L	1283	0	1301	0	0
16	М	2048	0	2011	0	0
17	Ν	2092	0	2162	0	0
18	0	2143	0	2032	1	0
19	Р	607	0	596	0	0
20	Q	4959	0	5070	3	0
21	R	555	0	491	0	0
22	S	4170	0	3705	3	0
23	Т	5387	0	4887	4	0
24	W	1734	0	1787	2	0
25	Х	355	0	79	0	0
26	Y	713	0	746	0	0
27	Z	446	0	486	0	0
28	a	1132	0	1166	0	0
29	b	752	0	811	0	0
29	k	830	0	905	0	0
30	С	293	0	290	0	0
31	d	633	0	660	0	0
31	n	633	0	660	0	0
32	е	606	0	630	0	0
32	p	606	0	630	0	0
33	t	601	0	600	0	0
33	q	601	0	600	0	0
	g	557	0	575		0
34	r	557	0	575	0	0
35	h	819	0	866		0
		819	0	866		0
36	J	795	0	830		0
36	m	795	0	830		0
37	0	2673	0	2614	0	0

	itaea ji en		<i>page</i>			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
38	s	426	0	385	0	0
39	t	794	0	784	0	0
39	u	856	0	827	0	0
39	V	827	0	807	0	0
39	W	3405	0	3303	0	0
40	У	1003	0	909	0	0
41	6	5	0	0	0	0
41	С	1	0	0	0	0
42	6	1	0	0	0	0
43	А	36	0	0	0	0
44	С	32	0	12	0	0
45	D	1	0	0	0	0
45	L	3	0	0	0	0
45	М	1	0	0	0	0
45	N	2	0	0	0	0
45	с	1	0	0	0	0
All	All	109105	0	102390	33	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 0.

All (33) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
24:W:17:ASP:OD1	24:W:17:ASP:N	2.38	0.52
5:B:2011:ILE:HD12	5:B:2030:ILE:HD11	1.94	0.50
5:B:599:ILE:HG23	5:B:605:LEU:HD11	1.96	0.47
5:B:793:LEU:HD21	5:B:808:LEU:HD11	1.98	0.46
5:B:1759:ALA:HB2	5:B:1846:THR:HG21	1.99	0.45
23:T:340:ASP:O	23:T:344:ASN:ND2	2.50	0.45
20:Q:837:ILE:HG22	20:Q:839:LYS:H	1.82	0.45
23:T:320:ASP:N	23:T:320:ASP:OD1	2.50	0.44
2:5:159:C:O2'	2:5:161:U:OP2	2.32	0.43
11:H:10:ASP:OD1	11:H:10:ASP:N	2.49	0.43
20:Q:789:LEU:HA	20:Q:792:ILE:HG22	2.00	0.43
5:B:2013:VAL:HG13	5:B:2018:ASP:HB2	1.99	0.43
14:K:179:THR:HG23	18:O:26:GLN:HB3	2.01	0.43
5:B:478:LYS:HE2	5:B:507:PHE:CE2	2.53	0.43
6:C:88:THR:O	13:J:214:ASN:ND2	2.51	0.42
4:A:126:ASN:N	4:A:126:ASN:OD1	2.52	0.42
24:W:75:ASP:OD1	24:W:75:ASP:N	2.50	0.42

Contributed from precise	jus puge	T 4 1	
Atom_1	Atom_2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
2:5:82:A:O3'	4:A:709:ARG:NH2	2.46	0.42
1:2:78:G:H2'	1:2:79:A:C8	2.54	0.42
5:B:1164:THR:HA	20:Q:497:ARG:HH22	1.84	0.42
2:5:26:A:OP2	2:5:141:G:N2	2.53	0.42
4:A:1785:ASP:OD1	4:A:1786:ALA:N	2.51	0.41
23:T:279:GLU:O	23:T:316:ARG:NH2	2.52	0.41
22:S:126:ILE:HD13	22:S:126:ILE:HG21	2.14	0.41
22:S:321:ASP:N	22:S:321:ASP:OD1	2.54	0.41
22:S:206:VAL:HG12	22:S:221:VAL:HG23	2.02	0.41
4:A:2189:LEU:HD13	4:A:2224:VAL:HG23	2.03	0.41
4:A:1286:TRP:CE2	4:A:1302:LEU:HD11	2.56	0.40
1:2:77:U:H1'	1:2:78:G:C4	2.56	0.40
13:J:200:VAL:HG12	13:J:206:VAL:HG22	2.02	0.40
11:H:100:LEU:HD13	11:H:100:LEU:HA	1.98	0.40
23:T:577:VAL:HG12	23:T:583:ILE:HG23	2.02	0.40
5:B:947:ARG:HD2	5:B:947:ARG:HA	1.86	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	А	2185/2413~(91%)	2146~(98%)	38 (2%)	1 (0%)	100	100
5	В	1703/2163~(79%)	1657~(97%)	46 (3%)	0	100	100
6	С	888/1008~(88%)	873~(98%)	15 (2%)	0	100	100
7	D	171/291~(59%)	167~(98%)	4 (2%)	0	100	100
9	F	52/179~(29%)	52~(100%)	0	0	100	100
10	G	119/235~(51%)	119 (100%)	0	0	100	100
11	Н	449/577~(78%)	440 (98%)	9 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
13	J	366/451~(81%)	354 (97%)	12 (3%)	0	100	100
14	К	172/379~(45%)	170 (99%)	2 (1%)	0	100	100
15	L	154/157~(98%)	151 (98%)	3 (2%)	0	100	100
16	М	253/339~(75%)	249 (98%)	4 (2%)	0	100	100
17	Ν	256/364~(70%)	251 (98%)	5 (2%)	0	100	100
18	Ο	250/590~(42%)	245 (98%)	5 (2%)	0	100	100
19	Р	68/175~(39%)	67 (98%)	1 (2%)	0	100	100
20	Q	618/1071~(58%)	589 (95%)	29 (5%)	0	100	100
21	R	77/135~(57%)	77 (100%)	0	0	100	100
22	S	525/687~(76%)	518 (99%)	7 (1%)	0	100	100
23	Т	692/859~(81%)	663 (96%)	28 (4%)	1 (0%)	48	77
24	W	210/238~(88%)	199 (95%)	11 (5%)	0	100	100
26	Y	86/111 (78%)	83 (96%)	3 (4%)	0	100	100
27	Z	51/140~(36%)	51 (100%)	0	0	100	100
28	a	132/251~(53%)	131 (99%)	1 (1%)	0	100	100
29	b	89/196~(45%)	88 (99%)	1 (1%)	0	100	100
29	k	98/196~(50%)	94 (96%)	4 (4%)	0	100	100
30	с	33/382~(9%)	31 (94%)	2 (6%)	0	100	100
31	d	80/101 (79%)	80 (100%)	0	0	100	100
31	n	80/101~(79%)	77 (96%)	3 (4%)	0	100	100
32	е	73/94~(78%)	71 (97%)	1 (1%)	1 (1%)	9	30
32	р	73/94~(78%)	71 (97%)	2 (3%)	0	100	100
33	f	73/86~(85%)	71 (97%)	2 (3%)	0	100	100
33	q	73/86~(85%)	72 (99%)	1 (1%)	0	100	100
34	g	70/77~(91%)	64 (91%)	6 (9%)	0	100	100
34	r	70/77~(91%)	65 (93%)	5 (7%)	0	100	100
35	h	104/146~(71%)	98 (94%)	6 (6%)	0	100	100
35	1	$\overline{104/146}\ (71\%)$	98 (94%)	6 (6%)	0	100	100
36	j	95/110 (86%)	89 (94%)	6 (6%)	0	100	100
36	m	95/110 (86%)	90 (95%)	5 (5%)	0	100	100
37	0	$\overline{323/455}~(71\%)$	308 (95%)	14 (4%)	1 (0%)	37	67

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
38	S	57/175~(33%)	55~(96%)	2 (4%)	0	100	100
39	t	103/503~(20%)	103 (100%)	0	0	100	100
39	u	113/503~(22%)	111 (98%)	2 (2%)	0	100	100
39	v	109/503~(22%)	105~(96%)	4 (4%)	0	100	100
39	W	426/503~(85%)	419 (98%)	5 (1%)	2(0%)	25	56
40	У	124/215~(58%)	124 (100%)	0	0	100	100
All	All	11942/17672~(68%)	11636 (97%)	300 (2%)	6 (0%)	50	77

All (6) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
32	е	32	PHE
39	W	376	LYS
4	А	1347	ARG
37	0	348	GLN
39	W	351	ASP
23	Т	441	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
4	А	1987/2182~(91%)	1978 (100%)	9 (0%)	86 95
5	В	1536/1955~(79%)	1528 (100%)	8 (0%)	86 95
6	С	799/910~(88%)	795 (100%)	4 (0%)	86 95
7	D	165/252~(66%)	165 (100%)	0	100 100
9	F	52/154~(34%)	52~(100%)	0	100 100
10	G	102/206~(50%)	102 (100%)	0	100 100
11	Н	422/538~(78%)	419 (99%)	3 (1%)	81 94
13	J	325/397~(82%)	323 (99%)	2(1%)	84 95
14	Κ	164/328~(50%)	162 (99%)	2 (1%)	67 89

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
15	L	140/141~(99%)	140 (100%)	0	100	100
16	М	219/296~(74%)	218 (100%)	1 (0%)	86	95
17	Ν	243/332~(73%)	242 (100%)	1 (0%)	89	96
18	Ο	199/504~(40%)	198 (100%)	1 (0%)	86	95
19	Р	61/151~(40%)	60~(98%)	1 (2%)	58	85
20	Q	557/969~(58%)	551 (99%)	6 (1%)	70	90
21	R	47/121 (39%)	45 (96%)	2 (4%)	25	57
22	S	369/633~(58%)	365~(99%)	4 (1%)	70	90
23	Т	505/786~(64%)	502 (99%)	3 (1%)	84	95
24	W	201/219~(92%)	195~(97%)	6 (3%)	36	70
26	Y	79/100~(79%)	79 (100%)	0	100	100
27	Ζ	51/128~(40%)	51 (100%)	0	100	100
28	a	127/225~(56%)	126 (99%)	1 (1%)	79	93
29	b	86/176~(49%)	85 (99%)	1 (1%)	67	89
29	k	95/176~(54%)	95 (100%)	0	100	100
30	с	33/346 (10%)	33 (100%)	0	100	100
31	d	71/89~(80%)	71 (100%)	0	100	100
31	n	71/89~(80%)	70~(99%)	1 (1%)	62	87
32	е	70/83~(84%)	69~(99%)	1 (1%)	62	87
32	р	70/83~(84%)	68~(97%)	2(3%)	37	71
33	f	67/77~(87%)	67 (100%)	0	100	100
33	q	67/77~(87%)	66~(98%)	1 (2%)	60	86
34	g	61/66~(92%)	59~(97%)	2(3%)	33	67
34	r	61/66~(92%)	61 (100%)	0	100	100
35	h	95/129 (74%)	95 (100%)	0	100	100
35	1	95/129~(74%)	95~(100%)	0	100	100
36	j	90/103~(87%)	89~(99%)	1 (1%)	70	90
36	m	90/103~(87%)	89 (99%)	1 (1%)	70	90
37	0	298/412~(72%)	294 (99%)	4 (1%)	65	88
38	S	30/165~(18%)	30 (100%)	0	100	100
39	t	81/451~(18%)	81 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
39	u	83/451~(18%)	80~(96%)	3~(4%)	30	64
39	v	80/451~(18%)	80 (100%)	0	100	100
39	W	369/451~(82%)	368 (100%)	1 (0%)	91	97
40	у	91/193~(47%)	89~(98%)	2(2%)	47	79
All	All	10504/15893~(66%)	10430 (99%)	74 (1%)	80	94

All (74) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
4	А	310	ASN
4	А	493	MET
4	А	908	ASP
4	А	928	ARG
4	А	1140	ASN
4	А	1196	GLU
4	А	1499	ARG
4	А	1907	GLN
4	А	2381	GLU
5	В	596	ARG
5	В	1056	GLN
5	В	1407	PHE
5	В	1654	ARG
5	В	1669	ASP
5	В	2009	LYS
5	В	2085	GLN
5	В	2125	GLN
6	С	222	MET
6	С	766	TRP
6	С	915	GLU
6	С	918	LEU
11	Н	205	TYR
11	Н	237	LYS
11	Н	400	ASP
13	J	361	ASP
13	J	408	ASP
14	Κ	149	MET
14	Κ	222	LYS
16	М	96	GLU
17	N	145	ARG
18	0	202	LYS
19	Р	20	TYR

	<i>y</i>	1	
Mol	Chain	Res	Type
20	Q	388	TYR
20	Q	497	ARG
20	Q	511	LYS
20	Q	682	ASN
20	Q	710	ASP
20	Q	786	GLN
21	R	22	ARG
21	R	83	ARG
22	S	139	TYR
22	S	172	PHE
22	S	192	TYR
22	S	372	CYS
23	Т	450	TRP
23	Т	451	CYS
23	Т	663	LYS
24	W	3	PHE
24	W	17	ASP
24	W	139	ASN
24	W	140	TYR
24	W	146	ARG
24	W	199	MET
28	a	227	ARG
29	b	52	ARG
32	е	46	PHE
34	g	40	LEU
34	g	74	LEU
36	j	71	ASN
36	m	71	ASN
31	n	60	ASP
37	0	195	ASP
37	0	201	ASP
37	0	277	ASP
37	0	389	LEU
32	р	46	PHE
32	p	89	LEU
33	q	83	GLU
39	u	20	ARG
39	u	96	PHE
39	u	106	THR
39	W	245	HIS
40	V	75	TYR
40	y	200	ASN

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such side chains are listed below:

Mol	Chain	Res	Type
20	Q	942	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	2	187/1175~(15%)	42 (22%)	7 (3%)
12	Ι	53/95~(55%)	21 (39%)	4 (7%)
2	5	177/214~(82%)	33~(18%)	8 (4%)
3	6	101/112~(90%)	16 (15%)	1 (0%)
8	Е	13/47~(27%)	1 (7%)	0
All	All	531/1643~(32%)	113 (21%)	20 (3%)

All (113) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	2	6	U
1	2	16	U
1	2	19	U
1	2	20	G
1	2	21	G
1	2	25	А
1	2	30	А
1	2	32	G
1	2	33	U
1	2	41	С
1	2	42	U
1	2	45	U
1	2	75	А
1	2	76	А
1	2	77	U
1	2	82	С
1	2	83	U
1	2	106	А
1	2	112	А
1	2	114	U
1	2	115	U
1	2	119	G
1	2	120	G
1	2	121	С
1	2	122	А

Mol	Chain	Res	Type
1	2	123	С
1	2	124	С
1	2	147	A
1	2	1090	A
1	2	1102	С
1	2	1103	С
1	2	1104	U
1	2	1106	G
1	2	1119	С
1	2	1123	С
1	2	1135	U
1	2	1136	U
1	2	1137	U
1	2	1144	U
1	2	1145	U
1	2	1164	С
1	2	1170	G
2	5	9	U
2	5	10	U
2	5	12	С
2	5	18	А
2	5	20	U
2	5	27	G
2	5	46	С
2	5	56	U
2	5	57	U
2	5	60	U
2	5	70	А
2	5	75	A
2	5	77	A
2	5	79	С
2	5	80	G
2	5	102	С
2	5	128	A
2	5	129	G
2	5	131	A
2	5	132	A
2	5	139	A
2	5	141	G
2	5	151	A
2	5	154	G
2	5	160	U

Mol	Chain	Res	Type
2	5	165	А
2	5	166	U
2	5	167	А
2	5	168	U
2	5	169	U
2	5	170	U
2	5	174	G
2	5	175	G
3	6	11	U
3	6	12	А
3	6	14	С
3	6	15	С
3	6	16	С
3	6	36	U
3	6	37	U
3	6	52	G
3	6	55	G
3	6	60	G
3	6	67	С
3	6	68	C
3	6	79	А
3	6	80	U
3	6	85	С
3	6	88	U
8	Е	-11	G
12	Ι	3	А
12	Ι	10	A
12	Ι	11	А
12	Ι	12	G
12	Ι	56	G
12	Ι	57	С
12	I	62	A
12	Ι	63	U
12	Ι	65	U
12	Ι	70	A
12	Ι	74	A
12	Ι	76	U
12	Ι	77	С
12	I	78	A
12	Ι	79	A
12	Ι	81	A
12	Ι	82	U

Continued from previous page...

Mol	Chain	Res	Type
12	Ι	84	С
12	Ι	86	А
12	Ι	87	U
12	Ι	89	G

All	(20)	RNA	pucker	outliers	are	listed	below:
-----	------	-----	--------	----------	-----	--------	--------

Mol	Chain	\mathbf{Res}	Type
1	2	15	С
1	2	19	U
1	2	41	С
1	2	81	G
1	2	111	С
1	2	120	G
1	2	1101	С
2	5	17	С
2	5	56	U
2	5	69	G
2	5	101	С
2	5	128	А
2	5	130	А
2	5	138	А
2	5	166	U
3	6	36	U
12	Ι	56	G
12	Ι	62	А
12	Ι	76	U
12	Ι	88	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

1 non-standard protein/DNA/RNA residue is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Chai	Type Chain	Chain	Chain	Chain	Chain	Chain	Chain	Dog	Tink	B	ond leng	gths	E	ond ang	gles
		Ullalli	nes		Counts	RMSZ	# Z > 2	Counts RMSZ $\# Z >$								
37	SEP	0	73	37	8,9,10	1.53	1 (12%)	8,12,14	1.53	2 (25%)						

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
37	SEP	0	73	37	-	0/5/8/10	-

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
37	0	73	SEP	P-01P	3.36	1.61	1.50

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
37	0	73	SEP	P-OG-CB	-2.75	110.73	118.30
37	0	73	SEP	OG-CB-CA	2.70	110.77	108.14

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 17 ligands modelled in this entry, 15 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mol Type	Chain	Bos	Link	Bo	ond leng	ths	В	ond ang	les	
	a Type Chain Res I		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
43	KGN	А	2500	-	36,36,36	0.78	0	$54,\!60,\!60$	0.51	0
44	GTP	С	1101	41	26,34,34	1.13	1 (3%)	32,54,54	1.43	5 (15%)

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
43	KGN	А	2500	-	-	4/30/54/54	0/1/1/1
44	GTP	С	1101	41	-	3/18/38/38	0/3/3/3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
44	С	1101	GTP	C5-C6	-3.98	1.39	1.47

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
44	С	1101	GTP	PA-O3A-PB	-3.55	120.66	132.83
44	С	1101	GTP	C5-C6-N1	3.15	119.51	113.95
44	С	1101	GTP	C8-N7-C5	3.02	108.74	102.99
44	С	1101	GTP	C2-N1-C6	-2.85	119.86	125.10
44	С	1101	GTP	PB-O3B-PG	-2.78	123.29	132.83

There are no chirality outliers.

All (7) torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
43	А	2500	KGN	C3-O13-P3-O23
43	А	2500	KGN	C6-O16-P6-O46
44	С	1101	GTP	C5'-O5'-PA-O3A
44	С	1101	GTP	PA-O3A-PB-O1B
43	А	2500	KGN	C5-O15-P5-O45
43	А	2500	KGN	C6-O16-P6-O36
44	С	1101	GTP	PG-O3B-PB-O2B

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
25	Х	2

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Х	18:UNK	С	35:UNK	Ν	201.98
1	Х	51:UNK	С	200:UNK	Ν	106.75

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12106. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200 $\,$

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 235

Y Index: 205

Z Index: 224

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 5.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 773 $\rm nm^3;$ this corresponds to an approximate mass of 699 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.357 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12106 and PDB model 7B9V. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 5.0 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (5).

9.4 Atom inclusion (i)

At the recommended contour level, 80% of all backbone atoms, 68% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (5) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6770	0.3780
2	0.5380	0.2700
5	0.5300	0.3900
6	0.7920	0.5230
А	0.7870	0.5100
В	0.5320	0.1760
С	0.7960	0.5320
D	0.7260	0.4540
Е	0.8060	0.5590
F	0.6180	0.4210
G	0.7500	0.4440
Н	0.6740	0.3940
Ι	0.6010	0.3930
J	0.8720	0.5870
Κ	0.7050	0.5030
L	0.8460	0.5710
М	0.8320	0.5600
Ν	0.6440	0.4760
О	0.7030	0.4390
Р	0.7720	0.5440
Q	0.6890	0.1520
R	0.4060	0.3950
S	0.7910	0.4500
Т	0.8050	0.4100
W	0.8300	0.4660
Х	0.7180	0.2720
Y	0.8490	0.4960
Z	0.7120	0.3900
a	0.0000	0.0600
b	0.6440	0.3770
с	0.1320	0.2090
d	0.7510	0.4440
e	0.6090	0.2880
f	0.5980	0.2340
g	0.6540	0.3420

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
h	0.5790	0.2710
j	0.5370	0.2290
k	0.8750	0.5160
1	0.8870	0.5170
m	0.8380	0.4800
n	0.8450	0.4850
0	0.3000	0.1940
р	0.8440	0.4680
q	0.8710	0.5020
r	0.8230	0.4780
s	0.7270	0.1840
t	0.3380	0.1080
u	0.6010	0.1290
V	0.6780	0.1380
W	0.3620	0.0630
У	0.6880	0.4420

