

Oct 12, 2024 – 10:51 pm BST

PDB ID	:	6YXX
EMDB ID	:	EMD-10999
Title	:	State A of the Trypanosoma brucei mitoribosomal large subunit assembly in-
		termediate
Authors	:	Jaskolowski, M.; Ramrath, D.J.F.; Bieri, P.; Niemann, M.; Mattei, S.; Calder-
		aro, S.; Leibundgut, M.A.; Horn, E.K.; Boehringer, D.; Schneider, A.; Ban,
		N.
Deposited on	:	2020-05-04
Resolution	:	3.90 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	A1	241	<u>6%</u> 89%	• 10%
2	E1	482	97%	••
3	A2	471	98%	·
4	E2	568	65%	35%
5	A3	218	69%	31%
6	E3	557	6% 72%	28%
7	E4	439	5% 96%	
8	A5	80	68%	• 31%

Continued from previous page... Chain Length Quality of chain Mol 8% 9 E5376 87% 13% 6% 10 E653181% 18% • 11 A8181 73% 27% 13% 12AA 117650% 27% 23% 13BA 831 7% 92% 10% 14ΕA 57692% • 8% 10% 15UA 10 100% 50% Uf 1510 100% BB 1654125% 75% \mathbf{EB} 1775482% 17% 18 EC40691% 8% 14% BD 1954776% 23% i 20ED616 97% • AE 2147373% 27% 22BE44979% 20% 7% 23 \mathbf{EE} 58673% 26% 24 \mathbf{AF} 45991% • 9% BF4262581% 19% 53% \mathbf{EF} 26373 20% 79% 27EG 15699% 9% 28BH34967% 32% 29 \mathbf{EH} 63469% 30% 10% 30 AI 26391% 9% ΒI 34231 88% 11% 95% 32UI 21100%

Mol	Chain	Length	Quality of chain					
32	Ur	21	100%					
33	BJ	333	70%	30%				
34	AK	342	11% 71%	27%				
35	BK	386	7% 59% • 419	%				
36	UK	25	44%					
37	BL	312	•• 82%	17%				
38	EL	691	• 76%	23%				
39	EM	451	68% •	32%				
40	UM	8	12%					
41	AN	202	96%					
42	BN	302	5 1% 49%					
43	EN	731	<mark>6%</mark>	• 13%				
44	BO	262	73%	27%				
45	EO	319	8%	15%				
45	EP	319	76%	24%				
46	AP	374	5%	• 14%				
47	BQ	231	<mark>6%</mark> 94%	6%				
48	AR	301	 88%	11%				
49	BR	205	• 94%					
50	ER	148	5 6% • 43%					
51	BS	198	7%	19%				
52	ES	524	2 9% 71%					
53	AT	144	• 98%					
54	BT	191	91%	9%				
55	ET	102	99%					

Continued from previous page...

Continued from previous page... Chain Length Quality of chain Mol i AU 2135682% 18% 8% ΒU 5718581% 19% i 58AV 18895% . 26% BV 5919046% 53% • 60 AW 27899% BW 61 18898% 62 $\mathbf{A}\mathbf{X}$ 24667% 33% ÷ 63 AY 37890% 10% 6% BZ6419099% 11% 65Ba 15399% 66 Bb 16281% 18% • 20% 67 Bc 14691% • 6% 68 197 Ae 36% 64% 69 Af 18973% 26% • 19% Bf 7011375% 23% ÷ 71260Ag 72% 28% 19% 72 $\mathrm{E7}$ 97 100% 8% $\mathbf{E8}$ 7378619% 80% 14% E974343 58% 42% • Al 7521883% 17% 39% Ul 76238100% 30% 77Um 27100% 11% 78Un 28100% 79Ao 152012% 88% 5% 80 309 Ap 84% 15%

Continued from previous page...

Mol	Chain	Length	Quality of chain		
			99%		
81	Up	87	100%		
			97%		
82	Us	79	100%		
83	At	154	89%		• 10%
84	Av	242	79%	•	21%

2 Entry composition (i)

There are 92 unique types of molecules in this entry. The entry contains 183043 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called bL28m.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	A1	217	Total 1788	C 1138	N 324	0 317	${f S}$ 9	0	0

• Molecule 2 is a protein called mt-LAF21.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	E1	473	Total	С	N	0	S	0	0
			3836	2376	745	703	12	-	_

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
E1	379	SER	ALA	conflict	UNP Q57WG6

• Molecule 3 is a protein called uL29m.

Mol	Chain	Residues	Atoms				AltConf	Trace	
3	A2	463	Total 3739	C 2381	N 651	O 694	S 13	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A2	238	GLY	ALA	conflict	UNP Q38EM7

• Molecule 4 is a protein called DUF4379 domain-containing protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
4	E2	369	Total 2933	C 1839	N 550	0 517	S 27	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
E2	167	THR	LYS	conflict	UNP C9ZTN9

• Molecule 5 is a protein called uL30m.

Mol	Chain	Residues		At	oms			AltConf	Trace
5	A3	150	Total 1226	C 781	N 236	O 203	S 6	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A3	198	UNK	ALA	conflict	UNP C9ZY77

• Molecule 6 is a protein called mt-LAF23.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	E3	403	Total 3266	C 2062	N 590	O 591	S 23	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
E3	1	MET	-	initiating methionine	UNP D0A795

• Molecule 7 is a protein called mt-LAF24.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	E4	434	Total 3418	C 2159	N 623	0 622	S 14	0	0

• Molecule 8 is a protein called bL32m.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
8	15	55	Total	С	Ν	Ο	\mathbf{S}	0	0
0	AJ	55	483	311	90	76	6	0	0

• Molecule 9 is a protein called mt-LAF25.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
9	E5	327	Total 1635	C 981	N 327	O 327	0	0

• Molecule 10 is a protein called KRIPP3.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
10	E6	434	Total 3405	C 2143	N 608	O 635	S 19	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
E6	360	SER	ALA	conflict	UNP Q4GZA2

• Molecule 11 is a protein called bL35m.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	A8	133	Total 1136	С 712	N 233	0 184	${ m S} 7$	0	0

• Molecule 12 is a RNA chain called 12S ribosomal RNA.

Mol	Chain	Residues		A	toms			AltConf	Trace
12	AA	904	Total 18187	C 8161	N 2902	O 6220	Р 904	0	0

• Molecule 13 is a protein called mL67.

Mol	Chain	Residues	Atoms					AltConf	Trace
13	ВА	769	Total 6059	C 3847	N 1074	0 1104	S 34	0	0

• Molecule 14 is a protein called mt-EngA.

Mol	Chain	Residues	Atoms					AltConf	Trace
14	EA	532	Total 4263	C 2672	N 785	0 785	S 21	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
EA	12	UNK	ARG	conflict	UNP $Q57TZ4$

• Molecule 15 is a protein called UNK.

Mol	Chain	Residues	Atoms	AltConf	Trace
15	ΠA	10	Total C N O	0	0
10	UA	10	50 30 10 10	0	0
15	IJf	10	Total C N O	0	0
10	UI	10	50 30 10 10	0	0

• Molecule 16 is a protein called mL68.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	BB	407	Total 3322	C 2114	N 589	O 599	S 20	0	0

• Molecule 17 is a protein called DEAD-box helicase, putative.

Mol	Chain	Residues	Atoms					AltConf	Trace
17	EB	627	Total 5039	C 3181	N 957	0 875	S 26	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
EB	301	ALA	THR	conflict	UNP D0A9G9

• Molecule 18 is a protein called Pseudouridylate synthase, putative.

Mol	Chain	Residues	Atoms				AltConf	Trace	
18	EC	373	Total 3005	C 1923	N 540	0 524	S 18	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
EC	25	UNK	HIS	conflict	UNP Q38FJ3

• Molecule 19 is a protein called mL70.

Mol	Chain	Residues	Atoms				AltConf	Trace	
19	BD	419	Total 3349	C 2134	N 586	O 609	S 20	0	0

• Molecule 20 is a protein called mt-LAF4.

Mol	Chain	Residues	Atoms				AltConf	Trace	
20	ED	598	Total 4764	C 3026	N 850	O 865	S 23	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
ED	252	ARG	LYS	conflict	UNP $Q385G9$

• Molecule 21 is a protein called Ribosomal protein L3 mitochondrial, putative.

Mol	Chain	Residues		At	AltConf	Trace			
21	AE	344	Total 2802	C 1804	N 474	O 509	S 15	0	0

• Molecule 22 is a protein called mL71.

Mol	Chain	Residues	Atoms					AltConf	Trace
22	BE	357	Total 2822	C 1801	N 477	O 535	S 9	0	0

• Molecule 23 is a protein called SpoU_methylase domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
23	EE	431	Total 3423	C 2132	N 646	O 632	S 13	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
EE	337	ASP	GLY	conflict	UNP C9ZZ65

• Molecule 24 is a protein called Ribosomal protein L4/L1 family, putative.

Mol	Chain	Residues		At	AltConf	Trace			
24	AF	419	Total 3414	C 2181	N 584	O 626	S 23	0	0

• Molecule 25 is a protein called Tetratric opeptide repeat.

Mol	Chain	Residues		At	AltConf	Trace			
25	BF	346	Total 2847	C 1803	N 519	O 512	S 13	0	0

• Molecule 26 is a protein called SpoU_methylase domain-containing protein.

Mol	Chain	Residues		Ate	AltConf	Trace			
26	EF	297	Total 2268	C 1439	N 401	O 420	S 8	0	0

• Molecule 27 is a protein called mt-LAF7.

Mol	Chain	Residues	Atoms					AltConf	Trace
27	EG	154	Total 1295	C 812	N 256	0 218	S 9	0	0

• Molecule 28 is a protein called mL74.

Mol	Chain	Residues	Atoms					AltConf	Trace
28	BH	236	Total 1948	C 1250	N 346	0 349	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called mt-LAF8.

Mol	Chain	Residues		At	AltConf	Trace			
29	EH	443	Total 3508	C 2214	N 635	0 640	S 19	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
EH	166	UNK	GLY	conflict	UNP A0A1G4IEQ9
EH	495	ARG	LYS	conflict	UNP A0A1G4IEQ9

• Molecule 30 is a protein called RIBOSOMAL_L9 domain-containing protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
30	AI	240	Total 1967	C 1260	N 345	O 353	S 9	0	0

There are 10 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AI	249	UNK	LYS	conflict	UNP Q57UC5
AI	250	UNK	GLY	conflict	UNP Q57UC5
AI	251	UNK	PRO	conflict	UNP Q57UC5
AI	252	UNK	VAL	conflict	UNP Q57UC5

Chain	Residue	Modelled	Actual	Comment	Reference
AI	253	UNK	LYS	conflict	UNP Q57UC5
AI	254	UNK	GLN	conflict	UNP Q57UC5
AI	255	UNK	ARG	conflict	UNP Q57UC5
AI	256	UNK	LYS	conflict	UNP Q57UC5
AI	257	UNK	ALA	conflict	UNP Q57UC5
AI	258	UNK	ARG	conflict	UNP Q57UC5

Continued from previous page...

• Molecule 31 is a protein called mL75.

Mol	Chain	Residues		At	AltConf	Trace			
31	BI	303	Total 2475	C 1580	N 447	0 433	S 15	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BI	227	ASN	ASP	conflict	UNP D0A108

• Molecule 32 is a protein called UNK.

Mol	Chain	Residues		Ator	\mathbf{ns}	AltConf	Trace	
30	TIT	91	Total	С	Ν	0	0	0
32 01	21	105	63	21	21	0		
20	Ur	-91	Total	С	Ν	0	0	0
32	UI	21	105	63	21	21	0	0

• Molecule 33 is a protein called mL76.

Mol	Chain	Residues		At	AltConf	Trace			
33	BJ	234	Total 1944	C 1215	N 365	O 356	S 8	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BJ	329	GLU	ALA	conflict	UNP Q383M2

• Molecule 34 is a protein called Ribosomal protein L11, putative.

Mol	Chain	Residues		At	AltConf	Trace			
34	AK	248	Total 2088	C 1335	N 385	O 356	S 12	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AK	327	UNK	ALA	$\operatorname{conflict}$	UNP $Q586R9$

• Molecule 35 is a protein called Chaperone protein DNAj, putative.

Mol	Chain	Residues		At	AltConf	Trace			
35	BK	228	Total 1855	C 1153	N 353	0 341	S 8	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BK	33	UNK	HIS	conflict	UNP C9ZQR6
BK	60	UNK	PRO	conflict	UNP C9ZQR6
BK	348	VAL	LEU	conflict	UNP C9ZQR6

• Molecule 36 is a protein called UNK.

Mol	Chain	Residues	L	Ator	\mathbf{ns}	AltConf	Trace	
36	UK	25	Total 125	С 75	N 25	O 25	0	0

• Molecule 37 is a protein called mL78.

Mol	Chain	Residues	Atoms					AltConf	Trace
37	BL	258	Total 2014	C 1236	N 395	0 373	S 10	0	0

• Molecule 38 is a protein called mt-LAF12.

Mol	Chain	Residues	Atoms					AltConf	Trace
38	EL	532	Total 4259	C 2732	N 744	0 754	S 29	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
EL	104	UNK	ILE	conflict	UNP C9ZVC0
EL	108	GLU	GLY	conflict	UNP C9ZVC0
EL	126	VAL	LEU	conflict	UNP C9ZVC0
EL	188	SER	PHE	conflict	UNP C9ZVC0

• Molecule 39 is a protein called GTP-binding protein, putative.

Mol	Chain	Residues	Atoms					AltConf	Trace
39	EM	308	Total 2432	C 1542	N 438	0 437	S 15	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
EM	407	UNK	PRO	conflict	UNP $Q38E75$

• Molecule 40 is a protein called UNK.

Mol	Chain	Residues	A	Aton	ıs	AltConf	Trace	
40	UM	8	Total 40	C 24	N 8	O 8	0	0

• Molecule 41 is a protein called 50S ribosomal protein L13, putative.

Mol	Chain	Residues	Atoms					AltConf	Trace
41	AN	193	Total 1639	C 1059	N 301	O 269	S 10	0	0

• Molecule 42 is a protein called mL80.

Mol	Chain	Residues	Atoms					AltConf	Trace
42	BN	154	Total 1320	C 839	N 239	0 237	${ m S}{ m 5}$	0	0

• Molecule 43 is a protein called mt-LAF14.

Mol	Chain	Residues	Atoms					AltConf	Trace
43	EN	638	Total 5025	C 3152	N 909	O 936	S 28	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
EN	18	GLU	GLY	conflict	UNP C9ZPS0
EN	310	LYS	ASN	conflict	UNP C9ZPS0
EN	676	CYS	TYR	conflict	UNP C9ZPS0

• Molecule 44 is a protein called mL81.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
44	BO	192	Total 1498	C 936	N 268	0 281	S 13	0	0

• Molecule 45 is a protein called mt-LAF15a.

Mol	Chain	Residues	Atoms					AltConf	Trace	
45	45 FO	979	Total	С	Ν	0	\mathbf{S}	0	0	
40	EO	212	2126	1340	393	383	10	0	0	
45	FD	242	Total	С	Ν	0	\mathbf{S}	0	0	
45	ĿГ	EP	240	1911	1208	347	347	9	0	0

• Molecule 46 is a protein called Ribosomal_L18e/L15P domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
46	AP	320	Total 2615	C 1667	N 478	O 457	S 13	0	0

• Molecule 47 is a protein called Peptidyl-prolyl cis-trans isomerase.

Mol	Chain	Residues		At	AltConf	Trace			
47	BQ	218	Total 1651	C 1049	N 288	O 306	S 8	0	0

• Molecule 48 is a protein called 50S ribosomal protein L17, putative.

Mol	Chain	Residues		At	AltConf	Trace			
48	AR	267	Total 2214	C 1399	N 403	O 399	S 13	0	0

• Molecule 49 is a protein called mL84.

Mol	Chain	Residues		At	AltConf	Trace			
49	BR	196	Total 1659	C 1064	N 299	0 287	S 9	0	0

• Molecule 50 is a protein called Acyl carrier protein.

Mol	Chain	Residues		At	AltConf	Trace			
50	ER	84	Total 669	С 427	N 106	0 135	S 1	0	0

• Molecule 51 is a protein called mL85.

Mol	Chain	Residues		At	AltConf	Trace			
51	BS	161	Total	C 604	N 206	0 214	S 6	0	0
			1120	694	206	214	0		

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
BS	45	ILE	VAL	conflict	UNP Q38FG8
BS	173	UNK	LEU	conflict	UNP Q38FG8

• Molecule 52 is a protein called Lipase (Class 3).

Mol	Chain	Residues		At	AltConf	Trace			
52	ES	152	Total 1259	C 779	N 246	O 230	$\frac{S}{4}$	0	0

• Molecule 53 is a protein called bL19m.

Mol	Chain	Residues		At	AltConf	Trace			
53	AT	143	Total 1180	C 743	N 224	O 206	${ m S} 7$	0	0

• Molecule 54 is a protein called mL86.

Mol	Chain	Residues		At	AltConf	Trace			
54	BT	173	Total 1435	C 884	N 278	0 267	S 6	0	0

• Molecule 55 is a protein called mt-LAF19.

Mol	Chain	Residues		At	AltConf	Trace			
55	ET	101	Total 839	C 529	N 166	0 140	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 56 is a protein called bL20m.

Mol	Chain	Residues		At	AltConf	Trace			
56	AU	175	Total 1423	C 895	N 280	0 243	${ m S}{ m 5}$	0	0

• Molecule 57 is a protein called mL87.

Mol	Chain	Residues		At	oms			AltConf	Trace
57	BU	150	Total 1275	C 806	N 248	0 215	S 6	0	0

• Molecule 58 is a protein called bL21m.

Mol	Chain	Residues		At	AltConf	Trace			
58	AV	181	Total 1424	C 909	N 257	0 252	S 6	0	0

• Molecule 59 is a protein called mL88.

Mol	Chain	Residues		At	AltConf	Trace			
59	BV	90	Total 763	C 492	N 133	0 136	${S \over 2}$	0	0

• Molecule 60 is a protein called uL22m.

Mol	Chain	Residues		At	oms			AltConf	Trace
60	AW	278	Total 2251	C 1427	N 417	O 393	S 14	0	0

• Molecule 61 is a protein called mL89.

Mol	Chain	Residues		At	oms			AltConf	Trace
61	BW	188	Total 1565	C 992	N 299	O 265	${ m S} 9$	0	0

• Molecule 62 is a protein called uL23m.

Mol	Chain	Residues		At	oms			AltConf	Trace
62	AX	164	Total 1387	C 896	N 244	0 242	${f S}{5}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AX	126	TYR	HIS	conflict	UNP Q387G3

• Molecule 63 is a protein called uL24m.

Mol	Chain	Residues		At	AltConf	Trace			
63	AY	340	Total 2790	C 1741	N 497	0 537	S 15	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
AY	345	GLU	VAL	conflict	UNP C9ZK52

• Molecule 64 is a protein called Peptidyl-prolyl cis-trans isomerase.

Mol	Chain	Residues		At		AltConf	Trace		
64	ΒZ	188	Total 1396	C 883	N 241	O 266	S 6	0	0

• Molecule 65 is a protein called mL93.

Mol	Chain	Residues		At	AltConf	Trace			
65	Ba	153	Total 1287	C 820	N 237	0 223	S 7	0	0

• Molecule 66 is a protein called mL94.

Mol	Chain	Residues	Atoms					AltConf	Trace
66	Bb	133	Total 1048	C 661	N 196	O 188	${ m S} { m 3}$	0	0

• Molecule 67 is a protein called mL95.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	Bc	137	Total 1194	C 776	N 216	0 201	S 1	0	0

• Molecule 68 is a protein called mL41.

Mol	Chain	Residues	Atoms					AltConf	Trace
68	Ae	127	Total 1031	C 667	N 190	O 169	${ m S}{ m 5}$	0	0

• Molecule 69 is a protein called mL42.

Mol	Chain	Residues	Atoms					AltConf	Trace
69	Af	139	Total 1107	C 692	N 210	O 200	${ m S}{ m 5}$	0	0

• Molecule 70 is a protein called mL98.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
70	Bf	87	Total 725	C 462	N 131	O 132	0	0

• Molecule 71 is a protein called L51_S25_CI-B8 domain-containing protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
71	Ag	186	Total 1564	C 979	N 295	O 283	${ m S} 7$	0	0

• Molecule 72 is a protein called mt-LAF27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
72	E7	97	Total 815	C 501	N 175	0 135	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 73 is a protein called KRIPP9.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
73	E8	154	Total	C 725	N 220	0	0	0
			1101	199	220	210		

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
E8	208	LYS	GLU	conflict	UNP Q57YZ6
E8	250	GLN	ARG	conflict	UNP Q57YZ6
E8	345	ILE	MET	conflict	UNP Q57YZ6
E8	630	UNK	LEU	conflict	UNP Q57YZ6

• Molecule 74 is a protein called mt-LAF29.

Mol	Chain	Residues		Ate	AltConf	Trace			
74	E9	200	Total 1642	C 1022	N 326	0 285	S 9	0	0

• Molecule 75 is a protein called mL49.

Mol	Chain	Residues	Atoms					AltConf	Trace
75	Al	181	Total 1440	C 936	N 250	0 247	S 7	0	0

• Molecule 76 is a protein called UNK.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
76	Ul	238	Total 1190	С 714	N 238	O 238	0	0

• Molecule 77 is a protein called UNK.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
77	Um	27	Total 135	C 81	N 27	O 27	0	0

• Molecule 78 is a protein called UNK.

Mol	Chain	Residues		Ator	\mathbf{ns}		AltConf	Trace
78	Un	28	Total 140	C 84	N 28	O 28	0	0

• Molecule 79 is a protein called mL52.

Mol	Chain	Residues		At	oms			AltConf	Trace
79	Ao	184	Total 1443	C 903	N 263	0 270	S 7	0	0

• Molecule 80 is a protein called mL53.

Mol	Chain	Residues		At	oms			AltConf	Trace
80	Ар	263	Total 2161	C 1402	N 374	0 373	S 12	0	0

• Molecule 81 is a protein called UNK.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
81	Up	87	Total 435	C 261	N 87	0 87	0	0

• Molecule 82 is a protein called UNK.

Mol	Chain	Residues	Atoms				AltConf	Trace
82	Us	79	Total 395	C 237	N 79	O 79	0	0

• Molecule 83 is a protein called mL63.

Mol	Chain	Residues		At	oms			AltConf	Trace
83	At	138	Total 1149	С 722	N 223	O 200	${f S}$ 4	0	0

• Molecule 84 is a protein called mL64.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
84	Av	192	Total 1633	C 1038	N 304	0 279	S 12	0	0

• Molecule 85 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
85	E2	4	Total Zn 4 4	0
85	A5	1	Total Zn 1 1	0
85	EG	1	Total Zn 1 1	0
85	E9	1	Total Zn 1 1	0

• Molecule 86 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
86	A8	2	Total Mg 2 2	0
86	АА	12	TotalMg1212	0
86	EA	2	Total Mg 2 2	0
86	EB	1	Total Mg 1 1	0

• Molecule 87 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
87	F۸	1	Total	С	Ν	Ο	Р	0
01	ĽA	L	32	10	5	14	3	0
87	F۸	1	Total	С	Ν	0	Р	0
01	ĽA	L	32	10	5	14	3	0

• Molecule 88 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	AltConf
88	EA	2	Total Na 2 2	0

• Molecule 89 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula: $C_{10}H_{16}N_5O_{13}P_3$).

Mol	Chain	Residues		Ate	oms			AltConf
80	FD	1	Total	С	Ν	Ο	Р	0
09	ED	T	31	10	5	13	3	0

• Molecule 90 is S-(2-{[N-(2-HYDROXY-4-{[HYDROXY(OXIDO)PHOSPHINO]OXY}-3,3-DIMETHYLBUTANOYL)-BETA-ALANYL]AMINO}ETHYL) DECANETHIOATE (three-letter code: PM8) (formula: C₂₁H₄₁N₂O₇PS).

Mol	Chain	Residues	Atoms					AltConf	
90	ER	1	Total	С	Ν	Ο	Р	S	0
			32	21	2	7	1	1	

• Molecule 91 is NICOTINAMIDE-ADENINE-DINUCLEOTIDE (three-letter code: NAD)

 $(formula: \ C_{21}H_{27}N_7O_{14}P_2).$

Mol	Chain	Residues		Ate	oms			AltConf
91	Av	1	Total 44	C 21	N 7	0 14	Р 2	0

• Molecule 92 is water.

Mol	Chain	Residues	Atoms	AltConf
92	EA	4	Total O 4 4	0
92	EB	4	Total O 4 4	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: bL28m

Chain EA:	92%		8%
MET ARG ARG CAR ARG CAR ARG FLE VAL VAL LEU VAL VAL	LEU LEU CLEU CLEU CLEU VAL LEU VAL CLEU VAL SER THR FTHR FTHR FTHR ALA ALA ALA CTS SER CLIV CLIV CLIV CLIV CLIV CLIV CLIV CLIV	ASM CLU SER PRO MET MET ASD IE4 IE5 M66 K67 K67	889 670 172 172 172 173 175 175
T77 L80 K84 R85 E87 E87 E87 E83 E87 L102	D105 G135 F141 F143 F143 A194 A194 A194 D196 E197 D198 C197 C196 C196 C197 C196 C197 C196 C197 C196 C197 C196 C197 C197 C197 C197 C197 C197 C197 C197	E233 E233 A234 K255 K255 R255 R255 R255 R255 R333	B337 B347 B347 B373 B373 B403 H404 B403 B435 B435
1505 1506 7507 7508 1508 1509 0535 5536 8536	b570		
• Molecule 15: UNF	K		
Chain UA:	100%		
X I I I I I I I I I I I I I I I I I I I			
• Molecule 15: UNF	K		
Chain Uf:	100%		_
X1 X2 X7 X8 X8 X8 X9 X10			
• Molecule 16: mL6	38		
Chain BB:	75%	• 25%	
MET LEU TIYR TIYR ARG ARG ARG ARG CLY CLY SER SER SER ALA	11HR 1146 1148	THR CLU LEU SER ARG ARG ARG TTR PRC CLN CLN CLN	R152 L161 H218 ♦ 1271 L272
D273 D274 L297 C298 R298 R298 R300 R300 R301 E302 E305	K440 A350 A450 A450 A1A A1A A1A A1A A1A A1A A1A A1A A1A A1	LINA GLIU THR ARG ASN ASN ASN GLIY THR THR GLIY ANG ASP ANG	GLU GLIN PRO TLE GLIN GLIN VAL VAL
ARG ARG VAL LEU ASP ASP SER ASP ASP ASP ALA SER LYS LYS CLU ALA CLU	ARG ARG GLN GLN GLN GLY GLY CLYS SER SER SER SER SER SER SER ASP CLN GLN CLN	LEU GLN ASN VAL THR TYR GLY VAL HIS	
• Molecule 17: DEA	AD-box helicase, putative		
Chain EB:	82%	• 17%	5
MET ARG ARG ARG ARG ARG ARG ALEU LEU LEU LEU HIS HIS ALA ALA	THR THR ARG ARG ARG ARG SER PHE PHE VAL VAL LEU THR THR THR THR SER CYS SER SER CYS SER AIA	LEU LEU THR SER SER SER ARG ARG ARG ARG ARG ARG ARG ASG ASG ASG	R246 6332 ◆ 6333 ● 6393 1

A ASN A ALA A ALA

• Molecule 29: mt-LAF8

• Molecule 40:	UNK	
Chain UM:	12%	I
X1 X8		
• Molecule 41:	50S ribosomal protein L13, putative	
Chain AN:	96% .	
MET ARG ARG SER SER ARG THR ILE VAL MET A10	A108 E180 V181 K182 B188 H202	
• Molecule 42:	mL80	
Chain BN:	51% 49%	
MET CYS CYS CYS CYS LEU TYR THR SER ASP VAL PHE	TRP SER SER SER VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL	HIS THR PRO
HIS GIY VIS A115 A115 A14 VAL	THR HIS SER SER SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ARG R192 T204
V221 Q222 GLN ARG ARG ARG ARG CLU VAL	ASP ASP SER SER SER SER SER ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
• Molecule 43:	mt-LAF14	
Chain EN:	86% · 13%	
MET ARG CYS CYS GLY GLY ASS ASS ASS ALA ALA ALA	LEU LEU ARG ALA ALA ALA ALA ALA ALA ALA CUL CEU CUL CEU CEU CEU CEU CEU CEU CEU CEU CEU CEU	E94 E95 K96 97 S98 A99 S100 A101
THR GLY GLY GLY SER SER LYS CYS AIA AIA HIS	MET ALA GLY GLY GLY GLY GLY GLY GLY GLY GLY GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	R211
R245 K293 D294 D294 D294 D294 D294 D294 D294 D294	ASN ILLE ARG PRU CLU SER PRU SER PRU PSO SER PRU SER PRU SER PRU SER PRU SER PRU SER PRU PSO SER PRU PRU SER SER SER SER SER SER SER SER SER SER	S651 A652 1696 1696 Q697
• Molecule 44:	mL81	
Chain BO:	73% 27%	
MET LYS LRS ARG LEU PRO PRO SER ALA VAL SER SER	VAL LEU LEU LEU THR SER SER SER VAL LEU VAL VAL ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	

 \bullet Molecule 48: 50S ribosomal protein L17, putative

• Molecule 53: bL	19m	
Chain AT:	98%	
MET Q2 Y3 T8 T69 M143		
• Molecule 54: mI	286	
Chain BT:	91%	9%
MET ARG ARG ARG CVS CVS ARG ARG G9 G9 G177 F181	TIE GLU GLU GLU GLU ARR AIA ALA ALA	
• Molecule 55: mt	-LAF19	
Chain ET:	99%	
MET A2 R9 D90 D93 B93 R102		
• Molecule 56: bL	20m	
Chain AU:	82%	18%
MET LEU LEU ARG ARG ARG CYAL CYAL CYAL CYAL CYAL DIA DIA R19	120 Al 40 SER ASP ASP ASP ASP ALA ASP ALA ASP ALA ASP ALA ASP ALA ASP ALA ASP ASP ALA ASP ASP ASP ASP ASP ASP ASP AS	
• Molecule 57: mI	287	
Chain BU:	81%	19%
MET LEU ASN PRO PHE SER FHE LEU TYS LEU	SER PRO VAL PRO LLYS LLYS LLYS LLYS ARG ARG ARG ARG GLY ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	674 675 775 F88 F88
• Molecule 58: bL	21m	
Chain AV:	95%	
MET PR0 SER LEU V115 V115 R124 R124 R128	11236 GLY VAL	
• Molecule 59: mI	.88	

26%)			_
Chain BV:	46%	•	53%	-
MET LEU CLU CLU CLL CLL ASN ASN ALLA ALLA VLL VLL VLL VLL VLL VLL VLL V	LEU LEU LYS LYS ARG THR LYS CLY ARD ARD ARD ARD ARD ARD ARD ARD ARD ARD	D37 D37 A38 A39 P40 T41 E42 E42 E44 E44	R45 E48 R49 R50 F52 K53 C54 Q54 A55 V55 H47	G58 R59 M60 E61 H62 K64 K64 V66
E67 V68 K69 E70 E70 L73 N74 V75 Y76 Y76 Y77 Y78 G79	884 884 886 896 892 893 893 893 893 894 894 895 895 895	P96 198 699 6100 E101 A113 A114	H17 TYR TYR TYR GLU GLU GLU CLU SER CLU SER CLU SER CLU SER CLU	ALA PHE CLU SER PRO PRO CLN CLN CLN CLN CLN LEU
ASP ASN GLN VAL LYS ARG ARG ARG CYS VAL MET ARG ARG	GLN VAL VAL ASN ASN ASN ALA ALA ALA ASP FHE CLU CLU	ARG SER SER ARG ARG GLY GLY GLY GLY CLY CLY	GLY LYS ASP GLY GLY GLY LYS LYS	
• Molecule 60: uL22r	n			
Chain AW:		99%		
M1 R45 1266 1278				
• Molecule 61: mL89				
Chain BW:		98%		.
M1 R2 L63 V156 Y188				
• Molecule 62: uL23r	n			
Chain AX:	67%		33%	
MET VAL VAL SER ARG ARG PHE H1E F1R ARG ARG ARG ARG ARG SER SER SER SER	GLY GLY ALA ALA ALA THR THR CYS GLY GLY GLY	GLY PHE PHE ALA ALA ALA LEU THR SER THR ARG GLY ARG PHE	TYR ARG PRO LEU VAL ASP GLY TLE ASN TLE ASN ARG ARG	ARG MET GLY ARG
ILE H1S LYS GLY W65 W65 W65 W65 W65 W65 W65 CLY TLE CLYS CLY	GLU ASP THR SER SER ASP ASP ASP CLU CLU CLU CLU CLU CLU CLU			
• Molecule 63: uL24r	n			
Chain AY:	9	0%	10%	
M1 6124 8158 8158 K196 K196 K196 K196	E224	LYS GLU GLU GLU ALA GLU GLU GLY GLY GLY GLY GLY	ASU ASU GLU GLU GLU HIS ASP ASP ASP ASP GLU GLU SSP	LEU LEU ASP THR SER GLU GLU SER SER
VAL LYS HIS VAL				
• Molecule 64: Peptic	dyl-prolyl cis-trans	isomerase		
Chain BZ:		99%		

• Molecule 71:	L51_S25_CI-B8 o	lomain-contair	ning protein		
Chain Ag:		2%		28%	
MET S2 C108 E171 Q172 S173 T174	V186 P187 ARG ARG ARC CLN THR ASP LEU CLU CLU CLU CLEU SER	HIS PHE LYS ARG GLN ALA ALA ALA CLY CLN	GLN GLN ARG ARG PRO PRO THR MET GLU GLU ARG ARG	PHE VAL VAL PRO ASP ARG GLU LU	GLY GLN ASP ALA VAL
ASP THR ARG ARG ARG GLU SER HIS MET	GLU VAL TRP TRP TRP ARC CVS GLU CVS GLU CLV CVS PRO				
• Molecule 72:	mt-LAF27 19%				
Chain E7:		100%			
M1 K2 R3 G6 S7 R8 R9 R9	M14 D15 D15 R17 R18 R19 F32 F32 F32 F32 F32	D84 F85 D86 B86 B86 B96 B96 S97			
• Molecule 73: 	KRIPP9				
Chain E8:	19%		80%		
MET GLU CYS CYS ARG ARG CEU CEU CLEU CLEU CLY	ARG MET AND TYR ASN ALA PHE PHE PHE PHE ARG ARG ARG ARG	ILE THR ALA ALA ALA LEU PRO PRO ALA GLU	ARG ASP ASP ASP PRU LEU SER LEU SER TLE TYR ARG CYS VAL	GLU ARG PRO PHE VAL GLU PRO PRO	GLY GLY ASP
ASN ASN SER ASP GLV GLV GLU TYR GLU THR	ARG ASP ASP ALA LEU LEU CLN CLN CLN CLN ASN MET ARG ARG ARG ARG	ILE GLU PRO ASP ALA LEU MET TYR THR SER	LEU ILE ALA ALA MET ALA ALA ALA ALA LEU CLU GLU GLU GLN	ALA TYR LYS LEU PHE SER ARG MET	GLU GLLY
ILE ARG PRO LEU PRO CLU THR THR TYR VAL ALA	HIS ASP ALA ALA ALA FRO PRO PRO ARG HIS HIS HIS CYS ASP	LEU GLN GLN CLN CLU CLU CLU SER LEU CLU CLU CLU	THR PHE PRO GLU GLU GLU GLU GLU GLN LEU LEU	GLN ARG GLU ARG ASP ARG LEU CYS	GLN LYS PHE
GLU GLU TYR MET SER SER GLY VAL LEU PRO PRO	PRO PRO PRO PRO PRO CIU CIU CIU CIU CIU CILE SER VAL	ASP LYS LYS ARG GLU GLY ASP ARG SER SER	SER PHE GLY GLY GLY GLY ALA ALA ALA GLY CLEU CLY	SER ASP ALA ALA LYS PRO THC THR MFT	HIE ILE ARG
ASN PRO THR ALA ALA ALA SER SER ALA GLN MET	MET ASP CLU CLU CLU CLU CLU CLU CLU CLU ASN ASS ASS ASS CLN CLU ASS CLN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	SER THR ALA ALA ILE SER CYS CYS GLU GLU LEU	ASP LYS LIYS LLY GLU GLU GLU ARC ARC TLE LLE LLE SER	ALA GLN GLN GLN LEU LEU HTS GLY ASN	LYS THR ASP
LEU VAL LYS ARG VAL LEU HIS CYS VAL SER SER GIU	LYS SER ILE ASP ASP AC ALU CLEU GLU ARG ARG ARG LYS TYR PHE	GLN SER VAL ALA HIS TLE LEU GLU ASN ASP	LEU ASN SER LEU ARG ARG ASP GLY TLE TLE TLE ALA ASN	LYS ALA ASP ASP GLU SER VAL ASN ASN	GLY ASP
ALA ILE PRO SER ALA ALA ALA ASN SER GLY SER	GLN PRO VAL TLE TLE SER TYR ALA CYS GLY VAL ASP GLN THN THN THN THN THN	ILE THR ALA GLU GLU CYS GLU SER VAL ALA	PRO ASP HEEU HIS THR PRO TRP GLY ILEU LEU LYS	PRO VAL ARG HIS THR SER THR GLY	LYSER
SER TTE ASP ASP ASC ASC CEU CEU CEU ESC MA31 MA31	V432 ♦ D433 ♦ E434 ♦ L435 ♦ Q436 ♦ L437 V438 ♦ R439 ♦ R439 ♦ R441 ♦	S443 T444 G445 D446 L447 D448 R457	A450 4450 1486 1485 1485 1485 1488 1488 1488 1488 1488	N491 E492 E493 G494 A496 A496	P498 P500 P500 R503 R503 N536 N536 K537 E538 E538
N540 L541 H542 H542 L643 K544 A545 A545 R545 R547 R547 R547	E549 A550 L551 R555 R555 A557 A557 B564 H565	L568 E569 A571 A571 A571 A572 A575 A575	AST 7 K578 S579 S579 F580 F583 G1U ASP MET MET VAL	PRO SER SER ARG VAL LEU GLY VAL ASP	ALA ALA ASN ASN ASN ASP ASP CUU SER SER SER
GLY ARG LEU LEU PRO PRO THR SER SER SER ASP TRP GLU	LYS GLY GLY GLU SER GLU GLU CRD CLU CRD CLU VNK PRO	TRP ALA ALA ALA PHE ASN GLY GLU GLU OHE	ASN MET THR THR GLY ARG CLY ASP PHE CLY ASP PRO ASP ASP PRO ASP ASP ASP ASP ASP ASP ASP ASS ASS ASS	ARG TYR GLN GLU LEU SER ASP GLY	PHE
LEU PRO SER ARG GLU ALA GLU GLU ARC SER TRP THR	VAL ASN ASN ASN ASN GLV PRO PRO PLO ASP GLV ASP CLV ASP CLV	GLN ARG ALA GLU CLN CLN GLN CLN THR ARG	VAL VAL ALA ALA ALA ALU CYS CYS CLU CYS CLU CLU CYS CLU	PHE LYS ARG TYR ARG LYS TRP ASP	PHE LEU ARG

LYS ALA GLN GLN CYS GLN LYS GLN CYS CLN THR ASP ASP CLN CLN CLN CLN CLN CLN	GLY ASP GLY GLY CLYS CLYS SER ALA CLY CLY CLEU CLEU CLEU CLEU	LYS LYS ARG LEU SER LEU LEU LEU LYS GLY CYS LYS	ALA PRO ILE ASP ASP ASP ASP ALA LYS CYS CYS	THE LEG
• Molecule 74: mt-LA	F29			
Chain E9:	58%	•	42%	
MET PRO ARG HLEU SER SER SER SER CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	GLY ALA ALA ALG ALG LEU LEU FLEU TLE FLEU TLE FLEU CLN GLN GLN	ARG ALA ALA ALA CLY GLY ARG ARG GLY CTHR TTHR ARG GLY CLEU	ALA GLU LEU LEU ASP ASP ASP ASP THR THR THR THR THR	A LEA THR SER
SER CLY VAL VAL VAL CLU GLU GLU SER MET ALA ALA ALA	VAL ARG PRO ALA ALA ALA CLY GLY SER SER SER SER VAL ALA ALA ALA	GLU TYR LEU VAL PRO PRO PRO ARG ALA ALA LYS LYS LYS LYS	ALA ALA MET MET ALA ALA SER ARG FRO PRO PRO PHE VAL	PRO ASN SER
ARG ALA ALA ALA ALA ASP ASP GLY GLY GLY ALA ALA ASN ASN ASN GLU GSD	ARG ARSP GLY THR ARSN SER SER SER P144 P145 P145 P145 SER S146 F145 S148	Et 50	HI 69 HI 69 E1 82 E1 82 R1 84 R1 84	01.89 8190 H191 Q192 A194 A194 P196 T196
T197 K198 E199 V200 S201 V206 V206 A207 A207 A207 A207 A207	E274 V275 A284 E285 A286 E287 K288 E289 E289 E289	R302 N315 D318 D318 C343		
• Molecule 75: mL49				
Chain Al:	83%		17%	
MET LEU ARS ARG SER SER SER ARG ARG ARG ARG CLY THP CLU CLY ALA	ALA ASN THR SER SER LEU GLY VAL ARG VAL MET THR SER THR SER THR	TYR TYR ILF ASN TLE VAL SER P38 P38 P38 P101 P104	E105 E106 E106 E108 A109 V113 F218	
• Molecule 76: UNK	200/			
Chain Ul:	39%	100%		
X1 X2 X3 X3 X6 X6 X7 X7 X11 X11 X11 X11 X11 X34	X35 X36 X37 X38 X38 X40 X41 X42 X42 X44 X45 X45 X45 X45	X57 X58 X59 X50 X60 X66 X71 X71 X71 X77 X79	X82 X85 X86 X86 X107	X146 X146 X147 X150 X150 X150 X152 X153 X155 X155 X155
X158	X201 X211 X211 X214 X217 X219 X219 X220 X220	X232 (X233 (X234 (X235 (X235 (X235 (X237 (X249 (X281 (X281 (X281 (X281 (X281 (X284 X285 X286 X287 X290 X290 X296 X211 X312	X313 4 X314 5 X314 7 X316 7 X316 7 X326 7 X326 7 X327 7 X322 7
x336 x337 x349 x349 x350 x355 x355 x355 x355 x355 x356 x356 x356	x362			
• Molecule 77: UNK	2 01			
Chain Um:	170	100%		i -
X1 X2 X10 X11 X11 X13 X13 X13 X104 X104 X105				
• Molecule 78: UNK				

Chain Un:	11%	
X1 X20 X21 X22 X22 X28		
• Molecule	9: mL52	
Chain Ao:	12% 88%	
MET HIS ILE TRP ARG ALA ALA	TRN TRN ARG ARG ARG ARG ARA ARG ARA ARG ARG ARG	ALA
LEU ALA THR LYS SER VAL GLN ARG	VAL VAL VAL PRO ALA ARA ARA ARA ARA ARA ARA ARA ARA ARA	ASP
ILE ILE VAL PRO HIS SER ASP VAL	0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12	ILE
MET LEU ALA VAL THR ALA ALA ALA GLU	MET TYR ARA GLN CLEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	GLY
ARG ASP GLU VAL ARG VAL ARG	TRR AND AND AND AND AND AND AND AND AND AND	VAL
THR MET LEU PRO PHE GLU VAL LEU	SER ASIN VAL VAL VAL VAL VAL VAL VAL ALA ALA ALA	GLY
LEU PRO ALA LEU LYS ARG CLN	VAL VAL ALA ALA ALA ALA ALA ALA ALA ALA	LEU
GLN SER VAL LEU GLU SER VAL	SER ALLA VAL ARG VAL TRP VAL TRP CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	GLU
GLY ALA ALA ALA ALA ALA UNK PRO VAL VAL	LLE PLLE ARG SER CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	SER
VAL VAL VAL VAL ARG ARG ARG LEU PHE GLN	SER SER GLU SER ASP GLU GLU GLU ASP ASS ASS ASS ASS ASS ASS ASS ASS ASS	GLU
VAL GLY HIS VAL HIS THR ALA PHE	PALA PALA VAL GLY GLY GLY GLY GLU CTS GLU CTS GLU TRP ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ALA
LEU GLY GLU GLU GLU CLU GLN	PRU LEU GLU GLY GLY CLEU GLY TYR TYR TYR PHE PHE SER ARG ARG ASN VAL ARG ASN VAL LEU CLEU CLEU CLEU CLEU CLEU CLEU CLEU	ILE
ALA SER THR VAL THR GLY GLY	LEU CLU THR SER LEU VAL VAL VAL VAL VAL CLY CLV CLY CLV CLV CLY CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	TEU
LEU ALA ALA ALA GLU LYS ARG ARG	VAL VAL TRP PRO PRO PRO PRO PRO PRO PALA ALA ALA ALA ALA ALA ALA ALA ALA AL	VAL
PRO LEU GLU VAL VAL GLN LEU TRP	HIS ARG SER VAL GLV GLV GLV SER SER SER HIS SER HIS GLV GLV GLV GLV GLV GLV ASP ASN ASP ASN ASP ASN ASP ASP ASS ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	LEU
PHE PHE VAL LEU LEU GLU SER SER	SER SER SER SER SER SER ASP GLN TYR ALA LEU LEU LEU LEU LEU LEU LEU LEU LEU LEU	LEU
GLY LEU GLN GLN SER VAL CYS GLY	PR0 VAL CYS CYS CYS CYS CYS CYS CYS CYA FLEU CAL CAL CAL CAL CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	ALA

 \bullet Molecule 83: mL63

ILE LYS ALA PHE LEU SER GLU

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	16215	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	75	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.197	Depositor
Minimum map value	-0.109	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.009	Depositor
Recommended contour level	0.03	Depositor
Map size (Å)	434.001, 434.001, 434.001	wwPDB
Map dimensions	300, 300, 300	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.44667, 1.44667, 1.44667	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ATP, GTP, ZN, NA, NAD, PM8, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A1	0.24	0/1828	0.39	0/2466	
2	E1	0.23	0/3906	0.39	1/5236~(0.0%)	
3	A2	0.25	0/3844	0.39	0/5234	
4	E2	0.23	0/3000	0.39	0/4067	
5	A3	0.24	0/1246	0.39	0/1678	
6	E3	0.24	0/3331	0.38	0/4491	
7	E4	0.24	0/3491	0.43	1/4740~(0.0%)	
8	A5	0.23	0/498	0.37	0/663	
10	E6	0.23	0/3471	0.39	0/4710	
11	A8	0.23	0/1163	0.38	0/1558	
12	AA	0.18	0/19045	0.75	7/29609~(0.0%)	
13	BA	0.24	0/6192	0.39	0/8401	
14	EA	0.23	0/4337	0.39	0/5856	
16	BB	0.24	0/3411	0.39	0/4622	
17	EB	0.23	0/5154	0.39	0/6977	
18	EC	0.25	0/3090	0.41	0/4190	
19	BD	0.24	0/3418	0.40	0/4629	
20	ED	0.24	0/4877	0.40	0/6607	
21	AE	0.26	0/2897	0.41	0/3938	
22	BE	0.24	0/2896	0.39	0/3929	
23	EE	0.23	0/3489	0.40	1/4722~(0.0%)	
24	AF	0.25	0/3517	0.39	0/4775	
25	BF	0.25	0/2909	0.41	0/3920	
26	EF	0.24	0/2316	0.42	0/3148	
27	EG	0.25	0/1331	0.40	0/1784	
28	BH	0.24	0/2005	0.40	0/2734	
29	EH	0.24	0/3586	0.39	0/4864	
30	AI	0.24	0/1980	0.38	0/2693	
31	BI	0.24	0/2548	0.37	0/3449	
33	BJ	0.23	0/1985	0.37	0/2681	
34	AK	0.34	1/2141~(0.0%)	0.46	1/2886~(0.0%)	
35	BK	0.24	0/1897	0.37	0/2556	

Mol Chain		Bo	ond lengths	B	Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5		
37	BL	0.23	0/2055	0.38	0/2782		
38	EL	0.24	0/4384	0.38	0/5967		
39	EM	0.24	0/2480	0.39	0/3352		
41	AN	0.24	0/1698	0.39	0/2308		
42	BN	0.24	0/1353	0.40	0/1827		
43	EN	0.23	0/5115	0.38	0/6936		
44	BO	0.24	0/1518	0.38	0/2051		
45	EO	0.24	0/2173	0.40	0/2956		
45	EP	0.23	0/1953	0.39	0/2659		
46	AP	0.23	0/2695	0.40	0/3657		
47	BQ	0.25	0/1691	0.41	0/2293		
48	AR	0.24	0/2279	0.39	0/3079		
49	BR	0.25	0/1702	0.40	0/2296		
50	ER	0.24	0/679	0.38	0/923		
51	BS	0.24	0/1131	0.37	0/1547		
52	ES	0.23	0/1276	0.37	0/1715		
53	AT	0.24	0/1210	0.40	0/1632		
54	BT	0.24	0/1465	0.39	0/1970		
55	ET	0.25	0/858	0.38	0/1148		
56	AU	0.24	0/1456	0.37	0/1971		
57	BU	0.24	0/1315	0.39	0/1776		
58	AV	0.25	0/1454	0.45	0/1973		
59	BV	0.40	0/786	0.51	1/1063~(0.1%)		
60	AW	0.24	0/2307	0.40	0/3119		
61	BW	0.25	0/1612	0.37	0/2177		
62	AX	0.25	0/1432	0.40	0/1947		
63	AY	0.24	0/2846	0.39	0/3847		
64	ΒZ	0.25	0/1422	0.42	0/1925		
65	Ba	0.24	0/1329	0.41	1/1798~(0.1%)		
66	Bb	0.24	0/1073	0.42	0/1454		
67	Bc	0.24	0/1238	0.38	0/1685		
68	Ae	0.24	0/1068	0.39	0/1447		
69	Af	0.24	0/1134	0.40	0/1536		
70	Bf	0.25	0/749	0.43	0/1012		
71	Ag	0.24	0/1608	0.39	0/2180		
72	E7	0.23	0/834	0.38	0/1118		
73	E8	0.23	0/1202	0.40	0/1631		
74	E9	0.23	0/1678	0.37	$0/2\overline{257}$		
75	Al	0.25	0/1484	0.39	0/2019		
79	Ao	0.24	0/1486	0.39	0/2022		
80	Ap	0.24	0/2231	0.39	$\overline{0/3030}$		
83	At	0.23	0/1179	0.39	0/1596		
84	Av	0.24	0/1678	0.37	$0\overline{/2261}$		

Mol	Chain	Bo	ond lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
All	All	0.24	1/183115~(0.0%)	0.45	13/251755~(0.0%)	

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
34	AK	174	GLU	CB-CG	-5.46	1.41	1.52

All (13) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
34	AK	151	LEU	CA-CB-CG	-7.51	98.02	115.30
12	AA	159	U	C2-N1-C1'	6.69	125.73	117.70
23	EE	441	PRO	N-CA-CB	6.20	110.73	103.30
2	E1	96	PRO	N-CA-CB	6.05	110.56	103.30
12	AA	159	U	N1-C2-O2	6.01	127.00	122.80
7	E4	203	PRO	N-CA-CB	5.71	110.15	103.30
12	AA	571	U	C2-N1-C1'	5.71	124.55	117.70
65	Ba	12	PRO	N-CA-CB	5.71	110.15	103.30
12	AA	191	U	C2-N1-C1'	5.34	124.11	117.70
12	AA	159	U	N3-C2-O2	-5.34	118.46	122.20
12	AA	497	C	N1-C2-O2	5.15	121.99	118.90
59	BV	85	LEU	CB-CG-CD1	-5.05	102.41	111.00
12	AA	571	U	N1-C2-O2	5.03	126.32	122.80

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	A1	215/241~(89%)	207 (96%)	8 (4%)	0	100	100
2	E1	471/482 (98%)	459 (98%)	12 (2%)	0	100	100
3	A2	461/471 (98%)	449 (97%)	12 (3%)	0	100	100
4	E2	359/568~(63%)	341 (95%)	18 (5%)	0	100	100
5	A3	147/218~(67%)	142 (97%)	5 (3%)	0	100	100
6	E3	401/557~(72%)	393~(98%)	8 (2%)	0	100	100
7	E4	430/439~(98%)	417 (97%)	13 (3%)	0	100	100
8	A5	53/80~(66%)	53 (100%)	0	0	100	100
10	E6	430/531~(81%)	417 (97%)	13 (3%)	0	100	100
11	A8	131/181~(72%)	129 (98%)	2 (2%)	0	100	100
13	BA	763/831~(92%)	741 (97%)	22 (3%)	0	100	100
14	EA	530/576~(92%)	520 (98%)	10 (2%)	0	100	100
16	BB	403/541~(74%)	385~(96%)	18 (4%)	0	100	100
17	EB	619/754~(82%)	603~(97%)	16 (3%)	0	100	100
18	EC	371/406~(91%)	359~(97%)	12 (3%)	0	100	100
19	BD	417/547~(76%)	402 (96%)	15 (4%)	0	100	100
20	ED	594/616~(96%)	577~(97%)	17 (3%)	0	100	100
21	AE	342/473~(72%)	328~(96%)	14 (4%)	0	100	100
22	BE	353/449~(79%)	345~(98%)	8 (2%)	0	100	100
23	EE	427/586~(73%)	413 (97%)	13 (3%)	1 (0%)	44	75
24	AF	415/459~(90%)	405 (98%)	10 (2%)	0	100	100
25	BF	342/426~(80%)	328~(96%)	14 (4%)	0	100	100
26	EF	293/373~(79%)	283~(97%)	10 (3%)	0	100	100
27	EG	152/156~(97%)	150 (99%)	2 (1%)	0	100	100
28	BH	234/349~(67%)	228 (97%)	6 (3%)	0	100	100
29	EH	429/634~(68%)	425 (99%)	4 (1%)	0	100	100
30	AI	228/263~(87%)	224 (98%)	4 (2%)	0	100	100
31	BI	301/342~(88%)	295 (98%)	6 (2%)	0	100	100
33	BJ	$232/\overline{333}\ (\overline{70\%})$	227 (98%)	5 (2%)	0	100	100
34	AK	$242/\overline{342}$ (71%)	237 (98%)	5 (2%)	0	100	100
35	BK	$\overline{222/386}~(58\%)$	220 (99%)	2 (1%)	0	100	100
37	BL	254/312 (81%)	245 (96%)	9 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
38	EL	526/691~(76%)	513 (98%)	13 (2%)	0	100	100
39	EM	302/451~(67%)	296 (98%)	6 (2%)	0	100	100
41	AN	191/202~(95%)	185 (97%)	6 (3%)	0	100	100
42	BN	150/302~(50%)	145 (97%)	5 (3%)	0	100	100
43	EN	632/731~(86%)	612 (97%)	20 (3%)	0	100	100
44	BO	188/262~(72%)	185 (98%)	3(2%)	0	100	100
45	EO	264/319~(83%)	256~(97%)	8(3%)	0	100	100
45	EP	233/319~(73%)	226 (97%)	7(3%)	0	100	100
46	AP	314/374~(84%)	308~(98%)	6 (2%)	0	100	100
47	BQ	216/231~(94%)	206 (95%)	10 (5%)	0	100	100
48	AR	265/301~(88%)	252~(95%)	13~(5%)	0	100	100
49	BR	194/205~(95%)	190 (98%)	4 (2%)	0	100	100
50	\mathbf{ER}	82/148~(55%)	79~(96%)	3(4%)	0	100	100
51	BS	158/198~(80%)	152 (96%)	6 (4%)	0	100	100
52	\mathbf{ES}	148/524~(28%)	146 (99%)	2 (1%)	0	100	100
53	AT	141/144~(98%)	137~(97%)	4 (3%)	0	100	100
54	BT	171/191~(90%)	165 (96%)	6 (4%)	0	100	100
55	\mathbf{ET}	99/102~(97%)	96~(97%)	3(3%)	0	100	100
56	AU	171/213~(80%)	167~(98%)	4 (2%)	0	100	100
57	BU	148/185~(80%)	141 (95%)	7(5%)	0	100	100
58	AV	179/188~(95%)	172 (96%)	7 (4%)	0	100	100
59	BV	88/190~(46%)	86 (98%)	2(2%)	0	100	100
60	AW	276/278~(99%)	270 (98%)	6 (2%)	0	100	100
61	BW	186/188~(99%)	178 (96%)	8 (4%)	0	100	100
62	AX	162/246~(66%)	161 (99%)	1 (1%)	0	100	100
63	AY	338/378~(89%)	336~(99%)	2 (1%)	0	100	100
64	ΒZ	186/190 (98%)	178 (96%)	8 (4%)	0	100	100
65	Ba	$151/15\overline{3}\ (99\%)$	146 (97%)	5(3%)	0	100	100
66	Bb	$129/16\overline{2}\ (80\%)$	123 (95%)	6(5%)	0	100	100
67	Bc	$135/\overline{146}\ (92\%)$	131 (97%)	4 (3%)	0	100	100
68	Ae	$123/19\overline{7}~(62\%)$	118 (96%)	5 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
69	Af	137/189~(72%)	137~(100%)	0	0	100	100
70	Bf	85/113~(75%)	80 (94%)	5 (6%)	0	100	100
71	Ag	184/260~(71%)	175~(95%)	9(5%)	0	100	100
72	E7	95/97~(98%)	87~(92%)	8 (8%)	0	100	100
73	E8	152/786~(19%)	146 (96%)	6 (4%)	0	100	100
74	E9	198/343~(58%)	193 (98%)	5 (2%)	0	100	100
75	Al	179/218~(82%)	177 (99%)	2 (1%)	0	100	100
79	Ao	180/1520~(12%)	175 (97%)	5(3%)	0	100	100
80	Ap	261/309~(84%)	258~(99%)	3 (1%)	0	100	100
83	At	134/154~(87%)	128 (96%)	6 (4%)	0	100	100
84	Av	190/242~(78%)	185 (97%)	5 (3%)	0	100	100
All	All	19602/26562~(74%)	19044 (97%)	557 (3%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
23	EE	121	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	A1	195/217~(90%)	193~(99%)	2(1%)	73 81
2	E1	393/419~(94%)	390~(99%)	3 (1%)	79 84
3	A2	405/413~(98%)	404 (100%)	1 (0%)	92 94
4	E2	328/505~(65%)	326~(99%)	2(1%)	84 88
5	A3	134/193~(69%)	134 (100%)	0	100 100
6	E3	361/493 (73%)	361 (100%)	0	100 100
7	E4	367/378~(97%)	357~(97%)	10 (3%)	40 60

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
8	A5	52/73~(71%)	51~(98%)	1 (2%)	52	70
10	E6	372/454~(82%)	369~(99%)	3 (1%)	79	84
11	A8	118/161~(73%)	118 (100%)	0	100	100
13	BA	662/727~(91%)	659~(100%)	3 (0%)	86	90
14	EA	463/502~(92%)	460 (99%)	3 (1%)	84	88
16	BB	351/470~(75%)	348 (99%)	3 (1%)	75	83
17	EB	548/649~(84%)	543 (99%)	5 (1%)	75	83
18	EC	327/354~(92%)	325~(99%)	2 (1%)	84	88
19	BD	356/472~(75%)	354 (99%)	2 (1%)	84	88
20	ED	529/544~(97%)	526 (99%)	3 (1%)	84	88
21	AE	295/406~(73%)	294 (100%)	1 (0%)	91	92
22	BE	304/386~(79%)	302 (99%)	2 (1%)	81	86
23	EE	364/514~(71%)	363 (100%)	1 (0%)	91	92
24	AF	375/409~(92%)	372 (99%)	3 (1%)	79	84
25	BF	300/368~(82%)	297~(99%)	3 (1%)	73	81
26	\mathbf{EF}	250/307~(81%)	249 (100%)	1 (0%)	89	91
27	EG	134/136~(98%)	134 (100%)	0	100	100
28	BH	206/297~(69%)	205 (100%)	1 (0%)	86	90
29	\mathbf{EH}	389/527~(74%)	386 (99%)	3 (1%)	79	84
30	AI	205/225~(91%)	204 (100%)	1 (0%)	86	90
31	BI	254/288~(88%)	253 (100%)	1 (0%)	89	91
33	BJ	208/298~(70%)	208 (100%)	0	100	100
34	AK	221/301~(73%)	218 (99%)	3 (1%)	62	75
35	BK	200/329~(61%)	198 (99%)	2 (1%)	73	81
37	BL	202/262~(77%)	201 (100%)	1 (0%)	86	90
38	EL	461/598~(77%)	457 (99%)	4 (1%)	75	83
39	EM	266/386~(69%)	263~(99%)	3 (1%)	70	79
41	AN	173/182~(95%)	173 (100%)	0	100	100
42	BN	142/265~(54%)	141 (99%)	1 (1%)	81	86
43	EN	564/640~(88%)	558~(99%)	6 (1%)	70	79
44	BO	162/225~(72%)	161 (99%)	1 (1%)	84	88

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
45	EO	232/263~(88%)	231 (100%)	1 (0%)	89	91
45	EP	211/263~(80%)	210 (100%)	1 (0%)	86	90
46	AP	277/330~(84%)	272 (98%)	5 (2%)	54	71
47	BQ	172/195~(88%)	172 (100%)	0	100	100
48	AR	225/256~(88%)	224 (100%)	1 (0%)	89	91
49	BR	172/181~(95%)	169 (98%)	3 (2%)	56	72
50	ER	78/127~(61%)	77 (99%)	1 (1%)	65	76
51	BS	91/164~(56%)	87 (96%)	4 (4%)	24	48
52	ES	134/437~(31%)	134 (100%)	0	100	100
53	AT	123/124~(99%)	121 (98%)	2 (2%)	58	73
54	BT	151/163~(93%)	151 (100%)	0	100	100
55	ET	87/88~(99%)	87 (100%)	0	100	100
56	AU	151/184 (82%)	150 (99%)	1 (1%)	81	86
57	BU	134/168~(80%)	134 (100%)	0	100	100
58	AV	153/158~(97%)	150 (98%)	3 (2%)	50	68
59	BV	79/163~(48%)	77 (98%)	2 (2%)	42	62
60	AW	246/246~(100%)	244 (99%)	2 (1%)	79	84
61	BW	164/164~(100%)	161 (98%)	3 (2%)	54	71
62	AX	153/221~(69%)	153 (100%)	0	100	100
63	AY	305/337~(90%)	305 (100%)	0	100	100
64	BZ	148/160~(92%)	148 (100%)	0	100	100
65	Ba	130/144 (90%)	129 (99%)	1 (1%)	79	84
66	Bb	113/135 (84%)	112 (99%)	1 (1%)	75	83
67	Bc	127/134~(95%)	123 (97%)	4 (3%)	35	56
68	Ae	110/172~(64%)	109 (99%)	1 (1%)	75	83
69	Af	120/162~(74%)	119 (99%)	1 (1%)	79	84
70	Bf	77/98~(79%)	75 (97%)	2 (3%)	41	61
71	Ag	170/239~(71%)	170 (100%)	0	100	100
72	$\mathrm{E7}$	87/87~(100%)	87 (100%)	0	100	100
73	E8	112/678~(16%)	111 (99%)	1 (1%)	75	83
74	E9	177/292~(61%)	175 (99%)	2 (1%)	70	79

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
75	Al	155/186~(83%)	155 (100%)	0	100	100
79	Ao	151/1258~(12%)	150 (99%)	1 (1%)	81	86
80	Ap	229/267~(86%)	227~(99%)	2(1%)	75	83
83	At	125/140~(89%)	124 (99%)	1 (1%)	79	84
84	Av	170/210~(81%)	168 (99%)	2(1%)	67	78
All	All	17175/22967~(75%)	17046 (99%)	129 (1%)	77	84

All (129) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	A1	88	THR
1	A1	106	THR
2	E1	129	LEU
2	E1	220	LEU
2	E1	296	LEU
3	A2	252	VAL
4	E2	123	THR
4	E2	337	THR
7	E4	85	LEU
7	E4	86	ARG
7	E4	144	VAL
7	E4	178	ARG
7	E4	185	VAL
7	E4	199	THR
7	E4	257	LEU
7	E4	305	THR
7	E4	309	THR
7	E4	323	VAL
8	A5	49	LEU
10	E6	277	GLN
10	E6	283	THR
10	E6	386	LEU
13	BA	190	THR
13	BA	342	THR
13	BA	757	THR
14	EA	142	ASP
14	EA	336	VAL
14	EA	500	MET
16	BB	98	THR
16	BB	152	ARG

Mol	Chain	Res	Type
16	BB	271	THR
17	EB	52	LYS
17	EB	246	ARG
17	EB	510	THR
17	EB	573	ARG
17	EB	636	ARG
18	EC	62	THR
18	EC	199	THR
19	BD	244	ARG
19	BD	373	THR
20	ED	43	LEU
20	ED	140	ASP
20	ED	395	ARG
21	AE	222	THR
22	BE	139	GLU
22	BE	266	LEU
23	EE	122	TRP
24	AF	105	THR
24	AF	127	THR
24	AF	280	THR
25	BF	131	LEU
25	BF	202	THR
25	BF	390	VAL
26	EF	67	LYS
28	BH	284	THR
29	EH	52	THR
29	EH	249	ARG
29	EH	497	ASP
30	AI	13	VAL
31	BI	103	THR
34	AK	64	THR
34	AK	102	VAL
34	AK	151	LEU
35	BK	155	LEU
35	BK	301	THR
37	BL	116	GLU
38	EL	62	THR
38	EL	227	THR
38	EL	229	THR
38	EL	568	THR
39	EM	83	LEU
39	EM	115	CYS

Mol	Chain	Res	Type
39	EM	324	GLN
42	BN	204	THR
43	EN	45	VAL
43	EN	189	CYS
43	EN	245	ARG
43	EN	293	LYS
43	EN	520	LEU
43	EN	695	THR
44	BO	161	MET
45	EO	60	VAL
46	AP	45	ARG
46	AP	65	VAL
46	AP	148	THR
46	AP	171	VAL
46	AP	196	THR
45	EP	16	VAL
48	AR	32	THR
49	BR	60	THR
49	BR	193	ILE
49	BR	204	LEU
50	ER	105	SER
51	BS	28	THR
51	BS	32	ARG
51	BS	79	LEU
51	BS	85	ASP
53	AT	8	THR
53	AT	59	THR
56	AU	20	ILE
58	AV	115	VAL
58	AV	124	THR
58	AV	128	ARG
59	BV	52	PHE
59	BV	107	ILE
60	AW	45	ARG
60	AW	266	THR
61	BW	22	ARG
61	BW	63	LEU
61	BW	156	VAL
65	Ba	80	ASP
66	Bb	61	VAL
67	Bc	18	ARG
67	Bc	109	ARG

Mol	Chain	Res	Type
67	Bc	123	LYS
67	Bc	140	VAL
68	Ae	197	ARG
69	Af	119	THR
70	Bf	56	LYS
70	Bf	72	LEU
73	E8	499	THR
74	E9	298	ARG
74	E9	302	ARG
79	Ao	136	THR
80	Ap	169	MET
80	Ap	184	THR
83	At	92	VAL
84	Av	156	ASP
84	Av	181	THR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (267) such sidechains are listed below:

Mol	Chain	Res	Type
1	A1	138	ASN
2	E1	49	ASN
2	E1	146	GLN
2	E1	162	HIS
2	E1	165	ASN
2	E1	205	ASN
2	E1	278	HIS
2	E1	322	HIS
2	E1	366	HIS
3	A2	167	HIS
3	A2	194	GLN
3	A2	389	HIS
4	E2	234	HIS
4	E2	254	GLN
4	E2	343	ASN
4	E2	383	ASN
4	E2	388	GLN
4	E2	411	HIS
4	E2	488	ASN
5	A3	144	GLN
6	E3	295	GLN
6	E3	330	HIS
6	E3	448	GLN

Mol	Chain	Res	Type
7	E4	29	GLN
7	E4	110	ASN
7	E4	138	ASN
7	E4	191	HIS
7	E4	195	HIS
7	E4	214	ASN
7	E4	293	ASN
7	E4	297	ASN
7	E4	338	GLN
7	E4	362	GLN
7	E4	370	HIS
10	E6	97	GLN
10	E6	150	HIS
10	E6	171	HIS
10	E6	173	ASN
10	E6	337	HIS
10	E6	373	ASN
10	E6	397	ASN
11	A8	136	GLN
11	A8	174	GLN
13	BA	301	HIS
13	BA	307	HIS
13	BA	502	HIS
13	BA	529	GLN
13	BA	693	HIS
13	BA	810	HIS
14	EA	59	HIS
14	EA	65	GLN
14	EA	317	ASN
14	EA	368	HIS
14	EA	386	ASN
14	EA	392	HIS
14	EA	469	ASN
14	EA	518	GLN
14	EA	544	GLN
16	BB	82	HIS
16	BB	170	GLN
16	BB	242	GLN
16	BB	313	HIS
16	BB	420	ASN
17	EB	159	GLN
17	EB	227	GLN

Mol	Chain	Res	Type
17	EB	271	HIS
17	EB	336	HIS
17	EB	502	HIS
17	EB	515	HIS
17	EB	577	GLN
17	EB	603	GLN
17	EB	644	GLN
17	EB	683	GLN
18	EC	166	HIS
18	EC	315	GLN
18	EC	352	ASN
19	BD	193	GLN
19	BD	218	ASN
19	BD	297	GLN
19	BD	513	ASN
20	ED	75	ASN
20	ED	178	GLN
20	ED	312	HIS
20	ED	402	ASN
20	ED	543	GLN
20	ED	606	HIS
21	AE	380	GLN
22	BE	76	GLN
22	BE	78	HIS
22	BE	183	HIS
22	BE	279	HIS
22	BE	330	GLN
22	BE	373	GLN
23	EE	109	GLN
23	EE	160	HIS
23	EE	174	HIS
23	EE	270	ASN
23	EE	429	HIS
23	EE	434	HIS
24	AF	65	ASN
24	AF	147	ASN
24	AF	223	ASN
25	BF	132	GLN
25	BF	143	GLN
25	BF	288	GLN
$\overline{25}$	BF	311	GLN
26	EF	74	ASN

Mol	Chain	Res	Type
26	EF	292	HIS
27	EG	38	GLN
27	EG	69	HIS
27	EG	126	GLN
28	BH	79	GLN
28	BH	122	HIS
28	BH	253	GLN
28	BH	286	HIS
29	EH	505	GLN
29	EH	548	GLN
30	AI	76	HIS
30	AI	120	ASN
31	BI	125	ASN
31	BI	144	HIS
31	BI	152	GLN
31	BI	263	HIS
33	BJ	266	GLN
33	BJ	273	HIS
34	AK	87	ASN
34	AK	279	HIS
34	AK	293	ASN
35	BK	114	HIS
35	BK	212	GLN
37	BL	74	GLN
37	BL	95	GLN
37	BL	103	ASN
37	BL	226	HIS
37	BL	255	HIS
37	BL	262	GLN
38	EL	118	HIS
38	EL	278	GLN
38	EL	441	GLN
38	EL	484	ASN
38	EL	498	ASN
38	EL	582	GLN
38	EL	593	GLN
39	EM	57	HIS
39	EM	128	ASN
39	EM	173	ASN
39	EM	192	HIS
39	EM	282	HIS
39	EM	324	GLN

Mol	Chain	Res	Type
41	AN	19	HIS
41	AN	82	HIS
41	AN	190	GLN
42	BN	81	HIS
42	BN	118	ASN
42	BN	133	GLN
43	EN	34	ASN
43	EN	55	HIS
43	EN	71	GLN
43	EN	312	GLN
43	EN	340	GLN
43	EN	374	HIS
43	EN	514	HIS
43	EN	537	HIS
43	EN	674	HIS
44	BO	186	GLN
45	EO	13	HIS
45	EO	170	GLN
45	EO	201	GLN
45	EO	235	GLN
45	EO	259	HIS
45	EO	315	GLN
45	EO	318	HIS
46	AP	46	ASN
46	AP	89	GLN
45	EP	13	HIS
45	EP	28	GLN
45	EP	99	HIS
45	EP	131	GLN
45	EP	157	ASN
45	EP	201	GLN
45	EP	233	HIS
45	EP	235	GLN
47	BQ	134	HIS
47	BQ	147	ASN
48	AR	67	GLN
48	AR	68	GLN
48	AR	113	GLN
48	AR	174	HIS
48	AR	242	HIS
49	BR	138	GLN
49	BR	160	GLN

Mol	Chain	Res	Type
49	BR	164	HIS
51	BS	69	ASN
52	ES	52	ASN
52	ES	128	GLN
53	AT	9	ASN
53	AT	18	ASN
53	AT	99	ASN
53	AT	123	GLN
54	BT	26	HIS
55	ET	15	ASN
55	ET	71	ASN
55	ET	92	GLN
56	AU	65	ASN
56	AU	73	HIS
56	AU	165	HIS
57	BU	49	ASN
57	BU	81	GLN
57	BU	156	GLN
58	AV	143	GLN
58	AV	160	HIS
60	AW	12	HIS
60	AW	50	GLN
60	AW	75	GLN
60	AW	172	HIS
60	AW	183	GLN
61	BW	61	ASN
61	BW	138	HIS
63	AY	64	HIS
63	AY	89	GLN
63	AY	91	GLN
63	AY	145	ASN
63	AY	162	GLN
63	AY	248	GLN
63	AY	265	GLN
63	AY	321	GLN
64	BZ	96	GLN
65	Ba	25	GLN
65	Ba	31	GLN
65	Ba	129	GLN
66	Bb	79	HIS
67	Bc	66	HIS
67	Bc	67	GLN

Mol	Chain	Res	Type
68	Ae	96	GLN
68	Ae	162	GLN
69	Af	86	ASN
69	Af	168	GLN
70	Bf	108	HIS
71	Ag	73	ASN
71	Ag	84	ASN
71	Ag	105	GLN
71	Ag	184	HIS
72	E7	6	GLN
72	E7	44	GLN
72	E7	67	ASN
73	E8	536	ASN
73	E8	542	HIS
74	E9	156	GLN
74	E9	161	ASN
74	E9	192	GLN
74	E9	203	HIS
74	E9	261	HIS
75	Al	167	GLN
75	Al	194	HIS
75	Al	211	HIS
79	Ao	107	GLN
79	Ao	139	GLN
80	Ap	78	HIS
80	Ap	132	HIS
80	Ap	146	GLN
80	Ap	150	HIS
80	Ap	170	HIS
83	At	116	GLN
83	At	148	GLN
84	Av	44	ASN
84	Av	118	ASN
84	Av	128	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
12	AA	810/1176~(68%)	310 (38%)	3~(0%)

All (310) RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
12	AA	2	U
12	AA	3	U
12	AA	4	U
12	AA	5	U
12	AA	11	U
12	AA	12	U
12	AA	13	А
12	AA	15	G
12	AA	18	G
12	AA	19	А
12	AA	20	А
12	AA	21	U
12	AA	28	А
12	AA	29	U
12	AA	30	А
12	AA	34	G
12	AA	41	U
12	AA	43	U
12	AA	44	А
12	AA	45	U
12	AA	50	А
12	AA	51	А
12	AA	52	U
12	AA	53	А
12	AA	54	А
12	AA	60	U
12	AA	64	U
12	AA	65	U
12	AA	67	С
12	AA	68	G
12	AA	69	U
12	AA	70	G
12	AA	73	G
12	AA	75	A
12	AA	77	A
12	AA	79	U
12	AA	80	U
12	AA	82	U
12	AA	84	A
12	AA	85	U
12	AA	88	G
12	AA	89	U
12	AA	97	A

Mol	Chain	Res	Type
12	AA	98	U
12	AA	101	A
12	AA	102	A
12	AA	103	U
12	AA	104	А
12	AA	105	G
12	AA	106	G
12	AA	107	U
12	AA	111	U
12	AA	112	U
12	AA	113	А
12	AA	114	U
12	AA	115	A
12	AA	119	A
12	AA	120	A
12	AA	121	A
12	AA	122	U
12	AA	123	U
12	AA	124	U
12	AA	125	U
12	AA	133	U
12	AA	134	U
12	AA	149	U
12	AA	151	С
12	AA	155	U
12	AA	156	U
12	AA	158	A
12	AA	164	U
12	AA	168	A
12	AA	171	U
12	AA	172	U
12	AA	173	U
12	AA	176	A
12	AA	177	U
12	AA	183	U
12	AA	188	A
12	AA	193	A
12	AA	279	A
12	AA	284	U
12	AA	285	A
12	AA	286	U
12	AA	287	A

Mol	Chain	Res	Type
12	AA	288	G
12	AA	289	U
12	AA	290	А
12	AA	292	G
12	AA	293	А
12	AA	296	А
12	AA	297	U
12	AA	299	U
12	AA	300	U
12	AA	302	G
12	AA	309	U
12	AA	310	А
12	AA	312	U
12	AA	313	А
12	AA	315	А
12	AA	317	А
12	AA	327	U
12	AA	330	U
12	AA	341	А
12	AA	342	U
12	AA	345	U
12	AA	346	G
12	AA	347	А
12	AA	355	А
12	AA	357	А
12	AA	360	U
12	AA	361	U
12	AA	365	С
12	AA	367	G
12	AA	371	A
12	AA	375	A
12	AA	378	A
12	AA	380	G
12	AA	381	U
12	AA	385	A
12	AA	386	U
12	AA	387	A
12	AA	388	U
12	AA	389	A
12	AA	446	A
12	AA	451	A
12	AA	453	U

Mol	Chain	Res	Type
12	AA	455	G
12	AA	456	U
12	AA	462	U
12	AA	463	U
12	AA	464	U
12	AA	468	A
12	AA	470	G
12	AA	473	А
12	AA	476	G
12	AA	477	А
12	AA	478	А
12	AA	481	G
12	AA	482	U
12	AA	483	A
12	AA	485	А
12	AA	488	U
12	AA	490	G
12	AA	491	A
12	AA	492	U
12	AA	493	А
12	AA	494	U
12	AA	495	А
12	AA	496	A
12	AA	497	С
12	AA	509	U
12	AA	514	G
12	AA	515	U
12	AA	516	U
12	AA	517	U
12	AA	519	А
12	AA	521	G
12	AA	524	A
12	AA	525	A
12	AA	534	U
12	AA	539	A
12	AA	540	U
12	AA	544	G
12	AA	548	A
12	AA	549	G
12	AA	556	U
12	AA	557	А
12	AA	558	U

Mol	Chain	Res	Type
12	AA	559	А
12	AA	560	G
12	AA	566	A
12	AA	567	G
12	AA	569	U
12	AA	570	U
12	AA	573	U
12	AA	574	А
12	AA	575	А
12	AA	582	А
12	AA	583	А
12	AA	584	А
12	AA	585	А
12	AA	587	U
12	AA	793	U
12	AA	799	A
12	AA	800	А
12	AA	801	A
12	AA	803	U
12	AA	804	A
12	AA	807	А
12	AA	814	А
12	AA	816	С
12	AA	817	А
12	AA	818	A
12	AA	825	A
12	AA	826	А
12	AA	827	U
12	AA	828	А
12	AA	829	A
12	AA	838	A
12	AA	844	A
12	AA	845	A
12	AA	846	A
12	AA	848	A
12	AA	851	G
12	AA	853	А
12	AA	854	A
12	AA	868	U
12	AA	870	A
12	AA	871	С
12	AA	873	A

Mol	Chain	Res	Type
12	AA	874	А
12	AA	883	U
12	AA	885	U
12	AA	886	G
12	AA	887	А
12	AA	888	U
12	AA	892	U
12	AA	895	U
12	AA	896	U
12	AA	897	G
12	AA	902	U
12	AA	905	G
12	AA	906	А
12	AA	924	U
12	AA	928	U
12	AA	931	U
12	AA	932	A
12	AA	933	U
12	AA	934	А
12	AA	936	С
12	AA	941	G
12	AA	942	А
12	AA	945	U
12	AA	946	А
12	AA	947	U
12	AA	948	А
12	AA	956	А
12	AA	961	А
12	AA	963	А
12	AA	970	U
12	AA	980	U
12	AA	984	A
12	AA	985	A
12	AA	986	G
12	AA	990	U
12	AA	991	A
12	AA	992	А
12	AA	993	A
12	AA	994	A
12	AA	995	А
12	AA	996	U
12	AA	998	А

Mol	Chain	Res	Type
12	AA	1003	G
12	AA	1004	U
12	AA	1006	U
12	AA	1008	А
12	AA	1010	С
12	AA	1014	U
12	AA	1015	А
12	AA	1018	U
12	AA	1019	А
12	AA	1021	U
12	AA	1079	А
12	AA	1089	G
12	AA	1091	U
12	AA	1092	U
12	AA	1094	U
12	AA	1096	U
12	AA	1097	А
12	AA	1102	А
12	AA	1107	U
12	AA	1112	U
12	AA	1113	U
12	AA	1114	А
12	AA	1116	U
12	AA	1117	А
12	AA	1119	U
12	AA	1122	U
12	AA	1123	U
12	AA	1125	А
12	AA	1127	А
12	AA	1128	U
12	AA	1131	G
12	AA	1133	A
12	AA	1139	G
12	AA	1140	G
12	AA	1141	А
12	AA	1148	A
12	AA	1152	А
12	AA	1153	A
12	AA	1154	A
12	AA	1155	А
12	AA	1156	А
12	AA	1157	А

Continued on next page...

Mol	Chain	Res	Type
12	AA	1158	G
12	AA	1159	А
12	AA	1160	A
12	AA	1161	А
12	AA	1162	G
12	AA	1163	А
12	AA	1164	А
12	AA	1165	G
12	AA	1166	А
12	AA	1168	U
12	AA	1169	А
12	AA	1171	А
12	AA	1173	U
12	AA	1175	U
12	AA	1176	А

All (3) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
12	AA	102	А
12	AA	484	U
12	AA	895	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 31 ligands modelled in this entry, 26 are monoatomic - leaving 5 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mal	Turne	who Chain	Res	hain Dag	Dec Link	Bo	Bond lengths			Bond angles		
	туре	Unain		Res Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2		
90	PM8	ER	200	50	25,31,31	0.54	0	30,38,38	1.34	2 (6%)		
87	GTP	EA	1001	86,88	26,34,34	1.18	2 (7%)	32,54,54	1.54	7 (21%)		
87	GTP	EA	1004	86,88	26,34,34	1.14	2 (7%)	32,54,54	1.46	7 (21%)		
89	ATP	EB	1001	86	26,33,33	0.94	1 (3%)	31,52,52	1.50	5 (16%)		
91	NAD	Av	301	-	42,48,48	0.64	1 (2%)	50,73,73	0.91	3 (6%)		

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
90	PM8	ER	200	50	-	11/36/38/38	-
87	GTP	EA	1001	86,88	-	0/18/38/38	0/3/3/3
87	GTP	EA	1004	86,88	-	2/18/38/38	0/3/3/3
89	ATP	EB	1001	86	-	1/18/38/38	0/3/3/3
91	NAD	Av	301	-	-	3/26/62/62	0/5/5/5

A 11 ((a)	hond	longth	outliera	oro	listed	holow
AII ((\mathbf{U})	bonu	lengtin	outners	are	nsteu	DEIOW.

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
87	EA	1001	GTP	C5-C6	-4.04	1.39	1.47
87	EA	1004	GTP	C5-C6	-3.96	1.39	1.47
89	EB	1001	ATP	C5-C4	2.44	1.47	1.40
87	EA	1004	GTP	C2-N3	2.16	1.38	1.33
91	Av	301	NAD	C2N-N1N	2.14	1.37	1.35
87	EA	1001	GTP	C2-N3	2.09	1.38	1.33

All (24) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
91	Av	301	NAD	O4D-C1D-C2D	-3.72	101.48	106.93
89	EB	1001	ATP	PA-O3A-PB	-3.71	120.09	132.83
87	EA	1004	GTP	PB-O3B-PG	-3.57	120.56	132.83
87	EA	1001	GTP	PB-O3B-PG	-3.52	120.74	132.83
87	EA	1001	GTP	PA-O3A-PB	-3.27	121.61	132.83
87	EA	1001	GTP	C5-C6-N1	3.26	119.72	113.95

Continued on next page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
87	EA	1004	GTP	C8-N7-C5	3.23	109.14	102.99
89	EB	1001	ATP	N3-C2-N1	-3.22	123.64	128.68
87	EA	1004	GTP	C5-C6-N1	3.20	119.60	113.95
90	ER	200	PM8	O1-C1-C2	-3.15	120.27	123.99
87	EA	1001	GTP	C8-N7-C5	3.09	108.89	102.99
89	EB	1001	ATP	C3'-C2'-C1'	2.89	105.33	100.98
89	EB	1001	ATP	PB-O3B-PG	-2.86	123.01	132.83
87	EA	1004	GTP	C2-N1-C6	-2.86	119.84	125.10
89	EB	1001	ATP	C4-C5-N7	-2.77	106.52	109.40
90	ER	200	PM8	C3-C2-C1	-2.73	106.28	112.33
87	EA	1001	GTP	C2-N1-C6	-2.71	120.11	125.10
87	EA	1001	GTP	O3'-C3'-C2'	-2.44	103.92	111.82
91	Av	301	NAD	C6N-N1N-C2N	-2.29	119.89	121.97
91	Av	301	NAD	C5A-C6A-N6A	2.26	123.79	120.35
87	EA	1004	GTP	O4'-C1'-C2'	-2.15	103.78	106.93
87	EA	1004	GTP	PA-O3A-PB	-2.14	125.49	132.83
87	EA	1004	GTP	06-C6-C5	-2.07	120.33	124.37
87	EA	1001	GTP	O6-C6-C5	-2.06	120.34	124.37

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
90	ER	200	PM8	O27-C28-C29-C32
90	ER	200	PM8	O33-C32-C34-N36
90	ER	200	PM8	N41-C42-C43-S1
90	ER	200	PM8	O1-C1-S1-C43
90	ER	200	PM8	C2-C1-S1-C43
90	ER	200	PM8	C1-C2-C3-C4
90	ER	200	PM8	C38-C37-N36-C34
90	ER	200	PM8	O27-C28-C29-C30
90	ER	200	PM8	O27-C28-C29-C31
90	\mathbf{ER}	200	PM8	O33-C32-C34-O35
91	Av	301	NAD	O4B-C4B-C5B-O5B
91	Av	301	NAD	O4D-C4D-C5D-O5D
87	EA	1004	GTP	C5'-O5'-PA-O3A
89	EB	1001	ATP	PA-O3A-PB-O1B
90	ER	200	PM8	C42-C43-S1-C1
91	Av	301	NAD	C3D-C4D-C5D-O5D
87	EA	1004	GTP	C5'-O5'-PA-O2A

All (17) torsion outliers are listed below:

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
76	Ul	7
9	E5	5
82	Us	4
81	Up	3
77	Um	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	Ul	249:UNK	С	280:UNK	N	50.91
1	Ul	115:UNK	С	146:UNK	N	43.56
1	Ul	158:UNK	С	179:UNK	N	35.52
1	Us	63:UNK	С	82:UNK	N	32.92
1	Ul	295:UNK	С	311:UNK	N	29.90
1	Us	38:UNK	С	52:UNK	N	20.32
1	Us	96:UNK	С	110:UNK	N	17.98
1	Ul	337:UNK	С	348:UNK	N	15.67
1	E5	103:UNK	С	124:UNK	N	15.44
1	E5	133:UNK	С	144:UNK	N	15.38
1	Us	14:UNK	С	19:UNK	N	15.06
1	E5	88:UNK	С	94:UNK	N	13.57
1	E5	279:UNK	С	290:UNK	N	12.66
1	Up	83:UNK	С	89:UNK	N	11.90
1	Up	53:UNK	С	64:UNK	N	6.74
1	Ul	221:UNK	С	232:UNK	N	6.33
1	Um	21:UNK	С	100:UNK	N	5.55
1	Up	33:UNK	С	44:UNK	N	4.72
1	Ul	45:UNK	С	56:UNK	N	3.64
1	E5	311:UNK	С	314:UNK	N	3.12

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-10999. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 150

Z Index: 150

6.2.2 Raw map

X Index: 150

Y Index: 150

Z Index: 150

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 168

Y Index: 143

Z Index: 157

6.3.2 Raw map

X Index: 168

Y Index: 143

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.03. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

emd_10999_msk_1.map (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1601 $\rm nm^3;$ this corresponds to an approximate mass of 1446 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.256 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.256 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.90	-	-
Author-provided FSC curve	3.89	6.03	3.98
Unmasked-calculated*	4.63	8.64	6.02

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.63 differs from the reported value 3.9 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-10999 and PDB model 6YXX. Per-residue inclusion information can be found in section 3 on page 26.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.03 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.03).

9.4 Atom inclusion (i)

At the recommended contour level, 79% of all backbone atoms, 75% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.03) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.7510	0.3890
A1	0.7500	0.3900
A2	0.8500	0.4290
A3	0.8040	0.4430
A5	0.8580	0.4800
A8	0.6970	0.4360
AA	0.7510	0.3430
AE	0.8060	0.4560
AF	0.8400	0.4530
AI	0.7460	0.3920
AK	0.6670	0.3000
AN	0.7850	0.4520
AP	0.7930	0.4350
AR	0.7970	0.4380
AT	0.7860	0.4370
AU	0.8330	0.4590
AV	0.8540	0.4670
AW	0.8070	0.4480
AX	0.8260	0.4500
AY	0.7970	0.4080
Ae	0.8240	0.4290
Af	0.8210	0.4340
Ag	0.8130	0.4310
Al	0.8040	0.4410
Ao	0.8180	0.4570
Ap	0.7960	0.4250
At	0.7940	0.4280
Av	0.7860	0.4260
BA	0.8300	0.4230
BB	0.7900	0.3550
BD	0.6260	0.3090
BE	0.8360	0.4090
BF	0.8480	0.4380
BH	0.6560	0.3800
BI	0.8390	0.4280

Continued on next page...

Chain	Atom inclusion	Q-score
BJ	0.7850	0.3360
BK	0.7280	0.3670
BL	0.8180	0.4040
BN	0.7800	0.3940
BO	0.8110	0.4000
BQ	0.8230	0.4210
BR	0.8070	0.4380
BS	0.7900	0.3800
BT	0.8550	0.4260
BU	0.7230	0.3950
BV	0.4030	0.0930
BW	0.8770	0.4480
BZ	0.8300	0.3780
Ba	0.8070	0.4310
Bb	0.8280	0.3960
Bc	0.6580	0.3960
Bf	0.6500	0.3730
E1	0.6730	0.4160
E2	0.6850	0.3830
E3	0.6990	0.3940
E4	0.7620	0.3490
E5	0.8340	0.3500
E6	0.6930	0.3920
E7	0.7010	0.4230
E8	0.5010	0.3100
E9	0.5810	0.3770
EA	0.7050	0.3890
EB	0.7850	0.4530
EC	0.7650	0.4450
ED	0.8470	0.4290
EE	0.7240	0.3530
EF	0.3230	0.2350
EG	0.8030	0.4750
EH	0.8060	0.4040
EL	0.8360	0.4000
EM	0.6170	0.3150
EN	0.7690	0.3530
EO	0.7500	0.2990
EP	0.7050	0.2070
ER	0.7680	0.3110
ES	0.7640	0.2940
ET	0.7450	0.4380

Continued on next page...

<i>y</i> 1 1 <i>y</i>				
Chain	Atom inclusion	Q-score		
UA	0.8400	0.4510		
UI	0.1050	0.1140		
UK	0.5360	0.2010		
UM	0.7000	0.4390		
Uf	0.5400	0.2210		
Ul	0.5530	0.2870		
Um	0.6670	0.2980		
Un	0.7570	0.3850		
Up	0.0620	0.1140		
Ur	0.1140	0.1340		
Us	0.0860	0.0630		

