

Mar 6, 2025 - 08:14 pm GMT

PDB ID	:	6XZ7
EMDB ID	:	EMD-10655
Title	:	E. coli 50S ribosomal subunit in complex with dirithromycin, fMet-Phe-
		tRNA(Phe) and deacylated tRNA(iMet).
Authors	:	Pichkur, E.B.; Polikanov, Y.S.; Myasnikov, A.G.; Konevega, A.L.
Deposited on	:	2020-02-03
Resolution	:	2.10 Å(reported)
Based on initial model	:	4YBB

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$		
Clashscore	210492	15764		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	2897	76%	21% •
2	В	120	80%	18% •
3	С	271	85%	15%
4	D	209	89%	11%
5	Е	201	88%	11% •
6	F	177	54% 40%	6% •
7	G	176	70%	26% •

Conti	nued fron	<i>i previous</i>	page	· ·
Wol	Chain	Length	Quality of ch	nam
8	Н	135	68%	29% ••
9	Ι	134	77%	21% ·
10	J	142	87%	12% •
11	K	123	85%	15%
12	L	144	87%	13%
13	М	136	88%	11% .
14	Ν	125	93%	6% •
15	0	117	80%	19% •
16	Р	114	84%	15% •
17	Q	117	97%	
18	R	103	90%	7% ••
19	S	110	92%	7% •
20	Т	93	85%	14% •
21	U	102	86%	13% •
22	V	94	81%	18% •
23	W	76	87%	13%
24	X	77	88%	12%
25	Y	62	89%	11%
26	Z	58	90%	9% •
27	a	56	98%	•
28	b	51	98%	•
29	с	46	96%	
30	d	64	94%	6%
31	е	38	97%	.
32	f	76	24% 55%	21%

Mol	Chain	Length		Quality of chain	
33	g	76	22%	47%	30%

2 Entry composition (i)

There are 36 unique types of molecules in this entry. The entry contains 94915 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			AltConf	Trace			
1	А	2897	Total 62252	C 27778	N 11454	O 20121	Р 2899	3	0

• Molecule 2 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
2	В	120	Total 2569	C 1144	N 468	0 837	Р 120	0	0

• Molecule 3 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	271	Total 2083	C 1288	N 423	O 365	S 7	0	0

• Molecule 4 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	209	Total 1566	C 980	N 288	O 294	$\frac{S}{4}$	1	0

• Molecule 5 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	201	Total 1552	C 974	N 283	O 290	${S \atop 5}$	0	0

• Molecule 6 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	F	177	Total 1411	C 899	N 249	O 257	S 6	0	0

• Molecule 7 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	G	176	Total 1323	C 832	N 243	0 246	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 8 is a protein called 50S ribosomal protein L10.

Mol	Chain	Residues		At	AltConf	Trace			
8	Н	135	Total 1023	C 649	N 179	0 192	${ m S} { m 3}$	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Н	85	VAL	SER	conflict	UNP P0A7J3
Н	86	THR	MET	conflict	UNP P0A7J3

• Molecule 9 is a protein called 50S ribosomal protein L11.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	Ι	134	Total 979	C 619	N 169	0 185	S 6	0	0

• Molecule 10 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	J	142	Total 1129	C 714	N 212	0 199	${S \atop 4}$	0	0

• Molecule 11 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	AltConf	Trace			
11	K	123	Total 946	C 593	N 181	O 166	S 6	0	0

• Molecule 12 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	AltConf	Trace			
12	L	144	Total 1053	C 654	N 207	0 190	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	М	136	Total 1075	C 686	N 205	0 178	S 6	1	0

• Molecule 14 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	N	125	Total 993	C 613	N 202	0 173	${ m S}{ m 5}$	0	0

• Molecule 15 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	AltConf	Trace			
15	О	117	Total 900	C 557	N 179	0 163	S 1	0	0

• Molecule 16 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	AltConf	Trace			
16	Р	114	Total 917	С 574	N 179	0 163	S 1	0	0

• Molecule 17 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
17	Q	117	Total 947	C 604	N 192	0 151	0	0

• Molecule 18 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	R	103	Total 816	C 516	N 153	0 145	${ m S} { m 2}$	0	0

• Molecule 19 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	S	110	Total 857	C 532	N 166	0 156	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	Т	93	Total 739	C 466	N 139	0 132	${ m S} { m 2}$	0	0

• Molecule 21 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
21	U	102	Total 780	C 492	N 146	O 142	0	0

• Molecule 22 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	V	94	Total 753	C 479	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
23	W	76	Total 580	C 359	N 117	O 103	S 1	1	0

• Molecule 24 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	Х	77	Total 625	C 388	N 129	O 106	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 25 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
25	v	62	Total	С	N	0	S	0	0
20	1	02	501	308	98	94	1	0	0

• Molecule 26 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
26	Z	58	Total 449	C 281	N 87	O 79	${S \over 2}$	2	0

• Molecule 27 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
27	a	56	Total 444	C 269	N 94	O 80	S 1	0	0

• Molecule 28 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
28	b	51	Total 414	C 266	N 76	О 72	0	0

• Molecule 29 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
29	с	46	Total 377	C 228	N 90	O 57	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues	Atoms			AltConf	Trace		
30	d	64	Total	С	N	0	S	0	0
			504	323	105	74	2		

• Molecule 31 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
31	е	38	Total 302	C 185	N 65	0 48	S 4	0	0

• Molecule 32 is a RNA chain called Deacylated tRNAi(Met).

Mol	Chain	Residues		-	Atom	s			AltConf	Trace
32	f	76	Total 1625	С 725	N 294	O 529	Р 76	S 1	0	0

• Molecule 33 is a RNA chain called fMet-Phe-tRNA(Phe).

Mol	Chain	Residues	Atoms				AltConf	Trace		
33	g	76	Total 1667	C 760	N 297	0 534	Р 75	S 1	0	0

• Molecule 34 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
34	А	174	Total Mg 174 174	0
34	В	3	Total Mg 3 3	0
34	U	1	Total Mg 1 1	0

• Molecule 35 is Dirithromycin (three-letter code: DI0) (formula: $C_{42}H_{78}N_2O_{14}$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms			AltConf	
35	٨	1	Total	С	Ν	0	0
35 A	Л	1	58	42	2	14	0

• Molecule 36 is water.

Mol	Chain	Residues	Atoms	AltConf
36	А	498	Total O 498 498	0
36	В	9	Total O 9 9	0
36	С	7	Total O 7 7	0
36	D	1	Total O 1 1	0
36	Е	1	Total O 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
36	L	6	Total O 6 6	0
36	Ν	1	Total O 1 1	0
36	Т	1	Total O 1 1	0
36	d	4	Total O 4 4	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain A:	76%	21% •
61 62 61 011 012 013 012 012 012 012 012 058 058 058 058 058 058 058 058 058 058	A84 484 499 4100 4100 4100 4119 4119 4119 4119 4120 4135 4135 4135 4136 4156 415	A142 C143 A144 C145 A155 A155 C145 C163 C163 C163 A172
A173 A181 A191 A195 A196 A196 A196 A196 A196 A196 A216 A216 A218 A218 A218 A218 A221 A228 A228 A228		6307 A310 A311 A320 A320 A320 A320 A320 A320 A330 A340 A340
G356 C355 C355 A355 A355 A355 U355 C355 C355 C355 C355 C355 C355 C	(396 (396 (399 (399) (399) (399) (399) (399) (399) (399) (390) (39	0469 0476 0476 0481 0481 0481 0481 0491 0491 0493 0493 0494
A5.04 A5.04 A5.04 A5.05 A5.05 A5.22 A5.23 A5.22 A5.23 A5.23 A5.23 A5.23 A5.23 A5.23 A5.23 A5.23 A5.23 A5.23 A5.24	A563 A563 U568 U566 U573 A574 A574 A574 A574 A575 A576 U574 A576 C594 U594 C594 U594 C594 C594 C594 C597 C597 C597 C597 C597 C597 C597 C597	6611 6612 6613 6613 6614 6615 6616 6616 6630 6630 6630 6633 6633 6635 6635
0636 0637 0638 0638 0638 0638 0638 0638 0647 0647 0647 0668 0668 0668 0668 0667 0667 0667 066	UT14 CT17 CT17 A721 A722 A722 A722 A723 A723 A724 A724 A743 UT47 UT47 A756 A756	4/ 60 4775 4775 4776 4776 4776 4776 4786 4786 4786 4790 4792
C796 G797 G797 G797 G805 G806 G809 U811 C811 C811 C812 C814 U822 C814 U822 U822 U822 U826 U826 U826 U827 C814 U827 C814 C815 C815 C815 C815 C815 C815 C815 C815	G858 0858 0859 08561 08561 08561 0856 0881 0883 0883 0883 0883 0883 0883 0883	C 2897 C 2898 A 899 A 910 C 914 C 914 C 914 C 916 C 946 C 946
U955 C961 C964 C964 C964 A974 A983 A984 A996 A983 A996 A983 A996 A1008 A1008 C1013 C1013	G1026 A1027 A1028 A1033 A1046 G1041 G1042 G1044 G1044 A1046 G1049 A1050 G1059 U1060 U1061 U1061	U1083 A1084 A1085 A1088 A1088 A1088 A1089 U1101 U1101 U1105 G1106
A1111 61112 61113 61114 61115 61116 61116 61125 61125 A1133 A1133 A1133 A1133 C1135 C1135 C1153 C1153 C1168 C1153 C1168	61171 61172 01173 01176 01176 61177 01181 01181 01181 01183 01183 01183 01184 01283 0129 61212 01220 61223	G1227 G1226 G1236 G1238 G1248 A1254 A1254 A1254 U1256 G1256
G1266 G1271 A1272 C1278 C1278 G1279 G1279 G1200 U1300 C1313 C1329 U1352 C1345 C1345 C1352	61368 41365 61370 61371 61371 61377 61377 61383 A1383 A1383 A1384 A1385 A1365 A1385	01414 01415 01415 01417 01420 01420 01420 01429 01430 01430 01430 11431
G1435 G1441 U1442 G1441 G1450 G1450 G1451 G1459 G1459 G1459 G1476 G1476 G1476 G1476 G1478 G1478 G1478 G1478 G1478 G1482 A1496 A1495	UI 497 UI 497 UI 506 CI 507 A 1508 A 1508 G 1514 A 1515 G 1524 G 1524 G 1524 G 1528 G 1528 G 1529 C 1538 C 15388 C 15388 C 15388 C 15388 C 15388 C 15	d155/ A1544 U1563 C1564 A1566 A1566 A1566 A1569 A1563
U1584 C1585 C1585 C1585 C1586 C1586 C1586 C1586 A1590 A1608 A1608 A1618 A1608 A1618 U1647 U1647 U1647 U1647 C1649 C1649 C1649 C1649 C1649 C1649	C1659 C1674 C1675 C1675 C1675 C1675 C1775 C1773 C1773 C1773 C1773 C1773 C1773 C1773 C1773 C1773 C1773 C1773 C1774 C1774 C1774 C1775 C1755 C1775	C1764 A1773 C1774 C1774 C1776 C1776 A1791 A1794 C1795 C1795 C1795 C1795

• Molecule 1: 23S rRNA

 \bullet Molecule 5: 50S ribosomal protein L4

 \bullet Molecule 6: 50S ribosomal protein L5

 \bullet Molecule 7: 50S ribosomal protein L6

• Molecule 10: 50S ribosomal protein L13 Chain J: 87% 12% • Molecule 11: 50S ribosomal protein L14 Chain K: 85% 15% • Molecule 12: 50S ribosomal protein L15 Chain L: 87% 13% • Molecule 13: 50S ribosomal protein L16 Chain M: 88% 11% • Molecule 14: 50S ribosomal protein L17 Chain N: 93% 6% • • Molecule 15: 50S ribosomal protein L18 Chain O: 80% 19% • Molecule 16: 50S ribosomal protein L19 Chain P: 84% 15% • Molecule 17: 50S ribosomal protein L20

Chain Q:	97%	·
A2 R3 D49 R64 A118		
• Molecule 18: 50S ri	bosomal protein L21	
Chain R:	90%	7% ••
M1 E34 E37 E37 E37 E37 F53 F53 F53 F53 F53 F53 F53 F53 F53 F53	K81 8102 A103	
• Molecule 19: 50S ri	bosomal protein L22	
Chain S:	92%	7% •
H1 14 R11 R11 R33 R83 R83 R83 R83 R83 R83 R83 R95 I100		
• Molecule 20: 50S ri	bosomal protein L23	
Chain T:	85%	14% •
M1 L11 E18 E18 X26 X26 X26 X26 X26 X26 X28 X28 X49 X49	R69 H70 V80 E88 E88 E88 E93	
• Molecule 21: 50S ri	bosomal protein L24	
Chain U:	86%	13% •
A2 K4 L14 K47 K47 K47 K47 C52 C57 C57 C57 C57 C57 C57 C57	A71 D81 R86 P89 F96 F96 T103	
• Molecule 22: 50S ri	bosomal protein L25	
Chain V:	81%	18% •
M1 F2 14 F3 F3 F3 F3 F3 F3 F3 F3 F3 F3 F3 F3 F3	M50 858 858 858 858 858 858 858 858 858 8	
• Molecule 23: 50S ri	bosomal protein L27	
Chain W:	87%	13%
110 811 817 818 818 818 826 829 829 829 829 829 829 829 829 829 829	E85	

 \bullet Molecule 24: 50S ribosomal protein L28

Chain X:	88%	12%
82 R3 P12 842 842 842 842 842 842 842 865 766 766 874		
• Molecule 25: 50S ribo	osomal protein L29	
Chain Y:	89%	11%
k2 V11 N15 N15 R29 S34 S34 L42 L42 V46 D49		
• Molecule 26: 50S ribo	osomal protein L30	
Chain Z:	90%	9% •
A2 812 125 125 837 838 837 838 837 838 838 843 843 843 859		
• Molecule 27: 50S ribo	osomal protein L32	
Chain a:	98%	•
A2 811 K57		
• Molecule 28: 50S ribo	osomal protein L33	
Chain b:	98%	·
64 117 154		
• Molecule 29: 50S ribo	osomal protein L34	
Chain c:	96%	•
M1 K46 K46		
• Molecule 30: 50S ribe	osomal protein L35	
Chain d:	94%	6%
P2 K15 H31 H31 L33 K62 K62 K62 K62		

• Molecule 31: 50S ribosomal protein L36

Chain e:		97%	•	
M1 D20 38				
• Molecule 32:	Deacylated tRNAi(Me	et)		
Chain f:	24%	55%	21%	
62 64 65 65 65 65 65 63 61 612 612	C13 A14 C15 C17 C17 C17 C17 C25 C22 C28 C28 C28 C28 C28 C28 C28 C28 C28	629 632 631 631 631 631 641 642 643 642 648 648 648 648	C51 652 653 055 653 055 055 055 055 055 055 055 055 055 0	664 C65 C66 C67 C68
C69 G70 A72 A73 C74 C74 A76 A76				
• Molecule 33:	fMet-Phe-tRNA(Phe)			
Chain g:	22%	47%	30%	
61 64 64 65 64 65 66 610 610 611 011	U12 C13 C13 C13 C13 C14 C15 C16 C20 C25 C25 C25 C25 C25 C27 C27	C28 C32 C32 C32 C32 C33 C33 C33 C33 C33 C40 C40 C40 C40	645 646 047 047 047 047 047 046 051 051 055 055 055 055 055	A58 C61 A62 C63
A64 G65 A66 A66 A66 U68 U68 U68 C70 C70 C72 A73 A73	C75 31 M76			

4 Experimental information (i)

Property	Value	Source			
EM reconstruction method	SINGLE PARTICLE	Depositor			
Imposed symmetry	POINT, C1	Depositor			
Number of particles used	401905	Depositor			
Resolution determination method	FSC 0.143 CUT-OFF	Depositor			
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor			
	CORRECTION				
Microscope	FEI TITAN KRIOS	Depositor			
Voltage (kV)	300	Depositor			
Electron dose $(e^-/\text{\AA}^2)$	80	Depositor			
Minimum defocus (nm)	300	Depositor			
Maximum defocus (nm)	2200	Depositor			
Magnification	75000	Depositor			
Image detector	FEI FALCON II $(4k \ge 4k)$	Depositor			

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: G7M, 2MA, OMC, 6MZ, DI0, 4D4, PSU, MG, M2G, OMU, 1MG, 2MG, 4SU, OMG, MEQ, 1MA, 5MU, H2U, YYG, 5MC, 3TD, 31M, 7MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bo	ond lengths	Bond angles		
WIOI	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.72	1/69172~(0.0%)	0.74	7/107908~(0.0%)	
2	В	0.56	0/2872	0.71	0/4478	
3	С	0.37	0/2122	0.46	0/2852	
4	D	0.36	0/1576	0.46	0/2119	
5	Е	0.34	0/1571	0.44	0/2113	
6	F	0.29	0/1435	0.45	0/1926	
7	G	0.30	0/1343	0.46	0/1816	
8	Н	0.42	0/1037	0.56	0/1402	
9	Ι	0.47	0/993	0.64	0/1341	
10	J	0.37	0/1152	0.43	0/1551	
11	Κ	0.36	0/955	0.47	0/1279	
12	L	0.34	0/1062	0.47	0/1413	
13	М	0.36	0/1081	0.45	0/1443	
14	Ν	0.35	0/1006	0.44	0/1345	
15	0	0.31	0/910	0.44	0/1219	
16	Р	0.36	0/929	0.45	0/1242	
17	Q	0.40	0/960	0.38	0/1278	
18	R	0.41	0/829	0.54	1/1107~(0.1%)	
19	S	0.36	0/864	0.45	0/1156	
20	Т	0.32	0/745	0.42	0/994	
21	U	0.33	0/788	0.48	1/1051~(0.1%)	
22	V	0.33	0/766	0.42	0/1025	
23	W	0.37	0/587	0.44	0/776	
24	Х	0.37	0/635	0.46	0/848	
25	Y	0.27	0/502	0.37	0/667	
26	Ζ	0.31	0/453	0.44	0/605	
27	a	0.35	0/450	0.45	0/599	
28	b	0.32	0/421	0.44	0/561	
29	с	0.34	0/380	0.43	0/498	
30	d	0.38	0/513	0.46	0/676	
31	е	0.35	0/303	0.44	0/397	

Mol	Chain	Bo	ond lengths	Bond angles		
1VIOI	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
32	f	0.80	4/1725~(0.2%)	1.72	77/2689~(2.9%)	
33	g	0.68	1/1458~(0.1%)	1.38	33/2272~(1.5%)	
All	All	0.64	6/101595~(0.0%)	0.73	119/152646~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
18	R	0	1

All (6) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
32	f	59	A	O3'-P	-6.50	1.53	1.61
32	f	39	С	O3'-P	-6.25	1.53	1.61
32	f	12	G	O3'-P	-6.06	1.53	1.61
32	f	25	С	O3'-P	-6.00	1.53	1.61
1	А	1774	С	O3'-P	-5.19	1.54	1.61
33	g	63	С	O3'-P	-5.06	1.55	1.61

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	f	62	С	N1-C1'-C2'	-11.72	98.76	114.00
32	f	30	G	N9-C1'-C2'	-10.75	100.03	114.00
33	g	13	С	C4'-C3'-O3'	9.83	132.66	113.00
33	g	13	C	N1-C1'-C2'	-9.76	101.27	112.00
33	g	24	G	N9-C1'-C2'	-9.75	101.28	112.00
32	f	65	С	N1-C1'-C2'	-9.73	101.29	112.00
32	f	52	G	N9-C1'-C2'	-9.64	101.39	112.00
33	g	65	G	N9-C1'-C2'	-9.21	101.87	112.00
32	f	23	C	C4'-C3'-O3'	8.76	130.52	113.00
32	f	12	G	N9-C1'-C2'	-8.61	102.53	112.00
32	f	42	G	N9-C1'-C2'	-8.55	102.59	112.00
32	f	51	C	N1-C1'-C2'	-8.36	102.80	112.00
32	f	72	A	N9-C1'-C2'	-8.36	102.80	112.00
33	g	47	U	C4'-C3'-O3'	8.36	129.72	113.00
32	f	65	С	C4'-C3'-O3'	8.27	129.53	113.00
32	f	43	A	N9-C1'-C2'	-8.12	103.07	112.00
32	f	5	G	N9-C1'-C2'	-8.06	103.14	112.00

All (119) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	f	29	G	N9-C1'-C2'	-8.01	103.19	112.00
32	f	51	С	C1'-C2'-O2'	-7.87	86.98	110.60
33	g	22	G	C2'-C3'-O3'	7.83	126.72	109.50
32	f	29	G	C4'-C3'-O3'	7.81	128.61	113.00
33	g	51	G	N9-C1'-C2'	-7.71	103.51	112.00
32	f	72	А	C4'-C3'-O3'	7.66	128.31	113.00
33	g	22	G	P-O3'-C3'	7.64	128.87	119.70
33	g	68	U	N1-C1'-C2'	-7.62	103.62	112.00
33	g	50	U	N1-C1'-C2'	-7.62	103.62	112.00
32	f	73	А	N9-C1'-C2'	-7.57	103.68	112.00
32	f	21	А	O5'-P-OP2	-7.55	98.91	105.70
32	f	40	С	C1'-C2'-O2'	-7.54	87.97	110.60
33	g	5	А	N9-C1'-C2'	-7.50	103.75	112.00
32	f	6	G	N9-C1'-C2'	-7.49	103.76	112.00
32	f	2	G	N9-C1'-C2'	-7.42	103.84	112.00
32	f	13	С	N1-C1'-C2'	-7.38	103.88	112.00
32	f	12	G	C4'-C3'-O3'	7.35	127.69	113.00
32	f	42	G	C4'-C3'-O3'	7.26	127.52	113.00
32	f	14	А	N9-C1'-C2'	-7.24	104.03	112.00
33	g	11	С	N1-C1'-C2'	-7.24	104.04	112.00
32	f	23	С	C1'-C2'-O2'	-7.19	89.03	110.60
33	g	57	G	N9-C1'-C2'	-7.07	104.22	112.00
32	f	59	А	N9-C1'-C2'	-6.95	104.36	112.00
33	g	57	G	C1'-C2'-O2'	-6.94	89.79	110.60
32	f	64	G	C1'-C2'-O2'	-6.90	89.90	110.60
32	f	22	G	C1'-C2'-O2'	-6.88	89.97	110.60
32	f	71	С	C4'-C3'-O3'	6.84	126.68	113.00
32	f	47	U	P-O3'-C3'	6.81	127.87	119.70
32	f	64	G	C4'-C3'-O3'	6.77	126.54	113.00
33	g	69	U	N1-C1'-C2'	-6.76	104.56	112.00
33	g	51	G	C1'-C2'-O2'	-6.73	90.42	110.60
32	f	26	G	C1'-C2'-O2'	-6.72	90.45	110.60
32	f	23	С	N1-C1'-C2'	-6.68	104.66	112.00
32	f	40	С	N1-C1'-C2'	-6.67	104.66	112.00
1	А	2193	G	C2'-C3'-O3'	6.66	124.36	113.70
33	g	69	U	C4'-C3'-O3'	6.58	126.17	113.00
33	g	50	U	C4'-C3'-O3'	6.56	126.12	113.00
1	А	1113	U	C2'-C3'-O3'	6.55	124.17	113.70
32	f	71	C	N1-C1'-C2'	-6.44	104.92	112.00
32	f	2	G	C4'-C3'-O3'	6.41	125.83	113.00
33	g	12	U	N1-C1'-C2'	-6.41	104.95	112.00
33	g	50	U	C1'-C2'-O2'	-6.31	91.66	110.60

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	f	4	G	N9-C1'-C2'	-6.22	105.15	112.00
32	f	30	G	O5'-P-OP2	-6.20	100.12	105.70
32	f	53	G	N9-C1'-C2'	-6.20	105.18	112.00
32	f	61	С	N1-C1'-C2'	-6.12	105.27	112.00
33	g	70	С	N1-C1'-C2'	-6.12	105.27	112.00
32	f	27	U	N1-C1'-C2'	-6.09	105.30	112.00
33	g	18	G	C4'-C3'-O3'	-6.08	96.63	109.40
32	f	69	С	C4'-C3'-O3'	6.08	125.16	113.00
32	f	42	G	C1'-C2'-O2'	-6.07	92.40	110.60
32	f	52	G	C4'-C3'-O3'	6.01	125.02	113.00
32	f	40	С	C4'-C3'-O3'	5.99	124.98	113.00
1	А	1313	U	C2-N1-C1'	5.98	124.87	117.70
33	g	3	G	N9-C1'-C2'	-5.97	105.43	112.00
32	f	3	С	C1'-C2'-O2'	-5.94	92.77	110.60
32	f	70	G	N9-C1'-C2'	-5.94	105.47	112.00
33	g	13	С	C1'-C2'-O2'	-5.94	92.78	110.60
32	f	64	G	N9-C1'-C2'	-5.92	105.48	112.00
32	f	15	G	N9-C1'-C2'	-5.92	105.49	112.00
32	f	53	G	C4'-C3'-O3'	5.86	124.73	113.00
32	f	29	G	C1'-C2'-O2'	-5.86	93.03	110.60
32	f	13	С	C4'-C3'-O3'	5.85	124.70	113.00
33	g	5	A	C4'-C3'-O3'	5.82	124.63	113.00
32	f	27	U	C4'-C3'-O3'	5.79	124.58	113.00
33	g	19	G	C4'-C3'-O3'	-5.78	97.27	109.40
33	g	68	U	C4'-C3'-O3'	5.78	124.55	113.00
32	f	48	С	C4'-C3'-O3'	-5.74	97.35	109.40
32	f	74	С	O5'-P-OP1	-5.72	100.55	105.70
32	f	41	С	N1-C1'-C2'	-5.71	105.72	112.00
18	R	52	PRO	CA-N-CD	-5.64	103.61	111.50
32	f	62	С	C3'-C2'-C1'	5.59	105.97	101.50
33	g	65	G	O5'-P-OP2	-5.59	100.67	105.70
1	А	512	G	O4'-C1'-N9	5.58	112.66	108.20
32	f	74	С	C1'-C2'-O2'	-5.52	94.04	110.60
32	f	51	С	C4'-C3'-O3'	5.47	123.95	113.00
32	f	27	U	C1'-C2'-O2'	-5.44	94.27	110.60
32	f	43	A	C4'-C3'-O3'	5.44	123.88	113.00
32	f	22	G	N9-C1'-C2'	-5.43	106.03	112.00
32	f	69	С	N1-C1'-C2'	-5.41	106.05	112.00
32	f	43	А	P-O5'-C5'	-5.38	112.29	120.90

f

g

f

32

33

32

U

U

G

N1-C1'-C2'

O5'-P-OP1

O4'-C1'-N9

50

50

70

Continued on next page...

112.00

105.70

108.20

106.08

100.89

103.96

-5.38

-5.35

-5.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
32	f	74	С	C4'-C3'-O3'	5.28	123.55	113.00
1	А	404	A	O4'-C1'-C2'	-5.26	100.54	105.80
32	f	42	G	O5'-P-OP1	5.26	117.01	110.70
32	f	43	A	C1'-C2'-O2'	-5.23	94.90	110.60
32	f	62	C	O4'-C1'-N1	5.22	112.38	108.20
33	g	18	G	C1'-C2'-O2'	5.21	126.23	110.60
32	f	5	G	C4'-C3'-O3'	5.21	123.41	113.00
32	f	4	G	C4'-C3'-O3'	5.18	123.37	113.00
32	f	30	G	O5'-P-OP1	5.16	116.89	110.70
32	f	4	G	C1'-C2'-O2'	-5.13	95.22	110.60
32	f	50	U	C4'-C3'-O3'	5.10	123.20	113.00
33	g	47	U	P-O3'-C3'	5.08	125.80	119.70
33	g	70	C	C3'-C2'-C1'	5.08	105.56	101.50
1	А	12	U	N3-C2-O2	-5.04	118.67	122.20
21	U	52	LEU	CA-CB-CG	5.02	126.85	115.30
32	f	3	С	N1-C1'-C2'	-5.01	106.49	112.00
33	g	4	G	N9-C1'-C2'	-5.01	106.49	112.00
1	А	1872	A	O4'-C1'-N9	5.00	112.20	108.20

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
18	R	51	VAL	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	62252	0	31324	392	0
2	В	2569	0	1301	13	0
3	С	2083	0	2154	22	0
4	D	1566	0	1617	14	0
5	Е	1552	0	1619	13	0
6	F	1411	0	1444	95	0
7	G	1323	0	1371	31	0
8	Н	1023	0	1052	36	0

Conti	Continuea from previous page							
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes		
9	Ι	979	0	1028	30	0		
10	J	1129	0	1162	10	0		
11	K	946	0	1023	10	0		
12	L	1053	0	1129	12	0		
13	М	1075	0	1155	10	0		
14	N	993	0	1034	6	0		
15	0	900	0	935	18	0		
16	Р	917	0	962	10	0		
17	Q	947	0	1019	3	0		
18	R	816	0	839	7	0		
19	S	857	0	922	5	0		
20	Т	739	0	807	14	0		
21	U	780	0	830	7	0		
22	V	753	0	780	11	0		
23	W	580	0	593	5	0		
24	Х	625	0	652	4	0		
25	Y	501	0	531	3	0		
26	Z	449	0	487	3	0		
27	a	444	0	458	0	0		
28	b	414	0	442	0	0		
29	с	377	0	418	0	0		
30	d	504	0	572	0	0		
31	е	302	0	343	0	0		
32	f	1625	0	829	0	0		
33	g	1667	0	880	0	0		
34	Ā	174	0	0	0	0		
34	В	3	0	0	0	0		
34	U	1	0	0	0	0		
35	А	58	0	0	1	0		
36	А	498	0	0	13	0		
36	В	9	0	0	0	0		
36	С	7	0	0	1	0		
36	D	1	0	0	0	0		
36	Е	1	0	0	0	0		
36	L	6	0	0	0	0		
36	N	1	0	0	0	0		
36	Т	1	0	0	0	0		
36	d	4	0	0	0	0		
All	All	94915	0	61712	730	0		

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:883:G:N2	1:A:894:U:O2	1.56	1.37
1:A:1:G:N2	1:A:2902:C:O2	1.64	1.30
9:I:98:VAL:O	9:I:138:LEU:HD23	1.22	1.25
1:A:1:G:N1	1:A:2902:C:N3	1.92	1.17
1:A:1050:A:N3	1:A:2751:G:C2	2.13	1.17
6:F:108:VAL:CG1	6:F:109:PRO:HD3	1.76	1.16
6:F:108:VAL:HG13	6:F:109:PRO:CD	1.78	1.14
8:H:67:THR:HG22	8:H:68:PRO:CD	1.76	1.14
6:F:103:LEU:HB2	6:F:107:ALA:CB	1.79	1.12
18:R:51:VAL:HG12	18:R:52:PRO:HD2	1.29	1.11
1:A:884:U:O4	1:A:893:C:C4	2.07	1.08
8:H:12:VAL:CG1	8:H:63:ALA:HB2	1.84	1.07
8:H:67:THR:HG22	8:H:68:PRO:HD3	1.04	1.03
1:A:2898:U:H2'	1:A:2899:A:C8	1.92	1.03
1:A:882:G:N1	1:A:895:U:O2	1.90	1.03
8:H:67:THR:HB	8:H:68:PRO:HD2	1.38	1.02
1:A:2898:U:H2'	1:A:2899:A:H8	1.24	1.00
6:F:103:LEU:HB2	6:F:107:ALA:HB3	1.38	1.00
1:A:884:U:O4	1:A:893:C:N3	1.96	0.99
9:I:100:LYS:HB2	9:I:141:GLU:HB2	1.46	0.98
1:A:1050:A:C4	1:A:2751:G:C2	2.51	0.98
8:H:67:THR:CG2	8:H:68:PRO:HD3	1.94	0.98
8:H:67:THR:CG2	8:H:68:PRO:CD	2.41	0.97
8:H:12:VAL:HG13	8:H:63:ALA:HB2	1.42	0.97
1:A:1050:A:H1'	1:A:2751:G:N2	1.79	0.96
1:A:894:U:O2'	1:A:895:U:OP1	1.82	0.95
1:A:1:G:N1	1:A:2902:C:C2	2.34	0.95
1:A:1050:A:C4	1:A:2751:G:N2	2.36	0.94
6:F:110:ARG:HB3	6:F:137:ILE:HG23	1.48	0.94
1:A:884:U:C4	1:A:893:C:N3	2.35	0.93
6:F:103:LEU:CB	6:F:107:ALA:HB3	1.98	0.92
1:A:2469:A:H4'	13:M:55:ARG:HD2	1.51	0.92
8:H:67:THR:CB	8:H:68:PRO:HD2	2.00	0.90
1:A:1:G:C2	1:A:2902:C:O2	2.24	0.90
1:A:1847:A:HO2'	1:A:1848:A:H8	0.98	0.90
1:A:1050:A:C2	1:A:2751:G:C2	2.59	0.90
6:F:103:LEU:CB	6:F:107:ALA:CB	2.50	0.89
1:A:883:G:H1	1:A:894:U:H3	0.89	0.89
1:A:2116:G:O6	1:A:2171:A:N6	2.06	0.89
6:F:103:LEU:CA	6:F:107:ALA:HB3	2.03	0.88

All (730) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
9:I:98:VAL:O	9:I:138:LEU:CD2	2.17	0.88
6:F:150:ARG:HG2	6:F:150:ARG:HH11	1.38	0.88
1:A:134:G:C6	1:A:135:U:C4	2.62	0.87
1:A:884:U:O4	1:A:893:C:N4	2.08	0.86
6:F:103:LEU:HA	6:F:107:ALA:CB	2.06	0.86
8:H:67:THR:CB	8:H:68:PRO:CD	2.53	0.85
6:F:103:LEU:CA	6:F:107:ALA:CB	2.54	0.85
1:A:1:G:C6	1:A:2902:C:N3	2.45	0.85
1:A:1049:C:H1'	1:A:1113:U:O2'	1.78	0.84
8:H:64:VAL:HG22	8:H:69:PHE:HB3	1.60	0.82
7:G:118:PRO:HG2	7:G:121:ILE:HD13	1.60	0.82
8:H:16:SER:OG	8:H:63:ALA:HB1	1.79	0.81
8:H:67:THR:CG2	8:H:68:PRO:HD2	2.11	0.81
8:H:67:THR:HB	8:H:68:PRO:CD	2.12	0.80
6:F:136:ILE:HG22	6:F:136:ILE:O	1.81	0.80
8:H:60:LEU:O	8:H:64:VAL:HB	1.82	0.80
1:A:884:U:H3'	1:A:885:C:H4'	1.64	0.80
1:A:2006:C:OP2	36:A:3201:HOH:O	1.98	0.80
1:A:894:U:H2'	1:A:895:U:H6	1.47	0.79
6:F:135:GLN:O	6:F:141:ILE:HG21	1.80	0.79
1:A:2099:U:H2'	1:A:2100:G:H8	1.47	0.78
1:A:1:G:O6	1:A:2902:C:N4	2.17	0.78
1:A:1050:A:H1'	1:A:2751:G:H21	1.47	0.78
1:A:1050:A:N3	1:A:2751:G:N2	2.31	0.78
1:A:883:G:C2	1:A:894:U:O2	2.36	0.78
6:F:104:ILE:O	6:F:108:VAL:HG11	1.84	0.78
8:H:12:VAL:HG12	8:H:63:ALA:HB2	1.65	0.77
1:A:2010:G:O6	36:A:3202:HOH:O	2.02	0.77
1:A:894:U:H2'	1:A:895:U:C6	2.19	0.77
6:F:103:LEU:HA	6:F:107:ALA:HB2	1.63	0.77
6:F:111:ILE:HG13	6:F:111:ILE:O	1.83	0.77
1:A:1:G:N1	1:A:2902:C:O2	2.18	0.76
1:A:1050:A:C1'	1:A:2751:G:N2	2.48	0.76
6:F:135:GLN:NE2	6:F:148:ARG:O	2.18	0.76
1:A:882:G:C6	1:A:883:G:N7	2.54	0.75
18:R:51:VAL:CG1	18:R:52:PRO:HD2	2.13	0.75
1:A:1050:A:C2	1:A:2751:G:C4	2.74	0.75
5:E:7:ASP:OD1	5:E:7:ASP:N	2.19	0.74
2:B:31:C:O2	2:B:53:A:N6	2.20	0.74
6:F:134:GLU:OE2	6:F:149:VAL:HG13	1.87	0.74
6:F:111:ILE:HD11	6:F:114:PHE:HA	1.69	0.74

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:2751:G:H2'	1:A:2751:G:N3	2.02	0.74
1:A:142:A:C2	1:A:143:C:C2	2.75	0.74
1:A:63:A:H2	20:T:70:HIS:CE1	2.05	0.74
6:F:134:GLU:CD	6:F:149:VAL:HG13	2.08	0.73
1:A:611:C:C4	1:A:612:G:C5	2.77	0.73
1:A:2683:C:O2	11:K:70:ARG:NH2	2.22	0.73
6:F:80:ARG:HB2	6:F:83:TYR:CZ	2.24	0.72
6:F:149:VAL:O	6:F:149:VAL:HG12	1.88	0.72
1:A:611:C:N4	1:A:612:G:C6	2.58	0.72
3:C:133:ARG:HB3	3:C:186:ALA:HB1	1.71	0.72
6:F:102:ARG:O	6:F:106:ILE:HB	1.90	0.72
1:A:883:G:N2	1:A:894:U:C2	2.56	0.72
9:I:113:LYS:O	9:I:117:MET:N	2.23	0.71
10:J:6:ALA:H	10:J:45:THR:HG21	1.55	0.71
1:A:611:C:C4	1:A:612:G:C6	2.77	0.71
1:A:884:U:H4'	1:A:884:U:OP1	1.91	0.71
1:A:1307:A:N6	1:A:1606:C:O2	2.19	0.71
1:A:1050:A:C2	1:A:2751:G:N3	2.58	0.71
6:F:80:ARG:NH1	6:F:80:ARG:HG3	2.05	0.71
6:F:80:ARG:HG3	6:F:80:ARG:HH11	1.56	0.70
1:A:760:G:H4'	1:A:1776:G:OP1	1.92	0.70
6:F:108:VAL:HG13	6:F:109:PRO:HD3	0.84	0.69
1:A:1869:G:H21	1:A:1872:A:H2	1.38	0.69
1:A:1478:G:H1	1:A:1513:U:H3	1.39	0.69
1:A:2099:U:H2'	1:A:2100:G:C8	2.27	0.69
1:A:881:G:H2'	1:A:882:G:C8	2.27	0.69
1:A:756:A:N7	36:A:3210:HOH:O	2.25	0.69
3:C:2:ALA:N	3:C:20:VAL:O	2.27	0.68
1:A:141:G:N3	1:A:141:G:H3'	2.09	0.68
6:F:111:ILE:HA	6:F:137:ILE:CD1	2.23	0.68
1:A:1324:G:N7	36:A:3214:HOH:O	2.28	0.67
6:F:103:LEU:O	6:F:107:ALA:N	2.26	0.67
12:L:85:VAL:HG11	12:L:90:VAL:HG12	1.77	0.67
12:L:56:PRO:HG2	12:L:59:ARG:HG3	1.76	0.67
1:A:139:U:C6	20:T:1:MET:SD	2.88	0.67
9:I:98:VAL:O	9:I:138:LEU:HA	1.95	0.66
1:A:136:G:C6	1:A:137:U:C5	2.83	0.66
1:A:894:U:C4	1:A:895:U:C4	2.83	0.66
1:A:1039:A:H2	1:A:1116:G:H22	1.42	0.66
1:A:1050:A:N9	1:A:2751:G:N2	2.43	0.66
1:A:611:C:C5	1:A:612:G:C5	2.83	0.66

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:B:43:C:O2	6:F:92:ARG:NH2	2.29	0.66
1:A:1113:U:O5'	1:A:1113:U:H6	1.79	0.66
8:H:12:VAL:HG13	8:H:63:ALA:CB	2.22	0.66
1:A:811:U:OP1	36:A:3204:HOH:O	2.14	0.66
1:A:2127:G:O2'	1:A:2128:G:O4'	2.13	0.66
1:A:1972:G:OP2	36:A:3203:HOH:O	2.13	0.65
10:J:88:THR:OG1	10:J:90:GLU:OE2	2.14	0.65
1:A:611:C:C5	1:A:612:G:C6	2.84	0.65
1:A:1377:G:N7	36:A:3216:HOH:O	2.29	0.65
6:F:134:GLU:OE1	6:F:149:VAL:CG1	2.45	0.64
1:A:1482:G:H1'	1:A:1509:A:H61	1.62	0.64
1:A:2127:G:O2'	1:A:2128:G:O5'	2.15	0.64
25:Y:11:VAL:O	25:Y:15:ASN:ND2	2.29	0.64
6:F:150:ARG:HG2	6:F:150:ARG:NH1	2.10	0.64
8:H:16:SER:CB	8:H:63:ALA:HB1	2.28	0.64
1:A:1871:A:O2'	1:A:1872:A:N3	2.25	0.64
6:F:47:LYS:H	6:F:47:LYS:HD2	1.62	0.64
1:A:881:G:H3'	1:A:882:G:C8	2.33	0.64
1:A:2900:A:O5'	1:A:2900:A:H8	1.80	0.64
3:C:236:GLU:OE2	36:C:301:HOH:O	2.15	0.64
6:F:104:ILE:O	6:F:108:VAL:CG1	2.46	0.64
1:A:1899:A:N7	36:A:3217:HOH:O	2.29	0.64
1:A:1061:U:OP2	9:I:10:LYS:NZ	2.31	0.63
1:A:1050:A:N3	1:A:2751:G:N3	2.46	0.63
1:A:882:G:H22	1:A:895:U:H2'	1.61	0.63
7:G:47:ASP:O	7:G:49:THR:N	2.29	0.63
1:A:134:G:C5	1:A:135:U:C4	2.86	0.63
1:A:568:U:H1'	1:A:2030:6MZ:H9C1	1.81	0.62
1:A:790:U:O2'	1:A:791:C:C5	2.53	0.62
11:K:121:GLU:OE1	16:P:65:SER:OG	2.17	0.62
1:A:1:G:O6	1:A:2902:C:N3	2.32	0.62
1:A:1050:A:C4	1:A:2751:G:N1	2.67	0.62
1:A:1248:G:OP1	5:E:44:ARG:NH2	2.33	0.62
6:F:136:ILE:HD13	6:F:143:TYR:HD1	1.64	0.62
16:P:91:ALA:HB2	16:P:113:ARG:HA	1.80	0.62
6:F:4:LEU:HA	6:F:7:TYR:HB3	1.81	0.62
1:A:139:U:C5	20:T:1:MET:CE	2.83	0.62
1:A:881:G:C6	1:A:882:G:C6	2.87	0.62
18:R:37:GLU:OE2	18:R:37:GLU:HA	1.98	0.62
6:F:103:LEU:CA	6:F:107:ALA:HB2	2.28	0.61
1:A:1826:G:O2'	1:A:1971:U:OP2	2.18	0.61

	Al O	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:D:33:ARG:NH1	4:D:53:GLY:O	2.33	0.61
1:A:355:U:H2'	1:A:356:G:H8	1.65	0.61
1:A:881:G:H3'	1:A:882:G:H8	1.66	0.61
8:H:70:GLU:O	8:H:73:LYS:HG3	2.01	0.61
9:I:100:LYS:HA	9:I:139:VAL:O	1.99	0.61
6:F:103:LEU:CB	6:F:107:ALA:HB2	2.31	0.61
20:T:11:LEU:O	25:Y:29:ARG:NH1	2.31	0.61
1:A:862:G:N7	36:A:3222:HOH:O	2.31	0.60
1:A:84:A:N1	1:A:98:G:O2'	2.32	0.60
1:A:144:A:H2'	1:A:145:C:C6	2.36	0.60
6:F:80:ARG:HH11	6:F:80:ARG:CG	2.14	0.60
8:H:134:GLU:O	8:H:134:GLU:HG3	2.00	0.60
9:I:110:ALA:O	9:I:114:ALA:N	2.34	0.60
6:F:103:LEU:C	6:F:107:ALA:HB3	2.22	0.60
1:A:136:G:C5	1:A:137:U:C5	2.89	0.60
7:G:35:ARG:HD3	7:G:71:LEU:HD23	1.82	0.59
1:A:63:A:C2	20:T:70:HIS:CE1	2.90	0.59
1:A:2324:U:H3'	1:A:2325:G:C5'	2.32	0.59
6:F:101:GLU:HA	6:F:104:ILE:HG22	1.83	0.59
26:Z:41:THR:HG22	26:Z:43:ALA:H	1.67	0.59
7:G:87:LEU:HB2	7:G:131:ILE:HG23	1.85	0.59
14:N:29:VAL:HG21	14:N:75:ILE:HG23	1.84	0.59
22:V:4:ILE:HG12	22:V:50:MET:HE1	1.83	0.59
1:A:2752:C:H6	1:A:2752:C:O5'	1.86	0.59
3:C:29:PRO:HG2	3:C:34:LEU:HD11	1.85	0.59
6:F:136:ILE:O	6:F:136:ILE:CG2	2.48	0.59
1:A:45:G:H5'	1:A:46:G:H5'	1.85	0.59
1:A:894:U:N3	1:A:895:U:C4	2.70	0.59
7:G:127:THR:HG23	7:G:130:GLU:HB2	1.85	0.59
1:A:143:C:H6	1:A:143:C:O5'	1.86	0.59
1:A:1869:G:HO2'	1:A:1871:A:H2	1.49	0.59
7:G:127:THR:OG1	7:G:128:GLN:N	2.35	0.59
1:A:807:U:OP2	12:L:41:ARG:NH1	2.36	0.58
6:F:65:PRO:HA	6:F:89:VAL:HG22	1.85	0.58
1:A:134:G:C5	1:A:135:U:C5	2.92	0.58
1:A:884:U:N3	1:A:893:C:C2	2.68	0.58
6:F:134:GLU:CD	6:F:149:VAL:CG1	2.72	0.58
6:F:141:ILE:O	6:F:141:ILE:HG23	2.04	0.58
1:A:1527:G:N1	1:A:1544:A:OP2	2.32	0.58
1:A:894:U:C2	1:A:895:U:C5	2.92	0.58
1:A:320:A:N3	5:E:163:ASN:ND2	2.50	0.57

	A h	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
13:M:20:LEU:HD13	22:V:81:PRO:HG2	1.86	0.57
8:H:103:ASN:O	8:H:105:LYS:N	2.37	0.57
1:A:883:G:N1	1:A:894:U:N3	2.35	0.57
1:A:2518:A:H2'	1:A:2518:A:N3	2.20	0.57
7:G:19:ILE:HG13	7:G:24:ILE:HD12	1.87	0.57
6:F:134:GLU:OE2	6:F:149:VAL:CG1	2.52	0.57
1:A:139:U:C5	20:T:1:MET:HE1	2.40	0.57
22:V:58:SER:OG	22:V:59:GLU:OE1	2.20	0.57
1:A:2517:C:C6	1:A:2542:A:N7	2.73	0.57
1:A:757:G:O6	36:A:3205:HOH:O	2.14	0.56
1:A:2315:G:H2'	1:A:2316:G:H8	1.69	0.56
6:F:35:THR:HG23	6:F:155:THR:HG23	1.87	0.56
15:O:99:TYR:OH	15:O:111:ARG:NH1	2.38	0.56
6:F:117:LEU:HB2	6:F:176:PRO:O	2.05	0.56
7:G:42:GLU:HB3	7:G:55:ARG:HE	1.70	0.56
8:H:22:ALA:HA	8:H:86:THR:HA	1.88	0.56
1:A:271:G:O2'	1:A:272:A:O5'	2.22	0.56
3:C:227:PRO:HA	3:C:233:GLY:HA2	1.87	0.56
13:M:77:PRO:HG2	13:M:80:VAL:HG21	1.88	0.56
6:F:110:ARG:HB3	6:F:137:ILE:CG2	2.28	0.56
13:M:75:GLU:HB2	13:M:90:GLU:HG3	1.86	0.56
1:A:218:A:N7	36:A:3224:HOH:O	2.32	0.56
3:C:79:GLU:OE2	3:C:101:ARG:NE	2.39	0.56
7:G:155:GLU:OE1	7:G:160:LYS:N	2.33	0.56
9:I:19:ASN:HA	9:I:39:CYS:SG	2.46	0.56
5:E:136:GLN:NE2	5:E:140:ASP:OD1	2.38	0.56
1:A:1041:G:C2	1:A:1115:G:C2	2.93	0.56
9:I:99:GLY:HA3	9:I:138:LEU:HD22	1.87	0.56
1:A:2898:U:O2'	1:A:2899:A:H5'	2.06	0.55
19:S:4:ILE:HG12	19:S:106:VAL:HG22	1.89	0.55
19:S:83:LYS:HD2	19:S:95:ARG:HE	1.71	0.55
6:F:111:ILE:HA	6:F:137:ILE:HD12	1.87	0.55
26:Z:37:GLU:O	26:Z:38:ARG:NH1	2.39	0.55
6:F:126:GLY:O	6:F:158:THR:OG1	2.23	0.55
13:M:25:ASP:N	13:M:25:ASP:OD1	2.38	0.55
6:F:104:ILE:HG23	6:F:105:THR:HG23	1.88	0.55
13:M:66:ARG:NH1	13:M:104:GLU:OE1	2.39	0.55
11:K:110:GLU:HA	11:K:113:MET:HG2	1.89	0.55
1:A:597:G:O2'	12:L:11:GLY:O	2.24	0.55
1:A:134:G:C6	1:A:135:U:N3	2.76	0.54
1:A:2314:A:OP1	6:F:88:LYS:NZ	2.41	0.54

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:1266:G:O2'	1:A:2012:G:O6	2.21	0.54
35:A:3175:DI0:CBN	35:A:3175:DI0:CAR	2.86	0.54
1:A:370:G:O2'	1:A:424:G:OP1	2.20	0.54
1:A:894:U:HO2'	1:A:895:U:P	2.29	0.54
1:A:2032:G:N2	4:D:151:THR:OG1	2.40	0.54
5:E:157:LEU:HG	5:E:169:VAL:HG11	1.89	0.54
1:A:790:U:O2'	1:A:791:C:C6	2.61	0.54
5:E:118:LEU:HD11	5:E:188:MET:HG3	1.90	0.54
1:A:141:G:N3	1:A:141:G:H5"	2.23	0.54
13:M:110:GLU:OE2	13:M:114:ARG:NH2	2.41	0.54
1:A:668:A:H2'	1:A:670:A:H62	1.73	0.54
10:J:45:THR:HG22	17:Q:64:ARG:HH21	1.73	0.54
1:A:1494:A:O2'	1:A:1495:A:OP1	2.26	0.54
1:A:2646:C:OP2	1:A:2732:G:O2'	2.25	0.54
5:E:17:THR:O	5:E:21:ARG:NH2	2.41	0.53
2:B:40:U:N3	2:B:44:G:OP2	2.29	0.53
1:A:1050:A:C1'	1:A:2751:G:H22	2.18	0.53
1:A:2172:U:H4'	1:A:2173:A:H5'	1.90	0.53
1:A:1871:A:O2'	1:A:1872:A:O5'	2.27	0.53
3:C:5:LYS:NZ	3:C:14:ARG:O	2.40	0.53
21:U:81:ASP:OD2	21:U:96:PHE:HB3	2.09	0.53
1:A:882:G:C6	1:A:883:G:C8	2.97	0.53
1:A:894:U:C4	1:A:895:U:O4	2.62	0.53
22:V:45:ASP:OD1	22:V:45:ASP:N	2.42	0.53
1:A:1007:C:OP1	10:J:37:ARG:NH2	2.42	0.53
16:P:63:LYS:HE2	16:P:65:SER:HB2	1.91	0.53
22:V:11:GLU:N	22:V:11:GLU:OE1	2.42	0.53
1:A:1:G:O6	1:A:2902:C:C4	2.62	0.52
1:A:881:G:C2'	1:A:882:G:C8	2.92	0.52
1:A:142:A:H2'	1:A:143:C:C6	2.44	0.52
20:T:89:GLU:H	20:T:89:GLU:CD	2.13	0.52
1:A:136:G:O5'	1:A:136:G:H8	1.91	0.52
1:A:155:A:H2'	1:A:156:A:C8	2.45	0.52
1:A:1141:U:H4'	1:A:1142:A:O4'	2.10	0.52
1:A:1105:U:H2'	1:A:1106:G:H8	1.75	0.52
1:A:1796:U:H2'	1:A:1797:G:C8	2.45	0.52
1:A:2291:U:OP1	1:A:2380:C:O2'	2.26	0.52
1:A:2751:G:N3	1:A:2751:G:C2'	2.73	0.52
3:C:107:PRO:HD2	3:C:110:LEU:HD22	1.91	0.52
7:G:123:ALA:HB1	7:G:131:ILE:HD11	1.92	0.52
18:R:37:GLU:HG3	18:R:53:PHE:CE1	2.43	0.52

	At and 9	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:2857:G:N2	1:A:2860:A:OP2	2.35	0.52
23:W:65:GLY:HA2	23:W:85:GLU:HG2	1.92	0.52
1:A:141:G:N3	1:A:141:G:C3'	2.73	0.52
1:A:2788:C:O2'	1:A:2809:A:N3	2.38	0.52
1:A:2469:A:H4'	13:M:55:ARG:CD	2.33	0.52
1:A:881:G:C3'	1:A:882:G:C8	2.93	0.52
1:A:882:G:H22	1:A:895:U:C2'	2.23	0.52
6:F:34:ILE:HG12	6:F:96:MET:HG3	1.90	0.52
1:A:894:U:O2'	1:A:895:U:P	2.68	0.51
1:A:143:C:H2'	1:A:144:A:C8	2.45	0.51
1:A:2406:A:OP2	1:A:2406:A:H2'	2.10	0.51
1:A:1049:C:C1'	1:A:1113:U:O2'	2.55	0.51
2:B:51:G:OP1	15:O:63:LYS:NZ	2.37	0.51
1:A:1007:C:OP2	36:A:3206:HOH:O	2.19	0.51
1:A:2757:A:N1	7:G:67:THR:HG21	2.26	0.51
1:A:894:U:C2	1:A:895:U:C6	2.98	0.51
1:A:463:G:N2	1:A:466:A:OP2	2.37	0.51
1:A:2315:G:H2'	1:A:2316:G:C8	2.44	0.51
6:F:108:VAL:CG1	6:F:109:PRO:CD	2.61	0.51
20:T:28:ASN:ND2	20:T:88:LYS:O	2.43	0.51
1:A:612:G:H2'	1:A:614:A:C8	2.45	0.51
2:B:66:A:H61	2:B:107:G:H2'	1.76	0.51
1:A:743:A:O2'	1:A:1659:G:OP1	2.28	0.51
1:A:1046:A:H4'	8:H:58:THR:HG21	1.91	0.51
1:A:1172:C:C5	1:A:1173:U:H1'	2.46	0.51
12:L:91:ASP:OD1	12:L:93:ASN:N	2.43	0.51
11:K:107:LEU:HB2	11:K:116:ILE:HD11	1.93	0.50
1:A:1059:G:H4'	9:I:117:MET:HE2	1.93	0.50
1:A:1796:U:H2'	1:A:1797:G:H8	1.76	0.50
4:D:3:GLY:HA3	4:D:204:LYS:HG2	1.93	0.50
1:A:534:U:O2'	17:Q:49:ASP:OD2	2.25	0.50
1:A:1715:G:O2'	1:A:1743:G:O6	2.20	0.50
1:A:2469:A:N6	1:A:2481:G:O2'	2.44	0.50
3:C:133:ARG:O	3:C:167:ARG:NH2	2.45	0.50
3:C:245:VAL:HG12	3:C:251:GLN:HA	1.94	0.50
1:A:611:C:N4	1:A:612:G:N1	2.59	0.50
1:A:1808:A:H3'	1:A:1809:A:C8	2.47	0.50
1:A:2052:A:H4'	4:D:148:GLN:O	2.11	0.50
4:D:77:ARG:NH2	4:D:200:ASP:OD1	2.45	0.50
1:A:278:A:OP2	1:A:361:G:N1	2.45	0.50
1:A:613:A:H4'	1:A:614:A:H5"	1.94	0.50

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:1047:G:H1'	1:A:1111:A:H61	1.76	0.50
1:A:1506:U:H2'	1:A:1507:C:C6	2.46	0.50
1:A:611:C:C6	1:A:612:G:N7	2.79	0.50
1:A:2848:G:O2'	1:A:2867:G:N2	2.33	0.50
1:A:2899:A:H2'	1:A:2900:A:C8	2.46	0.50
1:A:1090:A:N1	1:A:1101:U:O2	2.45	0.50
1:A:1587:G:H2'	1:A:1588:G:H8	1.77	0.50
6:F:73:SER:OG	6:F:81:GLN:N	2.39	0.50
1:A:2591:C:H2'	1:A:2592:G:C8	2.48	0.49
1:A:2898:U:C2	1:A:2899:A:N7	2.80	0.49
6:F:121:SER:OG	6:F:129:SER:O	2.29	0.49
1:A:784:G:H5'	1:A:785:G:OP1	2.12	0.49
16:P:49:ALA:HB3	16:P:60:THR:HG23	1.92	0.49
1:A:355:U:H2'	1:A:356:G:C8	2.47	0.49
22:V:9:ARG:HG2	22:V:41:GLU:HG3	1.94	0.49
3:C:72:ASP:OD2	3:C:189:ARG:NH1	2.33	0.49
1:A:136:G:C6	1:A:137:U:C4	3.01	0.49
1:A:191:A:H2'	1:A:192:C:C6	2.47	0.49
1:A:729:G:C6	3:C:207:LYS:HB2	2.47	0.49
1:A:1172:C:C6	1:A:1173:U:H1'	2.48	0.49
15:O:15:ARG:NH2	15:O:95:SER:HB2	2.27	0.49
1:A:1590:A:H2'	1:A:1591:A:C8	2.48	0.49
6:F:44:ILE:HG21	6:F:79:ILE:HG22	1.94	0.49
1:A:1794:A:H2'	1:A:1795:C:C6	2.48	0.49
1:A:2313:C:H5"	6:F:88:LYS:HD3	1.95	0.49
6:F:129:SER:HA	6:F:155:THR:HA	1.94	0.49
1:A:1170:C:H2'	1:A:1171:G:O4'	2.13	0.49
11:K:40:LYS:HE3	11:K:57:VAL:HG12	1.94	0.49
1:A:1046:A:C8	8:H:62:ARG:NH2	2.81	0.49
1:A:134:G:H2'	1:A:135:U:O4'	2.13	0.48
1:A:144:A:H2'	1:A:145:C:H6	1.77	0.48
1:A:141:G:N3	1:A:141:G:C5'	2.76	0.48
1:A:1870:C:O2'	1:A:1871:A:N3	2.36	0.48
1:A:1916:A:O5'	1:A:1916:A:H8	1.96	0.48
3:C:232:HIS:HA	3:C:242:LYS:HD2	1.95	0.48
6:F:4:LEU:HD13	6:F:97:TRP:HE3	1.79	0.48
6:F:108:VAL:N	6:F:109:PRO:CD	2.77	0.48
12:L:132:ARG:HG3	12:L:142:ILE:HD12	1.94	0.48
1:A:612:G:O5'	1:A:612:G:H8	1.96	0.48
1:A:896:A:C8	1:A:896:A:H3'	2.48	0.48
1:A:1590:A:H2'	1:A:1591:A:H8	1.77	0.48

	1	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:123:ALA:O	3:C:128:ASN:ND2	2.41	0.48
10:J:125:TYR:OH	10:J:132:HIS:NE2	2.45	0.48
22:V:72:VAL:HG12	22:V:93:ARG:HA	1.95	0.48
1:A:2000:C:OP1	14:N:5:LYS:NZ	2.35	0.48
1:A:1083:U:H4'	8:H:42:ARG:NH1	2.28	0.48
9:I:21:SER:HB3	9:I:22:PRO:HD3	1.96	0.48
1:A:1113:U:H2'	1:A:1114:C:C6	2.48	0.48
1:A:2514:U:H2'	1:A:2515:C:C6	2.48	0.48
6:F:136:ILE:HD11	6:F:146:VAL:HG21	1.95	0.48
7:G:101:ASN:ND2	7:G:116:GLN:OE1	2.47	0.48
1:A:1050:A:C5	1:A:2751:G:N1	2.82	0.48
6:F:79:ILE:HD12	6:F:79:ILE:O	2.14	0.48
1:A:546:U:O2'	1:A:548:G:OP2	2.27	0.47
1:A:1177:G:H2'	1:A:1178:C:C6	2.49	0.47
1:A:2243:U:H2'	1:A:2244:U:C6	2.49	0.47
24:X:6:GLN:O	24:X:74:ARG:NH1	2.47	0.47
1:A:630:G:N2	1:A:633:A:OP2	2.33	0.47
5:E:119:ILE:HB	5:E:187:VAL:HG22	1.97	0.47
6:F:108:VAL:N	6:F:109:PRO:HD2	2.29	0.47
22:V:2:PHE:HB2	22:V:61:LEU:HD22	1.95	0.47
23:W:26:PHE:N	23:W:29:GLU:OE1	2.36	0.47
1:A:1651:G:OP1	14:N:40:LYS:NZ	2.41	0.47
1:A:2162:G:H5"	1:A:2171:A:H2'	1.95	0.47
1:A:2751:G:H4'	7:G:4:VAL:CG2	2.45	0.47
9:I:22:PRO:HB2	9:I:23:PRO:HD3	1.96	0.47
1:A:2251:OMG:HM23	1:A:2251:OMG:H1'	1.70	0.47
20:T:33:LYS:HG2	20:T:80:TRP:CZ3	2.49	0.47
1:A:1113:U:H2'	1:A:1114:C:H6	1.80	0.47
5:E:171:ASP:OD1	5:E:172:ALA:N	2.45	0.47
1:A:307:G:N1	1:A:310:A:OP2	2.45	0.47
1:A:340:A:O2'	5:E:162:ARG:NH1	2.47	0.47
1:A:476:G:N1	1:A:479:A:OP2	2.48	0.47
1:A:611:C:C5	1:A:612:G:N7	2.82	0.47
1:A:896:A:H3'	1:A:896:A:H8	1.80	0.47
1:A:1105:U:H2'	1:A:1106:G:C8	2.49	0.47
1:A:2576:G:O2'	1:A:2579:C:OP2	2.25	0.47
3:C:163:GLN:OE1	3:C:175:ARG:NH1	2.40	0.47
4:D:129:THR:HG22	4:D:130:GLN:O	2.15	0.47
6:F:68:THR:N	6:F:86:GLY:O	2.37	0.47
6:F:103:LEU:O	6:F:107:ALA:HB3	2.14	0.47
9:I:20:PRO:HB2	9:I:23:PRO:HD2	1.97	0.47

	AL O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
9:I:100:LYS:O	9:I:100:LYS:HG3	2.15	0.47
9:I:113:LYS:O	9:I:117:MET:HG2	2.15	0.47
12:L:123:ARG:NE	12:L:143:GLU:OE2	2.46	0.47
24:X:3:ARG:O	24:X:12:PRO:HD3	2.15	0.47
1:A:400:G:N7	24:X:57:ARG:NH1	2.54	0.47
1:A:881:G:C3'	1:A:882:G:H8	2.26	0.47
1:A:1915:3TD:H6	1:A:1915:3TD:O5'	2.15	0.47
1:A:2099:U:O2'	1:A:2100:G:H5'	2.14	0.47
1:A:2532:G:N2	1:A:2663:G:O2'	2.48	0.47
1:A:881:G:C5	1:A:882:G:C6	3.02	0.47
1:A:2377:A:H2'	1:A:2378:A:C8	2.50	0.47
7:G:68:ALA:O	7:G:72:LEU:HD12	2.15	0.47
7:G:164:TYR:HB2	7:G:167:GLU:HG2	1.97	0.47
9:I:19:ASN:N	9:I:20:PRO:HD2	2.29	0.47
1:A:2305:U:H5"	6:F:131:GLY:HA3	1.97	0.47
9:I:12:GLN:HA	9:I:56:PRO:HA	1.96	0.46
1:A:2720:U:OP1	16:P:53:ARG:NH2	2.48	0.46
8:H:29:ASP:OD1	8:H:30:SER:N	2.48	0.46
1:A:281:C:H2'	1:A:282:A:C8	2.49	0.46
15:O:52:SER:OG	15:O:54:VAL:HG22	2.15	0.46
15:O:64:TYR:HB3	15:O:67:ASN:ND2	2.31	0.46
1:A:593:U:H2'	1:A:594:U:C6	2.51	0.46
1:A:1870:C:O2'	1:A:1871:A:O5'	2.34	0.46
1:A:882:G:C5	1:A:883:G:C8	3.03	0.46
4:D:181:ASP:HB3	4:D:186:LEU:HB2	1.98	0.46
6:F:166:GLY:O	6:F:170:LEU:HD12	2.15	0.46
8:H:54:VAL:HG22	8:H:81:LEU:HD13	1.96	0.46
10:J:58:ASN:HD21	10:J:128:ASN:ND2	2.13	0.46
22:V:65:VAL:HG22	22:V:66:ASP:OD1	2.15	0.46
1:A:287:G:H2'	1:A:288:U:C6	2.51	0.46
1:A:350:G:H2'	1:A:351:C:O4'	2.15	0.46
1:A:479:A:N3	1:A:481:G:H5"	2.30	0.46
1:A:577:G:O2'	1:A:1254:A:OP1	2.33	0.46
1:A:811:U:H2'	12:L:21:ARG:HA	1.98	0.46
1:A:1405:U:H2'	1:A:1406:U:C6	2.50	0.46
1:A:2314:A:H2'	1:A:2315:G:H8	1.81	0.46
7:G:2:SER:O	7:G:6:LYS:N	2.44	0.46
15:O:95:SER:O	15:O:95:SER:OG	2.26	0.46
1:A:144:A:O2'	1:A:145:C:H5'	2.14	0.46
1:A:1041:G:N1	1:A:1115:G:N1	2.63	0.46
1:A:1736:U:H2'	1:A:1737:G:O4'	2.16	0.46

	h + 0	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:2097:A:C2'	1:A:2098:U:H5'	2.45	0.46	
8:H:85:VAL:HG22	8:H:92:ALA:HB2	1.98	0.46	
9:I:99:GLY:HA3	9:I:138:LEU:CD2	2.46	0.46	
1:A:1183:U:H2'	1:A:1184:U:C6	2.51	0.46	
1:A:1219:U:H2'	1:A:1220:G:C8	2.51	0.46	
8:H:16:SER:HG	8:H:63:ALA:HB1	1.81	0.46	
9:I:35:ILE:CG2	9:I:36:MET:N	2.79	0.46	
1:A:1028:A:N3	1:A:2486:C:O2'	2.43	0.46	
1:A:1874:C:H2'	1:A:1875:G:O4'	2.16	0.46	
1:A:2291:U:H2'	1:A:2292:U:C6	2.51	0.46	
6:F:104:ILE:C	6:F:108:VAL:HG12	2.36	0.46	
6:F:150:ARG:NH1	6:F:150:ARG:CG	2.74	0.46	
1:A:851:C:H2'	1:A:852:U:C6	2.51	0.46	
1:A:964:C:O2'	1:A:2273:A:N3	2.42	0.46	
3:C:252:THR:OG1	3:C:253:LYS:N	2.49	0.46	
23:W:33:ALA:N	23:W:64:ASP:OD1	2.48	0.46	
1:A:286:U:H2'	1:A:287:G:C8	2.51	0.45	
1:A:1563:U:H2'	1:A:1564:C:C6	2.51	0.45	
8:H:82:ILE:HD12	8:H:84:TYR:CE2	2.51	0.45	
9:I:86:ILE:HD13	9:I:138:LEU:HD21	1.97	0.45	
11:K:10:VAL:HG12	11:K:12:ASP:H	1.80	0.45	
15:O:15:ARG:HH21	15:O:95:SER:HB2	1.81	0.45	
1:A:2298:A:H2'	1:A:2299:U:O4'	2.16	0.45	
1:A:896:A:C8	1:A:896:A:C3'	2.99	0.45	
1:A:2799:A:O2'	1:A:2800:A:H5"	2.16	0.45	
6:F:136:ILE:HD13	6:F:143:TYR:CD1	2.47	0.45	
7:G:86:LYS:HG2	7:G:132:VAL:HG22	1.98	0.45	
1:A:281:C:H2'	1:A:282:A:H8	1.81	0.45	
1:A:570:G:H2'	1:A:2030:6MZ:N7	2.31	0.45	
4:D:1:MET:HB3	4:D:205:PRO:HG2	1.99	0.45	
1:A:930:G:H1'	26:Z:25:LEU:HD21	1.99	0.45	
1:A:1009:A:N3	1:A:1153:C:O2'	2.48	0.45	
6:F:40:VAL:HG11	6:F:43:ALA:HB2	1.99	0.45	
19:S:83:LYS:HD2	19:S:95:ARG:HH11	1.81	0.45	
1:A:280:U:H2'	1:A:281:C:C6	2.52	0.45	
1:A:548:G:H5"	1:A:549:G:H5'	1.98	0.45	
1:A:1607:C:N4	1:A:1621:U:OP2	2.50	0.45	
21:U:89:ASP:OD1	21:U:89:ASP:N	2.49	0.45	
1:A:1050:A:C2	1:A:2751:G:C5	3.04	0.45	
6:F:43:ALA:HA	6:F:49:LEU:HD11	1.99	0.45	
1:A:172:A:H2'	1:A:173:A:C8	2.52	0.45	

		Interatomic	Clash		
Atom-1	Atom-2	distance (\AA)	overlap (Å)		
1:A:639:U:H2'	1:A:640:C:C6	2.52	0.45		
1:A:2098:U:C2'	1:A:2099:U:H5'	2.47	0.45		
1:A:2304:G:H22	1:A:2312:U:H3	1.65	0.45		
9:I:18:ALA:C	9:I:20:PRO:HD2	2.37	0.45		
15:O:88:LYS:HB2	15:O:88:LYS:HE2	1.71	0.45		
1:A:1182:G:H2'	1:A:1183:U:O4'	2.17	0.45		
1:A:2233:U:H2'	1:A:2234:G:C8	2.52	0.45		
3:C:16:VAL:HG22	3:C:206:GLY:HA3	1.99	0.45		
20:T:18:GLU:O	20:T:22:THR:HG22	2.17	0.45		
1:A:1916:A:O5'	1:A:1916:A:C8	2.70	0.45		
1:A:2788:C:H2'	1:A:2789:C:C6	2.52	0.45		
19:S:84:ARG:O	19:S:96:ILE:N	2.44	0.45		
1:A:1494:A:H2'	1:A:1495:A:C8	2.52	0.44		
1:A:1868:C:H2'	1:A:1869:G:O4'	2.16	0.44		
1:A:2537:U:H2'	1:A:2538:C:C6	2.52	0.44		
1:A:2793:C:H2'	1:A:2794:C:C6	2.52	0.44		
1:A:286:U:H2'	1:A:287:G:H8	1.82	0.44		
1:A:568:U:O4	18:R:81:LYS:NZ	2.48	0.44		
1:A:2193:G:H2'	1:A:2194:U:C6	2.51	0.44		
1:A:2328:A:H2'	1:A:2329:U:C6	2.52	0.44		
2:B:48:U:H4'	15:O:100:HIS:HD2	1.82	0.44		
3:C:37:ASN:HB2	3:C:62:TYR:HB2	1.99	0.44		
6:F:36:LEU:HD22	6:F:154:ILE:HG12	1.99	0.44		
15:O:59:ALA:HA	15:O:62:LEU:HD12	1.98	0.44		
1:A:883:G:C4	1:A:895:U:O2	2.70	0.44		
1:A:1028:A:N6	1:A:1125:G:H2'	2.33	0.44		
1:A:1050:A:C2	1:A:2751:G:N1	2.85	0.44		
3:C:28:LYS:HA	3:C:28:LYS:HD2	1.82	0.44		
7:G:28:GLY:HA3	7:G:79:VAL:HB	2.00	0.44		
8:H:50:VAL:HG22	8:H:85:VAL:HG13	1.98	0.44		
15:O:33:ARG:O	15:O:65:THR:HG23	2.18	0.44		
1:A:351:C:H2'	1:A:352:A:O4'	2.17	0.44		
1:A:543:G:H2'	1:A:544:C:O4'	2.18	0.44		
6:F:103:LEU:C	6:F:107:ALA:H	2.20	0.44		
16:P:60:THR:HB	16:P:73:VAL:HG22	1.98	0.44		
1:A:134:G:C2	1:A:135:U:C2	3.05	0.44		
1:A:137:U:O2	1:A:137:U:H2'	2.18	0.44		
1:A:2822:G:O6	14:N:2:ARG:NH1	2.50	0.44		
8:H:119:PRO:HG2	8:H:122:GLN:HB2	1.98	0.44		
1:A:411:G:OP2	1:A:2406:A:O2'	2.30	0.44		
1:A:1746:A:H2'	1:A:1747:U:C6	2.53	0.44		

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
6:F:30:ARG:HG3	6:F:30:ARG:HH11	1.83	0.44		
20:T:69:ARG:O	20:T:69:ARG:HG2	2.18	0.44		
1:A:2161:C:H4'	1:A:2173:A:P	2.58	0.44		
1:A:2845:U:H5"	16:P:52:ASN:O	2.18	0.44		
4:D:25:THR:HG21	4:D:193:VAL:HG22	1.99	0.44		
14:N:30:ARG:NH2	14:N:74:GLU:OE1	2.40	0.44		
15:O:2:ASP:OD1	15:O:2:ASP:N	2.51	0.44		
1:A:796:C:H2'	1:A:797:G:C8	2.53	0.44		
1:A:871:U:H2'	1:A:872:U:C6	2.53	0.44		
9:I:80:LEU:CD2	9:I:101:ILE:HD13	2.48	0.44		
18:R:34:GLU:OE1	18:R:60:LYS:HG2	2.17	0.44		
16:P:34:GLU:N	16:P:34:GLU:OE1	2.50	0.43		
1:A:1181:U:H2'	1:A:1182:G:C8	2.54	0.43		
3:C:161:TYR:HB3	3:C:194:GLU:HB2	1.98	0.43		
9:I:20:PRO:HB2	9:I:23:PRO:CG	2.47	0.43		
14:N:96:ARG:HD3	14:N:98:LEU:HD21	2.00	0.43		
1:A:898:C:H2'	1:A:899:A:O4'	2.18	0.43		
1:A:1847:A:O2'	1:A:1848:A:H8	1.79	0.43		
1:A:2595:G:N2	1:A:2598:A:OP2	2.40	0.43		
4:D:39:ASP:N	4:D:39:ASP:OD1	2.51	0.43		
12:L:90:VAL:HG22	12:L:122:VAL:HA	1.99	0.43		
21:U:96:PHE:CE2	21:U:103:ILE:HG12	2.53	0.43		
1:A:672:C:OP2	12:L:42:SER:OG	2.29	0.43		
1:A:1536:C:H4'	1:A:1537:G:C4	2.54	0.43		
1:A:2688:G:N1	1:A:2720:U:OP2	2.32	0.43		
1:A:2329:U:H2'	1:A:2330:G:C8	2.53	0.43		
2:B:24:G:N7	2:B:56:G:H2'	2.33	0.43		
16:P:88:ARG:HH21	16:P:112:GLU:HB2	1.82	0.43		
1:A:1939:5MU:OP1	1:A:2604:PSU:O2'	2.37	0.43		
4:D:97:SER:OG	4:D:98:VAL:N	2.51	0.43		
9:I:18:ALA:O	9:I:19:ASN:CB	2.67	0.43		
1:A:813:U:H2'	1:A:814:C:C6	2.54	0.43		
6:F:104:ILE:HD11	6:F:176:PRO:HD3	2.00	0.43		
7:G:155:GLU:OE1	7:G:159:GLY:N	2.52	0.43		
11:K:71:ARG:HD3	11:K:71:ARG:HA	1.85	0.43		
1:A:136:G:O5'	1:A:136:G:C8	2.70	0.43		
1:A:143:C:O5'	1:A:143:C:C6	2.70	0.43		
1:A:586:A:N1	1:A:809:G:O2'	2.46	0.43		
1:A:1050:A:C6	1:A:2751:G:C6	3.06	0.43		
1:A:2188:U:H2'	1:A:2189:U:O4'	2.19	0.43		
1:A:2273:A:H2'	1:A:2274:A:C8	2.54	0.43		

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
6:F:35:THR:HA	6:F:90:THR:HA	2.01	0.43	
11:K:24:VAL:HG13	11:K:33:ALA:HB2	2.01	0.43	
19:S:11:ARG:HD2	19:S:100:THR:HG22	2.00	0.43	
1:A:134:G:O6	1:A:135:U:O4	2.36	0.43	
1:A:1676:A:N7	36:A:3236:HOH:O	2.37	0.43	
1:A:2339:C:H2'	1:A:2340:A:C8	2.53	0.43	
2:B:1:U:H2'	2:B:2:G:H8	1.83	0.43	
2:B:48:U:H4'	15:O:100:HIS:CD2	2.54	0.43	
6:F:54:ALA:HB1	6:F:65:PRO:HG2	2.01	0.43	
15:O:108:ASP:HA	15:O:111:ARG:HB2	2.00	0.43	
2:B:42:C:N3	6:F:90:THR:HG22	2.33	0.43	
9:I:56:PRO:HG2	9:I:72:LYS:HB2	2.01	0.43	
15:O:115:LEU:HD12	15:O:115:LEU:HA	1.85	0.43	
25:Y:42:LEU:O	25:Y:46:VAL:HG12	2.19	0.43	
1:A:278:A:N1	1:A:361:G:O2'	2.49	0.42	
1:A:594:U:H2'	1:A:595:C:C6	2.54	0.42	
1:A:1040:A:N1	1:A:1115:G:N2	2.66	0.42	
1:A:1199:U:H1'	17:Q:4:VAL:HG22	2.01	0.42	
1:A:1441:G:H2'	1:A:1442:U:C6	2.54	0.42	
6:F:150:ARG:H	6:F:150:ARG:HG3	1.46	0.42	
7:G:105:LEU:HB2	7:G:113:VAL:HG13	2.01	0.42	
1:A:57:C:H2'	1:A:58:G:O4'	2.19	0.42	
1:A:708:G:N2	1:A:724:U:H1'	2.34	0.42	
1:A:1041:G:C2	1:A:1115:G:N1	2.87	0.42	
1:A:2314:A:H2'	1:A:2315:G:C8	2.53	0.42	
1:A:2808:G:O2'	1:A:2890:G:O6	2.29	0.42	
9:I:20:PRO:HB2	9:I:23:PRO:HG2	2.01	0.42	
9:I:86:ILE:CD1	9:I:138:LEU:HD21	2.49	0.42	
9:I:114:ALA:CB	9:I:125:MET:SD	3.07	0.42	
1:A:544:C:H2'	1:A:545:U:O4'	2.19	0.42	
1:A:1420:A:C5	1:A:2211:A:C6	3.07	0.42	
1:A:1915:3TD:H2'	1:A:1916:A:H8	1.84	0.42	
1:A:2333:A:P	23:W:77:ARG:HH22	2.42	0.42	
1:A:2389:G:H5"	1:A:2390:U:O4'	2.19	0.42	
7:G:153:ARG:HB2	7:G:153:ARG:CZ	2.49	0.42	
21:U:14:LEU:HD11	21:U:71:ALA:HB2	2.01	0.42	
24:X:65:ASP:OD1	24:X:66:THR:N	2.53	0.42	
1:A:207:A:H2'	1:A:208:C:O4'	2.18	0.42	
1:A:1172:C:H3'	1:A:1173:U:C4'	2.49	0.42	
1:A:2728:U:O2'	1:A:2729:G:H8	2.03	0.42	
6:F:38:MET:HE2	6:F:87:CYS:SG	2.59	0.42	

Atom 1	Atom 2	Interatomic	Clash		
Atom-1	Atom-2	distance (\AA)	overlap (Å)		
8:H:65:GLU:O	8:H:65:GLU:HG3	2.20	0.42		
21:U:47:LYS:HE2	21:U:47:LYS:HB3	1.88	0.42		
1:A:2698:U:H2'	1:A:2699:C:C6	2.54	0.42		
2:B:48:U:H2'	2:B:49:C:C6	2.54	0.42		
6:F:175:PHE:HB3	6:F:177:PHE:CE1	2.55	0.42		
1:A:483:A:O2'	21:U:57:GLY:N	2.49	0.42		
1:A:721:A:H2'	1:A:722:A:C8	2.55	0.42		
1:A:1915:3TD:H2'	1:A:1916:A:C8	2.55	0.42		
7:G:72:LEU:HA	7:G:75:MET:HB2	2.01	0.42		
12:L:77:ILE:HD13	12:L:108:ALA:HB1	2.02	0.42		
23:W:17:GLU:O	23:W:19:LYS:NZ	2.52	0.42		
1:A:139:U:C5	20:T:1:MET:SD	3.13	0.42		
1:A:612:G:H1'	1:A:616:A:H61	1.84	0.42		
6:F:121:SER:OG	6:F:121:SER:O	2.35	0.42		
7:G:155:GLU:H	7:G:155:GLU:HG3	1.68	0.42		
1:A:2481:G:HO2'	1:A:2482:A:H8	1.65	0.42		
7:G:38:ASN:HD22	7:G:64:GLN:CD	2.23	0.42		
22:V:46:LYS:HE3	22:V:46:LYS:HB2	1.79	0.42		
1:A:225:C:H2'	1:A:226:A:O4'	2.20	0.42		
1:A:1930:G:O2'	1:A:1968:G:O6	2.33	0.42		
6:F:56:ASP:O	6:F:60:ILE:HG12	2.20	0.42		
7:G:50:LEU:HA	7:G:50:LEU:HD23	1.87	0.42		
10:J:117:ALA:HA	10:J:120:ARG:HH21	1.85	0.42		
22:V:63:ILE:HD12	22:V:72:VAL:HG21	2.01	0.42		
7:G:54:PRO:HG3	7:G:62:TRP:CE2	2.54	0.41		
8:H:38:MET:O	8:H:41:LEU:N	2.53	0.41		
18:R:58:VAL:HB	18:R:102:SER:OG	2.19	0.41		
1:A:714:U:H1'	1:A:717:C:H5	1.86	0.41		
1:A:1047:G:H1'	1:A:1111:A:N6	2.35	0.41		
1:A:2375:G:N2	1:A:2378:A:OP2	2.47	0.41		
7:G:10:VAL:HA	7:G:49:THR:HA	2.02	0.41		
1:A:364:C:H2'	1:A:365:U:C6	2.56	0.41		
1:A:2162:G:OP1	1:A:2171:A:H2'	2.20	0.41		
8:H:51:TYR:OH	8:H:53:ARG:NH1	2.53	0.41		
11:K:38:ILE:HD11	11:K:112:PHE:HZ	1.85	0.41		
1:A:358:U:H2'	1:A:359:G:C8	2.55	0.41		
1:A:1084:A:C6	1:A:1085:A:C6	3.08	0.41		
1:A:1385:A:O2'	1:A:1396:U:O2	2.39	0.41		
1:A:1475:G:O2'	1:A:1514:G:O6	2.34	0.41		
1:A:2129:C:N4	1:A:2130:U:O4	2.54	0.41		
6:F:8:TYR:HA	6:F:12:VAL:HG22	2.03	0.41		

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
6:F:175:PHE:HB3	6:F:177:PHE:HE1	1.85	0.41	
8:H:52:MET:HE1	8:H:96:PHE:HZ	1.85	0.41	
10:J:31:GLU:OE2	10:J:35:ARG:NE	2.51	0.41	
1:A:742:A:H2'	1:A:743:A:C8	2.56	0.41	
1:A:984:A:N3	1:A:984:A:H2'	2.35	0.41	
1:A:1042:G:N2	1:A:1114:C:H1'	2.35	0.41	
6:F:80:ARG:HB2	6:F:83:TYR:CE2	2.55	0.41	
13:M:50:ARG:O	13:M:53:MET:HG2	2.20	0.41	
1:A:1174:U:H5'	1:A:1175:A:OP2	2.20	0.41	
1:A:1278:C:H2'	1:A:1279:G:C8	2.56	0.41	
1:A:1482:G:H1'	1:A:1509:A:N6	2.32	0.41	
1:A:2321:U:H5'	1:A:2322:A:OP2	2.21	0.41	
15:O:43:ASN:OD1	15:O:45:SER:OG	2.29	0.41	
15:O:60:GLU:H	15:O:60:GLU:HG2	1.72	0.41	
1:A:287:G:H2'	1:A:288:U:H6	1.85	0.41	
6:F:67:ILE:HD13	6:F:87:CYS:HB3	2.02	0.41	
6:F:94:GLU:HA	6:F:97:TRP:HD1	1.85	0.41	
10:J:110:PRO:O	10:J:115:GLY:HA3	2.21	0.41	
1:A:278:A:N6	1:A:362:A:N7	2.69	0.41	
1:A:322:A:OP2	5:E:163:ASN:HB2	2.21	0.41	
1:A:1223:G:C6	1:A:1227:G:C6	3.08	0.41	
1:A:1799:G:O2'	3:C:180:GLU:OE2	2.24	0.41	
1:A:2114:A:OP2	1:A:2115:G:C6	2.73	0.41	
7:G:18:LYS:NZ	7:G:20:ASN:HB2	2.36	0.41	
1:A:882:G:C2	1:A:883:G:C8	3.08	0.41	
1:A:1050:A:N1	1:A:2751:G:C6	2.88	0.41	
1:A:1278:C:H2'	1:A:1279:G:H8	1.86	0.41	
1:A:1932:A:H2'	1:A:1933:G:O4'	2.21	0.41	
2:B:78:A:H2'	2:B:79:G:O4'	2.21	0.41	
2:B:118:C:H2'	2:B:119:A:C8	2.56	0.41	
3:C:155:ALA:HB2	3:C:162:VAL:HG23	2.03	0.41	
5:E:2:GLU:HB3	5:E:11:ALA:HB1	2.03	0.41	
5:E:6:LYS:HE2	5:E:6:LYS:HA	2.02	0.41	
6:F:32:GLU:OE2	6:F:32:GLU:N	2.53	0.41	
6:F:42:GLU:H	6:F:42:GLU:HG3	1.72	0.41	
6:F:103:LEU:HA	6:F:107:ALA:H	1.85	0.41	
7:G:117:LEU:HD13	7:G:117:LEU:HA	1.88	0.41	
8:H:103:ASN:C	8:H:105:LYS:H	2.24	0.41	
20:T:33:LYS:HE2	20:T:80:TRP:CE3	2.56	0.41	
1:A:458:G:O2'	1:A:469:G:O6	2.32	0.41	
1:A:634:C:H2'	1:A:635:C:C6	2.56	0.41	

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:A:880:G:C2	1:A:881:G:H1'	2.56	0.41		
1:A:979:A:H2'	1:A:982:C:H42	1.85	0.41		
1:A:1049:C:HO2'	1:A:1114:C:P	2.43	0.41		
1:A:1394:U:H4'	1:A:1603:A:H4'	2.03	0.41		
1:A:2484:G:OP1	13:M:44:ARG:NH2	2.49	0.41		
6:F:103:LEU:O	6:F:108:VAL:N	2.54	0.41		
12:L:77:ILE:CD1	12:L:108:ALA:HB1	2.51	0.41		
20:T:26:LYS:HE2	20:T:26:LYS:HA	2.02	0.41		
1:A:861:A:H2'	1:A:862:G:O4'	2.20	0.40		
1:A:1357:C:H2'	1:A:1358:G:O4'	2.20	0.40		
1:A:1871:A:H1'	1:A:1872:A:H5'	2.02	0.40		
1:A:1881:C:H2'	1:A:1882:U:O4'	2.21	0.40		
1:A:2116:G:C6	1:A:2171:A:N6	2.84	0.40		
4:D:99:GLU:H	4:D:99:GLU:HG3	1.74	0.40		
4:D:157:LYS:HE3	4:D:157:LYS:HB2	1.85	0.40		
11:K:63:VAL:HG12	11:K:107:LEU:HD11	2.03	0.40		
1:A:493:G:H2'	1:A:494:G:O4'	2.21	0.40		
1:A:1370:C:H2'	1:A:1371:G:O4'	2.22	0.40		
1:A:1430:G:H2'	1:A:1431:A:O4'	2.21	0.40		
1:A:1450:G:C6	1:A:1451:C:N4	2.89	0.40		
4:D:186:LEU:HD13	16:P:8:LEU:HD11	2.04	0.40		
9:I:90:SER:HB2	9:I:98:VAL:CG2	2.51	0.40		
10:J:58:ASN:HD21	10:J:128:ASN:HD22	1.69	0.40		
1:A:1414:C:H2'	1:A:1415:U:O4'	2.21	0.40		
6:F:10:ASP:OD1	6:F:11:GLU:N	2.54	0.40		
1:A:1:G:H2'	1:A:2:G:H8	1.85	0.40		
1:A:882:G:C6	1:A:883:G:C5	3.10	0.40		
7:G:48:ASN:O	7:G:48:ASN:ND2	2.54	0.40		
15:O:89:ASP:OD1	15:O:89:ASP:N	2.54	0.40		
1:A:645:C:H2'	1:A:647:G:C8	2.57	0.40		
1:A:1132:U:H3'	1:A:1133:A:H5"	2.04	0.40		
7:G:121:ILE:N	7:G:121:ILE:HD12	2.35	0.40		
21:U:4:LYS:O	21:U:94:ARG:NH2	2.50	0.40		

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	С	269/271~(99%)	265 (98%)	4 (2%)	0	100	100
4	D	206/209~(99%)	201 (98%)	4 (2%)	1 (0%)	25	23
5	Ε	199/201~(99%)	197 (99%)	2(1%)	0	100	100
6	F	175/177~(99%)	163 (93%)	11 (6%)	1 (1%)	22	19
7	G	174/176~(99%)	168 (97%)	5(3%)	1 (1%)	22	19
8	Н	133/135~(98%)	109 (82%)	18 (14%)	6 (4%)	2	0
9	Ι	132/134~(98%)	117 (89%)	11 (8%)	4 (3%)	3	1
10	J	140/142~(99%)	140 (100%)	0	0	100	100
11	K	121/123~(98%)	120 (99%)	1 (1%)	0	100	100
12	L	142/144~(99%)	137 (96%)	5 (4%)	0	100	100
13	М	133/136~(98%)	131 (98%)	2 (2%)	0	100	100
14	Ν	123/125~(98%)	117 (95%)	6 (5%)	0	100	100
15	Ο	115/117~(98%)	113 (98%)	2 (2%)	0	100	100
16	Р	112/114 (98%)	110 (98%)	2 (2%)	0	100	100
17	Q	115/117~(98%)	115 (100%)	0	0	100	100
18	R	101/103~(98%)	96 (95%)	4 (4%)	1 (1%)	13	9
19	S	108/110 (98%)	107 (99%)	1 (1%)	0	100	100
20	Т	91/93~(98%)	90 (99%)	1 (1%)	0	100	100
21	U	100/102~(98%)	95 (95%)	5 (5%)	0	100	100
22	V	92/94~(98%)	91 (99%)	1 (1%)	0	100	100
23	W	74/76~(97%)	72 (97%)	2 (3%)	0	100	100
24	Х	75/77~(97%)	75 (100%)	0	0	100	100
25	Y	60/62~(97%)	59 (98%)	1 (2%)	0	100	100
26	Z	56/58~(97%)	56 (100%)	0	0	100	100
27	a	54/56~(96%)	52 (96%)	2 (4%)	0	100	100

Mol	Chain	Analysed	ed Favoured Allowed Outliers Percenti			ntiles	
28	b	49/51~(96%)	49 (100%)	0	0	100	100
29	с	44/46~(96%)	44 (100%)	0	0	100	100
30	d	62/64~(97%)	59~(95%)	3~(5%)	0	100	100
31	е	36/38~(95%)	36 (100%)	0	0	100	100
All	All	3291/3351~(98%)	3184 (97%)	93(3%)	14 (0%)	32	29

All (14) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
8	Н	104	ALA
8	Н	106	PHE
9	Ι	15	ALA
9	Ι	19	ASN
18	R	52	PRO
4	D	149	ASN
8	Н	67	THR
8	Н	108	VAL
9	Ι	25	GLY
8	Н	124	ASP
9	Ι	23	PRO
8	Н	130	PRO
7	G	47	ASP
6	F	110	ARG

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	tameric Outliers Perce	
3	С	216/216~(100%)	213~(99%)	3~(1%)	62 70
4	D	163/163~(100%)	160~(98%)	3(2%)	54 61
5	Е	165/165~(100%)	158 (96%)	7 (4%)	25 26
6	F	148/148~(100%)	127~(86%)	21 (14%)	2 1
7	G	137/137~(100%)	125~(91%)	12 (9%)	8 5

Mol	Chain	Analysed	Rotameric	Outliers	Per	cei	ntiles
8	Н	103/103~(100%)	97~(94%)	6 (6%)	17	7	15
9	Ι	104/104~(100%)	102 (98%)	2 (2%)	52	2	59
10	J	116/116 (100%)	112 (97%)	4 (3%)	32	2	35
11	К	104/104~(100%)	102 (98%)	2 (2%)	52	2	59
12	L	103/103~(100%)	101 (98%)	2 (2%)	52	2	59
13	М	108/108~(100%)	104 (96%)	4 (4%)	29)	31
14	Ν	102/102~(100%)	101 (99%)	1 (1%)	73	3	79
15	Ο	87/87 (100%)	85~(98%)	2 (2%)	45	5	51
16	Р	99/99~(100%)	93 (94%)	6 (6%)	15	5	13
17	Q	89/89~(100%)	89 (100%)	0	100)	100
18	R	84/84 (100%)	82 (98%)	2 (2%)	44	1	49
19	S	93/93~(100%)	91 (98%)	2 (2%)	47	7	53
20	Т	80/80 (100%)	77~(96%)	3 (4%)	28	3	30
21	U	83/83 (100%)	79~(95%)	4 (5%)	21	L	21
22	V	78/78~(100%)	76~(97%)	2 (3%)	41	L	46
23	W	57/58~(98%)	56~(98%)	1 (2%)	54	1	61
24	Х	67/67~(100%)	65~(97%)	2 (3%)	36	3	40
25	Y	54/54~(100%)	52 (96%)	2 (4%)	29)	31
26	Z	48/48 (100%)	46 (96%)	2 (4%)	25	5	26
27	a	47/47 (100%)	46 (98%)	1 (2%)	48	3	55
28	b	45/46~(98%)	44 (98%)	1 (2%)	47	7	53
29	с	38/38~(100%)	36~(95%)	2(5%)	19)	18
30	d	51/51 (100%)	47 (92%)	4 (8%)	1	0	8
31	е	34/34~(100%)	33~(97%)	1 (3%)	37	7	41
All	All	2703/2705~(100%)	2599~(96%)	104 (4%)	30)	30

Continued from previous page...

All (104) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
3	С	10	SER
3	С	38	SER
3	С	133	ARG
4	D	43	ASP
4	D	95	SER

Mol	Chain	Res	Type
4	D	97	SER
5	Е	7	ASP
5	Е	15	SER
5	Е	21	ARG
5	Е	61	ARG
5	Е	75	SER
5	Е	122	GLU
5	Е	155	GLU
6	F	4	LEU
6	F	14	LYS
6	F	19	GLU
6	F	24	SER
6	F	33	LYS
6	F	35	THR
6	F	42	GLU
6	F	47	LYS
6	F	51	ASP
6	F	80	ARG
6	F	98	GLU
6	F	108	VAL
6	F	110	ARG
6	F	111	ILE
6	F	130	MET
6	F	141	ILE
6	F	150	ARG
6	F	155	THR
6	F	162	SER
6	F	175	PHE
6	F	178	ARG
7	G	2	SER
7	G	32	GLU
7	G	34	THR
7	G	42	GLU
7	G	84	THR
7	G	99	LYS
7	G	127	THR
7	G	130	GLU
7	G	131	ILE
7	G	167	GLU
7	G	173	GLU
7	G	176	LYS
8	Н	16	SER

Mol	Chain	Res	Type
8	Н	64	VAL
8	Н	67	THR
8	Н	71	CYS
8	Н	105	LYS
8	Н	133	GLU
9	Ι	59	ILE
9	Ι	98	VAL
10	J	5	THR
10	J	12	LYS
10	J	90	GLU
10	J	142	ILE
11	K	91	SER
11	K	109	SER
12	L	84	LYS
12	L	118	THR
13	М	53	MET
13	М	55	ARG
13	М	58	LYS
13	М	59	ARG
14	Ν	2	ARG
15	0	24	THR
15	0	95	SER
16	Р	6	LYS
16	Р	36	SER
16	Р	60	THR
16	Р	76	THR
16	Р	83	SER
16	Р	104	THR
18	R	37	GLU
18	R	71	LYS
19	S	70	LYS
19	S	95	ARG
20	Т	1	MET
20	Т	49	LYS
20	Т	93	LEU
21	U	27	ASN
21	U	68	SER
21	U	86	ARG
21	U	89	ASP
22	V	34	LYS
22	V	59	GLU
23	W	11	ARG

Mol	Chain	\mathbf{Res}	Type
24	Х	42	SER
24	Х	48	THR
25	Y	34	SER
25	Y	49	ASP
26	Ζ	12	SER
26	Ζ	37	GLU
27	a	11	SER
28	b	17	THR
29	с	8	SER
29	с	25	LYS
30	d	15	LYS
30	d	31	HIS
30	d	33	LEU
30	d	52	LYS
31	е	20	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (18) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
3	С	134	ASN
5	Е	9	GLN
5	Е	90	GLN
7	G	104	ASN
7	G	111	HIS
7	G	115	HIS
10	J	128	ASN
13	М	3	GLN
15	0	100	HIS
16	Р	41	GLN
16	Р	66	ASN
17	Q	81	ASN
20	Т	70	HIS
21	U	27	ASN
21	U	46	GLN
22	V	87	GLN
25	Y	58	ASN
29	с	29	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	2888/2897~(99%)	382~(13%)	16 (0%)
2	В	119/120~(99%)	7~(5%)	0
32	f	75/76~(98%)	31 (41%)	0
33	g	74/76~(97%)	48 (64%)	0
All	All	3156/3169~(99%)	468 (14%)	16 (0%)

All (468) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	А	10	А
1	А	15	G
1	А	34	U
1	А	45	G
1	А	46	G
1	А	58	G
1	А	71	А
1	А	74	А
1	А	75	G
1	А	84	А
1	А	101	А
1	А	102	U
1	А	118	А
1	А	119	А
1	А	120	U
1	А	125	А
1	А	135	U
1	А	137	U
1	А	138	U
1	А	139	U
1	А	140	С
1	А	141	G
1	А	142	А
1	А	157	С
1	А	163	С
1	А	165	A
1	А	181	А
1	А	196	А
1	А	199	А
1	А	216	A
1	А	221	A
1	А	222	A
1	А	248	G
1	А	266	G

Mol	Chain	Res	Type
1	А	272	А
1	А	276	U
1	А	285	G
1	А	302	С
1	А	311	А
1	А	329	G
1	А	330	А
1	А	352	А
1	А	353	С
1	А	361	G
1	А	362	А
1	А	372	G
1	А	386	G
1	A	396	G
1	A	399	U
1	А	403	U
1	A	406	G
1	А	411	G
1	А	412	А
1	А	424	G
1	А	425	G
1	А	479	А
1	А	481	G
1	А	491	G
1	А	504	А
1	А	505	А
1	А	509	С
1	A	529	A
1	A	530	G
1	А	532	А
1	A	544	С
1	A	546	U
1	A	547	A
1	A	548	G
1	А	549	G
1	A	550	С
1	А	563	A
1	A	573	U
1	A	575	A
1	A	603	A
1	A	613	A
1	А	614	A

Mol	Chain	Res	Type
1	А	615	U
1	А	627	А
1	А	637	А
1	А	645	С
1	А	647	G
1	А	654	А
1	А	655	А
1	А	685	А
1	А	686	U
1	А	717	С
1	А	730	А
1	А	747	5MU
1	А	775	G
1	А	776	G
1	А	782	А
1	A	784	G
1	А	785	G
1	А	790	U
1	А	791	С
1	А	792	А
1	А	805	G
1	А	812	С
1	А	827	U
1	А	828	U
1	А	845	А
1	А	846	U
1	А	847	U
1	А	858	G
1	А	859	G
1	A	878	А
1	A	881	G
1	A	883	G
1	A	884	U
1	A	885	С
1	A	895	U
1	A	896	A
1	А	897	С
1	А	910	А
1	A	914	G
1	A	927	А
1	А	931	U
1	А	946	С

Mol	Chain	Res	Type
1	А	961	С
1	А	974	G
1	А	983	А
1	А	996	А
1	А	1012	U
1	А	1013	С
1	А	1026	G
1	А	1033	U
1	А	1040	А
1	А	1046	А
1	А	1047	G
1	А	1070	А
1	A	1083	U
1	A	1084	A
1	A	1088	A
1	A	1090	A
1	А	1112	G
1	А	1114	С
1	А	1115	G
1	А	1116	G
1	А	1119	U
1	А	1132	U
1	А	1133	А
1	А	1135	С
1	А	1141	U
1	А	1142	А
1	А	1168	G
1	А	1171	G
1	А	1173	U
1	А	1174	U
1	A	1175	А
1	A	1176	U
1	A	1212	G
1	A	1236	G
1	A	1238	G
1	A	1253	A
1	А	1256	G
1	A	1271	G
1	A	1272	A
1	A	1300	G
1	A	1301	A
1	А	1329	U

Mol	Chain	Res	Type
1	А	1345	С
1	А	1352	U
1	А	1365	А
1	А	1379	U
1	А	1383	А
1	А	1416	G
1	А	1417	С
1	А	1421	G
1	А	1428	С
1	А	1434	А
1	А	1435	G
1	A	1452	G
1	А	1459	G
1	А	1476	U
1	A	1482	G
1	A	1490	A
1	А	1493	С
1	A	1494	A
1	A	1495	A
1	A	1497	U
1	A	1509	A
1	A	1510	G
1	A	1515	A
1	A	1524	G
1	A	1529	G
1	A	1533	С
1	A	1534	U
1	A	1535	A
1	A	1536	C
1	A	1537	G
1	A	1566	A
1	A	1569	A
1	A	1578	U
1	A	1583	A
1	A	1584	U
1	A	1585	C
1	A	1607	C
1	A	1608	A
1	A	1647	U
1	A	1648	U
1	A	1649	G
1	A	1674	G

Mol	Chain	Res	Type
1	А	1715	G
1	А	1729	U
1	А	1730	С
1	А	1738	G
1	А	1744	А
1	А	1764	С
1	А	1773	А
1	А	1776	G
1	А	1791	А
1	А	1800	С
1	А	1801	А
1	А	1808	А
1	А	1811	G
1	A	1816	С
1	А	1829	А
1	A	1870	С
1	А	1871	А
1	А	1872	А
1	А	1873	G
1	А	1906	G
1	А	1913	А
1	А	1914	С
1	А	1929	G
1	А	1930	G
1	А	1936	А
1	А	1955	U
1	А	1960	А
1	А	1967	С
1	А	1970	А
1	А	1971	U
1	A	1972	G
1	А	1991	U
1	A	1993	U
1	A	1997	С
1	А	2023	С
1	А	2031	A
1	А	2033	А
1	A	2043	С
1	A	2055	С
1	A	2056	G
1	А	2060	А
1	A	2061	G

Mol	Chain	Res	Type
1	А	2062	А
1	А	2069	G7M
1	А	2093	G
1	А	2098	U
1	А	2099	U
1	А	2101	А
1	А	2105	U
1	А	2108	А
1	А	2111	U
1	А	2112	G
1	А	2113	U
1	А	2115	G
1	А	2116	G
1	A	2117	A
1	А	2118	U
1	A	2119	A
1	А	2123	G
1	А	2126	A
1	А	2127	G
1	А	2128	G
1	А	2131	U
1	А	2132	U
1	А	2133	G
1	А	2134	А
1	А	2136	G
1	А	2137	U
1	А	2145	С
1	А	2146	С
1	А	2147	А
1	А	2148	G
1	A	2149	U
1	А	2159	G
1	A	2160	C
1	A	2161	С
1	А	2162	G
1	A	2163	A
1	А	2164	С
1	A	2165	C
1	A	2167	U
1	A	2168	G
1	А	2169	A
1	А	2170	А

Mol	Chain	Res	Type	
1	А	2171	А	
1	А	2172	U	
1	А	2173	А	
1	А	2177	С	
1	А	2178	С	
1	А	2179	С	
1	А	2181	U	
1	А	2185	U	
1	А	2187	U	
1	А	2188	U	
1	А	2190	G	
1	А	2192	U	
1	А	2193	G	
1	A	2194	U	
1	А	2195	U	
1	A	2198	A	
1	А	2204	G	
1	А	2211	А	
1	А	2225	А	
1	А	2238	G	
1	А	2239	G	
1	А	2268	А	
1	А	2279	G	
1	А	2283	С	
1	А	2287	А	
1	А	2288	А	
1	А	2297	А	
1	А	2305	U	
1	A	2308	G	
1	А	2322	А	
1	A	2325	G	
1	A	2327	A	
1	A	2333	A	
1	A	2334	U	
1	A	2336	А	
1	A	2345	G	
1	А	2347	С	
1	A	2350	С	
1	A	2383	G	
1	A	2385	С	
1	A	2402	U	
1	А	2406	А	

Mol	Chain	Res	Type
1	А	2425	А
1	А	2435	А
1	А	2441	U
1	А	2445	2MG
1	А	2448	А
1	А	2476	А
1	А	2478	А
1	А	2491	U
1	А	2502	G
1	А	2504	PSU
1	А	2505	G
1	А	2518	А
1	A	2525	G
1	A	2529	G
1	A	2535	G
1	A	2547	А
1	А	2566	А
1	А	2567	G
1	А	2602	А
1	А	2609	U
1	А	2613	U
1	А	2615	U
1	А	2629	U
1	А	2663	G
1	А	2689	U
1	А	2690	U
1	А	2714	G
1	А	2716	С
1	А	2726	А
1	А	2732	G
1	A	2733	А
1	A	2744	G
1	А	2748	А
1	A	2751	G
1	А	2765	А
1	A	2778	А
1	А	2798	U
1	A	2818	U
1	A	2820	А
1	A	2821	А
1	A	2832	U
1	А	2835	A

Mol	Chain	Res	Type
1	А	2849	U
1	А	2861	U
1	А	2867	G
1	А	2873	А
1	А	2879	А
1	А	2880	С
1	А	2884	U
1	А	2885	G
1	А	2886	А
1	А	2891	U
1	А	2901	С
1	А	2903	U
2	В	9	G
2	В	35	С
2	В	42	С
2	В	56	G
2	В	89	U
2	В	90	С
2	В	109	А
32	f	3	С
32	f	4	G
32	f	6	G
32	f	7	G
32	f	8	4SU
32	f	9	G
32	f	10	G
32	f	13	С
32	f	14	А
32	f	16	С
32	f	17	С
32	f	19	G
32	f	20	U
32	f	21	A
32	f	22	G
32	f	31	G
32	f	47	U
32	f	48	С
32	f	49	G
32	f	56	C
32	f	58	A
32	f	59	A
32	f	60	U

Mol	Chain	Res	Type
32	f	61	С
32	f	62	С
32	f	64	G
32	f	67	С
32	f	68	С
32	f	69	С
32	f	70	G
32	f	76	А
33	g	3	G
33	g	4	G
33	g	6	U
33	g	7	U
33	g	8	U
33	g	10	2MG
33	g	11	C
33	g	12	U
33	g	13	С
33	g	14	А
33	g	15	G
33	g	16	H2U
33	g	17	H2U
33	g	18	G
33	g	19	G
33	g	20	G
33	g	21	A
33	g	22	G
33	g	23	А
33	g	24	G
33	g	25	С
33	g	28	C
33	g	31	A
33	g	33	U
33	g	34	OMG
33	g	35	A
33	g	36	A
33	g	38	A
33	g	39	PSU
33	g	40	5MC
33	g	43	G
33	g	45	G
33	g	46	7MG
33	g	47	U

\mathbf{Mol}	Chain	Res	Type
33	g	48	С
33	g	49	5MC
33	g	53	G
33	g	54	5MU
33	g	55	PSU
33	g	58	1MA
33	g	61	C
33	g	63	С
33	g	65	G
33	g	66	А
$\overline{33}$	g	71	G
33	g	72	C
33	g	73	A
33	g	74	C

Continued from previous page...

All (16) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	А	100	U
1	А	549	G
1	А	784	G
1	А	790	U
1	А	894	U
1	А	1046	А
1	А	1113	U
1	А	1494	А
1	А	1535	А
1	А	2099	U
1	А	2118	U
1	А	2127	G
1	А	2130	U
1	А	2158	А
1	А	2193	G
1	А	2406	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

45 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The

Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mal Turna Chain Dag		Tink	Bond lengths			Bond angles			
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
33	2MG	g	10	33	18,26,27	1.53	3 (16%)	16,38,41	1.64	4 (25%)
1	PSU	А	1911	1	18,21,22	2.32	8 (44%)	22,30,33	1.84	4 (18%)
33	OMG	g	34	33	18,26,27	1.57	3 (16%)	19,38,41	1.52	4 (21%)
1	5MU	А	1939	1	19,22,23	2.67	7 (36%)	28,32,35	<mark>3.95</mark>	10 (35%)
1	OMC	А	2498	34,1	19,22,23	1.90	6 (31%)	26,31,34	0.96	1 (3%)
1	G7M	А	2069	1	20,26,27	2.24	5 (25%)	17,39,42	0.71	0
1	H2U	А	2449	1	18,21,22	4.07	5 (27%)	21,30,33	5.20	7 (33%)
1	PSU	А	1917	1	18,21,22	2.32	8 (44%)	22,30,33	1.82	4 (18%)
1	2MG	А	2445	1	18,26,27	<mark>3.39</mark>	7 (38%)	16,38,41	1.30	3 (18%)
33	PSU	g	39	33	18,21,22	1.84	<mark>5 (27%)</mark>	22,30,33	2.49	7 (31%)
32	5MU	f	54	32	19,22,23	1.65	3 (15%)	28,32,35	2.93	11 (39%)
1	3TD	А	1915	1	18,22,23	6.42	12 (66%)	22,32,35	1.93	4 (18%)
1	2MA	А	2503	34,1	19,25,26	1.20	1 (5%)	21,37,40	1.85	3 (14%)
32	5MC	f	32	32	18,22,23	0.97	2 (11%)	26,32,35	1.29	3 (11%)
32	4SU	f	8	32	18,21,22	3.20	5 (27%)	26,30,33	3.64	10 (38%)
1	PSU	А	2504	1	18,21,22	2.39	8 (44%)	22,30,33	1.89	4 (18%)
1	OMG	А	2251	1,32	18,26,27	2.46	<mark>5 (27%)</mark>	19,38,41	1.15	3 (15%)
33	H2U	g	17	33	18,21,22	1.01	2 (11%)	21,30,33	<mark>3.29</mark>	5 (23%)
33	31M	g	76	1	38,44,45	4.34	18 (47%)	38,61,64	2.23	13 (34%)
1	PSU	А	955	1	18,21,22	2.44	8 (44%)	22,30,33	1.85	4 (18%)
1	5MC	А	1962	1	18,22,23	2.01	<mark>6 (33%)</mark>	26,32,35	1.16	2 (7%)
33	1MA	g	58	33	16,25,26	1.65	5 (31%)	18,37,40	2.30	5 (27%)
32	PSU	f	55	32	18,21,22	1.31	2 (11%)	22,30,33	1.91	4 (18%)
13	4D4	М	81	13	9,11,12	2.03	2 (22%)	8,13,15	2.10	4 (50%)
1	PSU	А	746	34,1	18,21,22	2.37	9 (50%)	22,30,33	1.80	4 (18%)
33	OMC	g	32	33	19,22,23	1.39	3 (15%)	26,31,34	2.13	2 (7%)
33	5MC	g	40	33	18,22,23	1.27	1 (5%)	26,32,35	2.12	10 (38%)
33	5MC	g	49	33	18,22,23	1.07	2 (11%)	26,32,35	1.72	4 (15%)
33	YYG	g	37	33	31,42,43	2.16	7 (22%)	33,62,65	2.03	10 (30%)
1	PSU	А	2457	1	18,21,22	2.46	8 (44%)	22,30,33	1.90	4 (18%)
33	5MU	g	54	33	19,22,23	1.54	3 (15%)	28,32,35	2.42	7 (25%)

Mal	Type	Chain	Ros	Ros Link		Bond lengths			ond ang	gles
WIOI	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	PSU	А	2580	1	$18,\!21,\!22$	2.47	10 (55%)	$22,\!30,\!33$	1.90	5 (22%)
1	PSU	А	2605	1	18,21,22	2.39	8 (44%)	22,30,33	1.87	4 (18%)
33	7MG	g	46	33	22,26,27	2.13	4 (18%)	29,39,42	3.15	10 (34%)
1	2MG	А	1835	1	18,26,27	<mark>3.37</mark>	7 (38%)	16,38,41	1.35	3 (18%)
1	PSU	А	2604	1	18,21,22	2.40	8 (44%)	22,30,33	1.87	4 (18%)
33	M2G	g	26	33	20,27,28	1.57	3 (15%)	22,40,43	1.06	2 (9%)
1	1MG	А	745	1	18,26,27	2.80	4 (22%)	$19,\!39,\!42$	1.28	3 (15%)
1	OMU	А	2552	1	19,22,23	2.68	7 (36%)	26,31,34	1.86	6 (23%)
1	6MZ	А	1618	1	18,25,26	1.98	1 (5%)	16, 36, 39	2.19	4 (25%)
1	5MU	А	747	1	19,22,23	2.58	7 (36%)	28,32,35	3.81	11 (39%)
33	H2U	g	16	33	18,21,22	0.99	2 (11%)	21,30,33	1.90	2 (9%)
4	MEQ	D	150[A]	4	8,9,10	0.95	0	5,10,12	0.66	0
33	PSU	g	55	33	18,21,22	2.22	<mark>6 (33%)</mark>	$22,\!30,\!33$	2.47	8 (36%)
1	6MZ	А	2030	1	18,25,26	1.98	1 (5%)	16,36,39	2.59	4 (25%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
33	2MG	g	10	33	-	0/5/27/28	0/3/3/3
1	PSU	А	1911	1	-	0/7/25/26	0/2/2/2
33	OMG	g	34	33	-	3/5/27/28	0/3/3/3
1	$5 \mathrm{MU}$	А	1939	1	-	0/7/25/26	0/2/2/2
1	OMC	А	2498	34,1	-	0/9/27/28	0/2/2/2
1	G7M	А	2069	1	-	1/3/25/26	0/3/3/3
1	H2U	А	2449	1	-	0/7/38/39	0/2/2/2
1	PSU	А	1917	1	-	0/7/25/26	0/2/2/2
1	$2 \mathrm{MG}$	А	2445	1	-	2/5/27/28	0/3/3/3
33	PSU	g	39	33	-	3/7/25/26	0/2/2/2
32	$5 \mathrm{MU}$	f	54	32	-	1/7/25/26	0/2/2/2
1	3TD	А	1915	1	-	0/7/25/26	0/2/2/2
1	2MA	А	2503	34,1	-	1/3/25/26	0/3/3/3
32	$5 \mathrm{MC}$	f	32	32	-	0/7/25/26	0/2/2/2
32	$4\mathrm{SU}$	f	8	32	-	0/7/25/26	0/2/2/2
1	PSU	A	2504	1	-	2/7/25/26	0/2/2/2
1	OMG	А	2251	1,32	-	1/5/27/28	0/3/3/3
33	H2U	g	17	33	-	5/7/38/39	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
33	31M	g	76	1	-	6/27/49/50	0/4/4/4
1	PSU	А	955	1	-	0/7/25/26	0/2/2/2
1	5MC	А	1962	1	-	2/7/25/26	0/2/2/2
33	1MA	g	58	33	-	2/3/25/26	0/3/3/3
32	PSU	f	55	32	-	0/7/25/26	0/2/2/2
13	4D4	М	81	13	-	3/11/12/14	-
1	PSU	А	746	34,1	-	2/7/25/26	0/2/2/2
33	OMC	g	32	33	-	0/9/27/28	0/2/2/2
33	5MC	g	40	33	-	0/7/25/26	0/2/2/2
33	$5 \mathrm{MC}$	g	49	33	-	3/7/25/26	0/2/2/2
33	YYG	g	37	33	-	16/20/42/43	0/3/4/4
1	PSU	А	2457	1	-	0/7/25/26	0/2/2/2
33	5MU	g	54	33	-	2/7/25/26	0/2/2/2
1	PSU	А	2580	1	-	0/7/25/26	0/2/2/2
1	PSU	А	2605	1	-	0/7/25/26	0/2/2/2
33	$7 \mathrm{MG}$	g	46	33	-	3/7/37/38	0/3/3/3
1	2MG	А	1835	1	-	0/5/27/28	0/3/3/3
1	PSU	А	2604	1	-	0/7/25/26	0/2/2/2
33	M2G	g	26	33	-	0/7/29/30	0/3/3/3
1	1MG	А	745	1	-	0/3/25/26	0/3/3/3
1	OMU	А	2552	1	-	0/9/27/28	0/2/2/2
1	6MZ	А	1618	1	-	0/5/27/28	0/3/3/3
1	5MU	А	747	1	-	0/7/25/26	0/2/2/2
33	H2U	g	16	33	-	3/7/38/39	0/2/2/2
4	MEQ	D	150[A]	4	-	4/8/9/11	-
33	PSU	g	55	33	-	0/7/25/26	0/2/2/2
1	6MZ	А	2030	1	-	2/5/27/28	0/3/3/3

All (237) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$			
1	А	1915	3TD	C2'-C1'	-18.07	1.30	1.53			
33	g	76	31M	C2'-C1'	-16.92	1.28	1.53			
1	А	1915	3TD	O4'-C1'	14.21	1.63	1.43			
33	g	76	31M	O4'-C1'	12.06	1.57	1.41			
1	А	2449	H2U	O4-C4	10.10	1.43	1.23			
33	g	76	31M	O4'-C4'	-9.47	1.23	1.45			
1	А	1835	2MG	O6-C6	9.24	1.42	1.23			
1	А	2445	2MG	O6-C6	9.16	1.41	1.23			
1	А	745	1MG	O6-C6	9.03	1.40	1.22			
	Continued on next page									

WORLDWIDE PROTEIN DATA BANK

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	1915	3TD	O4-C4	8.29	1.40	1.23
32	f	8	4SU	C4-S4	-8.15	1.53	1.68
1	А	2449	H2U	C2-N1	8.08	1.47	1.35
1	А	2449	H2U	O2-C2	8.07	1.37	1.23
1	А	2552	OMU	O4-C4	7.89	1.39	1.24
1	А	1618	6MZ	C6-N6	7.88	1.47	1.35
1	А	2030	6MZ	C6-N6	7.75	1.47	1.35
1	А	1915	3TD	O4'-C4'	-7.63	1.28	1.45
32	f	8	4SU	C4-N3	-6.86	1.30	1.37
33	g	37	YYG	O23-C21	6.69	1.46	1.34
1	А	1939	5MU	C2-N1	-6.47	1.28	1.38
33	g	46	7MG	C5-N7	-6.47	1.28	1.35
1	А	2251	OMG	O6-C6	6.41	1.36	1.23
1	А	2069	G7M	O6-C6	6.32	1.36	1.23
1	А	2449	H2U	C2-N3	6.14	1.48	1.38
1	А	747	5MU	C2-N1	-6.10	1.28	1.38
1	А	1835	2MG	C2-N2	5.69	1.46	1.33
1	А	2445	2MG	C2-N2	5.64	1.45	1.33
32	f	8	4SU	C5-C4	-5.44	1.35	1.42
1	А	1835	2MG	CM2-N2	5.35	1.55	1.45
33	g	37	YYG	O18-C16	5.25	1.46	1.33
1	А	2445	2MG	CM2-N2	5.22	1.54	1.45
33	g	76	31M	O-C	-5.10	1.13	1.23
1	А	745	1MG	C2-N2	5.06	1.43	1.34
1	А	2251	OMG	C6-N1	-5.05	1.30	1.37
33	g	76	31M	O5'-C5'	-4.93	1.32	1.44
1	А	2580	PSU	C1'- $C5$	-4.84	1.39	1.50
1	А	2604	PSU	C1'- $C5$	-4.81	1.39	1.50
1	А	2457	PSU	C1'- $C5$	-4.80	1.39	1.50
1	А	2445	2MG	C6-N1	-4.80	1.30	1.37
33	g	34	OMG	C6-N1	-4.78	1.30	1.37
1	А	2069	G7M	C2-N2	4.76	1.45	1.34
13	М	81	4D4	CZ-NE	4.74	1.42	1.33
1	А	1939	5MU	C2-N3	-4.73	1.29	1.38
1	А	2449	H2U	C4-N3	4.73	1.45	1.37
33	g	55	PSU	C4-N3	-4.73	1.30	1.38
1	А	1917	PSU	C1'-C5	-4.71	1.39	1.50
1	A	955	PSU	C1'-C5	-4.70	1.39	1.50
1	A	2605	PSU	C1'-C5	-4.69	1.39	1.50
1	A	746	PSU	C1'-C5	-4.68	1.39	1.50
1	A	2504	PSU	C1'-C5	-4.67	1.39	1.50
1	A	1911	PSU	C1'- $C5$	-4.66	1.39	1.50

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
32	f	8	4SU	C2-N3	-4.66	1.29	1.38
33	g	26	M2G	C2-N3	4.65	1.36	1.30
33	g	37	YYG	C4-N3	-4.65	1.31	1.40
1	Ă	2498	OMC	C4-N4	4.65	1.44	1.33
1	А	1939	5MU	C6-N1	-4.62	1.30	1.38
1	А	1835	2MG	C6-N1	-4.60	1.31	1.37
1	А	747	5MU	C2-N3	-4.58	1.29	1.38
1	А	2552	OMU	C2-N1	-4.55	1.31	1.38
1	А	2251	OMG	C2-N2	4.53	1.45	1.34
1	А	747	5MU	C6-N1	-4.46	1.30	1.38
33	g	76	31M	CTM-N	4.38	1.43	1.34
33	g	46	7MG	C4-N9	-4.33	1.32	1.37
33	g	55	PSU	C2-N3	-4.23	1.30	1.37
1	А	1962	5MC	C4-N4	4.17	1.45	1.34
1	А	2069	G7M	C6-N1	-4.16	1.31	1.37
32	f	54	5MU	C6-N1	-4.15	1.31	1.38
33	g	39	PSU	C2-N1	-4.13	1.31	1.36
33	g	46	7MG	C6-N1	-4.08	1.31	1.38
33	g	76	31M	C3'-N3'	-4.08	1.39	1.45
33	g	76	31M	C8-N7	-4.06	1.27	1.34
1	А	2457	PSU	C4-N3	-4.03	1.31	1.38
1	А	2580	PSU	C4-N3	-4.03	1.31	1.38
1	А	1962	5MC	C2-N1	-4.02	1.31	1.40
1	А	955	PSU	C2-N1	-4.01	1.31	1.36
1	А	2457	PSU	C2-N1	-3.96	1.31	1.36
1	А	955	PSU	C4-N3	-3.96	1.31	1.38
1	А	2605	PSU	C4-N3	-3.93	1.31	1.38
1	А	2504	PSU	C4-N3	-3.89	1.31	1.38
1	А	2580	PSU	C2-N1	-3.89	1.31	1.36
1	А	2445	2MG	C5-C6	-3.89	1.39	1.47
33	g	40	5MC	C6-N1	-3.88	1.31	1.38
1	А	2604	PSU	C4-N3	-3.86	1.31	1.38
1	А	2552	OMU	C4-N3	-3.83	1.31	1.38
1	А	1962	5MC	C6-N1	-3.83	1.31	1.38
1	A	2504	PSU	C2-N1	-3.82	1.31	1.36
1	A	1835	2MG	C5-C6	-3.81	1.39	1.47
33	g	10	2MG	C6-N1	-3.80	1.32	1.37
1	A	2604	PSU	C2-N1	-3.80	1.31	1.36
1	A	2605	PSU	C2-N1	-3.79	1.31	1.36
1	А	746	PSU	C4-N3	-3.77	1.31	1.38
1	A	2457	PSU	C2-N3	-3.75	1.31	1.37
1	A	1911	PSU	C4-N3	-3.75	1.31	1.38

001000	nucu jion	" precede	as page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	745	1MG	C6-N1	-3.75	1.32	1.39
1	А	2503	2MA	C6-N6	3.74	1.47	1.34
1	А	2605	PSU	C2-N3	-3.74	1.31	1.37
1	А	2552	OMU	C2-N3	-3.73	1.31	1.38
1	А	2498	OMC	C2-N1	-3.72	1.31	1.40
1	А	1917	PSU	C4-N3	-3.72	1.31	1.38
1	А	1915	3TD	O2'-C2'	3.71	1.51	1.43
1	А	746	PSU	C2-N1	-3.70	1.31	1.36
1	А	955	PSU	C2-N3	-3.69	1.31	1.37
33	g	76	31M	C4-N3	-3.69	1.30	1.35
1	А	2580	PSU	C2-N3	-3.66	1.31	1.37
1	А	1915	3TD	C4-N3	-3.66	1.32	1.40
1	А	2604	PSU	C2-N3	-3.65	1.31	1.37
1	А	1911	PSU	C2-N1	-3.64	1.31	1.36
1	А	2504	PSU	C2-N3	-3.63	1.31	1.37
1	А	1917	PSU	C2-N1	-3.63	1.31	1.36
1	А	1915	3TD	C2-N1	-3.60	1.32	1.37
1	А	1939	5MU	C4-N3	-3.59	1.32	1.38
1	А	746	PSU	C2-N3	-3.53	1.31	1.37
1	А	747	5MU	C6-C5	3.52	1.40	1.34
32	f	54	5MU	C4-N3	-3.52	1.32	1.38
1	А	1939	5MU	C6-C5	3.51	1.40	1.34
1	А	1917	PSU	C2-N3	-3.48	1.31	1.37
1	А	747	5MU	C4-N3	-3.47	1.32	1.38
1	А	2445	2MG	C2-N1	-3.46	1.31	1.36
33	g	58	1MA	C2-N3	3.45	1.33	1.29
33	g	55	PSU	C2-N1	-3.43	1.32	1.36
1	А	1911	PSU	C2-N3	-3.42	1.31	1.37
33	g	39	PSU	C4-N3	-3.40	1.32	1.38
1	А	1915	3TD	C6-C5	3.34	1.39	1.35
32	f	54	5MU	C2-N3	-3.31	1.32	1.38
33	g	54	5MU	C4-N3	-3.28	1.32	1.38
1	А	1835	2MG	C2-N1	-3.27	1.31	1.36
33	g	76	31M	C-N3'	3.25	1.41	1.34
33	g	10	2MG	C2'-C1'	-3.10	1.49	1.53
33	g	55	PSU	C6-N1	-3.08	1.31	1.36
33	g	37	YYG	C2-N1	-3.08	1.31	1.37
33	g	54	5MU	C6-N1	-3.07	1.32	1.38
33	g	54	5MU	C2-N3	-3.04	1.32	1.38
13	М	81	4D4	CZ-NH2	3.03	1.44	1.32
1	A	1962	$5\overline{\mathrm{MC}}$	O2-C2	-3.02	1.18	1.23
1	А	1939	5MU	O4-C4	-3.00	1.17	1.23

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	1939	5MU	O2-C2	-3.00	1.17	1.23
1	А	2498	OMC	O2-C2	-2.99	1.18	1.23
1	А	2605	PSU	O4-C4	-2.99	1.17	1.23
33	g	32	OMC	C6-N1	-2.98	1.30	1.38
1	Ā	2457	PSU	O4-C4	-2.98	1.17	1.23
33	g	37	YYG	C12-N1	-2.98	1.31	1.36
33	g	46	7MG	C8-N9	-2.97	1.44	1.46
1	A	955	PSU	O4-C4	-2.97	1.17	1.23
1	А	747	5MU	O4-C4	-2.97	1.17	1.23
1	А	1911	PSU	C6-C5	2.95	1.38	1.35
33	g	55	PSU	C2'-C1'	-2.95	1.49	1.53
1	А	2580	PSU	O4-C4	-2.93	1.18	1.23
1	А	1917	PSU	C6-C5	2.90	1.38	1.35
1	А	2504	PSU	C6-C5	2.90	1.38	1.35
1	А	747	5MU	O2-C2	-2.89	1.17	1.23
1	А	2604	PSU	O4-C4	-2.89	1.18	1.23
1	А	746	PSU	C6-C5	2.89	1.38	1.35
1	А	2504	PSU	O4-C4	-2.88	1.18	1.23
32	f	55	PSU	C6-C5	2.87	1.38	1.35
1	А	746	PSU	O4-C4	-2.85	1.18	1.23
33	g	76	31M	C2'-C3'	-2.84	1.48	1.53
1	А	2604	PSU	C6-C5	2.81	1.38	1.35
1	А	2069	G7M	C2-N1	-2.78	1.30	1.37
33	g	26	M2G	C6-N1	-2.78	1.33	1.37
1	А	955	PSU	C6-C5	2.77	1.38	1.35
1	А	1915	3TD	O3'-C3'	-2.75	1.36	1.43
1	А	1911	PSU	O4-C4	-2.75	1.18	1.23
1	А	2580	PSU	C6-N1	-2.75	1.31	1.36
1	А	1915	3TD	C2-N3	-2.75	1.32	1.38
1	А	2580	PSU	C6-C5	2.74	1.38	1.35
1	А	2457	PSU	C6-C5	2.74	1.38	1.35
33	g	76	31M	C5-N7	-2.72	1.29	1.39
1	А	2552	OMU	O2-C2	-2.72	1.18	1.23
1	А	2605	PSU	C6-C5	2.72	1.38	1.35
1	A	955	PSU	C6-N1	-2.72	1.31	1.36
33	g	10	2MG	C2-N1	-2.71	1.32	1.36
32	f	32	5MC	C6-N1	-2.70	1.33	1.38
1	А	745	1MG	C5-C6	-2.69	1.39	1.47
33	g	37	YYG	C2'-C1'	-2.67	1.49	1.53
33	g	49	5MC	C6-N1	-2.66	1.33	1.38
1	А	2457	PSU	C6-N1	-2.65	1.31	1.36
1	A	1917	PSU	O4-C4	-2.64	1.18	1.23

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
33	g	17	H2U	C4-N3	-2.63	1.33	1.37
1	А	2605	PSU	C6-N1	-2.61	1.31	1.36
1	А	2604	PSU	C6-N1	-2.60	1.31	1.36
1	А	2457	PSU	O2-C2	-2.59	1.18	1.23
1	А	2504	PSU	C6-N1	-2.59	1.31	1.36
33	g	26	M2G	C2-N2	2.58	1.40	1.35
32	f	8	4SU	C6-N1	-2.58	1.31	1.38
33	g	39	PSU	C2-N3	-2.58	1.33	1.37
33	g	32	OMC	C5-C4	-2.58	1.37	1.42
33	g	37	YYG	C4-N9	-2.57	1.31	1.37
33	g	58	1MA	C2-N1	-2.57	1.31	1.35
1	А	2580	PSU	O2-C2	-2.56	1.18	1.23
1	А	2552	OMU	C6-N1	-2.55	1.31	1.38
1	А	955	PSU	O2-C2	-2.55	1.18	1.23
1	А	2251	OMG	C5-C6	-2.55	1.42	1.47
1	А	1917	PSU	C6-N1	-2.54	1.32	1.36
33	g	76	31M	C5-C4	-2.54	1.34	1.40
33	g	16	H2U	C2-N3	-2.52	1.33	1.38
1	А	2498	OMC	C6-N1	-2.51	1.31	1.38
33	g	39	PSU	C6-N1	-2.49	1.32	1.36
1	А	1911	PSU	C6-N1	-2.49	1.32	1.36
33	g	39	PSU	C2'-C1'	-2.47	1.50	1.53
32	f	55	PSU	C4-N3	-2.47	1.34	1.38
33	g	16	H2U	C4-N3	-2.47	1.33	1.37
1	А	2605	PSU	O2-C2	-2.47	1.18	1.23
1	А	2504	PSU	O2-C2	-2.45	1.18	1.23
1	А	1962	5MC	C2-N3	-2.44	1.31	1.36
1	А	2604	PSU	O2-C2	-2.44	1.18	1.23
1	А	2498	OMC	C2-N3	-2.42	1.31	1.36
1	А	746	PSU	C6-N1	-2.41	1.32	1.36
1	А	2552	OMU	C5-C4	-2.41	1.38	1.43
33	g	58	1MA	C6-N6	2.40	1.33	1.27
33	g	76	31M	OTM-CTM	-2.40	1.18	1.23
1	А	1917	PSU	O2-C2	-2.38	1.18	1.23
32	f	32	5MC	C6-C5	2.35	1.38	1.34
1	A	1911	PSU	O2-C2	-2.34	1.18	1.23
33	g	17	H2U	C2-N3	-2.34	1.33	1.38
1	А	746	PSU	O2-C2	-2.34	1.18	1.23
1	А	2580	PSU	O4'-C1'	-2.30	1.40	1.43
33	g	76	31M	C2-N3	-2.30	1.28	1.32
33	g	34	OMG	C2-N1	-2.28	1.32	1.37
33	g	58	1MA	C5-C4	2.27	1.48	1.43

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	1915	3TD	C6-N1	-2.25	1.32	1.36
1	А	2251	OMG	C5-C4	-2.25	1.37	1.43
33	g	55	PSU	C1'-C5	-2.23	1.45	1.50
1	А	1962	5MC	C6-C5	2.22	1.38	1.34
1	А	1915	3TD	O2-C2	-2.22	1.19	1.23
33	g	32	OMC	C2-N3	-2.21	1.31	1.36
1	А	746	PSU	O4'-C1'	-2.18	1.40	1.43
1	А	2445	2MG	C4-N3	-2.12	1.32	1.37
33	g	76	31M	CE1-CD1	-2.11	1.34	1.38
33	g	49	5MC	C6-C5	2.11	1.38	1.34
33	g	76	31M	O2'-C2'	2.09	1.47	1.43
1	А	2069	G7M	C5-C6	-2.09	1.40	1.45
33	g	76	31M	C2-N1	-2.08	1.30	1.33
33	g	58	1MA	C4-N3	-2.07	1.31	1.37
33	g	34	OMG	C4-N3	-2.05	1.32	1.37
1	A	1835	2MG	C4-N3	-2.03	1.32	1.37
1	A	2580	PSU	C4-C5	-2.01	1.38	1.44
1	А	2498	OMC	C5-C4	-2.00	1.38	1.42

All (226) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2449	H2U	C4-N3-C2	-15.23	113.16	125.79
33	g	17	H2U	C4-N3-C2	-13.77	114.37	125.79
1	А	2449	H2U	O2-C2-N1	-11.49	108.68	123.11
33	g	46	7MG	N9-C4-N3	10.82	141.66	125.47
32	f	8	4SU	C4-N3-C2	-10.44	117.20	127.34
32	f	8	4SU	C5-C4-N3	10.31	124.25	114.69
33	g	32	OMC	C2'-C1'-N1	-9.28	96.21	114.22
1	А	1939	5MU	C4-N3-C2	-9.13	115.53	127.35
32	f	54	5MU	O4-C4-C5	-8.97	114.50	124.90
1	А	747	5MU	C4-N3-C2	-8.56	116.27	127.35
1	А	747	5MU	C5M-C5-C4	8.48	128.10	118.77
1	А	1939	5MU	N3-C2-N1	8.44	126.09	114.89
1	А	1939	5MU	C5-C6-N1	-8.33	114.77	123.34
1	А	747	5MU	N3-C2-N1	8.22	125.80	114.89
1	А	1939	5MU	C5M-C5-C4	8.09	127.67	118.77
1	А	2449	H2U	O4-C4-N3	-7.92	107.72	120.28
33	g	55	PSU	N1-C2-N3	7.43	123.55	115.13
1	A	747	5MU	C5-C6-N1	-7.32	115.81	123.34
1	А	2449	H2U	O2-C2-N3	-7.19	108.11	121.50
33	g	16	H2U	C4-N3-C2	-6.92	120.05	125.79

Continued from previous page									
Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$		
1	А	1939	5MU	C5-C4-N3	6.87	121.18	115.31		
1	А	1915	3TD	N1-C2-N3	6.71	121.43	116.14		
1	А	2503	2MA	C2-N3-C4	6.61	120.89	115.52		
33	g	46	7MG	N9-C8-N7	-6.57	93.97	103.38		
1	А	747	5MU	C5M-C5-C6	-6.57	114.07	122.85		
1	А	2449	H2U	O4-C4-C5	-6.54	108.19	122.17		
1	А	1939	5MU	C5M-C5-C6	-6.51	114.16	122.85		
1	А	2030	6MZ	C9-N6-C6	-6.46	117.30	122.87		
1	А	747	5MU	C5-C4-N3	6.46	120.83	115.31		
33	g	58	1MA	O4'-C1'-C2'	-6.40	97.57	106.93		
33	g	46	7MG	C5-C4-N3	-6.33	116.07	128.13		
32	f	8	4SU	C5-C4-S4	-6.21	116.46	124.47		
32	f	54	5MU	C4-N3-C2	-6.08	119.48	127.35		
1	А	2449	H2U	N3-C2-N1	-6.07	110.24	116.65		
33	g	54	5MU	C5-C4-N3	5.97	120.40	115.31		
33	g	54	5MU	C4-N3-C2	-5.93	119.68	127.35		
32	f	55	PSU	N1-C2-N3	5.78	121.68	115.13		
1	А	2580	PSU	N1-C2-N3	5.74	121.64	115.13		
1	А	2504	PSU	N1-C2-N3	5.72	121.61	115.13		
1	А	2457	PSU	N1-C2-N3	5.71	121.60	115.13		
32	f	54	5MU	N3-C2-N1	5.67	122.42	114.89		
1	А	2604	PSU	N1-C2-N3	5.62	121.50	115.13		
1	А	955	PSU	N1-C2-N3	5.57	121.44	115.13		
1	А	1917	PSU	N1-C2-N3	5.56	121.44	115.13		
1	А	2605	PSU	N1-C2-N3	5.56	121.42	115.13		
1	А	2552	OMU	N3-C2-N1	5.51	122.21	114.89		
1	А	1911	PSU	N1-C2-N3	5.51	121.37	115.13		
33	g	76	31M	N3-C2-N1	-5.46	120.15	128.68		
33	g	39	PSU	N1-C2-N3	5.44	121.29	115.13		
32	f	8	4SU	N3-C2-N1	5.43	122.10	114.89		
1	А	746	PSU	N1-C2-N3	5.43	121.28	115.13		
32	f	54	5MU	C5-C4-N3	5.40	119.92	115.31		
1	А	2030	6MZ	C2-N1-C6	5.24	121.08	116.59		
33	g	76	31M	C4-C5-N7	-5.15	104.03	109.40		
33	g	54	5MU	N3-C2-N1	5.05	121.60	114.89		
33	g	40	5MC	O2-C2-N3	-5.02	114.16	122.33		
1	А	2030	6MZ	N3-C2-N1	-4.92	120.99	128.68		
33	g	54	5MU	O4-C4-C5	-4.90	119.23	124.90		
33	g	39	PSU	O2-C2-N1	-4.88	117.41	122.79		
1	А	1618	6MZ	C2-N1-C6	4.81	120.71	116.59		
33	g	55	PSU	C4-N3-C2	-4.76	119.48	126.34		
1	А	2552	OMU	C4-N3-C2	-4.76	120.31	126.58		

D W I D E DATA BANK

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	1618	6MZ	C9-N6-C6	-4.75	118.78	122.87
1	А	1618	6MZ	N3-C2-N1	-4.71	121.31	128.68
33	g	49	5MC	C5-C6-N1	-4.69	118.51	123.34
33	g	76	31M	C5-C6-N6	4.67	127.45	120.35
33	g	39	PSU	C4-N3-C2	-4.66	119.63	126.34
33	g	58	1MA	N1-C2-N3	4.53	131.30	126.02
33	g	39	PSU	C6-C5-C4	-4.53	115.03	118.20
33	g	76	31M	CB-CA-C	-4.38	98.88	110.25
33	g	46	7MG	C2-N3-C4	4.32	120.00	112.30
32	f	32	5MC	C5-C6-N1	-4.29	118.92	123.34
33	g	37	YYG	O4'-C1'-C2'	-4.28	100.67	106.93
1	А	1939	5MU	O2-C2-N1	-4.24	117.15	122.79
1	А	1962	5MC	C5-C6-N1	-4.23	118.99	123.34
1	А	2605	PSU	C4-N3-C2	-4.12	120.40	126.34
1	А	2457	PSU	C4-N3-C2	-4.09	120.44	126.34
1	А	746	PSU	C4-N3-C2	-4.06	120.50	126.34
1	А	2604	PSU	C4-N3-C2	-4.05	120.50	126.34
1	А	2504	PSU	C4-N3-C2	-4.04	120.51	126.34
32	f	55	PSU	C4-N3-C2	-4.02	120.54	126.34
1	А	1939	5MU	O4-C4-N3	-4.00	112.44	120.12
1	А	955	PSU	C4-N3-C2	-3.92	120.68	126.34
1	А	1911	PSU	C4-N3-C2	-3.92	120.69	126.34
1	А	1917	PSU	C4-N3-C2	-3.90	120.72	126.34
1	А	2580	PSU	C4-N3-C2	-3.89	120.73	126.34
1	А	747	5MU	O4-C4-N3	-3.87	112.69	120.12
33	g	49	5MC	O2-C2-N3	-3.72	116.28	122.33
33	g	49	5MC	C2'-C1'-N1	-3.68	102.80	113.22
33	g	76	31M	CA-C-N3'	3.67	124.74	116.70
33	g	54	5MU	C5-C6-N1	-3.65	119.58	123.34
1	А	1915	3TD	C4-N3-C2	-3.63	120.67	124.61
13	М	81	4D4	NE-CZ-NH2	-3.60	114.37	120.70
32	f	54	5MU	O2-C2-N1	-3.60	118.01	122.79
33	g	58	1MA	C2'-C3'-C4'	-3.52	95.80	102.64
33	g	37	YYG	C3'-C2'-C1'	3.52	106.28	100.98
33	g	37	YYG	C24-O23-C21	3.52	119.82	115.66
33	g	46	7MG	C5-C6-N1	3.48	117.12	110.99
1	А	747	5MU	O2-C2-N1	-3.46	118.19	122.79
33	g	76	31M	O-C-N3'	-3.42	116.60	122.93
32	f	55	PSU	O2-C2-N1	-3.42	119.03	122.79
33	g	37	YYG	C2'-C3'-C4'	-3.40	96.04	102.64
33	g	55	PSU	O2-C2-N1	-3.39	119.06	122.79
1	А	745	1MG	C5-C6-N1	3.38	118.98	113.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
33	g	37	YYG	O18-C16-C15	3.35	120.09	111.52
33	g	17	H2U	C5-C4-N3	-3.31	112.93	116.65
33	g	55	PSU	C3'-C2'-C1'	3.30	105.48	101.64
1	A	2504	PSU	O2-C2-N1	-3.29	119.17	122.79
33	g	39	PSU	O4-C4-C5	-3.25	115.53	124.05
1	А	955	PSU	O2-C2-N1	-3.24	119.23	122.79
33	g	40	5MC	O4'-C1'-N1	3.23	115.75	108.36
33	g	10	2MG	O2'-C2'-C3'	-3.18	101.54	111.82
1	А	1835	2MG	C5-C6-N1	3.17	119.56	113.95
1	А	2580	PSU	O2-C2-N1	-3.17	119.30	122.79
33	g	37	YYG	C19-O18-C16	3.17	123.11	115.94
13	М	81	4D4	NH1-CZ-NE	3.16	126.48	119.19
33	g	46	7MG	C5-C4-N9	-3.15	102.26	106.35
1	А	2457	PSU	O2-C2-N1	-3.14	119.34	122.79
1	А	2503	2MA	C5-C6-N1	-3.13	118.95	121.01
32	f	8	4SU	O2'-C2'-C1'	-3.09	99.69	110.02
33	g	40	5MC	C5-C6-N1	-3.07	120.18	123.34
33	g	37	YYG	C5-C6-N1	3.06	118.52	113.96
1	А	1911	PSU	O2-C2-N1	-3.05	119.44	122.79
1	А	2552	OMU	O2-C2-N1	-3.04	118.74	122.79
1	А	746	PSU	O2-C2-N1	-3.03	119.45	122.79
1	А	1917	PSU	O2-C2-N1	-3.01	119.48	122.79
33	g	76	31M	O4'-C1'-C2'	-3.00	102.55	106.93
1	А	2445	2MG	C5-C6-N1	3.00	119.24	113.95
1	А	747	5MU	C1'-N1-C6	-2.98	116.17	121.12
1	А	747	5MU	O2-C2-N3	-2.95	116.01	121.50
33	g	55	PSU	C5-C6-N1	-2.94	117.70	122.11
1	А	1939	5MU	C6-N1-C2	2.93	124.27	121.30
32	f	8	4SU	C3'-C2'-C1'	2.92	106.98	101.43
1	А	2604	PSU	O2-C2-N1	-2.92	119.58	122.79
33	g	46	7MG	C2-N1-C6	-2.89	119.82	125.10
1	А	2498	OMC	O2-C2-N3	-2.89	117.62	122.33
33	g	46	7MG	O6-C6-C5	-2.89	120.45	127.54
33	g	10	2MG	C8-N7-C5	2.86	108.44	102.99
32	f	54	5MU	O4-C4-N3	2.85	125.57	120.12
1	A	2251	OMG	C8-N7-C5	2.84	108.40	102.99
1	A	1915	3TD	C3'-C2'-C1'	2.84	104.94	101.64
33	g	40	5MC	C1'-N1-C2	2.83	124.74	118.42
33	g	40	5MC	C1 ['] -N1-C6	-2.82	116.42	121.12
32	f	54	5MU	O3'-C3'-C2'	2.82	120.96	111.82
1	A	2605	PSU	O2-C2-N1	-2.81	119.69	122.79
33	g	55	PSU	O2'-C2'-C1'	-2.75	104.68	111.23

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
33	g	32	OMC	C5-C6-N1	-2.74	117.22	121.81
33	g	49	5MC	C5'-C4'-C3'	-2.74	104.93	115.18
1	А	1835	2MG	C8-N7-C5	2.73	108.19	102.99
33	g	46	7MG	O4'-C1'-N9	2.73	113.01	109.30
1	А	745	1MG	C8-N7-C5	2.73	108.19	102.99
32	f	8	4SU	C6-C5-C4	-2.71	117.60	119.95
1	А	2445	2MG	C8-N7-C5	2.71	108.14	102.99
1	А	2552	OMU	C5-C6-N1	-2.67	117.33	121.81
1	А	2030	6MZ	C4-C5-N7	-2.66	106.62	109.40
33	g	10	2MG	O3'-C3'-C4'	2.65	118.72	111.05
33	g	76	31M	CEM-SDM-CGM	2.64	109.48	100.40
33	g	17	H2U	C2'-C3'-C4'	2.64	107.77	102.64
32	f	8	4SU	O2-C2-N3	-2.63	116.60	121.50
33	g	10	2MG	C5-C6-N1	2.63	118.59	113.95
1	А	2552	OMU	C5-C4-N3	2.62	118.76	114.84
33	g	34	OMG	C5-C6-N1	2.62	118.57	113.95
33	g	39	PSU	C5'-C4'-C3'	-2.62	105.38	115.18
32	f	32	5MC	C5-C4-N3	-2.61	118.86	121.67
33	g	34	OMG	C3'-C2'-C1'	2.60	107.77	102.89
1	А	1939	5MU	O2-C2-N3	-2.55	116.75	121.50
33	g	76	31M	CB-CA-N	-2.53	105.46	110.79
1	А	2552	OMU	O4-C4-C5	-2.51	120.75	125.16
1	А	2457	PSU	C5-C6-N1	-2.51	118.35	122.11
33	g	16	H2U	C3'-C2'-C1'	2.50	106.17	101.43
33	g	17	H2U	O4-C4-N3	2.49	124.23	120.28
33	g	34	OMG	O4'-C1'-C2'	-2.47	102.31	106.59
1	А	2604	PSU	C5-C6-N1	-2.47	118.41	122.11
1	А	746	PSU	C5-C6-N1	-2.46	118.42	122.11
1	А	2605	PSU	C5-C6-N1	-2.46	118.42	122.11
13	М	81	4D4	CB-CA-C	-2.45	107.85	111.77
33	g	37	YYG	O23-C21-N20	2.44	115.08	110.80
33	g	40	5MC	C5-C4-N3	-2.41	119.08	121.67
33	g	40	5MC	O4'-C4'-C5'	2.40	117.27	109.37
1	A	2251	OMG	C5-C6-N1	2.38	118.16	113.95
33	g	37	YYG	O18-C16-O17	-2.37	119.20	123.84
33	g	34	OMG	C2-N1-C6	-2.36	120.75	125.10
33	g	55	PSU	O2-C2-N3	-2.35	117.39	121.82
1	А	1911	PSU	C5-C6-N1	-2.33	118.61	122.11
33	g	26	M2G	C8-N7-C5	2.33	107.43	102.99
1	А	2449	H2U	C5-C4-N3	-2.33	114.03	116.65
33	g	40	5MC	O2'-C2'-C1'	-2.33	102.24	110.02
33	g	39	PSU	O5'-C5'-C4'	2.32	116.90	108.99

Mol	Chain	Res	Type	Atoms	Ζ	Observed(°)	$Ideal(^{o})$
1	А	2504	PSU	C5-C6-N1	-2.30	118.65	122.11
33	g	40	5MC	N1-C2-N3	2.28	122.96	118.81
33	g	58	1MA	C3'-C2'-C1'	-2.28	97.55	100.98
1	А	745	1MG	O6-C6-C5	-2.26	120.18	124.19
1	А	1917	PSU	C5-C6-N1	-2.25	118.73	122.11
32	f	54	5MU	C5-C6-N1	-2.25	121.03	123.34
32	f	32	5MC	CM5-C5-C6	-2.25	119.85	122.85
1	А	2445	2MG	CM2-N2-C2	-2.24	118.91	123.86
32	f	54	5MU	C6-N1-C2	-2.24	119.03	121.30
33	g	58	1MA	O2'-C2'-C3'	-2.23	104.61	111.82
1	А	2580	PSU	C5-C6-N1	-2.21	118.79	122.11
33	g	40	5MC	O4'-C4'-C3'	-2.21	100.74	105.11
33	g	26	M2G	C5-C6-N1	2.21	117.85	113.95
1	А	2503	2MA	N3-C2-N1	-2.21	121.70	125.73
1	А	955	PSU	C5-C6-N1	-2.21	118.80	122.11
1	А	1835	2MG	CM2-N2-C2	-2.20	119.00	123.86
1	А	2580	PSU	O4'-C1'-C2'	2.19	108.23	105.14
33	g	76	31M	C2-N1-C6	2.16	122.46	118.75
33	g	76	31M	OTM-CTM-N	-2.15	118.94	122.93
1	А	1618	6MZ	C4-C5-N7	-2.15	107.16	109.40
32	f	55	PSU	C5-C6-N1	-2.14	118.90	122.11
1	А	747	5MU	C6-N1-C2	2.13	123.45	121.30
33	g	55	PSU	O4'-C4'-C3'	-2.13	100.91	105.11
33	g	46	7MG	C5'-C4'-C3'	-2.12	107.25	115.18
33	g	54	5MU	O2-C2-N1	-2.12	119.97	122.79
33	g	37	YYG	O23-C21-O22	-2.10	121.49	124.58
13	М	81	4D4	O-C-CA	-2.10	119.27	124.78
32	f	54	5MU	C1'-N1-C2	2.10	121.38	117.57
33	g	76	31M	CBM-CAM-CTM	2.08	115.35	110.85
33	g	17	H2U	C4'-O4'-C1'	2.08	114.06	109.47
32	f	8	4SU	C2'-C1'-N1	-2.05	107.41	113.22
1	A	1915	3TD	C5-C6-N1	-2.03	119.06	122.11
32	f	54	5MU	O2'-C2'-C1'	-2.03	103.24	110.02
32	f	8	4SU	O5'-C5'-C4'	2.03	115.89	108.99
1	A	1962	5MC	C5-C4-N3	-2.02	119.50	121.67
33	g	54	5MU	C2'-C1'-N1	-2.01	107.51	113.22
1	А	2251	OMG	C2-N1-C6	-2.01	121.40	125.10
- 33	g	76	31M	C-CA-N	2.01	116.63	111.16

Continued from previous page...

There are no chirality outliers.

All (67) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	D	150[A]	MEQ	N-CA-CB-CG
13	М	81	4D4	NE-CD-CG-CB
1	А	746	PSU	C2'-C1'-C5-C4
1	А	2251	OMG	C1'-C2'-O2'-CM2
33	g	17	H2U	O4'-C1'-N1-C6
33	g	34	OMG	O4'-C4'-C5'-O5'
33	g	34	OMG	C1'-C2'-O2'-CM2
33	g	37	YYG	N1-C12-C13-C14
33	g	37	YYG	C12-C13-C14-C15
33	g	37	YYG	C13-C14-C15-N20
33	g	37	YYG	C15-C16-O18-C19
33	g	37	YYG	O23-C21-N20-C15
33	g	37	YYG	N20-C21-O23-C24
33	g	37	YYG	O22-C21-O23-C24
33	g	39	PSU	C3'-C4'-C5'-O5'
33	g	46	7MG	O4'-C4'-C5'-O5'
33	g	49	5MC	O4'-C4'-C5'-O5'
33	g	49	5MC	C3'-C4'-C5'-O5'
33	g	54	$5 \mathrm{MU}$	C3'-C4'-C5'-O5'
33	g	54	5MU	O4'-C4'-C5'-O5'
33	g	76	31M	CTM-CAM-CBM-CGM
33	g	76	31M	NM-CAM-CBM-CGM
33	g	37	YYG	O17-C16-O18-C19
33	g	37	YYG	O22-C21-N20-C15
1	А	2030	6MZ	O4'-C4'-C5'-O5'
1	А	2030	6MZ	C3'-C4'-C5'-O5'
1	А	2445	2MG	C3'-C4'-C5'-O5'
1	А	2504	PSU	O4'-C4'-C5'-O5'
33	g	16	H2U	C3'-C4'-C5'-O5'
33	g	34	OMG	C3'-C4'-C5'-O5'
33	g	46	$7 \mathrm{MG}$	C3'-C4'-C5'-O5'
33	g	58	1MA	O4'-C4'-C5'-O5'
33	g	76	31M	CBM-CGM-SDM-CEM
1	А	2504	PSU	C3'-C4'-C5'-O5'
33	g	39	PSU	O4'-C4'-C5'-O5'
33	g	58	1MA	C3'-C4'-C5'-O5'
1	A	2445	2MG	O4'-C4'-C5'-O5'
33	g	37	YYG	O4'-C4'-C5'-O5'
13	М	81	4D4	OB-CB-CG-CD
33	g	37	YYG	C13-C14-C15-C16
4	D	150[A]	MEQ	C-CA-CB-CG
13	М	81	4D4	CA-CB-CG-CD
33	g	37	YYG	C11-C12-C13-C14

Mol	Chain	Res	Type	Atoms
33	g	37	YYG	N20-C15-C16-O17
33	g	37	YYG	C16-C15-N20-C21
33	g	16	H2U	O4'-C4'-C5'-O5'
33	g	37	YYG	C3'-C4'-C5'-O5'
4	D	150[A]	MEQ	OE1-CD-CG-CB
33	g	37	YYG	N20-C15-C16-O18
33	g	17	H2U	C4'-C5'-O5'-P
4	D	150[A]	MEQ	NE2-CD-CG-CB
33	g	46	7MG	C2'-C1'-N9-C8
33	g	16	H2U	C4'-C5'-O5'-P
33	g	39	PSU	C4'-C5'-O5'-P
33	g	76	31M	CAM-CBM-CGM-SDM
33	g	76	31M	CA-CB-CG-CD1
33	g	17	H2U	O4'-C1'-N1-C2
1	А	1962	5MC	C2'-C1'-N1-C6
1	А	2503	2MA	O4'-C4'-C5'-O5'
1	А	1962	5MC	O4'-C1'-N1-C6
32	f	54	5MU	O4'-C4'-C5'-O5'
33	g	17	H2U	C3'-C4'-C5'-O5'
33	g	76	31M	CA-CB-CG-CD2
1	A	746	PSU	O4'-C1'-C5-C6
1	А	2069	G7M	O4'-C4'-C5'-O5'
33	g	17	H2U	C2'-C1'-N1-C2
33	g	49	5MC	C2'-C1'-N1-C2

Continued from previous page...

There are no ring outliers.

5 monomers are involved in 7 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
1	А	1939	5MU	1	0
1	А	1915	3TD	3	0
1	А	2251	OMG	1	0
1	А	2604	PSU	1	0
1	А	2030	6MZ	2	0

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 179 ligands modelled in this entry, 178 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Res	Link	Bond lengths			Bond angles		
					Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
35	DI0	А	3175	-	$58,\!61,\!61$	1.62	11 (18%)	77,92,92	1.65	20 (25%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
35	DI0	А	3175	-	-	10/70/121/121	0/3/4/4

All (11) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
35	А	3175	DI0	CAF-CAE	-5.60	1.39	1.51
35	А	3175	DI0	OBI-CAG	-4.12	1.33	1.43
35	А	3175	DI0	OAU-CBG	-3.41	1.38	1.44
35	А	3175	DI0	OAY-CAC	-3.13	1.35	1.43
35	А	3175	DI0	CBC-CBB	2.86	1.58	1.54
35	А	3175	DI0	OAU-CAB	-2.79	1.34	1.41
35	А	3175	DI0	CAP-CAH	2.66	1.60	1.55
35	А	3175	DI0	CAI-CAK	2.49	1.57	1.54
35	А	3175	DI0	CAD-CAW	-2.49	1.50	1.54
35	А	3175	DI0	OBJ-CAP	-2.28	1.40	1.44
35	А	3175	DI0	OBL-CAX	-2.25	1.38	1.42

All (20) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
35	А	3175	DI0	OAL-CAW-CBT	4.88	116.70	107.40
35	А	3175	DI0	CBT-CAW-CAD	-4.69	106.31	115.20

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
35	А	3175	DI0	OBK-CAN-CAX	4.22	110.07	103.81
35	А	3175	DI0	CAP-CAH-CAJ	-3.35	109.30	114.05
35	А	3175	DI0	CBR-CAP-CBC	-2.75	106.45	111.09
35	А	3175	DI0	CCB-OBK-CAN	-2.68	111.95	117.55
35	А	3175	DI0	CBV-CBB-CBC	-2.64	106.45	112.45
35	А	3175	DI0	CBP-CAJ-CAC	-2.51	106.89	111.40
35	А	3175	DI0	CAF-CAC-CAJ	-2.37	106.20	113.05
35	А	3175	DI0	OBI-CAG-CAO	-2.35	105.59	109.77
35	А	3175	DI0	OBJ-CAP-CAH	2.22	111.80	107.59
35	А	3175	DI0	OBK-CAN-CAT	-2.22	109.41	112.96
35	А	3175	DI0	OAY-CAR-CAT	2.13	112.68	109.01
35	А	3175	DI0	CBO-CAI-CAA	-2.12	107.97	112.94
35	А	3175	DI0	CBO-CAI-CAK	-2.11	109.52	112.02
35	А	3175	DI0	OAU-CAB-CAG	-2.08	105.95	110.35
35	А	3175	DI0	OBK-CAN-CBQ	-2.07	107.48	110.92
35	A	3175	DIO	CAN-CAX-CAZ	-2.06	107.98	111.14
35	A	3175	DI0	OAM-CAH-CAJ	-2.04	108.48	111.54
35	А	3175	DI0	OAM-CAB-OAU	-2.03	105.02	110.67

Continued from previous page...

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms		
35	А	3175	DI0	NAQ-CBA-CBS-OBW		
35	А	3175	DI0	NAQ-CAK-CBB-CBC		
35	А	3175	DI0	CAJ-CAH-CAP-OBJ		
35	А	3175	DI0	OBX-CCC-CCD-OBW		
35	А	3175	DI0	OAL-CAW-CBT-CCF		
35	А	3175	DI0	CAD-CAW-OAL-CAE		
35	А	3175	DI0	CBA-CBS-OBW-CCD		
35	А	3175	DI0	CAJ-CAC-CAF-CBN		
35	А	3175	DI0	CAD-CAW-CBT-CCF		
35	А	3175	DI0	NAQ-CAK-CBB-CBV		

All (10) torsion outliers are listed below:

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
35	А	3175	DI0	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths,

bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	А	2
33	g	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	А	885:C	O3'	892:A	Р	11.25
1	А	1915:3TD	O3'	1916:A	Р	1.31
1	g	75:C	O3'	76:31M	Р	1.09

