

Full wwPDB NMR Structure Validation Report (i)

Jun 22, 2024 – 05:37 PM EDT

PDB ID	:	6OB1
BMRB ID	:	30590
Title	:	Structure of WHB in complex with Ubiquitin Variant
Authors	:	Edmond, R.W.; Grace, C.R.
Deposited on	:	2019-03-19

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
wwPDB-RCI	:	v_1n_11_5_13_A (Berjanski et al., 2005)
PANAV	:	Wang et al. (2010)
wwPDB-ShiftChecker	:	v1.2
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment is 68%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#Entries)$	$\begin{array}{c} \mathbf{NMR} \text{ archive} \\ (\# \mathrm{Entries}) \end{array}$		
Clashscore	158937	12864		
Ramachandran outliers	154571	11451		
Sidechain outliers	154315	11428		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	75	89%	11%
2	В	75	85%	12% •
3	С	90	72% 11%	17%

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 7 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: *lowest energy*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues							
Well-defined core	Residue range (total)	Backbone RMSD (Å)	Medoid model				
1	A:0-A:6, B:110-B:172 (70)	0.76	14				
2	A:7-A:74, B:100-B:109,	1.03	7				
	C:744-C:818 (153)						

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 3 clusters and 4 single-model clusters were found.

Cluster number	Models
1	1, 2, 5, 6, 7, 9, 11, 12, 14, 17, 18
2	3, 10, 13
3	4, 8
Single-model clusters	15; 16; 19; 20

3 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 3871 atoms, of which 1951 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called Ubiquitin.

Mol	Chain	Residues		Atoms				Trace	
1	٨	75	Total	С	Η	Ν	0	S	0
1	A	75	1222	381	621	100	119	1	0

• Molecule 2 is a protein called Ubiquitin.

Mol	Chain	Residues	Atoms					Trace	
0	D	75	Total	С	Η	Ν	0	S	0
	D	15	1215	379	614	100	121	1	0

• Molecule 3 is a protein called Anaphase-promoting complex subunit 2.

Mol	Chain	Residues	Atoms				Trace		
9	С	00	Total	С	Η	Ν	0	S	0
3	C	90	1434	453	716	118	142	5	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	733	GLY	-	expression tag	UNP Q9UJX6
С	734	SER	-	expression tag	UNP Q9UJX6

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: Ubiquitin

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

• Molecule 1: Ubiquitin

• Molecule 2: Ubiquitin

Chain B:	83%	9% 5% •
G100 M101 V105 V108 Q140 Q140 F145 K148	R154 L167 L170 L172 L172 R174 R174	
• Molecule 3: Anapl	hase-promoting complex subunit	5 2
Chain C:	67%	17% 17%
C733 C735 C735 C735 C735 C735 C739 C739 C739 C739 C739 C739 C739 C739	E766 E767 L768 L768 E789 E789 E789 L790 L790 E789 E789 E789 C790 E789 E789 C790 C790 C790 C790 C790 C790 C790 C79	La17 Pata K819 N820 C821 S822 S822
4.2.4 Score per	residue for model 4	
• Molecule 1: Ubiqu	litin	
Chain A:	83%	16% •
60 M1 Q2 V5 123 123 123 123 144 144 144	049 L50 L67 R74 R74	
• Molecule 2: Ubiqu	iitin	
Chain B:	81%	15% ••
6100 M101 M101 M101 M110 M123 P123 P123 P138 P138 P138 P138 P138	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
• Molecule 3: Anapl	hase-promoting complex subunit	5 2
Chain C:	69%	14% 17%
6733 8734 8735 8735 8735 8735 8735 8738 8738 8742 8742 8742 8742 8742 8742 8742 87742 87742	1758 M761 L762 E766 S767 S767 M776 M776 M776 S811 S811 S811 S811 S811 S811 S811 S81	8822
4.2.5 Score per	residue for model 5	
• Molecule 1: Ubiqu	litin	
Chain A:	79%	20% ·
60 M1 Q2 Q2 1221 N25 Q41 Q41 A2 A2 A4	144 745 469 1667 166 168 168 172 172 172 173 173	
• Molecule 2: Ubiqu	litin	
Chain B:	87%	11% •

7800 K801 K802 K802 K802 R804 R804

6100 M101 L115 E124 E124 R142 R142 R142 R154 L173 L173 R174

• Molecule 3: Anaphase-promoting complex subunit 2

Chain C:	72%	9%	• 17%
C733 5734 5734 5734 5735 5735 6735 6733 6773 6773 7741 6773 7741 776 1770 1770 1770 1778	L795 L795 R801 R803 R804 R804 R804 R804 R819 N820 C821 S822		
4.2.6 Score per resid	ue for model 6		
• Molecule 1: Ubiquitin			
Chain A:	79%		21%
0 0 0 0 0 0 0 0 0 0 0 0 0 0	L50 L67 L71 L72 L73 L73 L73 L73 L73 L73		
• Molecule 2: Ubiquitin			
Chain B:	81%		15% • •
6100 4102 4102 4105 1115 1123 K129 K129 K129 1143 C149 9152	L167 T112 L113 R174		
• Molecule 3: Anaphase-p	promoting complex subu	nit 2	
Chain C:	61%	20%	• 17%

4.2.7 Score per residue for model 7 (medoid)

I 773 Y 774 N 775 M 775 M 776 L 777 R 778 R 778

• Molecule 1: Ubiquitin

G733 S734 E735 S736 S736 D737 D737 S738 G739 M740 M741 S741

• Molecule 3: Anaphase-promoting complex subunit 2

Chain C:	72%	11%	17%
6733 5734 5735 5735 5735 5735 5735 6739 6739 6739 6739 8741 2742 2742	A760 A760 A760 A761 A789 A780 A780 A806 4807 L608 A816 A816 A816 A816 A816 A816 A816 A81		

4.2.8 Score per residue for model 8

• Molecule 1: Ubiquitin

Chain A:	83%		15% •
00 02 09 113 113 113 113 113 113 113 113 113 11	F45 LE0 172 R74 R74		
• Molecule 2: Ubiqui	tin		
Chain B:	80%		17% •
6100 M101 7104 7104 7104 7105 1105 1115 1122 1122 1122 1123 1123 1123 112	L150 T155 R173 R173		
• Molecule 3: Anapha	ase-promoting complex subunit 2		
Chain C:	71%	12%	17%
C733 8734 8734 8735 8736 8736 8736 8736 87736 8774 87742 87742 87742 87742 87742 87742 87743 87742 87743 87742 87742 87743 87774 87743 87774 87774 87774 87774 87774 87774 87774 87774 87774 87774 87774 87774 87774 87774 87775 877	M7 64 L7 65 F7 66 M7 79 M7 79 M7 79 17 96 0800 183 19 783 19 783 19 783 19 783 19 783 19 783 19 783 20 783 21 783 20 783 21 783 20 783 21 783 20 783 21 783 22 783 21 783 22		
4.2.9 Score per re	esidue for model 9		
• Molecule 1: Ubiqui	an		
Chain A:	85%		15%
60 M1 17 112 112 112 121 121 125 121 125 161	L67 L71 L71 L72 L72 L72 L72 L73		
• Molecule 2: Ubiqui	tin		
Chain B:	85%		12% •
6100 M101 0102 1122 1123 1123 1123 1123 1123 1	1173 1174 1178		

• Molecule 3: Anaphase-promoting complex subunit 2

Chain C:	69%	13%	• 17%
G733 S734 E735 S736 S736 D737 G739 G739 M740 A741 S742 S742 G743	L753 M761 L766 S767 S767 S767 L776 M775 E789 K801 L789 E789 L789 E789 L789 L808 R816 L808 R816 C821 S822 S822		

4.2.10 Score per residue for model 10

• Molecule 1: Ubiquitin

Chain A:	75%	25%
6 M1 K11 K11 K29 K29 K29 K29 K48 K48 K48 K48 K48 K48	L50 168 177 177 177 177 177 177 177 177	
• Molecule 2: Ubiquitin		

Chain B:	84%	9% • •
<mark>01 00 01 00 01 00 01 00 01 11 12 11 13 11 15 11 15 11</mark>		

• Molecule 3: Anaphase-promoting complex subunit 2

Chain C:	64%	17% • 17%
6733 8734 8735 8735 8735 8738 0739 8742 8742 8742 8742 8743 8744 8745 0745	L7 51 L7 51 A7 60 A7 60 A7 60 A7 60 A7 60 A7 60 A7 60 E7 69 E7 69 E7 89 E7 89	L795 0796 0796 0806 0807 0807 1817 1819 1820 0821 0821 0821 0822

4.2.11 Score per residue for model 11

• Molecule 1: Ubiquitin

Chain A:	83%		15%	•
60 M1 L15 E16 E16 K27 K27 K27	L43 143 155 155 154 167 167 170 170			
• Molecule 2: U	Ibiquitin			
Chain B:	77%	17%	•	•
6100 M101 V105 Q109 W110 K111 K111 L115	1143 1144 1143 1150 1150 1154 1172 1172 1172 1173			
• Molecule 3: A	naphase-promoting complex subunit 2			
Chain C:	71%	11% •	17%	_

4.2.12 Score per residue for model 12

• Molecule 1: Ubiquitin

Chain A:	77%	23%
60 M1 Q2 Q5 D6 D6 C3 C3 C3 C3 C3 C3 C3 C3 C4 C3 C3 C4 C3 C4 C4 C5 C4 C4 C5 C4 C5 C4 C5 C4 C5 C5 C4 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5	R54 156 161 171 172 173 R74 R74	
• Molecule 2: Ubiquitin		
Chain B:	85%	8% • •
Chain B:	85%	8% • •

4.2.13 Score per residue for model 13

• Molecule 1: Ubiquitin

4.2.14 Score per residue for model 14

• Molecule 1: Ubiquitin

Chain A:	89%	9% •
00 M1 M10 K11 K11 K11 K11 K63 K63 K74		
• Molecule 2: Ubiquitin		
Chain B:	79%	16% • •
6100 M101 4102 4102 1116 1122 1122 1122 1122 1123 1122 1123 1121 1123 1	L150 R154 L167 L171 L172 L173 R174	
• Molecule 3: Anaphase-pr	comoting complex subun	it 2

Chain C:		64%	17%	, •	17%
6733 8734 8735 8736 8736 8738 6739 8741 8741 8741 8742 8742 8742	q746 E750 L753 L753 L762 S767	L777 L777 A786 L787 A788 E789 G793 E794 L795	K801 K802 Q806 Q807 L808 R816 L817 L817 L817	K819 N820 C821 S822	

Score per residue for model 15 4.2.15

• Molecule 1: Ubiquitin

3736 0737

Chain A:	84%	15% •
GO M1 Q2 Q2 K27 K27 F43 F43 F45 F45 F45 C50	K63 L 7 2 R 7 4	
• Molecule 2: Ubiq	uitin	
Chain B:	87%	11% •
G100 M101 Q102 V105 K127 K154 K154 E164 E164	R1173	
• Molecule 3: Anap	phase-promoting complex subunit	2
Chain C:	69%	14% 17%

69%

4.2.16 Score per residue for model 16

• Molecule 1: Ubiquitin

4.2.17 Score per residue for model 17

• Molecule 1: Ubiquitin

G100 M101 M101 D106 D107 U105 D107 D107 D107 D107 D107 D107 U107 U108 Q109 Q149 L143 L170 L171 L174 R174

• Molecule 3: Anaphase-promoting complex subunit 2

L817 P818 K819 N820 C821 S822

4.2.18 Score per residue for model 18

• Molecule 1: Ubiquitin

Chain A:	75%	25%
60 M1 V5 115 115 115 136 136 136 136 136 136 136 136 136 136	F45 647 647 648 150 150 150 150 150 150 150 150 172 172 172 172 172 172 172 172 172 172	
• Molecule 2: Ubiquitin		
Chain B:	73%	23% ••
G100 M101 M102 M102 T107 T107 T107 T107 M128 K127 K127 K129 K129 K129 T136	0140 0141 8142 8142 8154 8154 8154 1167 1172 8174 8174	
• Molecule 3: Anaphase-p	promoting complex subunit 2	2
Chain C:	63%	20% 17%

4.2.19 Score per residue for model 19

Y757 1758

• Molecule 1: Ubiquitin

G733 S734 E735 S736 S736 D737 S736 G739 M740 M741 S742 S742 C742 Q743

Chain A:	87%			13%	6
60 M1 L1 Q9 Q9 Q9 C1 15 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	123 441 150 154 172 172 173 172 173				
• Molecul	e 2: Ubiquitin				
Chain B:	79%		16	6%	••
G100 M101 V105 V108 Q109	L115 E124 E124 E127 E127 L150 L150 L157 L173 E173 E173 E173				
• Molecul	e 3: Anaphase-promoting complex subunit 2				
Chain C:	70%	11%	•	17%	
G733 S734 E735 S736 D737 S738 S738 S738 G739	M 740 M 741 S 742 S 742 S 743 S 743				

4.2.20 Score per residue for model 20

• Molecule 1: Ubiquitin

Chain A:	83%		16%	•
60 M1 Q2 D21 T22 T23 T23 T23 T23 T23 T23 T23 T23 T23	K33 136 136 150 167 172 172 172 177			
• Molecule 2: Ub	piquitin			
Chain B:	88%		9%	·
6100 M101 Q102 E116 E116 F143 F145 F145 F145 F145 F145				
• Molecule 3: An	aphase-promoting complex subunit 2			
Chain C:	70%	13%	17%	
G733 G733 S735 E735 S736 D737 C739 M741 A741 S742 G743 G743 G743	1,1,6,6,1,1,1,4,4,4,4,4,4,4,4,4,4,4,4,4,			

5 Refinement protocol and experimental data overview (i)

The models were refined using the following method: torsion angle dynamics.

Of the 400 calculated structures, 20 were deposited, based on the following criterion: *structures with the lowest energy*.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
CYANA	structure calculation	
CYANA	refinement	
CNS	refinement	

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report.

Chemical shift file(s)	working_cs.cif
Number of chemical shift lists	1
Total number of shifts	2295
Number of shifts mapped to atoms	2295
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Assignment completeness (well-defined parts)	68%

6 Model quality (i)

6.1 Standard geometry (i)

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	А	601	621	621	6 ± 2
2	В	581	590	587	4 ± 2
3	С	617	627	627	4 ± 2
All	All	35980	36760	36700	222

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All unique clashes are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	$Clash(\lambda)$	Distance(Å)	Mo	dels	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total	
1:A:23:ILE:HG21	1:A:50:LEU:HB3	0.68	1.65	1	11	
3:C:761:MET:SD	3:C:765:LEU:HD22	0.65	2.31	2	1	
3:C:761:MET:SD	3:C:762:LEU:HD22	0.64	2.32	9	2	
3:C:762:LEU:HB3	3:C:817:LEU:HB2	0.63	1.69	18	6	
3:C:781:VAL:HG11	3:C:790:ILE:HG12	0.61	1.71	17	1	
3:C:758:ILE:HD11	3:C:777:LEU:HD11	0.60	1.72	6	2	
1:A:16:GLU:HG2	2:B:102:GLN:HG3	0.59	1.74	20	3	
3:C:761:MET:HE1	3:C:765:LEU:HD11	0.58	1.75	10	1	
1:A:69:LEU:HD12	2:B:107:THR:HG22	0.57	1.75	7	2	
2:B:140:GLN:HA	2:B:172:THR:HB	0.57	1.74	2	3	
2:B:142:ARG:HB2	2:B:172:THR:HA	0.56	1.78	19	1	
2:B:115:LEU:HD13	2:B:129:LYS:HD3	0.56	1.77	7	1	

	lous puge	. 0 .	. 0 .	Mod	lels
Atom-1	Atom-2	$\operatorname{Clash}(\operatorname{\AA})$	Distance(Å)	Worst	Total
1:A:18:GLU:HB2	1:A:21:ASP:HB2	0.56	1.78	2	3
3:C:777:LEU:HB3	3:C:795:LEU:HD21	0.54	1.78	17	1
1:A:11:LYS:HE3	2:B:171:LEU:HD23	0.53	1.79	17	1
1:A:69:LEU:HD22	2:B:107:THR:HG22	0.53	1.81	1	2
3:C:762:LEU:HD22	3:C:816:ARG:HA	0.52	1.81	14	5
1:A:49:GLN:NE2	3:C:753:LEU:HD21	0.52	2.19	15	1
1:A:68:ILE:HD12	3:C:776:MET:SD	0.52	2.44	17	2
2:B:144:ASP:HA	2:B:149:GLN:HA	0.52	1.82	11	1
1:A:56:LEU:HD13	1:A:61:ILE:HD12	0.51	1.80	9	1
1:A:42:ARG:HB2	1:A:70:LEU:HB2	0.51	1.80	9	5
3:C:747:LYS:HA	3:C:787:LEU:HD21	0.51	1.83	18	1
1:A:5:VAL:HB	2:B:113:ILE:HB	0.51	1.82	18	2
1:A:15:LEU:HD21	2:B:105:VAL:HG13	0.51	1.82	19	2
3:C:762:LEU:HD13	3:C:808:LEU:HD21	0.50	1.82	3	1
1:A:44:ILE:HG12	1:A:49:GLN:HG3	0.50	1.82	13	2
1:A:10:TRP:HE3	2:B:108:VAL:HB	0.50	1.67	14	2
1:A:44:ILE:HG21	3:C:757:TYR:CE1	0.50	2.42	17	1
3:C:766:GLU:HG2	3:C:773:ILE:HG23	0.50	1.82	19	1
1:A:41:GLN:HB3	1:A:69:LEU:HB3	0.50	1.83	5	1
2:B:143:LEU:HD21	2:B:150:LEU:H	0.50	1.67	10	1
2:B:143:LEU:HB3	2:B:167:LEU:HD11	0.50	1.84	13	1
3:C:768:LEU:HB2	3:C:772:ARG:HD2	0.49	1.85	2	1
1:A:51:GLU:HB3	1:A:54:ARG:HB2	0.49	1.84	3	1
1:A:9:GLN:HB3	2:B:109:GLN:HG3	0.49	1.82	12	1
2:B:137:PRO:HB2	2:B:140:GLN:HG2	0.49	1.84	10	1
1:A:15:LEU:HD11	2:B:105:VAL:HG13	0.49	1.85	8	1
1:A:11:LYS:NZ	2:B:171:LEU:HB2	0.49	2.23	14	1
1:A:2:GLN:HG3	2:B:116:GLU:HG2	0.49	1.84	20	1
3:C:761:MET:HB2	3:C:765:LEU:HD12	0.49	1.85	15	1
1:A:9:GLN:HB2	2:B:109:GLN:HB2	0.48	1.84	13	2
1:A:68:ILE:HA	2:B:106:ASP:HB2	0.48	1.85	10	1
1:A:10:TRP:HH2	3:C:776:MET:SD	0.48	2.32	4	1
1:A:24:GLU:HB3	1:A:52:ASP:HB3	0.48	1.83	16	1
3:C:811:SER:HB3	3:C:814:VAL:HG13	0.48	1.84	12	2
1:A:45:PHE:HB2	1:A:50:LEU:HD21	0.48	1.86	1	4
2:B:151:GLU:HB2	2:B:154:ARG:HG2	0.48	1.85	1	2
2:B:150:LEU:HD21	2:B:167:LEU:HD23	0.48	1.84	11	1
2:B:123:ILE:HB	2:B:152:ASP:HA	0.47	1.85	4	4
1:A:15:LEU:HD21	2:B:105:VAL:HG23	0.47	1.86	3	1
1:A:15:LEU:HD23	1:A:29:LYS:HD2	$0.\overline{47}$	1.86	8	1
1:A:43:LEU:HB3	1:A:67:LEU:HD11	$0.\overline{47}$	1.86	1	1

	ht o			Mo	dels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
3:C:773:ILE:HD11	3:C:799:LEU:HD11	0.47	1.86	3	1
1:A:44:ILE:HG12	1:A:49:GLN:HG2	0.47	1.85	5	1
1:A:42:ARG:HG2	1:A:70:LEU:HB2	0.47	1.87	17	1
1:A:7:THR:HG22	2:B:169:LEU:HD22	0.47	1.85	12	1
1:A:30:ILE:HB	1:A:36:ILE:HD12	0.47	1.87	18	4
2:B:145:PHE:HB2	2:B:150:LEU:HD21	0.47	1.87	20	2
1:A:47:GLY:HA2	3:C:757:TYR:OH	0.46	2.10	18	2
2:B:115:LEU:HD13	2:B:129:LYS:HD2	0.46	1.88	14	1
2:B:123:ILE:HG21	2:B:150:LEU:HB3	0.46	1.88	8	2
1:A:29:LYS:O	1:A:33:LYS:HG2	0.46	2.11	20	2
1:A:67:LEU:HD23	2:B:105:VAL:HG12	0.46	1.88	17	2
1:A:5:VAL:HG13	2:B:143:LEU:HD21	0.46	1.86	4	2
1:A:38:PRO:HA	1:A:41:GLN:HB3	0.46	1.88	13	1
1:A:41:GLN:NE2	1:A:43:LEU:HD21	0.45	2.26	17	1
1:A:34:GLU:HB3	2:B:109:GLN:NE2	0.45	2.26	13	1
2:B:151:GLU:HB2	2:B:154:ARG:HB2	0.45	1.87	18	1
2:B:129:LYS:O	2:B:133:LYS:HG2	0.45	2.12	13	1
3:C:779:MET:SD	3:C:780:PHE:CD1	0.45	3.10	15	1
3:C:766:GLU:HG2	3:C:816:ARG:HB2	0.45	1.86	6	2
1:A:5:VAL:HB	2:B:169:LEU:HD11	0.45	1.86	1	1
1:A:45:PHE:CD1	1:A:67:LEU:HG	0.45	2.46	5	2
2:B:122:THR:HA	2:B:155:THR:HA	0.45	1.88	8	1
1:A:23:ILE:HB	1:A:52:ASP:HA	0.45	1.88	11	3
2:B:137:PRO:HB2	2:B:140:GLN:HB2	0.45	1.89	3	1
1:A:71:LEU:HB3	3:C:764:ASN:ND2	0.45	2.26	18	1
1:A:9:GLN:HB2	2:B:109:GLN:HB3	0.45	1.87	19	1
2:B:127:LYS:HD3	2:B:138:PRO:HB3	0.45	1.89	14	2
2:B:142:ARG:HB2	2:B:170:LEU:HB2	0.45	1.88	7	1
3:C:792:LEU:O	3:C:796:GLN:HB3	0.45	2.12	10	1
3:C:755:TRP:O	3:C:759:GLN:HG3	0.45	2.12	16	1
1:A:34:GLU:HG2	2:B:107:THR:HG21	0.44	1.89	7	1
1:A:10:TRP:HE1	2:B:108:VAL:HG22	0.44	1.71	8	1
2:B:151:GLU:HB3	2:B:154:ARG:HB2	0.44	1.89	11	1
3:C:746:GLN:O	3:C:750:GLU:HB2	0.44	2.13	12	1
2:B:150:LEU:HD11	2:B:167:LEU:HD23	0.44	1.89	19	2
1:A:25:ASN:O	1:A:29:LYS:HG2	0.44	2.13	10	1
2:B:167:LEU:HD12	2:B:167:LEU:N	0.43	2.27	11	1
3:C:762:LEU:HB3	3:C:817:LEU:HG	0.43	1.89	16	1
1:A:56:LEU:O	1:A:61:ILE:HG12	0.43	2.13	12	2
3:C:802:LYS:HB3	3:C:808:LEU:HB2	0.43	1.89	6	3
2:B:127:LYS:HB2	2:B:138:PRO:HB3	0.43	1.88	7	1

		$C_{1} = c_{1} \begin{pmatrix} \delta \\ \delta \end{pmatrix}$	\mathbf{D} : $(\hat{\mathbf{x}})$	Mo	dels
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:5:VAL:HG11	2:B:130:ILE:HG21	0.43	1.88	16	1
3:C:762:LEU:HD12	3:C:816:ARG:HA	0.43	1.91	1	1
3:C:790:ILE:HD12	3:C:795:LEU:HD23	0.43	1.88	3	1
1:A:63:LYS:HD2	1:A:63:LYS:H	0.43	1.73	14	1
2:B:101:MET:N	2:B:101:MET:SD	0.43	2.91	6	2
3:C:772:ARG:HH11	3:C:772:ARG:HB3	0.43	1.74	17	1
2:B:107:THR:HB	2:B:109:GLN:HE22	0.43	1.74	17	1
1:A:67:LEU:HD23	2:B:105:VAL:HG22	0.43	1.89	11	1
3:C:777:LEU:HD23	3:C:795:LEU:HD21	0.43	1.89	14	1
2:B:130:ILE:HB	2:B:136:ILE:HD12	0.43	1.91	18	1
1:A:44:ILE:HG21	3:C:757:TYR:HE1	0.43	1.73	10	1
1:A:15:LEU:HD23	2:B:105:VAL:HG21	0.43	1.91	18	1
3:C:770:LEU:HD11	3:C:795:LEU:HD12	0.42	1.90	9	1
1:A:69:LEU:HD12	2:B:107:THR:HB	0.42	1.91	2	1
1:A:5:VAL:HG23	2:B:113:ILE:HB	0.42	1.91	12	1
1:A:43:LEU:HB3	1:A:67:LEU:HD21	0.42	1.90	16	1
3:C:747:LYS:O	3:C:751:LEU:HG	0.42	2.14	10	2
1:A:13:ILE:O	2:B:104:PHE:HA	0.42	2.13	8	1
3:C:808:LEU:HG	3:C:817:LEU:HD23	0.42	1.91	10	1
3:C:778:ARG:HA	3:C:781:VAL:HG12	0.42	1.91	11	1
1:A:22:THR:H	1:A:25:ASN:ND2	0.42	2.12	5	1
3:C:800:GLN:O	3:C:804:ARG:HG2	0.42	2.15	5	1
1:A:45:PHE:O	1:A:47:GLY:N	0.42	2.52	10	1
2:B:124:GLU:HA	2:B:127:LYS:HB3	0.42	1.92	19	1
1:A:21:ASP:O	1:A:56:LEU:HD23	0.42	2.15	5	1
2:B:145:PHE:O	2:B:148:LYS:HG2	0.41	2.14	3	1
1:A:73:LEU:HD23	3:C:760:ALA:HB2	0.41	1.91	7	1
1:A:5:VAL:HG22	2:B:167:LEU:HD23	0.41	1.91	13	1
1:A:19:PRO:HA	1:A:56:LEU:HB2	0.41	1.92	18	1
2:B:129:LYS:HE2	2:B:129:LYS:HA	0.41	1.91	18	1
3:C:762:LEU:HD21	3:C:768:LEU:HG	0.41	1.92	13	1
1:A:42:ARG:NH1	1:A:72:THR:HA	0.41	2.30	16	1
3:C:761:MET:HG3	3:C:762:LEU:HD12	0.41	1.93	17	1
1:A:74:ARG:HA	1:A:74:ARG:HE	0.41	1.76	8	1
2:B:156:LEU:HD12	2:B:161:ILE:HG13	0.41	1.92	13	1
3:C:754:PHE:O	3:C:758:ILE:HG13	0.41	2.15	18	2
3:C:764:ASN:HB2	3:C:765:LEU:HD12	0.41	1.92	8	1
3:C:811:SER:HB2	3:C:814:VAL:HG23	0.41	1.92	20	1
3:C:770:LEU:HD13	3:C:773:ILE:HD11	0.41	1.92	16	1
1:A:9:GLN:O	2:B:108:VAL:HA	0.41	2.16	3	1
2:B:154:ARG:HA	2:B:154:ARG:NE	0.41	2.31	3	1

Atom 1 Atom 2		$Clach(\lambda)$	Distance(Å)	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
3:C:755:TRP:HB2	3:C:798:TYR:OH	0.41	2.16	12	1
2:B:144:ASP:HA	2:B:148:LYS:O	0.41	2.15	13	1
3:C:762:LEU:O	3:C:766:GLU:HG3	0.41	2.16	13	1
1:A:16:GLU:HG2	2:B:102:GLN:HB3	0.41	1.91	16	1
2:B:140:GLN:NE2	2:B:141:GLN:HG3	0.41	2.31	18	1
3:C:800:GLN:O	3:C:804:ARG:HD3	0.41	2.15	6	1
3:C:809:VAL:HB	3:C:816:ARG:HG3	0.41	1.93	6	1
1:A:41:GLN:HA	1:A:71:LEU:HA	0.41	1.93	12	1
3:C:746:GLN:O	3:C:750:GLU:HG2	0.41	2.16	14	1
3:C:755:TRP:CZ2	3:C:807:GLN:HG2	0.41	2.51	17	1
1:A:73:LEU:HD12	3:C:760:ALA:HB2	0.40	1.93	10	2
3:C:762:LEU:HG	3:C:817:LEU:HD13	0.40	1.92	9	1
3:C:758:ILE:O	3:C:762:LEU:HB2	0.40	2.15	4	1
1:A:5:VAL:HG13	2:B:169:LEU:HD11	0.40	1.91	16	1
1:A:29:LYS:HE2	1:A:29:LYS:HA	0.40	1.93	17	1
3:C:762:LEU:HD21	3:C:768:LEU:HD11	0.40	1.94	2	1
1:A:73:LEU:HD13	1:A:74:ARG:HG3	0.40	1.93	7	1
1:A:43:LEU:HD13	1:A:50:LEU:HB2	0.40	1.94	15	1

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	P	erce	entiles
1	А	73/75~(97%)	$69 \pm 1 (94 \pm 2\%)$	$4\pm1~(5\pm2\%)$	1±1 (1±1%)		21	69
2	В	72/75~(96%)	70 ± 1 (97 $\pm1\%$)	$2\pm1~(2\pm2\%)$	1±0 (1±1%)		24	71
3	С	75/90~(83%)	66 ± 2 (88±3%)	$6\pm2~(8\pm3\%)$	$2\pm1 (3\pm1\%)$		6	37
All	All	4400/4800 (92%)	4092 (93%)	233~(5%)	75~(2%)		13	56

All 13 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
3	С	767	SER	15

Mol	Chain	Res	Type	Models (Total)
3	С	789	GLU	14
2	В	172	THR	12
1	А	72	THR	11
3	С	786	ALA	10
3	С	766	GLU	3
3	С	811	SER	2
3	С	788	ALA	2
3	С	818	PRO	2
3	С	790	ILE	1
1	А	73	LEU	1
1	А	46	ALA	1
3	С	768	LEU	1

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	68/68~(100%)	62 ± 2 (91 $\pm3\%$)	$6\pm2~(9\pm3\%)$	14	61
2	В	66/68~(97%)	$59\pm1 (90\pm2\%)$	$7\pm1~(10\pm2\%)$	11	55
3	С	67/79~(85%)	60 ± 2 (89 $\pm2\%$)	$7\pm2~(11\pm2\%)$	10	55
All	All	4020/4300 (93%)	3625 (90%)	395 (10%)	11	57

All 93 unique residues with a non-rotameric side chain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
2	В	101	MET	20
1	А	1	MET	19
3	С	806	GLN	17
3	С	808	LEU	14
1	А	2	GLN	13
3	С	795	LEU	13
3	С	801	LYS	12
2	В	167	LEU	10
2	В	102	GLN	10
2	B	140	GLN	9
2	В	142	ARG	8

Mol	Chain	Res	Type	Models (Total)
2	В	154	ARG	8
3	С	773	ILE	8
2	В	115	LEU	8
2	В	143	LEU	8
1	А	45	PHE	7
3	С	816	ARG	7
1	А	54	ARG	6
3	С	800	GLN	6
3	С	768	LEU	6
1	А	42	ARG	6
1	А	43	LEU	6
2	В	127	LYS	6
1	А	67	LEU	6
3	С	753	LEU	6
1	А	40	GLN	5
3	С	793	GLN	5
2	В	141	GLN	5
1	А	63	LYS	5
1	А	15	LEU	5
2	В	149	GLN	4
1	А	49	GLN	4
1	А	72	THR	4
3	С	810	TYR	4
3	С	765	LEU	4
1	А	27	LYS	4
3	С	750	GLU	4
3	С	779	MET	4
2	В	121	ASP	4
2	В	122	THR	4
3	С	817	LEU	3
2	В	148	LYS	3
1	А	73	LEU	3
2	В	145	PHE	3
3	С	770	LEU	3
3	С	775	ASN	3
1	A	41	GLN	3
2	В	150	LEU	3
1	A	21	ASP	3
1	A	24	GLU	3
2	В	163	LYS	3
2	В	124	GLU	2
3	С	745	ASP	2

Mol	Chain	Res	Type	Models (Total)
2	В	170	LEU	2
1	А	10	TRP	2
2	В	162	GLN	2
3	С	787	LEU	2
1	А	9	GLN	2
1	А	74	ARG	2
2	В	129	LYS	2
1	А	22	THR	2
2	В	109	GLN	2
3	С	746	GLN	2
3	С	772	ARG	2
2	В	164	GLU	2
3	С	777	LEU	2
2	В	108	VAL	2
1	А	62	GLN	1
2	В	160	ASN	1
3	С	776	MET	1
3	С	781	VAL	1
3	С	792	LEU	1
2	В	110	TRP	1
3	С	757	TYR	1
3	С	766	GLU	1
2	В	117	VAL	1
3	С	789	GLU	1
1	А	7	THR	1
1	А	12	THR	1
2	В	116	GLU	1
1	А	11	LYS	1
1	А	48	LYS	1
3	С	791	ASP	1
1	А	16	GLU	1
1	А	51	GLU	1
2	В	111	LYS	1
3	C	778	ARG	1
3	С	794	GLU	1
3	С	802	LYS	1
2	В	151	GLU	1
3	С	759	GLN	1
3	С	747	LYS	1
3	С	752	LEU	1

Continued from previous page...

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

The completeness of assignment taking into account all chemical shift lists is 68% for the well-defined parts and 68% for the entire structure.

7.1 Chemical shift list 1

File name: working_cs.cif

Chemical shift list name: WHB_UbVm_deposit_031219.str

7.1.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	2295
Number of shifts mapped to atoms	2295
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	4

7.1.2 Chemical shift referencing (i)

The following table shows the suggested chemical shift referencing corrections.

Nucleus	# values	${\rm Correction}\pm{\rm precision},ppm$	Suggested action
$^{13}C_{\alpha}$	203	-0.21 ± 0.15	None needed (< 0.5 ppm)
$^{13}C_{\beta}$	159	0.19 ± 0.15	None needed (< 0.5 ppm)
$^{13}C'$	142	-0.04 ± 0.10	None needed (< 0.5 ppm)
¹⁵ N	198	0.66 ± 0.18	Should be applied

7.1.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 68%, i.e. 2163 atoms were assigned a chemical shift out of a possible 3170. 0 out of 44 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	15 N
Backbone	861/1110 (78%)	353/449~(79%)	326/446~(73%)	182/215~(85%)
Sidechain	1201/1901~(63%)	826/1233~(67%)	357/599~(60%)	18/69~(26%)

Continued from prettous page								
	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$				
Aromatic	101/159~(64%)	62/76~(82%)	36/80~(45%)	3/3~(100%)				
Overall	2163/3170 (68%)	1241/1758 (71%)	719/1125 (64%)	203/287 (71%)				

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 68%, i.e. 2294 atoms were assigned a chemical shift out of a possible 3361. 0 out of 45 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathrm{H}$	$^{13}\mathrm{C}$	$^{15}\mathbf{N}$	
Backbone	924/1197~(77%)	382/485~(79%)	345/480~(72%)	197/232~(85%)	
Sidechain	1269/2005~(63%)	872/1299~(67%)	377/631~(60%)	20/75~(27%)	
Aromatic	101/159~(64%)	62/76~(82%)	36/80~(45%)	3/3~(100%)	
Overall	2294/3361~(68%)	1316/1860~(71%)	758/1191~(64%)	220/310~(71%)	

7.1.4 Statistically unusual chemical shifts (i)

The following table lists the statistically unusual chemical shifts. These are statistical measures, and large deviations from the mean do not necessarily imply incorrect assignments. Molecules containing paramagnetic centres or hemes are expected to give rise to anomalous chemical shifts.

List Id	Chain	Res	Type	Atom	Shift, ppm	Expected range, ppm	Z-score
1	С	802	LYS	HE2	1.33	1.95-3.88	-8.2
1	С	802	LYS	HE3	1.65	1.92 - 3.89	-6.4
1	С	802	LYS	HD2	0.29	0.58-2.64	-6.4
1	С	802	LYS	HG2	-0.12	0.13 - 2.61	-6.0

7.1.5 Random Coil Index (RCI) plots (1)

The image below reports *random coil index* values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition. If well-defined core and ill-defined regions are not identified then it is shown as gray bars.

Random coil index (RCI) for chain A:

Random coil index (RCI) for chain B:

Random coil index (RCI) for chain C:

