

Oct 12, 2024 – 02:08 PM EDT

PDB ID	:	6AZ3
EMDB ID	:	EMD-7025
Title	:	Cryo-EM structure of the large subunit of Leishmania ribosome bound to
Authors	:	paromomycin Shalev-Benami, M.; Zhang, Y.; Rozenberg, H.; Nobe, Y.; Taoka, M.; Matzov, D.; Zimmerman, E.; Bashan, A.; Isobe, T.; Jaffe, C.L.; Yonath, A.; Skiniotis,
Deposited on Resolution	:	G. 2017-09-09 2.50 Å(reported)
This is]	Full wwPDB EM Validation Report for a publicly released PDB entry

a publicly entry

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis Mogul MolProbity buster-report	: : :	0.0.1.dev113 2022.3.0, CSD as543be (2022) 4.02b-467 1.1.7 (2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	EM structures
wietric	$(\# { m Entries})$	$(\# { m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	254	● 96%	•
2	В	402	98%	•
3	С	366	98%	•
4	D	168	98%	•
5	Е	186	100%	
6	F	195	8% 69% • 30%	—
7	G	348	6 1% • 37%	—
8	Н	221	6%	•

•

.

.

•

•

.

•

.

.

.

•

•

•

•

.

•

Chain Length Quality of chain Mol 6% 9 Ι 21297% İ. 10 J 13497% 11% 11 Κ 14999% 12L 14498% 13М 20399% 15% 14Ν 21388% 11% . 6% Ο 1530517% 81% ÷ 16Р 19797% 14% Q 1718999% \mathbf{R} 1817899% 12% \mathbf{S} 1915497% Т 2015498% 13% 21U 12198% 6% 22V 11899% i W 2312198% 24Х 6598% 6% Υ 2513299% ÷. Ζ 1402696% 6% 27125 \mathbf{a} 100% 6% 28b 6897% · 29с 22798% 9% 30 \mathbf{d} 9297% 7% 31 119е 95% 5% 5% • 32f 13097% 33 125g 100%

 $Continued \ from \ previous \ page...$

Mol	Chain	Length	Quality	of chai	in							
34	h	125	8%	5		•						
35	i	97	98%	5		•						
36	j	80	999	/0		•						
37	k	76	9%									
38	1	50	100	1%								
39	m	50	94%			••						
40	n	33	55%	%								
41	0	90	– 97%			•						
42	р	96	• 97%			•						
43	1	1778	- 61%		26%	• 9%						
44	2	1526	47%	20%	·	29%						
45	3	211	56%		25%	• 16%						
46	4	183	• 65%		3	2% •						
47	5	133	43%	29%	•	27%						
48	6	71	46%		49%	•						
49	7	171	● 63%		29%	• 5%						
50	8	118	73%			24% •						

2 Entry composition (i)

There are 53 unique types of molecules in this entry. The entry contains 126561 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called ribosomal protein uL2.

Mol	Chain	Residues		At	AltConf	Trace			
1	А	254	Total 1985	C 1235	N 412	0 327	S 11	7	0

• Molecule 2 is a protein called ribosomal protein uL3.

Mol	Chain	Residues		At	AltConf	Trace			
2	В	402	Total 3226	C 2036	N 644	O 533	S 13	10	0

• Molecule 3 is a protein called Ribosomal protein L1a, putative.

Mol	Chain	Residues		At	AltConf	Trace			
3	С	366	Total 2824	C 1761	N 563	0 485	S 15	2	0

• Molecule 4 is a protein called 60S ribosomal protein L11 (L5, L16).

Mol	Chain	Residues		At	oms	AltConf	Trace		
4	D	168	Total 1220	С 774	N 229	O 209	S 8	0	0

• Molecule 5 is a protein called 60S ribosomal protein L9, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	Е	186	Total 1448	C 917	N 268	O 257	S 6	0	0

• Molecule 6 is a protein called ribosomal protein eL6.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
6	F	137	Total 1004	C 637	N 185	0 180	${ m S} { m 2}$	0	0

• Molecule 7 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	G	220	Total 1746	C 1099	N 351	O 289	${f S}7$	2	0

• Molecule 8 is a protein called ribosomal protein uL13.

Mol	Chain	Residues		Ate		AltConf	Trace		
8	Н	221	Total 1781	C 1128	N 360	O 286	S 7	3	0

• Molecule 9 is a protein called ribosomal protein eL13.

Mol	Chain	Residues		Atoms					Trace
9	Ι	212	Total 1647	C 1026	N 331	O 282	S 8	0	0

• Molecule 10 is a protein called 60S ribosomal protein L23, putative.

Mol	Chain	Residues		At	oms		AltConf	Trace	
10	J	134	Total 1001	C 634	N 190	0 171	${ m S}{ m 6}$	0	0

• Molecule 11 is a protein called Probable 60S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	K	149	Total 1164	C 726	N 231	O 201	${f S}{6}$	1	0

• Molecule 12 is a protein called 60S ribosomal protein L27A/L29, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	L	144	Total 1126	C 708	N 226	0 186	S 6	0	0

• Molecule 13 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		Ate		AltConf	Trace		
13	М	203	Total 1714	C 1080	N 362	0 264	S 8	0	0

• Molecule 14 is a protein called 60S ribosomal protein L10, putative.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms	AltConf	Trace		
14	Ν	190	Total 1454	C 924	N 285	O 233	S 12	0	0

• Molecule 15 is a protein called 60S ribosomal protein L5, putative.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	0	252	Total 1976	C 1259	N 376	O 336	${ m S}{ m 5}$	3	0

• Molecule 16 is a protein called 60S ribosomal protein L18, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	Р	197	Total 1539	C 968	N 307	0 258	S 6	0	0

• Molecule 17 is a protein called Ribosomal protein L19e family protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Q	189	Total 1452	C 899	N 313	O 235	${ m S}{ m 5}$	0	0

• Molecule 18 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues	Atoms					AltConf	Trace
18	R	178	Total 1454	C 927	N 280	$\begin{array}{c} 0\\ 242 \end{array}$	S 5	0	0

• Molecule 19 is a protein called 60S ribosomal protein L21, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	S	154	Total 1208	C 767	N 238	O 199	$\frac{S}{4}$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L17, putative.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
20	Т	154	Total 1236	С 773	N 245	O 207	S 11	0	0

• Molecule 21 is a protein called 60S ribosomal protein L22, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	U	121	Total 934	$\begin{array}{c} \mathrm{C} \\ 605 \end{array}$	N 167	O 159	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 60S ribosomal protein L23a, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	V	118	Total 928	C 590	N 173	0 162	${ m S} { m 3}$	1	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
V	27	ALA	-	expression tag	UNP A0A3S7WPH7

• Molecule 23 is a protein called ribosomal protein uL24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	W	121	Total 971	C 605	N 200	0 162	${S \atop 4}$	0	0

• Molecule 24 is a protein called ribosomal protein eL24.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
24	Х	65	Total 553	C 363	N 107	O 79	$\frac{S}{4}$	0	0

• Molecule 25 is a protein called Ribosomal L27e family protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	Y	132	Total 1039	C 666	N 205	0 165	${ m S} { m 3}$	1	0

• Molecule 26 is a protein called 60S ribosomal protein L28, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	Ζ	140	Total 1067	C 650	N 226	0 186	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called 60S_ribosomal_protein_L35_putative/GeneDB:LmjF.26.2 330/GeneDB:LmjF.26.2340.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	a	125	Total 985	C 615	N 205	O 163	${ m S} { m 2}$	0	0

• Molecule 28 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
28	b	68	Total	C 220	N 194	0 84	S 1	0	0
			539	330	124	84	1		

• Molecule 29 is a protein called 60S ribosomal protein L7 family protein.

Mol	Chain	Residues		At	AltConf	Trace			
29	с	227	Total 1809	C 1152	N 349	O 297	S 11	0	0

• Molecule 30 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	d	92	Total 691	C 430	N 126	O 130	${ m S}{ m 5}$	0	0

• Molecule 31 is a protein called 60S ribosomal subunit protein L31, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	е	119	Total 936	C 595	N 183	0 156	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 32 is a protein called 60S_ribosomal_protein_L32/GeneDB:LmjF.21.1720.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	f	130	Total 1048	C 659	N 210	0 175	$\frac{S}{4}$	1	0

• Molecule 33 is a protein called Ribosomal protein L35Ae family protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	g	125	Total 998	C 623	N 209	0 161	$\frac{S}{5}$	0	0

• Molecule 34 is a protein called 60S ribosomal protein L34, putative.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	h	125	Total 1010	C 623	N 221	O 160	S 6	1	0

• Molecule 35 is a protein called 60S ribosomal protein L36, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	i	97	Total 760	C 482	N 153	0 123	${S \over 2}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L37.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	j	80	Total 663	C 403	N 152	0 102	S 6	0	0

• Molecule 37 is a protein called Ribosomal L38e family protein.

Mol	Chain	Residues		Atoms					Trace
37	k	76	Total 575	C 361	N 110	0 101	${ m S} { m 3}$	0	0

• Molecule 38 is a protein called 60S ribosomal protein L39, putative.

Mol	Chain	Residues		Atc	\mathbf{ms}	Atoms					
38	1	50	Total 440	C 285	N 91	O 63	S 1	0	0		

• Molecule 39 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
20		50	Total	С	Ν	Ο	S	0	0
- 39	111	50	393	248	80	58	$\overline{7}$	0	0

• Molecule 40 is a protein called ribosomal protein eL41.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
40	n	33	Total 280	C 172	N 69	O 37	${S \over 2}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L37a.

Mol	Chain	Residues		At	oms		AltConf	Trace	
41	О	90	Total 696	C 432	N 144	0 114	S 6	0	0

• Molecule 42 is a protein called 60S ribosomal protein L44, putative.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	р	96	Total 756	C 478	N 153	O 120	${f S}{5}$	0	0

• Molecule 43 is a RNA chain called rRNA alpha.

Mol	Chain	Residues	Atoms					AltConf	Trace
43	1	1620	Total 34631	C 15467	N 6334	O 11211	Р 1619	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference	
1	?	-	А	deletion	GB 322500086	
1	? - A		А	deletion	GB 322500086	

• Molecule 44 is a RNA chain called rRNA beta.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	2	1078	Total 22996	C 10290	N 4137	0 7491	Р 1078	0	0

• Molecule 45 is a RNA chain called rRNA gamma.

Mol	Chain	Residues	Atoms					AltConf	Trace
45	3	177	Total 3751	C 1677	N 657	O 1240	Р 177	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
3	?	-	U	deletion	GB 322500086
3	196	С	А	conflict	GB 322500086

• Molecule 46 is a RNA chain called rRNA delta.

Mol	Chain	Residues	Atoms					AltConf	Trace
46	4	183	Total 3906	C 1742	N 706	O 1275	Р 183	0	0

• Molecule 47 is a RNA chain called rRNA epsilon.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
47	5	97	Total 2075	C 925	N 379	0 674	Р 97	0	0

• Molecule 48 is a RNA chain called rRNA zeta.

Mol	Chain	Residues	Atoms					AltConf	Trace
48	6	71	Total 1477	C 659	N 265	0 482	Р 71	0	0

• Molecule 49 is a RNA chain called rRNA 5.8S.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	7	163	Total 3465	C 1552	N 616	0 1135	Р 162	0	0

• Molecule 50 is a RNA chain called rRNA 5S.

Mol	Chain	Residues	Atoms					AltConf	Trace
50	8	118	Total 2511	C 1123	N 448	0 822	Р 118	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference	
8	14	U	С	conflict	GB 1229082190	

• Molecule 51 is PAROMOMYCIN (three-letter code: PAR) (formula: $C_{23}H_{45}N_5O_{14}$).

Mol	Chain	Residues	I	Aton	ns		AltConf
51	1	1	Total	С	Ν	0	0
51	1	L	42	23	5	14	0
51	1	1	Total	С	Ν	0	0
51	L	I	42	23	5	14	0
51	1	1	Total	С	Ν	0	0
51	T	T	42	23	5	14	0
51	1	1	Total	С	Ν	0	0
51	T	T	42	23	5	14	0
51	1	1	Total	С	Ν	Ο	0
01	T	I	42	23	5	14	0
51	2	1	Total	С	Ν	Ο	0
01		1	42	23	5	14	0
51	2	1	Total	С	Ν	Ο	0
01		1	42	23	5	14	0
51	2	1	Total	С	Ν	Ο	0
01		1	42	23	5	14	0
51	2	1	Total	С	Ν	Ο	0
	2	I	42	23	5	14	0
51	7	1	Total	С	Ν	0	0
1 01	7		42	23	5	14	0

• Molecule 52 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
52	1	21	TotalMg2121	0
52	2	8	Total Mg 8 8	0

 $Continued \ from \ previous \ page...$

Mol	Chain	Residues	Atoms	AltConf
52	3	1	Total Mg 1 1	0
52	4	1	Total Mg 1 1	0
52	5	1	Total Mg 1 1	0
52	7	2	Total Mg 2 2	0

• Molecule 53 is water.

Mol	Chain	Residues	Atoms	AltConf
53	А	16	Total O 16 16	0
53	В	11	Total O 11 11	0
53	С	11	Total O 11 11	0
53	G	3	Total O 3 3	0
53	Н	7	Total O 7 7	0
53	Ι	5	Total O 5 5	0
53	J	2	Total O 2 2	0
53	L	5	Total O 5 5	0
53	М	16	Total O 16 16	0
53	Р	7	Total O 7 7	0
53	Q	5	Total O 5 5	0
53	R	2	$\begin{array}{cc} \text{Total} & \text{O} \\ 2 & 2 \end{array}$	0
53	S	4	Total O 4 4	0
53	Т	3	Total O 3 3	0
53	V	4	Total O 4 4	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
53	W	1	Total O 1 1	0
53	Y	1	Total O 1 1	0
53	a	1	Total O 1 1	0
53	С	2	Total O 2 2	0
53	е	1	Total O 1 1	0
53	f	3	Total O 3 3	0
53	g	5	Total O 5 5	0
53	h	5	Total O 5 5	0
53	i	1	Total O 1 1	0
53	j	8	Total O 8 8	0
53	1	3	Total O 3 3	0
53	р	6	Total O 6 6	0
53	1	442	Total O 442 442	0
53	2	278	Total O 278 278	0
53	3	26	Total O 26 26	0
53	4	47	$\begin{array}{cc} \text{Total} & \text{O} \\ 47 & 47 \end{array}$	0
53	5	27	Total O 27 27	0
53	6	2	Total O 2 2	0
53	7	45	$\begin{array}{cc} \text{Total} & \text{O} \\ 45 & 45 \end{array}$	0
53	8	14	Total O 14 14	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: ribosomal protein uL2

 \bullet Molecule 5: 60S ribosomal protein L9, putative

Chain E:

100%

• Molecule 6: ribosomal protein eL6

• Molecule 11: Probable 60S ribosomal protein L14

- \bullet Molecule 12: 60S ribosomal protein L27A/L29, putative
- Chain L:

99%

• Molecule 13: Ribosomal protein L15

Chain M:

G2 L116 V121 R197 R204

• Molecule 14: 60S ribosomal protein L10, putative

• Molecule 17: Ribosom	al protein L19e family protein
Chain Q:	99%
V2 R117 R153 A160 A160 A161 K162 R165 R165 B166 E167	R156 R170 N171 A173 A173 A173 C174 C176 C176 C176 C177 C178 C177 C178 C178 C178 C178 C178
• Molecule 18: 60S ribo	somal protein L18a
Chain R:	99%
V2 E15 E19 B68 R74 R86 N127	M148
• Molecule 19: 60S ribo	somal protein L21, putative
Chain S:	97% .
V2 N66 E109 H110 A117 A117 A117 A127 C122 K120 A124 A124	L125 P127 P127 L128 L128 A134 A134 A155 F154 A155 A155
• Molecule 20: 60S ribo	somal protein L17, putative
Chain T:	98%
12 820 137 137 1337 1337 1337	
• Molecule 21: 60S ribo	somal protein L22, putative
Chain U:	98%
V2 Y13 Q18 L19 A20 A34 A35 A35 F38 F38 F39 S40	E41 D42 M72 D102 F122
• Molecule 22: 60S ribo	somal protein L23a, putative
Chain V:	99% .
A27 K28 P49 S50 N61 R52 S57 K58 D59 D59 L116	
• Molecule 23: ribosoma	al protein uL24
Chain W:	98% .

A2 R10 N41 S122

• Molecule 24: ribosomal protein eL24

Chain X: 98% .

Chain a: 100% Chain a: Nolecule 28: 60S ribosomal protein L29 Chain b: 97% .

• Molecule 29: 60S ribosomal protein L7 family protein

• Molecule 30: 60S ribosomal protein L30

Chain d:	97% .
V9 D10 A14 Q17 M20 V26	R83 0 93 1 00 1 00 1 00 1 00
• Molecule 31: 605	b ribosomal subunit protein L31, putative
Chain e:	95% 5%
164 R65 A66 K70 K71 C73 D77 M92	L102 A124 E154 E182
• Molecule 32: 605	$s_{\rm ribosomal_protein_L32/GeneDB:LmjF.21.1720}$
Chain f:	97% •
V2 87 49 A9 N55 N55 N90 N90	A125 H128 1130
• Molecule 33: Rib	oosomal protein L35Ae family protein
Chain g:	100%
K20 121 522 R23 1144	
• Molecule 34: 60S	S ribosomal protein L34, putative
Chain h:	98% •
C3 N19 R89 R1118 R1118 R1118 R1118 C30 R1118 C30 C30 C30 C30 C30 C30 C30 C30 C30 C30	T121 A122 K125 S127
• Molecule 35: 60S	S ribosomal protein L36, putative
Chain i:	98% •
A3 140 164 1199	
• Molecule 36: 60S	d ribosomal protein L37
Chain j:	99%
12 R67 P81	

•	Molecule 37:	Ribosomal	L38e	family	protein	

• Molecule 47: rRNA epsilon

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	141028	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
Microscopo	FEL TITAN KRIOS	Dopositor
Voltage (kV)	300	Depositor
Electron dose $(e^{-}/\text{Å}^2)$	1	Depositor
Minimum defocus (nm)	Not provided	Depositor
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.628	Depositor
Minimum map value	-0.407	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.028	Depositor
Recommended contour level	0.065	Depositor
Map size (Å)	391.68, 391.68, 391.68	wwPDB
Map dimensions	384, 384, 384	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.02, 1.02, 1.02	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OMU, A2M, MG, OMG, PAR, OMC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.54	0/2042	0.67	1/2735~(0.0%)
2	В	0.48	0/3313	0.68	1/4460~(0.0%)
3	С	0.46	0/2880	0.68	2/3879~(0.1%)
4	D	0.35	0/1242	0.60	0/1678
5	Е	0.38	0/1468	0.61	0/1983
6	F	0.40	0/1024	0.63	0/1397
7	G	0.48	1/1777~(0.1%)	0.68	1/2390~(0.0%)
8	Н	0.48	1/1825~(0.1%)	0.70	2/2452~(0.1%)
9	Ι	0.44	0/1680	0.63	1/2257~(0.0%)
10	J	0.49	0/1018	0.69	2/1373~(0.1%)
11	K	0.38	0/1184	0.60	0/1599
12	L	0.48	0/1153	0.68	1/1541~(0.1%)
13	М	0.52	1/1754~(0.1%)	0.67	1/2342~(0.0%)
14	N	0.35	0/1486	0.56	0/2006
15	0	0.41	0/2013	0.67	3/2703~(0.1%)
16	Р	0.49	0/1564	0.68	1/2092~(0.0%)
17	Q	0.39	0/1470	0.54	0/1966
18	R	0.47	0/1488	0.64	0/2005
19	S	0.49	0/1235	0.67	0/1663
20	Т	0.51	0/1260	0.62	0/1688
21	U	0.39	0/949	0.69	0/1271
22	V	0.44	0/946	0.67	1/1276~(0.1%)
23	W	0.41	0/985	0.65	0/1315
24	Х	0.46	0/574	0.59	0/773
25	Y	0.44	0/1064	0.63	1/1430~(0.1%)
26	Ζ	0.41	0/1082	0.60	0/1452
27	a	0.38	0/996	0.63	0/1333
28	b	0.39	0/550	0.60	0/734
29	с	0.46	0/1842	0.65	1/2473~(0.0%)
30	d	0.39	0/701	0.64	0/953
31	е	0.42	0/951	0.70	1/1274~(0.1%)
32	f	0.50	0/1071	0.67	1/1434~(0.1%)

Mal	Chain	Bo	ond lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
33	g	0.51	0/1019	0.66	0/1372
34	h	0.48	0/1029	0.72	0/1370
35	i	0.38	0/774	0.63	2/1036~(0.2%)
36	j	0.52	0/677	0.70	0/904
37	k	0.42	0/583	0.60	1/787~(0.1%)
38	1	0.49	0/453	0.56	0/606
39	m	0.55	1/399~(0.3%)	0.83	2/531~(0.4%)
40	n	0.51	0/284	0.80	0/372
41	0	0.61	2/708~(0.3%)	0.77	1/944~(0.1%)
42	р	0.49	0/769	0.67	1/1021~(0.1%)
43	1	0.89	2/38135~(0.0%)	1.17	279/59442~(0.5%)
44	2	0.86	1/24785~(0.0%)	1.18	187/38608~(0.5%)
45	3	0.83	0/4162	1.21	34/6469~(0.5%)
46	4	0.84	0/4341	1.17	36/6767~(0.5%)
47	5	0.86	0/2317	1.21	26/3604~(0.7%)
48	6	0.64	0/1650	1.12	12/2568~(0.5%)
49	7	0.88	0/3770	1.23	39/5868~(0.7%)
50	8	0.72	0/2807	1.16	29/4371~(0.7%)
All	All	0.73	9/133249~(0.0%)	1.03	670/196567~(0.3%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	В	0	1
3	С	0	1
6	F	0	1
15	0	0	1
31	е	0	1
39	m	0	1
All	All	0	6

All (9) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
39	m	115	CYS	CB-SG	7.29	1.94	1.82
44	2	1601	С	C1'-N1	6.34	1.58	1.48
41	0	42	CYS	CB-SG	5.97	1.92	1.82
13	М	121	VAL	CB-CG2	-5.42	1.41	1.52
7	G	141	VAL	CB-CG2	-5.41	1.41	1.52

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\mathrm{Ideal}(\mathrm{\AA})$
41	0	57	CYS	CB-SG	5.25	1.91	1.82
8	Н	53	VAL	CB-CG1	-5.22	1.41	1.52
43	1	83	А	N9-C4	-5.02	1.34	1.37
43	1	908	G	N9-C4	-5.01	1.33	1.38

Continued from previous page...

All (670) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
44	2	966	С	N1-C2-O2	12.51	126.41	118.90
44	2	966	С	C2-N1-C1'	12.15	132.17	118.80
43	1	256	U	C2-N1-C1'	11.99	132.09	117.70
47	5	104	G	N7-C8-N9	11.16	118.68	113.10
43	1	778	С	N3-C2-O2	-11.06	114.16	121.90
46	4	132	U	O4'-C1'-N1	11.01	117.01	108.20
39	m	115	CYS	CA-CB-SG	10.89	133.60	114.00
44	2	966	С	N3-C2-O2	-10.89	114.28	121.90
44	2	667	OMU	OP1-P-O3'	-10.75	81.56	105.20
43	1	1012	С	N1-C2-O2	10.63	125.28	118.90
47	5	104	G	C8-N9-C4	-10.60	102.16	106.40
41	0	42	CYS	CA-CB-SG	10.58	133.05	114.00
43	1	1564	С	N1-C2-O2	10.52	125.21	118.90
43	1	1182	С	N1-C2-O2	10.49	125.20	118.90
43	1	778	С	N1-C2-O2	10.47	125.19	118.90
43	1	256	U	N1-C2-O2	10.27	129.99	122.80
48	6	57	U	N1-C2-O2	10.17	129.92	122.80
43	1	973	U	C2-N1-C1'	10.13	129.85	117.70
45	3	31	С	C2-N1-C1'	9.81	129.59	118.80
45	3	31	С	N1-C2-O2	9.71	124.73	118.90
44	2	91	С	N3-C2-O2	-9.57	115.20	121.90
48	6	57	U	C2-N1-C1'	9.57	129.19	117.70
45	3	31	С	N3-C2-O2	-9.53	115.23	121.90
45	3	185	С	C2-N1-C1'	9.46	129.20	118.80
43	1	256	U	N3-C2-O2	-9.42	115.61	122.20
44	2	667	OMU	OP2-P-O3'	-9.37	84.58	105.20
43	1	973	U	N1-C2-O2	9.32	129.33	122.80
43	1	1254	С	C2-N1-C1'	9.31	129.04	118.80
44	2	479	С	N1-C2-O2	9.30	124.48	118.90
50	8	65	С	N1-C2-O2	9.24	124.45	118.90
44	2	134	С	N1-C2-O2	9.22	124.43	118.90
43	1	1012	С	C2-N1-C1'	9.17	128.89	118.80
44	2	91	С	N1-C2-O2	9.13	124.38	118.90
45	3	72	С	N1-C2-O2	9.12	124.37	118.90

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
44	2	1023	U	N1-C2-O2	9.10	129.17	122.80
45	3	185	С	N1-C2-O2	9.07	124.34	118.90
43	1	1494	С	O4'-C1'-N1	9.03	115.42	108.20
44	2	91	С	C2-N1-C1'	8.99	128.69	118.80
43	1	1012	С	N3-C2-O2	-8.98	115.61	121.90
44	2	479	С	C2-N1-C1'	8.93	128.63	118.80
44	2	1191	U	N3-C2-O2	-8.86	116.00	122.20
45	3	31	С	C6-N1-C2	-8.86	116.76	120.30
44	2	1023	U	C2-N1-C1'	8.84	128.30	117.70
46	4	112	С	C6-N1-C2	-8.83	116.77	120.30
45	3	128	С	C2-N1-C1'	8.78	128.46	118.80
50	8	11	С	N1-C2-O2	8.75	124.15	118.90
43	1	1564	С	C2-N1-C1'	8.71	128.38	118.80
48	6	57	U	N3-C2-O2	-8.70	116.11	122.20
44	2	966	С	C6-N1-C2	-8.70	116.82	120.30
43	1	973	U	N3-C2-O2	-8.67	116.13	122.20
43	1	1573	С	C2-N1-C1'	8.63	128.29	118.80
44	2	554	С	C6-N1-C2	-8.61	116.86	120.30
43	1	778	С	C2-N1-C1'	8.55	128.21	118.80
43	1	256	U	C6-N1-C1'	-8.54	109.24	121.20
50	8	90	U	N3-C2-O2	-8.54	116.22	122.20
43	1	447	G	O4'-C1'-N9	8.45	114.96	108.20
46	4	10	U	N3-C2-O2	-8.35	116.36	122.20
43	1	1254	С	N1-C2-O2	8.34	123.90	118.90
46	4	63	U	C2-N1-C1'	8.31	127.67	117.70
44	2	1064	С	C2-N1-C1'	8.24	127.87	118.80
44	2	649	G	O5'-P-OP2	-8.22	98.30	105.70
46	4	10	U	N1-C2-O2	8.21	128.55	122.80
44	2	966	С	C6-N1-C1'	-8.20	110.97	120.80
43	1	47	С	N1-C2-O2	8.17	123.81	118.90
43	1	1564	С	N3-C2-O2	-8.16	116.19	121.90
45	3	128	С	N1-C2-O2	8.16	123.80	118.90
47	5	3	С	N3-C2-O2	-8.16	116.19	121.90
49	7	35	С	C6-N1-C2	-8.15	117.04	120.30
44	2	1011	U	C2-N1-C1'	8.12	127.44	117.70
43	1	994	U	N3-C2-O2	-8.10	116.53	122.20
43	1	1466	G	C4-N9-C1'	8.09	137.02	126.50
44	2	1023	U	N3-C2-O2	-8.08	116.55	122.20
49	7	85	U	N1-C2-O2	8.03	128.42	122.80
47	5	104	G	C4-N9-C1'	8.01	136.92	126.50
43	1	582	U	C2-N1-C1'	8.00	127.30	117.70
43	1	1257	U	C2-N1-C1'	7.98	127.28	117.70

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$ $ Ideal(o)
49	7	143	С	N1-C2-O2	7.97	123.68	118.90
44	2	812	С	C2-N1-C1'	7.96	127.56	118.80
43	1	916	U	C2-N1-C1'	7.96	127.25	117.70
50	8	87	С	N1-C2-O2	7.96	123.67	118.90
44	2	479	С	N3-C2-O2	-7.96	116.33	121.90
50	8	37	С	C2-N1-C1'	7.95	127.55	118.80
43	1	1466	G	C8-N9-C1'	-7.94	116.68	127.00
44	2	802	U	N3-C2-O2	-7.89	116.68	122.20
44	2	1011	U	N1-C2-O2	7.84	128.29	122.80
43	1	1092	U	O5'-P-OP1	7.82	120.08	110.70
44	2	812	C	N1-C2-O2	7.79	123.57	118.90
44	2	1191	U	C2-N1-C1'	7.74	126.99	117.70
43	1	1254	C	N3-C2-O2	-7.73	116.49	121.90
44	2	554	C	N3-C2-O2	-7.63	116.56	121.90
43	1	962	C	C6-N1-C2	-7.63	117.25	120.30
44	2	812	C	C6-N1-C2	-7.62	117.25	120.30
43	1	869	C	C6-N1-C2	-7.61	117.26	120.30
44	2	37	C	C6-N1-C2	-7.58	117.27	120.30
43	1	1182	C	C2-N3-C4	7.57	123.69	119.90
44	2	755	U	P-O3'-C3'	7.56	128.77	119.70
50	8	65	C	N3-C2-O2	-7.54	116.62	121.90
46	4	63	U	N3-C2-O2	-7.54	116.92	122.20
44	2	1011	U	N3-C2-O2	-7.53	116.93	122.20
50	8	90	U	C2-N1-C1'	7.52	126.73	117.70
2	В	203	LEU	CA-CB-CG	7.51	132.57	115.30
43	1	1761	C	N1-C2-O2	7.48	123.39	118.90
49	7	164	U	C2-N1-C1'	7.48	126.68	117.70
43	1	501	C	N1-C2-O2	7.47	123.38	118.90
50	8	65	C	C2-N1-C1'	7.43	126.97	118.80
49	7	85	U	N3-C2-O2	-7.42	117.00	122.20
44	2	1502	G	C4-N9-C1'	7.41	136.13	126.50
47	5	3	C	C2-N1-C1'	7.39	126.92	118.80
43	1	1242	U	C2-N1-C1'	7.38	126.56	117.70
49	7	85	U	C2-N1-C1'	7.37	126.55	117.70
43	1	1573	C	C6-N1-C2	-7.36	117.35	120.30
50	8	37	C	N1-C2-O2	7.35	123.31	118.90
43	1	682	C	C6-N1-C2	-7.34	117.36	120.30
43	1	1164	C	N1-C2-O2	7.32	123.29	118.90
44	2	29	C	P-O3'-C3'	7.31	128.47	119.70
44	2	134	C	N3-C2-O2	-7.31	116.78	121.90
43	1	1737	C	N1-C2-O2	7.30	123.28	118.90
43	1	607	С	C2-N1-C1'	7.29	126.81	118.80

Continued from previous page...

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$ $ Ideal(o)
43	1	217	А	P-O3'-C3'	7.27	128.43	119.70
45	3	185	С	C6-N1-C1'	-7.24	112.12	120.80
50	8	90	U	N1-C2-O2	7.23	127.86	122.80
45	3	147	А	N7-C8-N9	7.23	117.42	113.80
43	1	1242	U	N1-C2-O2	7.22	127.85	122.80
44	2	1502	G	N3-C4-N9	7.22	130.33	126.00
47	5	3	С	N1-C2-O2	7.21	123.22	118.90
44	2	812	С	N3-C2-O2	-7.21	116.86	121.90
44	2	18	А	C6-N1-C2	7.20	122.92	118.60
50	8	37	С	N3-C2-O2	-7.20	116.86	121.90
44	2	1526	С	OP2-P-O3'	7.19	121.02	105.20
43	1	916	U	N3-C2-O2	-7.18	117.17	122.20
46	4	181	С	N1-C2-O2	7.18	123.21	118.90
44	2	1502	G	N3-C4-C5	-7.17	125.02	128.60
44	2	1526	С	O3'-P-O5'	-7.17	90.38	104.00
46	4	10	U	C2-N1-C1'	7.17	126.30	117.70
49	7	99	U	N1-C2-O2	7.17	127.81	122.80
43	1	1466	G	N3-C4-N9	7.16	130.29	126.00
44	2	802	U	N1-C2-O2	7.15	127.80	122.80
43	1	962	С	C5-C6-N1	7.11	124.55	121.00
44	2	1192	С	C6-N1-C2	-7.09	117.46	120.30
46	4	148	С	N1-C2-O2	7.09	123.15	118.90
45	3	2	А	P-O3'-C3'	7.09	128.21	119.70
43	1	778	С	C6-N1-C2	-7.08	117.47	120.30
43	1	96	С	N1-C2-O2	7.07	123.14	118.90
43	1	1242	U	N3-C2-O2	-7.06	117.26	122.20
44	2	378	С	C6-N1-C2	-7.05	117.48	120.30
45	3	185	С	N3-C2-O2	-7.05	116.97	121.90
48	6	67	С	N1-C2-O2	7.05	123.13	118.90
43	1	1063	G	P-O3'-C3'	7.01	128.11	119.70
44	2	1064	С	N1-C2-O2	7.00	123.10	118.90
43	1	607	С	N1-C2-O2	6.98	123.09	118.90
50	8	11	С	N3-C2-O2	-6.97	117.02	121.90
43	1	941	С	N3-C2-O2	-6.96	117.03	121.90
44	2	668	С	OP1-P-OP2	6.96	130.04	119.60
46	4	63	U	N1-C2-O2	6.96	127.67	122.80
45	3	72	С	N3-C2-O2	-6.95	117.03	121.90
10	J	71	LEU	CA-CB-CG	6.94	131.27	115.30
45	3	128	С	N3-C2-O2	-6.93	117.05	121.90
44	2	432	U	N3-C2-O2	-6.93	117.35	122.20
46	4	86	U	N1-C2-O2	6.91	127.64	122.80
44	2	55	С	N1-C2-O2	6.90	123.04	118.90

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
43	1	1182	С	C5-C6-N1	6.88	124.44	121.00
49	7	99	U	C2-N1-C1'	6.87	125.95	117.70
45	3	54	С	C6-N1-C2	-6.87	117.55	120.30
46	4	86	U	C2-N1-C1'	6.85	125.92	117.70
49	7	164	U	N3-C2-O2	-6.83	117.42	122.20
43	1	1257	U	N1-C2-O2	6.83	127.58	122.80
44	2	1028	С	C6-N1-C2	-6.80	117.58	120.30
44	2	27	С	C6-N1-C2	-6.80	117.58	120.30
47	5	104	G	C5-N7-C8	-6.79	100.90	104.30
47	5	104	G	C6-C5-N7	-6.79	126.33	130.40
43	1	740	С	C6-N1-C2	-6.78	117.59	120.30
43	1	769	U	N3-C2-O2	-6.77	117.46	122.20
49	7	45	С	C6-N1-C2	-6.77	117.59	120.30
43	1	217	А	OP2-P-O3'	6.77	120.09	105.20
46	4	65	С	C6-N1-C2	-6.76	117.59	120.30
43	1	214	С	P-O3'-C3'	6.76	127.81	119.70
43	1	1511	С	N1-C2-O2	6.75	122.95	118.90
44	2	55	С	N3-C2-O2	-6.75	117.18	121.90
44	2	448	С	C6-N1-C2	-6.73	117.61	120.30
44	2	813	U	N3-C2-O2	-6.71	117.50	122.20
43	1	738	С	O5'-P-OP1	-6.70	99.67	105.70
44	2	134	С	C2-N1-C1'	6.70	126.17	118.80
44	2	509	С	C6-N1-C2	-6.70	117.62	120.30
49	7	164	U	N1-C2-O2	6.70	127.49	122.80
43	1	1212	С	N1-C2-O2	6.69	122.92	118.90
16	Р	52	LEU	CA-CB-CG	6.69	130.69	115.30
47	5	17	C	C6-N1-C2	-6.69	117.62	120.30
43	1	582	U	N3-C2-O2	-6.69	117.52	122.20
49	7	35	C	C5-C6-N1	6.68	124.34	121.00
44	2	1394	U	N1-C2-O2	6.64	127.45	122.80
43	1	1164	C	C6-N1-C2	-6.63	117.65	120.30
43	1	916	U	N1-C2-O2	6.62	127.43	122.80
22	V	116	LEU	CA-CB-CG	6.62	130.51	115.30
43	1	768	C	P-O3'-C3'	6.62	127.64	119.70
44	2	1191	U	N1-C2-O2	6.61	127.43	122.80
44	2	1028	С	N1-C2-O2	6.60	122.86	118.90
44	2	813	U	C2-N1-C1'	6.58	125.60	117.70
44	2	813	U	N1-C2-O2	6.58	127.41	122.80
15	0	196	LEU	CA-CB-CG	6.58	130.43	115.30
43	1	1096	C	N1-C2-O2	6.57	122.84	118.90
43	1	1402	U	N3-C2-O2	-6.57	117.60	122.20
47	5	88	С	C6-N1-C2	-6.57	117.67	120.30

Continued from previous page...

Continued from previous page											
Mol	Chain	Res	Type	Atoms	Z						
43	1	1369	G	P-O3'-C3'	6.56						
43	1	244	С	C5-C6-N1	6.55						
44	2	127	C	N1-C2-O2	6.55						
46	4	181	С	N3-C2-O2	-6.5						
44	2	91	С	C6-N1-C2	-6.54						
48	6	57	U	C6-N1-C1'	-6.54						
46	4	15	G	P-O3'-C3'	6.54						
43	1	40	C	C6-N1-C2	-6.50						

 α n tin J fa .

Mol	Chain	Res	Type	Atoms Z Observ		$Observed(^{o})$	$Ideal(^{o})$
43	1	1369	G	P-O3'-C3'	P-O3'-C3' 6.56 127.5		119.70
43	1	244	С	C5-C6-N1	6.55	124.28	121.00
44	2	127	С	N1-C2-O2	6.55	122.83	118.90
46	4	181	С	N3-C2-O2	-6.55	117.32	121.90
44	2	91	С	C6-N1-C2	-6.54	117.69	120.30
48	6	57	U	C6-N1-C1'	-6.54	112.05	121.20
46	4	15	G	P-O3'-C3'	6.54	127.54	119.70
43	1	40	С	C6-N1-C2	-6.50	117.70	120.30
43	1	1254	С	C6-N1-C1'	-6.50	113.00	120.80
49	7	99	U	N3-C2-O2	-6.50	117.65	122.20
43	1	983	U	P-O3'-C3'	6.49	127.49	119.70
43	1	496	С	C6-N1-C2	-6.49	117.71	120.30
44	2	481	С	N1-C2-O2	6.48	122.79	118.90
43	1	638	С	C2-N1-C1'	6.47	125.92	118.80
31	е	102	LEU	CA-CB-CG	6.46	130.17	115.30
44	2	1184	С	N1-C2-O2	6.46	122.78	118.90
43	1	67	С	N1-C2-O2	6.45	122.77	118.90
43	1	966	А	C2-N3-C4	6.45	113.83	110.60
43	1	769	U	N1-C2-O2	6.44	127.31	122.80
43	1	445	С	N1-C2-O2	6.44	122.76	118.90
43	1	546	G	C2-N3-C4	6.44	115.12	111.90
43	1	1402	U	N1-C2-O2	6.43	127.30	122.80
49	7	82	С	N1-C2-O2	6.42	122.75	118.90
43	1	1164	С	C2-N1-C1'	6.41	125.85	118.80
49	7	143	С	N3-C2-O2	-6.40	117.42	121.90
13	М	116	LEU	CA-CB-CG	6.40	130.02	115.30
43	1	496	С	N1-C2-O2	6.40	122.74	118.90
43	1	1670	А	O4'-C1'-N9	6.37	113.29	108.20
43	1	1726	С	N1-C2-O2	6.37	122.72	118.90
44	2	1333	С	C6-N1-C2	-6.36	117.75	120.30
45	3	148	А	O4'-C1'-N9	6.36	113.28	108.20
45	3	128	С	C6-N1-C1'	-6.35	113.18	120.80
44	2	1419	U	C5-C6-N1	6.35	125.88	122.70
43	1	1590	G	O4'-C1'-N9	6.34	113.27	108.20
43	1	1012	С	C6-N1-C2	-6.34	117.77	120.30
43	1	607	С	N3-C2-O2	-6.33	117.47	121.90
43	1	1172	G	N3-C4-N9	6.33	129.80	126.00
43	1	869	С	C5-C6-N1	6.33	124.17	121.00
44	2	44	С	C6-N1-C2	-6.33	117.77	120.30
46	4	153	С	N1-C2-O2	6.33	122.70	118.90
44	2	1502	G	C8-N9-C1'	-6.32	118.78	127.00
43	1	973	U	C6-N1-C1'	-6.31	112.36	121.20

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^{o})$	$Ideal(^{o})$
44	2	1064	С	N3-C2-O2	-6.31	117.48	121.90
44	2	479	С	C6-N1-C1'	-6.31	113.23	120.80
43	1	939	С	C5-C6-N1	6.29	124.15	121.00
48	6	38	С	P-O3'-C3'	6.29	127.25	119.70
43	1	40	С	C5-C6-N1	6.29	124.14	121.00
43	1	682	С	C5-C6-N1	6.28	124.14	121.00
43	1	969	С	C6-N1-C2	-6.28	117.79	120.30
43	1	1576	С	N1-C2-O2	6.28	122.67	118.90
43	1	703	С	C6-N1-C2	-6.28	117.79	120.30
44	2	37	С	C5-C6-N1	6.27	124.14	121.00
43	1	997	С	C5-C6-N1	6.27	124.14	121.00
47	5	35	С	N1-C2-O2	6.26	122.66	118.90
43	1	973	U	C5-C6-N1	6.26	125.83	122.70
43	1	1564	С	C6-N1-C1'	-6.25	113.30	120.80
43	1	1737	С	N3-C2-O2	-6.25	117.53	121.90
44	2	966	С	C5-C6-N1	6.24	124.12	121.00
47	5	3	С	C6-N1-C2	-6.22	117.81	120.30
43	1	1012	С	C6-N1-C1'	-6.21	113.34	120.80
47	5	17	С	C5-C6-N1	6.20	124.10	121.00
43	1	29	С	N1-C2-O2	6.20	122.62	118.90
43	1	1602	U	C4-C5-C6	6.16	123.40	119.70
43	1	1254	С	C6-N1-C2	-6.15	117.84	120.30
43	1	1172	G	C4-N9-C1'	6.15	134.49	126.50
43	1	1632	U	N1-C2-O2	6.15	127.10	122.80
46	4	86	U	N3-C2-O2	-6.14	117.90	122.20
43	1	939	С	C6-N1-C2	-6.14	117.85	120.30
43	1	1573	С	N3-C2-O2	-6.13	117.61	121.90
44	2	1021	С	N1-C2-O2	6.13	122.58	118.90
43	1	1092	U	OP1-P-OP2	-6.09	110.46	119.60
43	1	364	U	N1-C2-O2	6.09	127.06	122.80
44	2	425	С	C2-N1-C1'	6.09	125.50	118.80
43	1	501	С	N3-C2-O2	-6.07	117.65	121.90
43	1	1576	С	N3-C2-O2	-6.07	117.65	121.90
44	2	576	С	C6-N1-C2	-6.06	117.88	120.30
50	8	69	С	C6-N1-C2	-6.06	117.88	120.30
43	1	47	C	N3-C2-O2	-6.05	117.66	121.90
44	2	1023	U	C6-N1-C1'	-6.05	112.73	121.20
44	2	68	А	P-O3'-C3'	6.05	126.96	119.70
43	1	582	U	N1-C2-O2	6.04	127.03	122.80
43	1	997	C	C6-N1-C2	-6.04	117.88	120.30
44	2	1080	U	N1-C2-O2	6.04	127.03	122.80
44	2	647	А	O4'-C1'-N9	6.04	113.03	108.20

Continued from previous page...

Continued fro	om previous	naae
	m previous	puye

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
44	2	91	С	C6-N1-C1'	-6.03	113.56	120.80
43	1	1254	С	O4'-C1'-N1	6.03	113.02	108.20
44	2	1437	А	P-O3'-C3'	6.03	126.93	119.70
43	1	963	G	N1-C6-O6	6.02	123.51	119.90
43	1	7	С	C6-N1-C2	-6.02	117.89	120.30
44	2	340	А	P-O3'-C3'	6.02	126.92	119.70
43	1	1164	С	N3-C2-O2	-6.00	117.70	121.90
43	1	901	С	N1-C2-O2	6.00	122.50	118.90
44	2	1027	С	N1-C2-O2	5.99	122.50	118.90
44	2	1394	U	N3-C2-O2	-5.98	118.02	122.20
43	1	1632	U	N3-C2-O2	-5.97	118.02	122.20
45	3	31	С	C6-N1-C1'	-5.97	113.64	120.80
43	1	1602	U	N1-C2-N3	5.96	118.48	114.90
49	7	35	С	N1-C2-O2	5.96	122.48	118.90
43	1	844	С	C6-N1-C2	-5.96	117.92	120.30
43	1	1374	С	C6-N1-C2	-5.96	117.92	120.30
43	1	1172	G	N3-C4-C5	-5.95	125.62	128.60
47	5	35	С	N3-C2-O2	-5.95	117.74	121.90
48	6	38	С	OP1-P-O3'	5.93	118.24	105.20
44	2	633	С	C6-N1-C2	-5.92	117.93	120.30
43	1	214	С	OP1-P-O3'	5.92	118.22	105.20
43	1	707	С	C6-N1-C2	-5.92	117.93	120.30
47	5	7	С	C6-N1-C2	-5.92	117.93	120.30
50	8	65	С	C6-N1-C2	-5.91	117.94	120.30
43	1	1358	С	C6-N1-C2	-5.90	117.94	120.30
43	1	719	U	O4'-C1'-N1	5.90	112.92	108.20
43	1	1059	U	N3-C2-O2	-5.90	118.07	122.20
44	2	1081	С	C6-N1-C2	-5.90	117.94	120.30
44	2	1202	G	N7-C8-N9	5.90	116.05	113.10
47	5	68	С	N3-C2-O2	-5.90	117.77	121.90
50	8	16	С	C6-N1-C2	-5.90	117.94	120.30
43	1	1517	U	N1-C2-O2	5.89	126.93	122.80
49	7	1	А	P-O3'-C3'	5.89	126.77	119.70
49	7	99	U	C5-C6-N1	5.89	125.64	122.70
43	1	1198	С	C6-N1-C2	-5.88	117.95	120.30
32	f	116	LEU	CA-CB-CG	5.88	128.82	115.30
50	8	87	С	N3-C2-O2	-5.88	117.78	121.90
45	3	179	U	<u>C2-N1-C1</u> '	5.87	124.75	117.70
50	8	87	С	C2-N1-C1'	5.87	125.26	118.80
44	2	1028	С	N3-C2-O2	-5.86	117.80	121.90
15	Ο	152	LEU	CA-CB-CG	5.86	128.77	115.30
43	1	113	С	C6-N1-C2	-5.86	117.96	120.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
43	1	1378	U	P-O3'-C3'	5.86	126.73	119.70
44	2	27	С	C5-C6-N1	5.85	123.93	121.00
44	2	41	А	O4'-C1'-N9	5.85	112.88	108.20
47	5	35	С	C6-N1-C2	-5.85	117.96	120.30
43	1	1384	С	N1-C2-O2	5.85	122.41	118.90
44	2	1064	С	C6-N1-C2	-5.85	117.96	120.30
49	7	112	G	C4-N9-C1'	5.85	134.10	126.50
43	1	1419	С	C6-N1-C2	-5.84	117.96	120.30
43	1	1257	U	C5-C6-N1	5.84	125.62	122.70
46	4	139	U	C5-C6-N1	5.83	125.61	122.70
43	1	1068	U	C2-N1-C1'	5.83	124.69	117.70
43	1	1212	С	C2-N1-C1'	5.82	125.21	118.80
44	2	1021	С	N3-C2-O2	-5.82	117.82	121.90
43	1	1351	С	N1-C2-O2	5.82	122.39	118.90
43	1	364	U	N3-C2-O2	-5.82	118.13	122.20
49	7	167	С	N1-C2-O2	5.82	122.39	118.90
44	2	554	С	C2-N1-C1'	5.81	125.19	118.80
12	L	129	LEU	CA-CB-CG	5.81	128.66	115.30
43	1	496	С	C5-C6-N1	5.81	123.91	121.00
47	5	118	С	N1-C2-O2	5.81	122.39	118.90
43	1	967	G	OP1-P-O3'	5.81	117.98	105.20
43	1	1172	G	C8-N9-C1'	-5.80	119.45	127.00
43	1	913	С	N1-C2-O2	5.80	122.38	118.90
49	7	153	С	C6-N1-C2	-5.80	117.98	120.30
44	2	1094	С	N1-C2-O2	5.79	122.37	118.90
43	1	1382	С	C6-N1-C2	-5.79	117.98	120.30
46	4	23	С	C6-N1-C2	-5.78	117.99	120.30
50	8	30	С	N1-C2-O2	5.78	122.37	118.90
44	2	54	U	N3-C2-O2	-5.78	118.16	122.20
43	1	941	С	C6-N1-C2	-5.77	117.99	120.30
44	2	438	С	N1-C2-O2	5.77	122.36	118.90
43	1	707	С	N1-C2-O2	5.77	122.36	118.90
44	2	1058	С	C6-N1-C2	-5.76	118.00	120.30
43	1	1100	С	C6-N1-C2	-5.76	118.00	120.30
43	1	1257	U	N3-C2-O2	-5.75	118.17	122.20
43	1	547	U	N1-C2-O2	5.75	126.83	122.80
46	4	153	C	N3-C2-O2	-5.75	117.88	121.90
47	5	130	C	N1-C2-O2	5.74	122.34	118.90
43	1	810	C	C6-N1-C2	-5.74	118.01	120.30
46	4	65	C	C5-C6-N1	5.74	123.87	121.00
43	1	963	G	C5-C6-O6	-5.73	125.16	128.60
46	4	48	U	O4'-C1'-N1	5.73	112.79	108.20

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
49	7	101	U	N1-C2-O2	5.73	126.81	122.80
39	m	110	CYS	CA-CB-SG	5.72	124.30	114.00
43	1	1365	А	O4'-C1'-N9	5.72	112.77	108.20
44	2	481	С	C6-N1-C2	-5.71	118.01	120.30
43	1	1402	U	C2-N1-C1'	5.71	124.55	117.70
1	А	102	LEU	CA-CB-CG	5.71	128.43	115.30
44	2	127	С	N3-C2-O2	-5.71	117.91	121.90
49	7	167	С	C2-N1-C1'	5.70	125.07	118.80
44	2	808	С	N1-C2-O2	5.70	122.32	118.90
45	3	147	А	C8-N9-C4	-5.69	103.52	105.80
43	1	1576	С	C2-N1-C1'	5.69	125.06	118.80
43	1	804	С	N1-C2-O2	5.68	122.31	118.90
44	2	1333	С	N1-C2-O2	5.68	122.31	118.90
43	1	249	G	P-O3'-C3'	5.68	126.52	119.70
43	1	1419	С	N1-C2-O2	5.68	122.31	118.90
44	2	134	С	P-O3'-C3'	5.68	126.51	119.70
45	3	23	С	N1-C2-O2	5.68	122.31	118.90
43	1	49	С	C6-N1-C2	-5.67	118.03	120.30
37	k	42	LEU	CA-CB-CG	5.66	128.33	115.30
43	1	442	А	O4'-C1'-N9	5.66	112.73	108.20
44	2	1117	А	C2-N3-C4	5.65	113.43	110.60
43	1	966	А	N1-C6-N6	-5.65	115.21	118.60
44	2	1333	С	C5-C6-N1	5.65	123.83	121.00
50	8	30	С	C6-N1-C2	-5.65	118.04	120.30
44	2	753	С	C6-N1-C2	-5.64	118.04	120.30
44	2	1192	С	C5-C6-N1	5.64	123.82	121.00
44	2	1429	U	N3-C2-O2	-5.64	118.25	122.20
43	1	1384	С	C6-N1-C2	-5.64	118.05	120.30
9	Ι	43	LEU	CA-CB-CG	5.63	128.25	115.30
50	8	11	С	C2-N1-C1'	5.63	125.00	118.80
44	2	54	U	N1-C2-O2	5.63	126.74	122.80
49	7	82	С	N3-C2-O2	-5.62	117.96	121.90
43	1	350	С	C6-N1-C2	-5.62	118.05	120.30
43	1	581	G	P-O3'-C3'	5.62	126.45	119.70
43	1	1000	С	C6-N1-C2	-5.62	118.05	120.30
43	1	1242	U	O4'-C1'-N1	5.61	112.69	108.20
44	2	1064	C	C6-N1-C1'	-5.61	114.07	120.80
43	1	67	С	N3-C2-O2	-5.61	117.98	121.90
48	6	40	С	P-O3'-C3'	5.60	126.42	119.70
43	1	1468	С	N1-C2-O2	5.60	122.26	118.90
43	1	1657	U	N3-C2-O2	-5.60	118.28	122.20
44	2	1469	G	P-O3'-C3'	5.59	126.41	119.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
49	7	57	С	C6-N1-C2	-5.59	118.06	120.30
43	1	638	С	N1-C2-O2	5.59	122.25	118.90
44	2	776	С	N3-C2-O2	-5.59	117.99	121.90
15	0	104	LEU	CA-CB-CG	5.58	128.15	115.30
43	1	851	G	C2-N3-C4	5.58	114.69	111.90
43	1	1674	U	N1-C2-O2	5.58	126.70	122.80
44	2	78	U	N3-C2-O2	-5.58	118.30	122.20
29	с	241	ASP	C-N-CA	5.58	135.64	121.70
43	1	1008	С	C6-N1-C2	-5.57	118.07	120.30
10	J	48	LEU	CA-CB-CG	5.57	128.12	115.30
44	2	410	С	N1-C2-O2	5.57	122.24	118.90
44	2	812	С	C5-C6-N1	5.57	123.78	121.00
49	7	57	С	C5-C6-N1	5.57	123.78	121.00
47	5	68	С	N1-C2-O2	5.56	122.24	118.90
44	2	556	U	N1-C2-O2	5.56	126.69	122.80
43	1	443	А	P-O3'-C3'	5.55	126.36	119.70
44	2	1184	С	C5-C6-N1	5.55	123.78	121.00
43	1	163	U	P-O3'-C3'	5.55	126.36	119.70
43	1	954	U	C2-N1-C1'	5.55	124.36	117.70
35	i	40	LEU	CA-CB-CG	5.54	128.05	115.30
43	1	1576	С	C6-N1-C2	-5.54	118.08	120.30
44	2	593	U	C2-N1-C1'	5.54	124.35	117.70
44	2	668	С	N1-C2-O2	5.54	122.22	118.90
43	1	1172	G	C2-N3-C4	5.53	114.67	111.90
44	2	756	С	C5-C6-N1	5.53	123.77	121.00
45	3	58	С	N1-C2-O2	5.52	122.21	118.90
46	4	112	С	C5-C6-N1	5.50	123.75	121.00
45	3	188	С	P-O3'-C3'	5.50	126.30	119.70
47	5	100	С	C6-N1-C2	-5.50	118.10	120.30
44	2	1202	G	C8-N9-C4	-5.50	104.20	106.40
43	1	607	С	C6-N1-C2	-5.49	118.10	120.30
43	1	638	C	N3-C2-O2	-5.48	118.06	121.90
43	1	1212	C	C5-C6-N1	5.48	123.74	121.00
50	8	37	С	C6-N1-C1'	-5.48	114.22	120.80
44	2	481	С	C2-N1-C1'	5.47	124.82	118.80
43	1	954	U	N1-C2-O2	5.47	126.63	122.80
44	2	432	U	N1-C2-O2	5.47	126.63	122.80
43	1	320	G	N3-C4-N9	5.46	129.28	126.00
44	2	448	С	C5-C6-N1	5.46	123.73	121.00
43	1	320	G	<u>C8-N9-C1</u> '	-5.46	119.90	127.00
43	1	574	G	N3-C4-C5	-5.46	125.87	128.60
43	1	738	С	C6-N1-C2	-5.45	118.12	120.30

\mathbf{Mol}	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
44	2	634	U	N3-C2-O2	-5.45	118.38	122.20
43	1	1674	U	C2-N1-C1'	5.45	124.24	117.70
44	2	530	С	C6-N1-C2	-5.45	118.12	120.30
49	7	112	G	C8-N9-C1'	-5.45	119.92	127.00
44	2	435	U	N3-C2-O2	-5.45	118.39	122.20
43	1	1212	С	C6-N1-C2	-5.45	118.12	120.30
3	С	305	LEU	CA-CB-CG	5.45	127.82	115.30
43	1	1517	U	N3-C2-O2	-5.44	118.39	122.20
44	2	425	С	N3-C2-O2	-5.44	118.09	121.90
43	1	96	С	N3-C2-O2	-5.44	118.09	121.90
44	2	776	С	N1-C2-O2	5.44	122.16	118.90
43	1	71	С	C2-N1-C1'	5.43	124.78	118.80
43	1	1530	U	C5-C6-N1	5.43	125.42	122.70
45	3	179	U	N3-C2-O2	-5.43	118.40	122.20
43	1	320	G	C4-N9-C1'	5.42	133.54	126.50
46	4	86	U	C6-N1-C1'	-5.42	113.61	121.20
49	7	35	С	N3-C2-O2	-5.42	118.11	121.90
44	2	1207	G	P-O3'-C3'	5.41	126.19	119.70
43	1	269	С	N1-C2-O2	5.41	122.15	118.90
43	1	1634	С	N1-C2-O2	5.41	122.15	118.90
44	2	1184	С	C6-N1-C2	-5.41	118.14	120.30
46	4	109	С	C5-C6-N1	5.41	123.71	121.00
44	2	479	С	C6-N1-C2	-5.41	118.14	120.30
48	6	46	С	N1-C2-O2	5.41	122.14	118.90
44	2	1114	С	C6-N1-C2	-5.41	118.14	120.30
43	1	954	U	C5-C6-N1	5.40	125.40	122.70
44	2	399	U	C6-N1-C2	-5.40	117.76	121.00
44	2	1011	U	C6-N1-C1'	-5.40	113.64	121.20
43	1	769	U	C2-N1-C1'	5.40	124.18	117.70
43	1	802	С	C6-N1-C2	-5.40	118.14	120.30
43	1	778	С	C6-N1-C1'	-5.40	114.32	120.80
43	1	973	U	C6-N1-C2	-5.39	117.77	121.00
43	1	1164	С	C5-C6-N1	5.39	123.69	121.00
45	3	147	А	C5-N7-C8	-5.39	101.21	103.90
43	1	1249	А	C4-N9-C1'	5.38	135.99	126.30
43	1	34	С	N3-C2-O2	-5.38	118.13	121.90
43	1	244	С	C6-N1-C2	-5.38	118.15	120.30
43	1	810	С	N1-C2-O2	5.38	122.13	118.90
43	1	733	С	N1-C2-O2	5.38	122.13	118.90
43	1	855	С	C6-N1-C2	-5.37	118.15	120.30
44	2	1306	С	N1-C2-O2	5.37	122.12	118.90
43	1	728	С	P-O3'-C3'	5.37	126.15	119.70

a 1 c		
Continued fr	rom previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
43	1	1573	С	C6-N1-C1'	-5.37	114.35	120.80
44	2	481	С	N3-C2-O2	-5.37	118.14	121.90
48	6	57	U	C5-C6-N1	5.37	125.39	122.70
35	i	64	LEU	CA-CB-CG	5.37	127.65	115.30
43	1	995	С	N3-C2-O2	-5.37	118.14	121.90
43	1	163	U	OP1-P-O3'	5.37	117.01	105.20
50	8	41	С	N1-C2-O2	5.37	122.12	118.90
44	2	643	А	C2-N3-C4	5.36	113.28	110.60
44	2	1218	С	C6-N1-C2	-5.36	118.15	120.30
49	7	143	С	C6-N1-C2	-5.36	118.15	120.30
50	8	90	U	C6-N1-C2	-5.36	117.78	121.00
44	2	1011	U	O4'-C1'-N1	5.36	112.49	108.20
43	1	1674	U	N3-C2-O2	-5.36	118.45	122.20
44	2	809	С	N1-C2-O2	5.36	122.12	118.90
44	2	1452	А	P-O3'-C3'	5.36	126.13	119.70
43	1	707	С	N3-C2-O2	-5.36	118.15	121.90
43	1	1182	С	N3-C2-O2	-5.35	118.16	121.90
46	4	161	С	C6-N1-C2	-5.34	118.16	120.30
43	1	1761	С	N3-C2-O2	-5.34	118.16	121.90
44	2	1452	А	OP1-P-O3'	5.34	116.95	105.20
43	1	1645	С	N1-C2-O2	5.33	122.10	118.90
44	2	383	U	C4-C5-C6	5.33	122.90	119.70
44	2	378	С	C5-C6-N1	5.33	123.67	121.00
47	5	118	С	N3-C2-O2	-5.33	118.17	121.90
44	2	127	С	C2-N1-C1'	5.32	124.66	118.80
48	6	67	С	C2-N1-C1'	5.32	124.66	118.80
43	1	948	U	C5-C6-N1	5.32	125.36	122.70
49	7	153	С	O5'-P-OP1	-5.32	100.91	105.70
50	8	87	С	C6-N1-C2	-5.32	118.17	120.30
43	1	1059	U	N1-C2-O2	5.32	126.52	122.80
49	7	140	U	N3-C2-O2	-5.32	118.48	122.20
43	1	353	С	C6-N1-C2	-5.31	118.18	120.30
46	4	167	С	N1-C2-O2	5.31	122.09	118.90
43	1	622	С	C6-N1-C2	-5.31	118.18	120.30
43	1	913	С	C5-C6-N1	5.31	123.65	121.00
43	1	244	С	C2-N1-C1'	5.31	124.64	118.80
43	1	1634	С	N3-C2-O2	-5.30	118.19	121.90
43	1	1142	С	C6-N1-C2	-5.30	118.18	120.30
44	2	427	С	C6-N1-C2	-5.29	118.18	120.30
8	Н	34	LEU	CA-CB-CG	5.29	127.46	115.30
46	4	63	U	C6-N1-C1'	-5.29	113.80	121.20
43	1	445	С	N3-C2-O2	-5.28	118.20	121.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
49	7	167	С	C6-N1-C2	-5.28	118.19	120.30
43	1	113	С	N1-C2-O2	5.28	122.07	118.90
44	2	383	U	C5-C6-N1	-5.28	120.06	122.70
44	2	530	С	N1-C2-O2	5.28	122.07	118.90
43	1	1378	U	OP2-P-O3'	5.28	116.81	105.20
43	1	1540	U	N3-C2-O2	-5.27	118.51	122.20
43	1	835	G	N3-C4-N9	5.27	129.16	126.00
43	1	966	А	C8-N9-C4	-5.27	103.69	105.80
44	2	593	U	C5-C6-N1	5.26	125.33	122.70
43	1	995	С	C6-N1-C2	-5.26	118.19	120.30
44	2	1188	С	C5-C6-N1	5.25	123.63	121.00
45	3	44	С	N1-C2-O2	5.25	122.05	118.90
49	7	140	U	N1-C2-O2	5.25	126.48	122.80
46	4	154	С	C6-N1-C2	-5.25	118.20	120.30
44	2	637	G	C5-C6-N1	5.25	114.12	111.50
50	8	110	G	O4'-C1'-N9	5.25	112.40	108.20
44	2	808	С	N3-C2-O2	-5.25	118.23	121.90
44	2	1212	U	C5-C6-N1	5.24	125.32	122.70
44	2	1125	А	C8-N9-C4	-5.24	103.71	105.80
47	5	88	С	C5-C6-N1	5.24	123.62	121.00
44	2	556	U	N3-C2-O2	-5.23	118.54	122.20
43	1	1777	U	N1-C2-O2	5.23	126.46	122.80
43	1	1777	U	N3-C2-O2	-5.23	118.54	122.20
7	G	221	LEU	CA-CB-CG	5.22	127.31	115.30
44	2	637	G	C2-N3-C4	5.22	114.51	111.90
50	8	37	С	C6-N1-C2	-5.21	118.21	120.30
43	1	803	С	N3-C2-O2	-5.21	118.25	121.90
49	7	45	С	C5-C6-N1	5.21	123.61	121.00
43	1	954	U	N3-C2-O2	-5.21	118.55	122.20
43	1	1215	С	N1-C2-O2	5.21	122.03	118.90
44	2	37	С	N1-C2-O2	5.21	122.03	118.90
43	1	113	С	C5-C6-N1	5.21	123.61	121.00
46	4	180	С	N1-C2-O2	5.21	122.03	118.90
44	2	383	U	N1-C2-N3	5.21	118.02	114.90
45	3	45	С	C6-N1-C2	-5.21	118.22	120.30
44	2	91	С	O4'-C1'-N1	5.20	112.36	108.20
46	4	166	С	C6-N1-C2	-5.20	118.22	120.30
43	1	527	А	O4'-C1'-N9	5.20	112.36	108.20
44	2	509	C	N1-C2-O2	5.20	122.02	118.90
43	1	1092	U	O5'-P-OP2	-5.19	101.03	105.70
44	2	18	A	N1-C2-N3	-5.19	126.70	129.30
43	1	908	G	N3-C2-N2	-5.19	116.27	119.90

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$ $ Ideal(o)
46	4	63	U	O4'-C1'-N1	5.19	112.35	108.20
44	2	544	U	N3-C2-O2	-5.18	118.57	122.20
43	1	1254	С	C5-C6-N1	5.18	123.59	121.00
43	1	1419	С	N3-C2-O2	-5.18	118.28	121.90
44	2	1367	С	C6-N1-C2	-5.17	118.23	120.30
43	1	581	G	OP1-P-O3'	5.17	116.57	105.20
42	р	35	LEU	CA-CB-CG	5.17	127.19	115.30
43	1	17	С	C6-N1-C2	-5.17	118.23	120.30
43	1	1621	U	C2-N1-C1'	5.17	123.90	117.70
50	8	30	С	N3-C2-O2	-5.16	118.28	121.90
43	1	810	С	N3-C2-O2	-5.16	118.29	121.90
44	2	448	С	N1-C2-O2	5.16	122.00	118.90
44	2	584	С	C6-N1-C2	-5.16	118.24	120.30
47	5	104	G	C4-C5-N7	5.16	112.86	110.80
45	3	40	С	C6-N1-C2	-5.16	118.24	120.30
43	1	34	С	C6-N1-C2	-5.15	118.24	120.30
45	3	54	С	C5-C6-N1	5.15	123.58	121.00
43	1	257	U	C2-N1-C1'	5.15	123.88	117.70
43	1	900	С	C6-N1-C2	-5.15	118.24	120.30
43	1	1665	U	N1-C2-O2	5.15	126.40	122.80
43	1	914	U	C5-C6-N1	5.14	125.27	122.70
45	3	179	U	O4'-C1'-N1	5.14	112.31	108.20
48	6	67	С	N3-C2-O2	-5.14	118.30	121.90
50	8	16	С	C5-C6-N1	5.14	123.57	121.00
43	1	1096	С	N3-C2-O2	-5.14	118.30	121.90
44	2	776	С	C2-N1-C1'	5.13	124.44	118.80
44	2	1323	С	C5-C6-N1	5.13	123.57	121.00
43	1	19	G	O4'-C1'-N9	5.13	112.30	108.20
43	1	111	С	C6-N1-C2	-5.13	118.25	120.30
44	2	1374	С	C6-N1-C2	-5.13	118.25	120.30
44	2	806	С	N1-C2-O2	5.13	121.98	118.90
43	1	874	C	C6-N1-C2	-5.12	118.25	120.30
44	2	1080	U	N3-C2-O2	-5.12	118.62	122.20
44	2	40	С	C6-N1-C2	-5.12	118.25	120.30
25	Y	132	LEU	CA-CB-CG	5.12	127.07	115.30
44	2	1050	С	C6-N1-C2	-5.11	118.26	120.30
43	1	64	A	C4-C5-C6	-5.11	114.45	117.00
43	1	851	G	N3-C4-C5	-5.10	126.05	128.60
44	2	481	С	C5-C6-N1	5.10	123.55	121.00
46	4	85	C	C2-N1-C1'	5.10	124.41	118.80
43	1	501	С	C2-N1-C1'	5.10	124.41	118.80
49	7	82	С	C2-N1-C1'	5.10	124.41	118.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
43	1	1726	С	N3-C2-O2	-5.10	118.33	121.90
43	1	597	С	N1-C2-O2	5.10	121.96	118.90
44	2	1427	С	C5-C6-N1	5.09	123.55	121.00
44	2	1454	U	C5-C6-N1	5.09	125.25	122.70
49	7	101	U	C2-N1-C1'	5.09	123.81	117.70
44	2	1117	А	C4-N9-C1'	5.09	135.47	126.30
47	5	104	G	N3-C4-C5	-5.09	126.06	128.60
44	2	1151	U	N3-C2-O2	-5.08	118.64	122.20
46	4	10	U	C6-N1-C2	-5.08	117.95	121.00
44	2	509	С	C5-C6-N1	5.08	123.54	121.00
44	2	1066	С	N3-C2-O2	-5.08	118.35	121.90
43	1	514	С	C6-N1-C2	-5.07	118.27	120.30
44	2	809	С	N3-C2-O2	-5.07	118.35	121.90
8	Н	29	LEU	CA-CB-CG	5.07	126.95	115.30
43	1	699	С	C6-N1-C2	-5.06	118.28	120.30
46	4	109	С	C6-N1-C2	-5.06	118.28	120.30
43	1	1573	С	O4'-C1'-N1	5.06	112.25	108.20
45	3	58	С	N3-C2-O2	-5.06	118.36	121.90
43	1	264	U	N3-C2-O2	-5.06	118.66	122.20
44	2	1448	А	O4'-C1'-N9	5.05	112.24	108.20
43	1	19	G	C4-N9-C1'	5.05	133.07	126.50
46	4	148	С	N3-C2-O2	-5.04	118.37	121.90
44	2	1320	С	C6-N1-C2	-5.04	118.28	120.30
43	1	809	С	C5-C6-N1	5.04	123.52	121.00
47	5	6	С	C6-N1-C2	-5.04	118.28	120.30
3	С	225	LEU	CA-CB-CG	5.04	126.89	115.30
43	1	928	С	N3-C2-O2	-5.04	118.37	121.90
43	1	26	С	C6-N1-C2	-5.04	118.29	120.30
45	3	148	А	N1-C6-N6	-5.04	115.58	118.60
44	2	1296	С	N1-C2-O2	5.03	121.92	118.90
43	1	1466	G	N9-C4-C5	-5.03	103.39	105.40
43	1	364	U	C5-C6-N1	5.03	125.22	122.70
43	1	119	С	N1-C2-O2	5.03	121.92	118.90
44	2	435	U	C2-N1-C1'	5.03	123.73	117.70
43	1	1507	U	N3-C2-O2	-5.02	118.69	122.20
43	1	546	G	N3-C4-C5	-5.02	126.09	128.60
43	1	901	С	C2-N1-C1'	5.02	124.32	118.80
43	1	937	C	<u>C6-N1-C2</u>	-5.02	118.29	120.30
44	2	1191	U	C6-N1-C2	-5.02	117.99	121.00
43	1	29	C	N3-C2-O2	-5.02	118.39	121.90
43	1	851	G	C4-N9-C1'	5.01	133.02	126.50
44	2	1328	С	N1-C2-O2	5.01	121.91	118.90

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
45	3	62	U	C5-C6-N1	5.01	125.21	122.70
49	7	152	С	C6-N1-C2	-5.01	118.30	120.30
49	7	143	С	C2-N1-C1'	5.01	124.31	118.80
44	2	1218	С	N1-C2-O2	5.01	121.90	118.90
49	7	10	С	C6-N1-C2	-5.01	118.30	120.30
50	8	36	С	C6-N1-C2	-5.00	118.30	120.30

There are no chirality outliers.

All (6) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	В	115[B]	ARG	Mainchain
3	С	313	TYR	Peptide
6	F	102	THR	Peptide
15	0	117	ASP	Peptide
31	е	123	ASP	Peptide
39	m	115	CYS	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	260/254~(102%)	247 (95%)	13 (5%)	0	100	100
2	В	410/402~(102%)	387~(94%)	23~(6%)	0	100	100
3	С	366/366~(100%)	340 (93%)	25 (7%)	1 (0%)	37	56
4	D	166/168~(99%)	147 (89%)	17 (10%)	2(1%)	11	21
5	Е	184/186~(99%)	171 (93%)	13 (7%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
6	\mathbf{F}	133/195~(68%)	120 (90%)	13 (10%)	0	100	100
7	G	218/348~(63%)	206~(94%)	11 (5%)	1 (0%)	25	44
8	Н	222/221~(100%)	212~(96%)	10 (4%)	0	100	100
9	Ι	210/212~(99%)	188 (90%)	20 (10%)	2(1%)	13	25
10	J	132/134~(98%)	119 (90%)	13 (10%)	0	100	100
11	К	148/149~(99%)	133 (90%)	15 (10%)	0	100	100
12	L	142/144~(99%)	127 (89%)	14 (10%)	1 (1%)	19	35
13	М	201/203~(99%)	195 (97%)	6 (3%)	0	100	100
14	Ν	186/213~(87%)	179 (96%)	7 (4%)	0	100	100
15	О	249/305~(82%)	232 (93%)	17 (7%)	0	100	100
16	Р	195/197~(99%)	182 (93%)	13 (7%)	0	100	100
17	Q	187/189~(99%)	180 (96%)	7 (4%)	0	100	100
18	R	176/178~(99%)	153 (87%)	22 (12%)	1 (1%)	22	39
19	S	152/154~(99%)	138 (91%)	14 (9%)	0	100	100
20	Т	152/154~(99%)	138 (91%)	14 (9%)	0	100	100
21	U	119/121~(98%)	103 (87%)	15 (13%)	1 (1%)	16	31
22	V	117/118~(99%)	109 (93%)	8 (7%)	0	100	100
23	W	119/121~(98%)	114 (96%)	5 (4%)	0	100	100
24	Х	63/65~(97%)	62 (98%)	1 (2%)	0	100	100
25	Y	131/132~(99%)	128 (98%)	3 (2%)	0	100	100
26	Z	138/140~(99%)	132 (96%)	6 (4%)	0	100	100
27	a	123/125~(98%)	114 (93%)	9(7%)	0	100	100
28	b	66/68~(97%)	62 (94%)	4 (6%)	0	100	100
29	с	225/227~(99%)	220 (98%)	5 (2%)	0	100	100
30	d	90/92~(98%)	89 (99%)	1 (1%)	0	100	100
31	е	117/119~(98%)	107 (92%)	9 (8%)	1 (1%)	14	28
32	f	129/130~(99%)	123~(95%)	6 (5%)	0	100	100
33	g	123/125~(98%)	119 (97%)	4 (3%)	0	100	100
34	h	124/125~(99%)	117 (94%)	7 (6%)	0	100	100
35	i	95/97~(98%)	89 (94%)	6 (6%)	0	100	100
36	j	78/80~(98%)	77~(99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
37	k	74/76~(97%)	71~(96%)	3~(4%)	0	100 100
38	1	48/50~(96%)	43~(90%)	5 (10%)	0	100 100
39	m	48/50~(96%)	47~(98%)	1 (2%)	0	100 100
40	n	31/33~(94%)	28~(90%)	3~(10%)	0	100 100
41	О	88/90~(98%)	79~(90%)	9 (10%)	0	100 100
42	р	94/96~(98%)	84 (89%)	9 (10%)	1 (1%)	12 23
All	All	6329/6652~(95%)	5911 (93%)	407 (6%)	11 (0%)	45 64

All (11) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	D	43	CYS
9	Ι	68	VAL
31	е	124	ALA
3	С	314	GLN
4	D	42	LEU
42	р	27	GLN
9	Ι	67	THR
18	R	15	GLU
21	U	72	MET
7	G	214	PRO
12	L	50	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	204/198~(103%)	191 (94%)	13 (6%)	14	30
2	В	333/340~(98%)	325~(98%)	8 (2%)	44	70
3	С	291/297~(98%)	287~(99%)	4 (1%)	62	83
4	D	114/146~(78%)	113 (99%)	1 (1%)	75	90
5	Ε	160/169~(95%)	160 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
6	F	100/154~(65%)	99~(99%)	1 (1%)	73	88
7	G	178/292~(61%)	173~(97%)	5(3%)	38	65
8	Н	184/187~(98%)	179~(97%)	5(3%)	40	67
9	Ι	167/175~(95%)	164~(98%)	3~(2%)	54	78
10	J	105/107~(98%)	103 (98%)	2(2%)	52	77
11	K	116/125~(93%)	114 (98%)	2 (2%)	56	79
12	L	114/114 (100%)	113 (99%)	1 (1%)	75	90
13	М	179/179~(100%)	178 (99%)	1 (1%)	84	94
14	Ν	138/179~(77%)	135~(98%)	3 (2%)	47	73
15	О	193/242~(80%)	193 (100%)	0	100	100
16	Р	163/163~(100%)	159 (98%)	4 (2%)	42	69
17	Q	130/166~(78%)	129 (99%)	1 (1%)	79	91
18	R	156/157~(99%)	155~(99%)	1 (1%)	84	94
19	S	123/128~(96%)	119~(97%)	4 (3%)	33	59
20	Т	130/133~(98%)	127~(98%)	3 (2%)	45	72
21	U	91/106~(86%)	90 (99%)	1 (1%)	70	87
22	V	97/102~(95%)	97~(100%)	0	100	100
23	W	105/105~(100%)	103~(98%)	2(2%)	52	77
24	Х	58/60~(97%)	57~(98%)	1 (2%)	56	79
25	Y	104/113~(92%)	104 (100%)	0	100	100
26	Ζ	108/113~(96%)	103~(95%)	5 (5%)	23	45
27	a	98/115~(85%)	98 (100%)	0	100	100
28	b	54/56~(96%)	52~(96%)	2~(4%)	29	55
29	с	180/189~(95%)	176~(98%)	4(2%)	47	73
30	d	77/81~(95%)	74~(96%)	3~(4%)	27	52
31	е	101/104~(97%)	98~(97%)	3~(3%)	36	63
32	f	108/111 (97%)	105~(97%)	3~(3%)	38	65
33	g	$101/\overline{103}\ (98\%)$	101 (100%)	0	100	100
34	h	104/108~(96%)	102 (98%)	2 (2%)	52	77
35	i	77/81~(95%)	77 (100%)	0	100	100
36	j	$67/68~(9\overline{8\%})$	66~(98%)	1 (2%)	60	82

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
37	k	60/69~(87%)	59~(98%)	1 (2%)	56 79
38	1	44/46~(96%)	44 (100%)	0	100 100
39	m	41/44~(93%)	39~(95%)	2(5%)	21 42
40	n	28/31~(90%)	28 (100%)	0	100 100
41	О	70/72~(97%)	69~(99%)	1 (1%)	62 83
42	р	77/83~(93%)	76~(99%)	1 (1%)	65 85
All	All	5128/5611 (91%)	5034 (98%)	94 (2%)	58 78

All (94) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	23[A]	ARG
1	А	23[B]	ARG
1	А	28[A]	LYS
1	А	28[B]	LYS
1	А	28[C]	LYS
1	А	90[A]	CYS
1	А	90[B]	CYS
1	А	140	ASN
1	А	163	ARG
1	А	188	ARG
1	А	193	ARG
1	А	242	ARG
1	А	247	ARG
2	В	10	ARG
2	В	58[A]	ARG
2	В	58[B]	ARG
2	В	245[A]	ARG
2	В	245[B]	ARG
2	В	249[A]	ARG
2	В	249[B]	ARG
2	В	339	ARG
3	С	94	MET
3	С	99[A]	ARG
3	С	99[B]	ARG
3	С	139	ARG
4	D	39	LEU
6	F	60	ASN
7	G	133	ARG
7	G	187[A]	ARG

Mol	Chain	Res	Type
7	G	187[B]	ARG
7	G	316	ARG
7	G	326	ARG
8	Н	54	VAL
8	Н	79	ARG
8	Н	108	ARG
8	Н	112[A]	ARG
8	Н	112[B]	ARG
9	Ι	75	ARG
9	Ι	157	ARG
9	Ι	198	ARG
10	J	12	ARG
10	J	82	ARG
11	K	198[A]	HIS
11	K	198[B]	HIS
12	L	24	LYS
13	М	197	ARG
14	N	33	ASN
14	Ν	81	ASN
14	Ν	130	ARG
16	Р	56	ARG
16	Р	101	ARG
16	Р	129	THR
16	Р	192	ARG
17	Q	117	ARG
18	R	74	ARG
19	S	66	ASN
19	S	120	LYS
19	S	134	MET
19	S	142	ASN
20	Т	37	ASN
20	Т	85	ARG
20	Т	137	THR
21	U	110	LEU
23	W	10	ARG
23	W	41	ASN
24	Х	22	VAL
26	Z	17	ARG
26	Z	35	ASN
26	Z	46	LEU
26	Z	53	VAL
26	Ζ	131	ARG

Mol	Chain	Res	Type
28	b	9	ASN
28	b	11	ASN
29	с	163	TYR
29	с	170	ARG
29	с	185	ASN
29	с	239	ASN
30	d	26	VAL
30	d	88	ARG
30	d	96	ASN
31	е	92	LYS
31	е	144	VAL
31	е	167	ASN
32	f	55	ASN
32	f	56	LYS
32	f	90	ASN
34	h	19	ASN
34	h	89	ARG
36	j	57	ARG
37	k	76	LYS
39	m	115	CYS
39	m	120	ASN
41	0	75	ASN
42	р	81	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (97) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	12	ASN
1	А	21	HIS
1	А	140	ASN
1	А	194	ASN
1	А	209	HIS
1	А	228	HIS
2	В	24	GLN
2	В	55	HIS
2	В	174	HIS
2	В	282	GLN
2	В	284	ASN
2	В	299	ASN
2	В	352	GLN
3	С	46	ASN
3	С	61	HIS

Mol	Chain	Res	Type
3	С	115	ASN
3	С	118	GLN
3	С	197	ASN
3	С	243	HIS
4	D	154	HIS
5	Е	75	HIS
6	F	60	ASN
7	G	111	HIS
7	G	144	GLN
7	G	258	ASN
7	G	335	HIS
8	Н	68	ASN
8	Н	186	HIS
8	Н	190	GLN
9	Ι	12	HIS
9	Ι	16	HIS
9	Ι	23	GLN
9	Ι	36	GLN
9	Ι	70	HIS
9	Ι	108	ASN
10	J	100	ASN
11	K	126	ASN
12	L	34	ASN
12	L	41	HIS
12	L	74	ASN
12	L	114	HIS
13	М	196	ASN
14	Ν	33	ASN
14	N	71	GLN
14	N	81	ASN
14	N	192	GLN
14	N	196	HIS
15	0	35	GLN
17	Q	118	HIS
17	Q	141	HIS
18	R	10	GLN
18	R	75	ASN
18	R	116	HIS
18	R	145	HIS
18	R	155	GLN
19	S	66	ASN
19	S	111	GLN

Mol	Chain	Res	Type
19	S	142	ASN
20	Т	37	ASN
20	Т	97	ASN
20	Т	110	ASN
22	V	34	GLN
22	V	114	ASN
23	W	41	ASN
23	W	97	HIS
24	Х	14	HIS
26	Z	35	ASN
26	Z	37	ASN
28	b	7	HIS
28	b	9	ASN
28	b	11	ASN
28	b	17	HIS
28	b	19	ASN
28	b	30	HIS
28	b	51	ASN
29	с	109	GLN
29	с	239	ASN
30	d	96	ASN
31	е	120	ASN
31	е	132	HIS
31	е	167	ASN
32	f	55	ASN
32	f	99	HIS
33	g	25	ASN
33	g	49	GLN
33	g	111	HIS
34	h	19	ASN
34	h	62	HIS
34	h	87	GLN
36	j	10	GLN
36	j	28	HIS
39	m	109	ASN
39	m	120	ASN
41	0	75	ASN
42	р	20	HIS
42	р	73	GLN
42	р	82	GLN

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
43	1	1603/1778~(90%)	438 (27%)	18 (1%)
44	2	1067/1526~(69%)	287 (26%)	17 (1%)
45	3	172/211 (81%)	45 (26%)	3(1%)
46	4	182/183~(99%)	47 (25%)	2(1%)
47	5	93/133~(69%)	30 (32%)	0
48	6	70/71~(98%)	34 (48%)	4(5%)
49	7	$161/171 \ (94\%)$	39 (24%)	2(1%)
50	8	117/118~(99%)	25 (21%)	1 (0%)
All	All	3465/4191 (82%)	945 (27%)	47 (1%)

All (945) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
43	1	4	G
43	1	16	G
43	1	20	G
43	1	24	А
43	1	29	С
43	1	38	А
43	1	41	А
43	1	47	С
43	1	48	OMU
43	1	55	A
43	1	57	G
43	1	58	А
43	1	63	А
43	1	64	А
43	1	67	С
43	1	69	A2M
43	1	70	С
43	1	71	С
43	1	72	G
43	1	81	U
43	1	83	А
43	1	86	G
43	1	87	А
43	1	91	G
43	1	92	С
43	1	109	A
43	1	110	A
43	1	127	G
43	1	130	U
43	1	131	U

Mol	Chain	Res	Type
43	1	132	А
43	1	134	A
43	1	136	G
43	1	140	U
43	1	141	U
43	1	142	G
43	1	154	А
43	1	155	А
43	1	156	А
43	1	157	U
43	1	158	А
43	1	160	С
43	1	161	A
43	1	162	U
43	1	163	U
43	1	164	U
43	1	171	U
43	1	175	G
43	1	176	С
43	1	177	А
43	1	189	A
43	1	191	U
43	1	192	С
43	1	200	A
43	1	202	G
43	1	205	A
43	1	206	A
43	1	210	G
43	1	212	U
43	1	213	G
43	1	215	U
43	1	217	A
43	1	218	A
43	1	219	U
43	1	223	A
43	1	230	A
43	1	231	U
43	1	233	U
43	1	234	G
43	1	244	С
43	1	248	A
43	1	249	G

Mol	Chain	Res	Type
43	1	250	А
43	1	251	А
43	1	255	G
43	1	256	U
43	1	257	U
43	1	258	А
43	1	261	С
43	1	264	U
43	1	268	G
43	1	273	А
43	1	279	G
43	1	280	А
43	1	283	G
43	1	284	С
43	1	290	G
43	1	291	А
43	1	301	А
43	1	303	С
43	1	305	А
43	1	306	G
43	1	320	G
43	1	323	U
43	1	332	А
43	1	334	G
43	1	343	U
43	1	348	G
43	1	349	U
43	1	361	А
43	1	367	А
43	1	368	G
43	1	369	A
43	1	376	A
43	1	377	G
43	1	382	A
43	1	383	U
43	1	384	A
43	1	389	А
43	1	390	С
43	1	391	A
43	1	392	A
43	1	409	U
43	1	410	U

Mol	Chain	Res	Type
43	1	411	U
43	1	417	G
43	1	422	U
43	1	423	U
43	1	426	А
43	1	427	А
43	1	428	А
43	1	438	А
43	1	440	А
43	1	442	А
43	1	443	А
43	1	444	С
43	1	449	А
43	1	457	С
43	1	461	G
43	1	463	С
43	1	471	G
43	1	477	С
43	1	482	U
43	1	483	С
43	1	485	А
43	1	486	С
43	1	487	G
43	1	488	G
43	1	489	С
43	1	495	С
43	1	513	С
43	1	517	U
43	1	518	С
43	1	519	G
43	1	520	G
43	1	521	G
43	1	528	A
43	1	535	С
43	1	536	G
43	1	538	G
43	1	539	С
43	1	544	A
43	1	546	G
43	1	547	U
43	1	548	G
43	1	551	А

Mol	Chain	Res	Type
43	1	553	А
43	1	554	А
43	1	561	G
43	1	565	U
43	1	569	G
43	1	570	А
43	1	571	А
43	1	572	А
43	1	574	G
43	1	575	А
43	1	579	G
43	1	580	A
43	1	581	G
43	1	582	U
43	1	583	А
43	1	586	U
43	1	591	U
43	1	592	G
43	1	597	С
43	1	599	G
43	1	600	С
43	1	601	G
43	1	610	А
43	1	611	С
43	1	612	G
43	1	625	С
43	1	628	С
43	1	629	G
43	1	632	А
43	1	635	C
43	1	641	G
43	1	648	A
43	1	649	U
43	1	655	U
43	1	656	G
43	1	661	G
43	1	668	С
43	1	669	С
43	1	677	А
43	1	679	A
43	1	681	A2M
43	1	682	С

Mol	Chain	Res	Type
43	1	692	А
43	1	698	A
43	1	709	A
43	1	713	A
43	1	719	U
43	1	722	G
43	1	725	U
43	1	729	A
43	1	750	G
43	1	754	G
43	1	759	A
43	1	761	А
43	1	762	A
43	1	763	U
43	1	764	G
43	1	769	U
43	1	771	U
43	1	778	С
43	1	803	С
43	1	810	С
43	1	821	С
43	1	822	С
43	1	823	G
43	1	825	G
43	1	827	G
43	1	828	U
43	1	831	С
43	1	832	G
43	1	835	G
43	1	836	G
43	1	849	U
43	1	850	G
43	1	851	G
43	1	852	A
43	1	868	A
43	1	881	A
43	1	887	A
43	1	899	A
43	1	900	C
43	1	901	С
43	1	908	G
43	1	912	С

Mol	Chain	Res	Type
43	1	925	U
43	1	930	U
43	1	931	G
43	1	935	А
43	1	957	С
43	1	958	G
43	1	959	OMG
43	1	965	А
43	1	967	G
43	1	970	U
43	1	972	А
43	1	974	С
43	1	975	G
43	1	976	А
43	1	983	U
43	1	984	А
43	1	987	А
43	1	988	G
43	1	995	С
43	1	1000	С
43	1	1010	С
43	1	1011	U
43	1	1015	G
43	1	1025	G
43	1	1029	G
43	1	1031	А
43	1	1036	U
43	1	1037	А
43	1	1045	G
43	1	1051	C
43	1	1059	U
43	1	1061	G
43	1	1063	G
43	1	1064	G
43	1	1065	С
43	1	1066	A
43	1	1067	U
43	1	1068	U
43	1	1087	А
43	1	1088	С
43	1	1091	A
43	1	1092	U

Mol	Chain	Res	Type
43	1	1096	С
43	1	1098	А
43	1	1105	А
43	1	1108	G
43	1	1114	А
43	1	1116	А
43	1	1118	А
43	1	1124	С
43	1	1130	С
43	1	1134	С
43	1	1135	U
43	1	1148	А
43	1	1149	G
43	1	1150	A
43	1	1153	A
43	1	1155	А
43	1	1156	А
43	1	1159	А
43	1	1161	А
43	1	1174	G
43	1	1182	С
43	1	1188	G
43	1	1192	А
43	1	1195	А
43	1	1200	A
43	1	1201	U
43	1	1210	А
43	1	1211	А
43	1	1212	С
43	1	1216	U
43	1	1220	G
43	1	1226	G
43	1	1235	А
43	1	1238	C
43	1	1239	U
43	1	1240	U
43	1	1242	U
43	1	1243	G
43	1	1248	С
43	1	1249	A
43	1	1250	U
43	1	1251	U

Mol	Chain	Res	Type
43	1	1252	С
43	1	1253	OMU
43	1	1254	С
43	1	1257	U
43	1	1260	G
43	1	1261	U
43	1	1265	А
43	1	1270	U
43	1	1271	G
43	1	1274	G
43	1	1279	А
43	1	1364	А
43	1	1366	А
43	1	1367	U
43	1	1368	G
43	1	1369	G
43	1	1370	А
43	1	1371	OMU
43	1	1375	G
43	1	1378	U
43	1	1379	А
43	1	1386	А
43	1	1387	U
43	1	1389	А
43	1	1390	G
43	1	1394	U
43	1	1395	U
43	1	1398	С
43	1	1401	U
43	1	1402	U
43	1	1412	G
43	1	1414	А
43	1	1419	С
43	1	1420	G
43	1	1422	А
43	1	1426	A
43	1	1437	А
43	1	1440	A
43	1	1446	A
43	1	1447	G
43	1	1466	G
43	1	1467	G

Mol	Chain	Res	Type
43	1	1475	G
43	1	1476	U
43	1	1483	G
43	1	1489	U
43	1	1492	G
43	1	1494	С
43	1	1495	G
43	1	1506	А
43	1	1509	G
43	1	1511	С
43	1	1523	G
43	1	1524	С
43	1	1526	OMG
43	1	1529	OMC
43	1	1530	U
43	1	1538	С
43	1	1542	OMG
43	1	1547	G
43	1	1548	А
43	1	1559	А
43	1	1561	А
43	1	1562	U
43	1	1563	А
43	1	1564	С
43	1	1565	U
43	1	1566	С
43	1	1571	U
43	1	1572	G
43	1	1588	G
43	1	1589	A
43	1	1590	G
43	1	1591	С
43	1	1592	G
43	1	1601	U
43	1	1603	U
43	1	1607	G
43	1	1609	С
43	1	1610	A
43	1	1614	G
43	1	1615	С
43	1	1631	G
43	1	1633	U

Mol	Chain	Res	Type
43	1	1634	С
43	1	1656	А
43	1	1657	U
43	1	1658	С
43	1	1663	U
43	1	1664	G
43	1	1665	U
43	1	1668	G
43	1	1669	G
43	1	1670	А
43	1	1671	А
43	1	1672	А
43	1	1673	G
43	1	1720	С
43	1	1721	С
43	1	1729	А
43	1	1732	А
43	1	1739	А
43	1	1740	С
43	1	1741	A
43	1	1746	А
43	1	1749	U
43	1	1753	А
43	1	1755	U
43	1	1763	А
43	1	1764	А
43	1	1768	G
43	1	1777	U
43	1	1778	G
43	1	1782	G
44	2	7	С
44	2	22	A
44	2	25	А
44	2	29	С
44	2	30	А
44	2	33	А
44	2	41	А
44	2	49	A
44	2	61	С
44	2	63	U
44	2	64	A
44	2	66	А

Mol	Chain	Res	Type
44	2	68	А
44	2	69	А
44	2	72	G
44	2	74	А
44	2	75	С
44	2	78	U
44	2	80	А
44	2	83	G
44	2	90	G
44	2	91	С
44	2	92	А
44	2	105	А
44	2	109	U
44	2	127	С
44	2	130	А
44	2	133	G
44	2	134	С
44	2	135	А
44	2	340	А
44	2	341	А
44	2	342	U
44	2	343	U
44	2	349	С
44	2	355	А
44	2	363	С
44	2	368	G
44	2	372	А
44	2	377	А
44	2	386	U
44	2	388	A
44	2	390	A
44	2	392	С
44	2	403	G
44	2	404	А
44	2	412	A
44	2	414	G
44	2	416	G
44	2	421	А
44	2	422	U
44	2	434	А
44	2	438	С
44	2	444	А

Mol	Chain	Res	Type
44	2	448	С
44	2	452	G
44	2	456	G
44	2	469	G
44	2	481	С
44	2	482	G
44	2	485	G
44	2	494	С
44	2	495	G
44	2	502	A2M
44	2	503	С
44	2	504	U
44	2	518	G
44	2	519	G
44	2	527	A2M
44	2	528	U
44	2	529	G
44	2	530	С
44	2	534	OMG
44	2	544	U
44	2	551	G
44	2	552	С
44	2	553	G
44	2	554	С
44	2	555	A
44	2	556	U
44	2	559	А
44	2	561	G
44	2	570	A2M
44	2	571	G
44	2	580	U
44	2	581	G
44	2	582	U
44	2	585	С
44	2	588	G
44	2	602	A
44	2	606	G
44	2	611	U
44	2	618	A
44	2	619	A
44	2	620	С
44	2	621	G

Mol	Chain	Res	Type
44	2	624	С
44	2	639	G
44	2	643	A
44	2	647	A
44	2	648	A
44	2	649	G
44	2	650	А
44	2	657	U
44	2	658	G
44	2	664	G
44	2	665	A2M
44	2	667	OMU
44	2	668	C
44	2	670	A
44	2	680	U
44	2	685	G
44	2	688	G
44	2	755	U
44	2	756	С
44	2	758	С
44	2	760	U
44	2	768	G
44	2	769	А
44	2	772	А
44	2	774	А
44	2	777	А
44	2	780	G
44	2	782	G
44	2	783	U
44	2	784	U
44	2	785	U
44	2	786	A
44	2	789	G
44	2	791	A
44	2	796	U
44	2	800	G
44	2	801	С
44	2	806	C
44	2	807	А
44	2	812	С
44	2	813	U
44	2	817	U

Mol	Chain	Res	Type
44	2	819	U
44	2	964	U
44	2	965	G
44	2	966	С
44	2	967	U
44	2	969	U
44	2	971	А
44	2	973	С
44	2	974	U
44	2	1010	U
44	2	1011	U
44	2	1012	G
44	2	1013	U
44	2	1016	С
44	2	1020	А
44	2	1021	С
44	2	1023	U
44	2	1028	С
44	2	1031	А
44	2	1034	G
44	2	1035	G
44	2	1042	G
44	2	1047	OMG
44	2	1054	А
44	2	1056	А
44	2	1059	U
44	2	1065	А
44	2	1076	G
44	2	1079	OMG
44	2	1080	U
44	2	1084	А
44	2	1094	C
44	2	1100	G
44	2	1102	А
44	2	1105	G
44	2	1109	U
44	2	1110	С
44	2	1117	A
44	2	1118	G
44	2	1119	А
44	2	1122	A
44	2	1124	А

Mol	Chain	Res	Type
44	2	1132	А
44	2	1133	А
44	2	1141	U
44	2	1142	G
44	2	1143	А
44	2	1147	А
44	2	1148	С
44	2	1155	С
44	2	1156	А
44	2	1157	G
44	2	1166	G
44	2	1181	А
44	2	1182	G
44	2	1184	С
44	2	1190	А
44	2	1200	А
44	2	1202	G
44	2	1204	А
44	2	1205	U
44	2	1207	G
44	2	1208	G
44	2	1211	А
44	2	1216	А
44	2	1227	С
44	2	1230	OMG
44	2	1238	А
44	2	1239	G
44	2	1240	А
44	2	1242	U
44	2	1243	А
44	2	1244	A
44	2	1249	OMC
44	2	1253	G
44	2	1256	А
44	2	1267	G
44	2	1284	A
44	2	1290	А
44	2	1292	G
44	2	1295	G
44	2	1296	С
44	2	1306	С
44	2	1307	U

Mol	Chain	Res	Type
44	2	1310	G
44	2	1314	U
44	2	1326	А
44	2	1328	С
44	2	1333	С
44	2	1338	С
44	2	1342	А
44	2	1350	А
44	2	1362	U
44	2	1364	С
44	2	1367	С
44	2	1372	G
44	2	1374	С
44	2	1375	А
44	2	1380	А
44	2	1381	С
44	2	1385	A2M
44	2	1386	G
44	2	1387	С
44	2	1390	G
44	2	1391	G
44	2	1392	U
44	2	1393	U
44	2	1394	U
44	2	1409	С
44	2	1410	А
44	2	1417	U
44	2	1422	С
44	2	1429	U
44	2	1431	G
44	2	1434	G
44	2	1435	G
44	2	1436	A
44	2	1437	А
44	2	1438	А
44	2	1439	U
44	2	1441	G
44	2	1442	С
44	2	1443	G
44	2	1444	А
44	2	1445	G
44	2	1446	А

Mol	Chain	Res	Type
44	2	1448	А
44	2	1449	А
44	2	1451	G
44	2	1452	А
44	2	1453	U
44	2	1454	U
44	2	1455	А
44	2	1456	U
44	2	1457	С
44	2	1466	G
44	2	1467	С
44	2	1470	А
44	2	1471	С
44	2	1473	U
44	2	1495	G
44	2	1499	G
44	2	1500	G
44	2	1501	U
44	2	1503	G
44	2	1504	G
44	2	1510	С
44	2	1514	G
44	2	1518	G
45	3	3	G
45	3	9	А
45	3	10	OMU
45	3	13	G
45	3	14	А
45	3	16	А
45	3	17	С
45	3	18	A
45	3	22	G
45	3	31	С
45	3	38	A
45	3	48	G
45	3	55	U
45	3	56	U
45	3	68	U
45	3	69	A
45	3	75	С
45	3	97	U
45	3	98	G

Mol	Chain	Res	Type
45	3	106	U
45	3	109	С
45	3	115	G
45	3	121	U
45	3	122	U
45	3	123	С
45	3	126	А
45	3	131	G
45	3	133	G
45	3	142	U
45	3	146	А
45	3	147	А
45	3	148	А
45	3	157	U
45	3	163	С
45	3	169	G
45	3	170	U
45	3	184	U
45	3	189	G
45	3	192	U
45	3	193	U
45	3	194	А
45	3	196	С
45	3	199	А
45	3	207	G
45	3	211	U
46	4	8	U
46	4	9	G
46	4	10	U
46	4	14	G
46	4	16	G
46	4	22	G
46	4	24	A
46	4	25	G
46	4	33	G
46	4	40	G
46	4	48	U
46	4	50	G
46	4	58	G
46	4	65	С
46	4	84	U
46	4	85	С

Mol	Chain	Res	Type
46	4	86	U
46	4	87	G
46	4	96	C
46	4	97	G
46	4	102	G
46	4	107	U
46	4	114	А
46	4	115	А
46	4	120	U
46	4	121	С
46	4	122	G
46	4	128	U
46	4	129	G
46	4	130	G
46	4	131	U
46	4	133	С
46	4	137	G
46	4	142	А
46	4	143	С
46	4	145	С
46	4	151	А
46	4	157	А
46	4	158	А
46	4	159	G
46	4	168	А
46	4	170	G
46	4	171	А
46	4	173	С
46	4	174	А
46	4	175	G
46	4	183	С
47	5	4	G
47	5	13	С
47	5	16	A
47	5	18	G
47	5	22	G
47	5	25	С
47	5	27	U
47	5	28	G
47	5	37	G
47	5	43	A
47	5	47	G

Mol	Chain	Res	Type
47	5	66	G
47	5	70	С
47	5	87	С
47	5	96	U
47	5	97	G
47	5	103	U
47	5	104	G
47	5	105	А
47	5	107	G
47	5	110	U
47	5	120	U
47	5	121	G
47	5	123	U
47	5	124	С
47	5	125	А
47	5	126	G
47	5	128	G
47	5	129	А
47	5	133	А
48	6	7	А
48	6	13	С
48	6	15	С
48	6	20	А
48	6	24	С
48	6	25	U
48	6	26	G
48	6	28	А
48	6	31	U
48	6	32	U
48	6	37	С
48	6	39	U
48	6	40	С
48	6	41	G
48	6	42	A
48	6	43	A
48	6	44	G
48	6	49	С
48	6	50	A
48	6	51	A
48	6	52	G
48	6	53	U
48	6	54	A

Mol	Chain	Res	Type
48	6	55	U
48	6	56	А
48	6	60	А
48	6	62	G
48	6	63	А
48	6	64	U
48	6	67	С
48	6	68	А
48	6	69	А
48	6	70	G
48	6	73	А
49	7	2	А
49	7	7	OMU
49	7	15	G
49	7	22	U
49	7	24	G
49	7	31	А
49	7	33	U
49	7	34	U
49	7	39	G
49	7	48	А
49	7	51	А
49	7	53	А
49	7	59	А
49	7	60	U
49	7	61	А
49	7	62	А
49	7	63	G
49	7	75	OMG
49	7	83	А
49	7	84	U
49	7	87	A
49	7	88	A
49	7	89	U
49	7	94	G
49	7	96	A
49	7	103	А
49	7	104	A
49	7	105	С
49	7	108	A
49	7	110	A
49	7	124	А

Mol	Chain	Res	Type
49	7	129	С
49	7	136	G
49	7	139	А
49	7	140	U
49	7	143	С
49	7	144	С
49	7	156	А
49	7	165	G
50	8	5	G
50	8	9	G
50	8	28	С
50	8	30	С
50	8	34	А
50	8	37	С
50	8	43	G
50	8	44	А
50	8	51	А
50	8	52	А
50	8	55	U
50	8	65	С
50	8	66	А
50	8	72	А
50	8	76	А
50	8	89	G
50	8	92	А
50	8	93	U
50	8	99	G
50	8	102	А
50	8	110	G
50	8	111	U
50	8	112	G
50	8	114	С
50	8	119	U

All (47) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
43	1	141	U
43	1	154	А
43	1	162	U
43	1	163	U
43	1	191	U

Mol	Chain	Res	Type
43	1	214	С
43	1	217	А
43	1	249	G
43	1	443	А
43	1	581	G
43	1	648	А
43	1	728	С
43	1	768	С
43	1	983	U
43	1	1063	G
43	1	1369	G
43	1	1378	U
43	1	1526	OMG
44	2	29	С
44	2	68	А
44	2	134	С
44	2	340	А
44	2	443	OMC
44	2	455	U
44	2	551	G
44	2	552	С
44	2	618	А
44	2	646	G
44	2	648	А
44	2	755	U
44	2	973	С
44	2	1207	G
44	2	1437	А
44	2	1452	А
44	2	1469	G
45	3	2	А
45	3	141	U
45	3	188	С
46	4	15	G
46	4	106	G
48	6	38	С
48	6	40	С
48	6	51	А
48	6	61	U
49	7	1	A
49	7	60	U
50	8	43	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

68 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Dog	Link	Bo	Bond lengths I		B	Bond angles		
	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2	
43	OMU	1	1253	43	19,22,23	0.62	0	25,31,34	0.80	1 (4%)	
43	A2M	1	955	43	18,25,26	1.64	3 (16%)	20,36,39	1.23	2 (10%)	
43	OMU	1	48	43	19,22,23	0.69	0	25,31,34	1.05	2 (8%)	
43	A2M	1	1541	43,44	18,25,26	1.62	3 (16%)	20,36,39	1.06	2 (10%)	
44	OMG	2	534	44	19,26,27	1.29	2 (10%)	21,38,41	1.47	5 (23%)	
44	OMG	2	1047	44	19,26,27	1.27	2 (10%)	21,38,41	1.39	2 (9%)	
43	OMG	1	959	43	19,26,27	1.28	2 (10%)	21,38,41	1.34	4 (19%)	
44	OMC	2	359	44	19,22,23	1.05	1 (5%)	25,31,34	1.11	3 (12%)	
44	A2M	2	604	43,44	18,25,26	1.47	3 (16%)	20,36,39	0.95	0	
44	OMG	2	655	44	19,26,27	1.38	2 (10%)	21,38,41	1.46	3 (14%)	
44	OMC	2	1160	44	19,22,23	0.94	1 (5%)	25,31,34	1.15	3 (12%)	
43	OMU	1	847	43	19,22,23	0.49	0	25,31,34	1.06	2 (8%)	
44	OMC	2	1318	44	19,22,23	0.99	2 (10%)	25,31,34	1.28	3 (12%)	
44	A2M	2	1385	44	18,25,26	1.47	2 (11%)	20,36,39	1.27	4 (20%)	
49	OMG	7	75	49	19,26,27	1.22	2 (10%)	21,38,41	1.50	5 (23%)	
49	A2M	7	162	49,43	18,25,26	1.63	3 (16%)	20,36,39	1.24	2 (10%)	
44	OMG	2	1079	44	19,26,27	1.25	2 (10%)	21,38,41	1.58	5 (23%)	
49	A2M	7	43	49	18,25,26	1.43	2 (11%)	20,36,39	1.14	1 (5%)	
45	OMU	3	10	45	19,22,23	0.65	0	25,31,34	1.04	2 (8%)	
44	OMU	2	560	44	19,22,23	0.59	0	25,31,34	1.07	2 (8%)	
44	A2M	2	665	44	18,25,26	1.74	3 (16%)	20,36,39	1.14	1 (5%)	
43	A2M	1	678	43,44	18,25,26	1.49	2 (11%)	20,36,39	1.01	1 (5%)	
43	OMC	1	695	43	19,22,23	0.81	0	25,31,34	0.99	1 (4%)	
44	OMC	2	1249	44	19,22,23	1.04	1 (5%)	25,31,34	1.18	2 (8%)	
44	A2M	2	1068	44	18,25,26	1.41	3 (16%)	20,36,39	1.07	1 (5%)	
43	OMU	1	1661	43	19,22,23	0.62	0	25,31,34	0.88	1 (4%)	

Mal	Trune	Chain	Dec	Tinle	Bo	Bond lengths		Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
43	OMG	1	1526	43	$19,\!26,\!27$	1.38	2 (10%)	21,38,41	1.46	6 (28%)
44	A2M	2	382	44	18,25,26	0.83	0	20,36,39	1.19	2 (10%)
44	A2M	2	628	44	18,25,26	1.52	1 (5%)	20,36,39	0.95	1 (5%)
44	A2M	2	1186	44	18,25,26	1.64	4 (22%)	20,36,39	1.44	2 (10%)
44	A2M	2	572	44	18,25,26	1.41	1 (5%)	20,36,39	1.14	2 (10%)
44	A2M	2	527	44	18,25,26	1.73	4 (22%)	20,36,39	2.21	6 (30%)
44	A2M	2	570	43,44	18,25,26	1.33	1 (5%)	20,36,39	1.41	3 (15%)
44	OMG	2	1230	44	19,26,27	1.43	2 (10%)	21,38,41	1.17	2 (9%)
44	OMC	2	1398	44	19,22,23	0.92	1 (5%)	25,31,34	1.07	2 (8%)
44	OMG	2	1254	44	19,26,27	1.20	2 (10%)	21,38,41	1.57	5 (23%)
43	OMG	1	856	43	19,26,27	1.24	2 (10%)	21,38,41	1.59	2(9%)
44	OMG	2	1232	44	19,26,27	1.26	2 (10%)	21,38,41	1.34	3 (14%)
43	OMU	1	845	43	19,22,23	0.55	0	25,31,34	0.96	2 (8%)
43	OMG	1	1628	43	19,26,27	1.25	2 (10%)	21,38,41	1.54	5 (23%)
44	OMU	2	73	44	19,22,23	0.63	0	25,31,34	0.86	0
43	A2M	1	927	43	18,25,26	1.59	2 (11%)	20,36,39	1.20	2 (10%)
44	OMU	2	667	44	19,22,23	0.60	0	25,31,34	1.22	2 (8%)
43	OMU	1	1107	43	19,22,23	0.66	0	25,31,34	1.01	2 (8%)
43	OMC	1	1529	43	19,22,23	1.02	2 (10%)	25,31,34	1.14	2 (8%)
43	OMG	1	1190	43	19,26,27	1.43	3 (15%)	21,38,41	1.55	2 (9%)
43	A2M	1	697	43	18,25,26	1.55	3 (16%)	20,36,39	1.27	3 (15%)
44	OMC	2	443	44	19,22,23	0.83	0	25,31,34	1.26	4 (16%)
43	OMG	1	1542	43,44	19,26,27	1.24	2 (10%)	21,38,41	1.47	3 (14%)
43	A2M	1	69	43	18,25,26	1.46	3 (16%)	20,36,39	1.31	2 (10%)
44	A2M	2	1373	44	18,25,26	1.73	3 (16%)	20,36,39	1.17	2 (10%)
43	A2M	1	858	43	18,25,26	1.66	2 (11%)	20,36,39	2.07	3 (15%)
44	OMG	2	71	44	19,26,27	1.36	3(15%)	21,38,41	1.43	4 (19%)
49	OMU	7	7	49,43	19,22,23	0.49	0	25,31,34	1.03	2 (8%)
43	A2M	1	437	43	18,25,26	1.35	2 (11%)	20,36,39	0.84	0
44	OMU	2	1078	44	19,22,23	0.62	1 (5%)	25,31,34	1.09	2 (8%)
44	OMG	2	641	44	19,26,27	1.42	2 (10%)	21,38,41	1.49	5 (23%)
44	A2M	2	591	44	18,25,26	1.59	2 (11%)	20,36,39	0.99	0
44	OMG	2	1361	44	19,26,27	1.33	2 (10%)	21,38,41	1.46	4 (19%)
46	OMG	4	74	46	19,26,27	1.23	2 (10%)	21,38,41	1.48	4 (19%)
44	OMC	2	583	44	19,22,23	0.98	1 (5%)	25,31,34	1.07	2 (8%)

Mal	Turne	Chain	Pog Link		Bond lengths		Bond angles			
MIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
44	OMU	2	1420	44	$19,\!22,\!23$	0.52	0	$25,\!31,\!34$	0.89	2 (8%)
43	A2M	1	681	43	18,25,26	1.53	3 (16%)	20,36,39	1.11	3 (15%)
44	A2M	2	502	44	$18,\!25,\!26$	0.80	0	20,36,39	1.44	3 (15%)
43	OMU	1	1371	43	$19,\!22,\!23$	1.18	1 (5%)	$25,\!31,\!34$	1.74	6 (24%)
44	OMU	2	1360	44	$19,\!22,\!23$	0.48	0	$25,\!31,\!34$	1.02	2 (8%)
43	A2M	1	235	43	$18,\!25,\!26$	1.52	2 (11%)	20,36,39	1.26	2 (10%)
44	OMU	2	1153	44	19,22,23	0.55	0	25,31,34	0.87	2 (8%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
43	OMU	1	1253	43	-	2/9/27/28	0/2/2/2
43	A2M	1	955	43	-	0/5/27/28	0/3/3/3
43	OMU	1	48	43	-	2/9/27/28	0/2/2/2
43	A2M	1	1541	43,44	-	0/5/27/28	0/3/3/3
44	OMG	2	534	44	-	2/5/27/28	0/3/3/3
44	OMG	2	1047	44	-	2/5/27/28	0/3/3/3
43	OMG	1	959	43	-	2/5/27/28	0/3/3/3
44	OMC	2	359	44	-	0/9/27/28	0/2/2/2
44	A2M	2	604	43,44	-	0/5/27/28	0/3/3/3
44	OMG	2	655	44	-	0/5/27/28	0/3/3/3
44	OMC	2	1160	44	-	0/9/27/28	0/2/2/2
43	OMU	1	847	43	-	0/9/27/28	0/2/2/2
44	OMC	2	1318	44	-	0/9/27/28	0/2/2/2
44	A2M	2	1385	44	-	2/5/27/28	0/3/3/3
49	OMG	7	75	49	-	2/5/27/28	0/3/3/3
49	A2M	7	162	49,43	-	0/5/27/28	0/3/3/3
44	OMG	2	1079	44	-	2/5/27/28	0/3/3/3
49	A2M	7	43	49	-	0/5/27/28	0/3/3/3
45	OMU	3	10	45	-	1/9/27/28	0/2/2/2
44	OMU	2	560	44	-	1/9/27/28	0/2/2/2
44	A2M	2	665	44	-	2/5/27/28	0/3/3/3
43	A2M	1	678	43,44	-	1/5/27/28	0/3/3/3
43	OMC	1	695	43	-	0/9/27/28	0/2/2/2
44	OMC	2	1249	44	-	1/9/27/28	0/2/2/2
44	A2M	2	1068	44	-	0/5/27/28	0/3/3/3

COULU	nucu jio	m preutot	is puye.	••			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
43	OMU	1	1661	43	-	0/9/27/28	0/2/2/2
43	OMG	1	1526	43	-	0/5/27/28	0/3/3/3
44	A2M	2	382	44	-	1/5/27/28	0/3/3/3
44	A2M	2	628	44	-	0/5/27/28	0/3/3/3
44	A2M	2	1186	44	-	0/5/27/28	0/3/3/3
44	A2M	2	572	44	-	0/5/27/28	0/3/3/3
44	A2M	2	527	44	-	0/5/27/28	0/3/3/3
44	A2M	2	570	43,44	-	1/5/27/28	0/3/3/3
44	OMG	2	1230	44	-	2/5/27/28	0/3/3/3
44	OMC	2	1398	44	-	0/9/27/28	0/2/2/2
44	OMG	2	1254	44	-	0/5/27/28	0/3/3/3
43	OMG	1	856	43	-	0/5/27/28	0/3/3/3
44	OMG	2	1232	44	-	0/5/27/28	0/3/3/3
43	OMU	1	845	43	-	0/9/27/28	0/2/2/2
43	OMG	1	1628	43	-	0/5/27/28	0/3/3/3
44	OMU	2	73	44	-	0/9/27/28	0/2/2/2
43	A2M	1	927	43	-	0/5/27/28	0/3/3/3
44	OMU	2	667	44	-	2/9/27/28	0/2/2/2
43	OMU	1	1107	43	-	0/9/27/28	0/2/2/2
43	OMC	1	1529	43	-	1/9/27/28	0/2/2/2
43	OMG	1	1190	43	-	0/5/27/28	0/3/3/3
43	A2M	1	697	43	-	0/5/27/28	0/3/3/3
44	OMC	2	443	44	-	5/9/27/28	0/2/2/2
43	OMG	1	1542	43,44	-	2/5/27/28	0/3/3/3
43	A2M	1	69	43	-	0/5/27/28	0/3/3/3
44	A2M	2	1373	44	-	0/5/27/28	0/3/3/3
43	A2M	1	858	43	-	1/5/27/28	0/3/3/3
44	OMG	2	71	44	-	0/5/27/28	0/3/3/3
49	OMU	7	7	49,43	-	2/9/27/28	0/2/2/2
43	A2M	1	437	43	-	0/5/27/28	0/3/3/3
44	OMU	2	1078	44	-	0/9/27/28	0/2/2/2
44	OMG	2	641	44	-	2/5/27/28	0/3/3/3
44	A2M	2	591	44	-	0/5/27/28	0/3/3/3
44	OMG	2	1361	44	-	0/5/27/28	0/3/3/3
46	OMG	4	74	46	-	0/5/27/28	0/3/3/3
44	OMC	2	583	44	-	0/9/27/28	0/2/2/2
44	OMU	2	1420	44	-	0/9/27/28	0/2/2/2
43	A2M	1	681	43	-	3/5/27/28	0/3/3/3
44	A2M	2	502	44	-	2/5/27/28	0/3/3/3
43	OMU	1	1371	43	-	5/9/27/28	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
44	OMU	2	1360	44	-	0/9/27/28	0/2/2/2
43	A2M	1	235	43	-	1/5/27/28	0/3/3/3
44	OMU	2	1153	44	-	0/9/27/28	0/2/2/2

All (106) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
43	1	1371	OMU	C2-N1	4.72	1.45	1.38
44	2	665	A2M	O5'-C5'	-4.47	1.31	1.44
44	2	1186	A2M	O5'-C5'	-4.45	1.31	1.44
43	1	681	A2M	O5'-C5'	-4.39	1.31	1.44
43	1	927	A2M	O5'-C5'	-4.38	1.31	1.44
44	2	570	A2M	O5'-C5'	-4.27	1.31	1.44
44	2	628	A2M	O5'-C5'	-4.25	1.31	1.44
44	2	527	A2M	O5'-C5'	-4.22	1.31	1.44
43	1	678	A2M	O5'-C5'	-4.19	1.32	1.44
43	1	955	A2M	O5'-C5'	-4.19	1.32	1.44
43	1	697	A2M	O5'-C5'	-4.16	1.32	1.44
44	2	1230	OMG	C6-N1	4.09	1.44	1.37
43	1	858	A2M	O5'-C5'	-4.07	1.32	1.44
43	1	235	A2M	O5'-C5'	-4.07	1.32	1.44
44	2	591	A2M	O5'-C5'	-4.07	1.32	1.44
43	1	1526	OMG	C6-N1	4.06	1.44	1.37
44	2	572	A2M	O5'-C5'	-4.06	1.32	1.44
44	2	1361	OMG	C6-N1	4.05	1.44	1.37
43	1	1541	A2M	O5'-C5'	-4.03	1.32	1.44
44	2	1373	A2M	O5'-C5'	-3.99	1.32	1.44
49	7	162	A2M	O5'-C5'	-3.95	1.32	1.44
44	2	655	OMG	C6-N1	3.94	1.43	1.37
43	1	69	A2M	O5'-C5'	-3.92	1.32	1.44
43	1	437	A2M	O5'-C5'	-3.88	1.32	1.44
44	2	1047	OMG	C6-N1	3.83	1.43	1.37
49	7	43	A2M	O5'-C5'	-3.80	1.33	1.44
44	2	641	OMG	C6-N1	3.77	1.43	1.37
44	2	1068	A2M	O5'-C5'	-3.77	1.33	1.44
44	2	1385	A2M	O5'-C5'	-3.72	1.33	1.44
44	2	604	A2M	O5'-C5'	-3.71	1.33	1.44
49	7	75	OMG	C6-N1	3.70	1.43	1.37
44	2	71	OMG	C6-N1	3.68	1.43	1.37
43	1	856	OMG	C6-N1	3.67	1.43	1.37
44	2	534	OMG	C6-N1	3.59	1.43	1.37
43	1	1628	OMG	C6-N1	3.51	1.43	1.37

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)	
43	1	1542	OMG	C6-N1	3.50	1.43	1.37	
44	2	1079	OMG	C6-N1	3.47	1.43	1.37	
43	1	1190	OMG	C5-C6	-3.45	1.40	1.47	
44	2	1232	OMG	C6-N1	3.44	1.43	1.37	
46	4	74	OMG	C6-N1	3.43	1.43	1.37	
43	1	959	OMG	C6-N1	3.40	1.43	1.37	
49	7	162	A2M	O4'-C4'	-3.38	1.37	1.45	
44	2	1230	OMG	C5-C6	-3.33	1.40	1.47	
43	1	927	A2M	O4'-C4'	-3.29	1.37	1.45	
44	2	1254	OMG	C6-N1	3.24	1.42	1.37	
44	2	359	OMC	C2-N1	3.15	1.46	1.40	
44	2	1249	OMC	C2-N1	3.15	1.46	1.40	
44	2	1373	A2M	C1'-N9	-3.12	1.42	1.49	
43	1	858	A2M	O4'-C4'	-3.11	1.38	1.45	
44	2	655	OMG	C5-C6	-3.00	1.41	1.47	
44	2	71	OMG	C5-C6	-2.98	1.41	1.47	
44	2	641	OMG	C5-C6	-2.94	1.41	1.47	
44	2	534	OMG	C5-C6	-2.93	1.41	1.47	
44	2	1186	A2M	O4'-C4'	-2.92	1.38	1.45	
43	1	1529	OMC	C2-N1	2.89	1.46	1.40	
43	1	959	OMG	C5-C6	-2.87	1.41	1.47	
46	4	74	OMG	C5-C6	-2.85	1.41	1.47	
43	1	1541	A2M	O4'-C4'	-2.84	1.38	1.45	
44	2	1232	OMG	C5-C6	-2.84	1.41	1.47	
43	1	1526	OMG	C5-C6	-2.84	1.41	1.47	
44	2	1373	A2M	O4'-C4'	-2.83	1.38	1.45	
44	2	591	A2M	O4'-C4'	-2.83	1.38	1.45	
43	1	1190	OMG	C2-N2	2.82	1.40	1.34	
44	2	1385	A2M	O4'-C4'	-2.80	1.38	1.45	
44	2	1254	OMG	C5-C6	-2.79	1.41	1.47	
43	1	1542	OMG	C5-C6	-2.78	1.41	1.47	
43	1	1190	OMG	C6-N1	2.77	1.42	1.37	
44	2	1361	OMG	C5-C6	-2.76	1.42	1.47	
43	1	235	A2M	O4'-C4'	-2.75	1.38	1.45	
44	2	527	A2M	C3'-C2'	2.73	1.59	1.53	
44	2	665	A2M	O4'-C4'	-2.71	1.39	1.45	
43	1	1628	OMG	C5-C6	-2.67	1.42	1.47	
43	1	678	A2M	O4'-C4'	-2.65	1.39	1.45	
44	2	1079	OMG	C5-C6	-2.63	1.42	1.47	
44	2	665	A2M	O3'-C3'	-2.61	1.36	1.43	
49	7	162	A2M	C1'-N9	-2.59	1.43	1.49	
44	2	1047	OMG	C5-C6	-2.58	1.42	1.47	

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
43	1	955	A2M	O3'-C3'	-2.57	1.36	1.43
43	1	69	A2M	O4'-C1'	-2.54	1.37	1.40
43	1	856	OMG	C5-C6	-2.54	1.42	1.47
44	2	527	A2M	C1'-N9	-2.52	1.43	1.49
44	2	1160	OMC	C2-N1	2.52	1.45	1.40
44	2	583	OMC	C2-N1	2.48	1.45	1.40
49	7	75	OMG	C5-C6	-2.47	1.42	1.47
43	1	697	A2M	C1'-N9	-2.47	1.43	1.49
44	2	1318	OMC	C4-N3	-2.43	1.29	1.34
43	1	69	A2M	C5'-C4'	2.36	1.58	1.51
49	7	43	A2M	O4'-C4'	-2.35	1.39	1.45
44	2	527	A2M	O3'-C3'	2.28	1.48	1.43
44	2	1068	A2M	O4'-C4'	-2.26	1.40	1.45
43	1	1541	A2M	C1'-N9	-2.23	1.44	1.49
44	2	1318	OMC	C2-N1	2.20	1.44	1.40
44	2	1186	A2M	C1'-N9	-2.20	1.44	1.49
43	1	1529	OMC	C4-N3	-2.19	1.30	1.34
44	2	604	A2M	O4'-C4'	-2.16	1.40	1.45
44	2	1068	A2M	O3'-C3'	-2.13	1.37	1.43
43	1	681	A2M	O4'-C4'	-2.12	1.40	1.45
43	1	437	A2M	C1'-N9	-2.11	1.44	1.49
44	2	1078	OMU	C2-N1	2.09	1.41	1.38
44	2	1186	A2M	O4'-C1'	-2.07	1.38	1.40
43	1	681	A2M	C1'-N9	-2.07	1.44	1.49
43	1	697	A2M	O4'-C4'	-2.06	1.40	1.45
44	2	1398	OMC	C2-N1	2.04	1.44	1.40
44	2	71	OMG	C2-N2	2.04	1.38	1.34
44	2	604	A2M	C1'-N9	-2.03	1.44	1.49
43	1	955	A2M	O4'-C4'	-2.00	1.40	1.45

Continued from previous page...

All (173) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
43	1	858	A2M	C4'-O4'-C1'	-7.85	102.73	109.92
44	2	527	A2M	C4'-O4'-C1'	-7.39	103.16	109.92
44	2	1186	A2M	C4'-O4'-C1'	-4.66	105.66	109.92
43	1	856	OMG	O6-C6-N1	-4.36	115.44	120.62
43	1	1371	OMU	O2-C2-N1	4.11	128.14	122.80
43	1	1371	OMU	C1'-N1-C2	4.04	124.85	117.59
44	2	502	A2M	N3-C2-N1	-3.96	123.30	128.67
43	1	1190	OMG	O6-C6-C5	3.89	132.03	124.32
44	2	1254	OMG	O6-C6-N1	-3.85	116.06	120.62

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page
	5	1	1 0

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
44	2	1047	OMG	O6-C6-N1	-3.77	116.15	120.62
43	1	856	OMG	O6-C6-C5	3.75	131.75	124.32
44	2	1079	OMG	O6-C6-N1	-3.68	116.25	120.62
43	1	1190	OMG	O6-C6-N1	-3.66	116.28	120.62
43	1	1542	OMG	O6-C6-N1	-3.64	116.29	120.62
49	7	75	OMG	O6-C6-N1	-3.64	116.29	120.62
46	4	74	OMG	O6-C6-C5	3.54	131.34	124.32
43	1	235	A2M	O4'-C1'-N9	-3.51	104.08	108.75
46	4	74	OMG	O6-C6-N1	-3.50	116.46	120.62
44	2	1361	OMG	O6-C6-C5	3.48	131.23	124.32
44	2	1318	OMC	CM2-O2'-C2'	-3.46	105.59	114.47
43	1	1628	OMG	O6-C6-C5	3.44	131.13	124.32
44	2	1361	OMG	O6-C6-N1	-3.42	116.57	120.62
44	2	1047	OMG	O6-C6-C5	3.41	131.09	124.32
44	2	667	OMU	CM2-O2'-C2'	-3.40	105.73	114.47
49	7	162	A2M	O4'-C1'-N9	-3.40	104.24	108.75
44	2	1254	OMG	O6-C6-C5	3.38	131.02	124.32
43	1	1542	OMG	O6-C6-C5	3.37	131.00	124.32
49	7	75	OMG	O6-C6-C5	3.35	130.97	124.32
44	2	443	OMC	C5-C4-N3	3.34	126.95	121.32
43	1	1628	OMG	O6-C6-N1	-3.32	116.68	120.62
44	2	1079	OMG	O6-C6-C5	3.31	130.88	124.32
44	2	534	OMG	O6-C6-C5	3.23	130.73	124.32
44	2	1232	OMG	O6-C6-C5	3.20	130.67	124.32
44	2	534	OMG	O6-C6-N1	-3.16	116.87	120.62
44	2	655	OMG	O6-C6-C5	3.15	130.58	124.32
44	2	1318	OMC	C5-C4-N3	3.14	126.60	121.32
44	2	570	A2M	O2'-C2'-C1'	3.12	115.03	109.00
44	2	560	OMU	CM2-O2'-C2'	-3.10	106.52	114.47
43	1	959	OMG	O6-C6-N1	-3.08	116.96	120.62
44	2	359	OMC	C5-C4-N3	3.04	126.44	121.32
43	1	959	OMG	O6-C6-C5	3.03	130.34	124.32
44	2	534	OMG	CM2-O2'-C2'	-2.96	106.86	114.47
44	2	1232	OMG	O6-C6-N1	-2.96	117.11	120.62
44	2	1398	OMC	C5-C4-N3	2.94	126.27	121.32
44	2	1160	OMC	C5-C4-N3	2.92	126.23	121.32
43	1	1529	OMC	C5-C4-N3	2.91	126.22	121.32
44	2	382	A2M	N3-C2-N1	-2.90	124.73	128.67
43	1	1371	OMU	O2-C2-N3	-2.90	116.14	121.49
44	2	1249	OMC	C5-C4-N3	2.89	126.19	121.32
44	2	1249	OMC	CM2-O2'-C2'	-2.89	107.05	114.47
43	1	69	A2M	O4'-C1'-C2'	-2.86	101.72	106.61

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	paae
• • • • • • • • • • • •	J	P	r - g - · · ·

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
44	2	655	OMG	O6-C6-N1	-2.84	117.25	120.62
44	2	583	OMC	C5-C4-N3	2.81	126.05	121.32
44	2	71	OMG	O6-C6-N1	-2.80	117.30	120.62
44	2	1254	OMG	CM2-O2'-C2'	-2.80	107.29	114.47
49	7	43	A2M	C3'-C2'-C1'	-2.79	97.47	102.81
44	2	1078	OMU	CM2-O2'-C2'	-2.78	107.34	114.47
44	2	641	OMG	CM2-O2'-C2'	-2.77	107.35	114.47
44	2	641	OMG	O6-C6-C5	2.77	129.82	124.32
44	2	1385	A2M	C3'-C2'-C1'	-2.76	97.52	102.81
43	1	1526	OMG	O6-C6-C5	2.75	129.78	124.32
43	1	1529	OMC	CM2-O2'-C2'	-2.73	107.47	114.47
43	1	955	A2M	C4'-O4'-C1'	-2.72	107.44	109.92
44	2	1360	OMU	C4-N3-C2	-2.71	123.25	126.61
43	1	695	OMC	C5-C4-N3	2.71	125.88	121.32
44	2	527	A2M	C4-C5-N7	2.70	112.19	109.34
44	2	1318	OMC	N4-C4-N3	-2.70	113.09	117.91
44	2	655	OMG	CM2-O2'-C2'	-2.68	107.60	114.47
43	1	1526	OMG	N2-C2-N3	-2.67	114.47	119.67
43	1	955	A2M	C3'-C2'-C1'	-2.65	97.74	102.81
43	1	927	A2M	O4'-C1'-N9	-2.64	105.24	108.75
44	2	527	A2M	O3'-C3'-C4'	2.63	118.65	111.08
43	1	1661	OMU	CM2-O2'-C2'	-2.63	107.73	114.47
44	2	382	A2M	C4-C5-N7	-2.61	106.58	109.34
43	1	697	A2M	C4'-O4'-C1'	-2.60	107.55	109.92
44	2	1230	OMG	O6-C6-C5	2.59	129.46	124.32
44	2	641	OMG	O6-C6-N1	-2.59	117.54	120.62
44	2	1385	A2M	C4'-O4'-C1'	-2.57	107.57	109.92
44	2	1373	A2M	C2'-C1'-N9	-2.56	106.86	112.56
43	1	1371	OMU	CM2-O2'-C2'	-2.54	107.95	114.47
44	2	527	A2M	C2'-C1'-N9	-2.53	106.94	112.56
44	2	560	OMU	C4-N3-C2	-2.52	123.48	126.61
44	2	527	A2M	O4'-C1'-N9	2.51	112.08	108.75
44	2	1079	OMG	N2-C2-N3	-2.51	114.78	119.67
44	2	502	A2M	C4-C5-N7	-2.51	106.69	109.34
44	2	443	OMC	CM2-O2'-C2'	-2.50	108.05	114.47
43	1	1107	OMU	C4-N3-C2	-2.49	123.52	126.61
43	1	48	OMU	CM2-O2'-C2'	-2.49	108.08	114.47
44	2	1360	OMU	CM2-O2'-C2'	-2.48	108.10	114.47
49	7	7	OMU	C4-N3-C2	-2.47	123.55	126.61
44	2	71	OMG	O6-C6-C5	2.45	129.18	124.32
44	2	1160	OMC	C4-N3-C2	-2.43	116.45	120.26
44	2	$66\overline{7}$	OMU	C4-N3-C2	-2.42	123.61	126.61

$\alpha \cdot \cdot \cdot \cdot$	C	•	
Continued j	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
44	2	359	OMC	CM2-O2'-C2'	-2.42	108.26	114.47
44	2	527	A2M	O3'-C3'-C2'	2.40	117.89	111.19
44	2	1420	OMU	CM2-O2'-C2'	-2.40	108.32	114.47
44	2	71	OMG	C2-N1-C6	-2.40	120.72	125.11
44	2	443	OMC	C4-N3-C2	-2.39	116.50	120.26
43	1	1541	A2M	O4'-C1'-N9	-2.39	105.58	108.75
43	1	48	OMU	C4-N3-C2	-2.39	123.65	126.61
43	1	1628	OMG	N1-C2-N3	2.38	127.67	123.32
44	2	1254	OMG	N1-C2-N3	2.38	127.67	123.32
43	1	1541	A2M	C4-C5-N7	2.36	111.83	109.34
45	3	10	OMU	CM2-O2'-C2'	-2.36	108.41	114.47
43	1	69	A2M	C4'-O4'-C1'	-2.35	107.77	109.92
43	1	1371	OMU	C1'-N1-C6	-2.35	115.75	120.78
43	1	235	A2M	C2'-C1'-N9	2.35	117.77	112.56
44	2	583	OMC	CM2-O2'-C2'	-2.34	108.48	114.47
44	2	572	A2M	C4-C5-N7	2.32	111.79	109.34
44	2	665	A2M	C4-C5-N7	2.32	111.79	109.34
43	1	1371	OMU	C2'-C1'-N1	-2.30	109.87	114.24
43	1	678	A2M	C4-C5-N7	2.30	111.77	109.34
44	2	1361	OMG	N2-C2-N3	-2.30	115.19	119.67
43	1	847	OMU	CM2-O2'-C2'	-2.29	108.60	114.47
44	2	628	A2M	C4-C5-N7	2.28	111.75	109.34
44	2	1153	OMU	CM2-O2'-C2'	-2.28	108.62	114.47
44	2	1254	OMG	C2-N1-C6	-2.27	120.95	125.11
43	1	845	OMU	CM2-O2'-C2'	-2.27	108.64	114.47
44	2	1079	OMG	C2-N1-C6	-2.27	120.95	125.11
49	7	162	A2M	C4-C5-N7	2.27	111.73	109.34
43	1	697	A2M	C4-C5-N7	2.26	111.72	109.34
43	1	681	A2M	C4-C5-N7	2.26	111.72	109.34
44	2	1153	OMU	C4-N3-C2	-2.26	123.81	126.61
44	2	570	A2M	N3-C2-N1	2.25	131.73	128.67
43	1	858	A2M	C4-C5-N7	2.24	111.71	109.34
44	2	359	OMC	C4-N3-C2	-2.24	116.74	120.26
43	1	959	OMG	N1-C2-N3	$2.2\overline{3}$	$127.4\overline{0}$	123.32
44	2	570	A2M	O3'-C3'-C2'	-2.23	104.94	111.19
43	1	1628	OMG	N2-C2-N3	-2.22	115.33	119.67
43	1	681	A2M	C2'-C3'-C4'	-2.22	97.23	101.99
43	1	1107	OMU	CM2-O2 ['] -C2'	-2.22	108.78	114.47
44	2	1078	OMU	C4-N3-C2	-2.21	123.87	126.61
43	1	1526	OMG	O6-C6-N1	-2.21	118.00	120.62
46	4	74	OMG	N1-C2-N3	2.21	127.36	123.32
44	2	1160	OMC	CM2-O2'-C2'	-2.20	108.82	114.47

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
49	7	75	OMG	N1-C2-N3	2.19	127.33	123.32
43	1	1526	OMG	N1-C2-N3	2.18	127.31	123.32
44	2	1373	A2M	O4'-C1'-N9	-2.18	105.85	108.75
44	2	443	OMC	N4-C4-N3	-2.18	114.01	117.91
46	4	74	OMG	CM2-O2'-C2'	-2.17	108.90	114.47
44	2	1079	OMG	N1-C2-N3	2.17	127.29	123.32
43	1	847	OMU	C4-N3-C2	-2.16	123.93	126.61
44	2	1420	OMU	C4-N3-C2	-2.15	123.94	126.61
49	7	75	OMG	C2-N1-C6	-2.15	121.18	125.11
44	2	534	OMG	N1-C2-N3	2.15	127.25	123.32
44	2	502	A2M	O3'-C3'-C2'	-2.15	105.18	111.19
44	2	1186	A2M	N3-C2-N1	2.14	131.58	128.67
43	1	1628	OMG	CM2-O2'-C2'	-2.14	108.98	114.47
43	1	1526	OMG	C2-N1-C6	-2.14	121.20	125.11
43	1	927	A2M	C4-C5-N7	2.14	111.59	109.34
44	2	641	OMG	C2-N1-C6	-2.13	121.20	125.11
43	1	697	A2M	C3'-C2'-C1'	-2.13	98.73	102.81
44	2	1385	A2M	C1'-N9-C4	-2.12	122.91	126.64
44	2	1068	A2M	C3'-C2'-C1'	-2.11	98.76	102.81
44	2	1398	OMC	C4-N3-C2	-2.11	116.94	120.26
44	2	1385	A2M	C4-C5-N7	2.11	111.56	109.34
43	1	858	A2M	O4'-C1'-N9	2.11	111.54	108.75
45	3	10	OMU	C4-N3-C2	-2.10	124.00	126.61
49	7	75	OMG	CM2-O2'-C2'	-2.10	109.08	114.47
43	1	1526	OMG	C4'-O4'-C1'	-2.09	108.02	109.92
43	1	959	OMG	C2-N1-C6	-2.08	121.30	125.11
44	2	1361	OMG	CM2-O2'-C2'	-2.07	109.17	114.47
49	7	7	OMU	CM2-O2'-C2'	-2.05	109.20	114.47
43	1	681	A2M	O4'-C1'-N9	-2.05	106.02	108.75
44	2	1232	OMG	CM2-O2'-C2'	-2.05	109.22	114.47
44	2	572	A2M	C3'-C2'-C1'	-2.04	98.90	102.81
43	1	1253	OMU	C4-N3-C2	-2.02	124.10	126.61
44	2	641	OMG	N2-C2-N3	-2.02	115.74	119.67
44	2	1230	OMG	O6-C6-N1	-2.01	118.23	120.62
44	2	534	OMG	C2-N1-C6	-2.01	121.43	125.11
43	1	1542	OMG	N1-C2-N3	2.01	127.00	123.32
43	1	845	OMU	C4-N3-C2	-2.01	124.12	126.61
44	2	71	OMG	N1-C2-N3	2.00	126.99	123.32

There are no chirality outliers.

All (52) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
43	1	48	OMU	O4'-C4'-C5'-O5'
43	1	681	A2M	O4'-C4'-C5'-O5'
43	1	959	OMG	O4'-C4'-C5'-O5'
43	1	959	OMG	C3'-C4'-C5'-O5'
43	1	1253	OMU	C3'-C4'-C5'-O5'
43	1	1253	OMU	O4'-C4'-C5'-O5'
43	1	1371	OMU	O4'-C1'-N1-C2
43	1	1371	OMU	O4'-C1'-N1-C6
43	1	1542	OMG	O4'-C4'-C5'-O5'
44	2	382	A2M	C1'-C2'-O2'-CM'
44	2	443	OMC	C2'-C1'-N1-C6
44	2	534	OMG	O4'-C4'-C5'-O5'
44	2	570	A2M	C1'-C2'-O2'-CM'
44	2	665	A2M	O4'-C4'-C5'-O5'
44	2	665	A2M	C3'-C4'-C5'-O5'
44	2	667	OMU	C3'-C4'-C5'-O5'
44	2	667	OMU	O4'-C4'-C5'-O5'
44	2	1047	OMG	O4'-C4'-C5'-O5'
44	2	1230	OMG	O4'-C4'-C5'-O5'
49	7	75	OMG	O4'-C4'-C5'-O5'
44	2	443	OMC	C2'-C1'-N1-C2
43	1	48	OMU	C3'-C4'-C5'-O5'
43	1	1542	OMG	C3'-C4'-C5'-O5'
44	2	502	A2M	O4'-C4'-C5'-O5'
44	2	534	OMG	C3'-C4'-C5'-O5'
44	2	1230	OMG	C3'-C4'-C5'-O5'
44	2	1385	A2M	O4'-C4'-C5'-O5'
49	7	75	OMG	C3'-C4'-C5'-O5'
43	1	1371	OMU	C3'-C4'-C5'-O5'
44	2	641	OMG	O4'-C4'-C5'-O5'
44	2	641	OMG	C3'-C4'-C5'-O5'
44	2	1047	OMG	C3'-C4'-C5'-O5'
43	1	681	A2M	C3'-C4'-C5'-O5'
49	7	7	OMU	C3'-C4'-C5'-O5'
43	1	1371	OMU	O4'-C4'-C5'-O5'
44	2	1079	OMG	O4'-C4'-C5'-O5'
49	7	7	OMU	04'-C4'-C5'-O5'
44	2	502	A2M	C3'-C4'-C5'-O5'
44	2	1079	OMG	C3'-C4'-C5'-O5'
44	2	1385	A2M	C3'-C4'-C5'-O5'
45	3	10	OMU	C3'-C4'-C5'-O5'
44	2	560	OMU	C4'-C5'-O5'-P
43	1	235	A2M	C3'-C2'-O2'-CM'

Mol	Chain	\mathbf{Res}	Type	Atoms
44	2	1249	OMC	C4'-C5'-O5'-P
44	2	443	OMC	O4'-C1'-N1-C6
43	1	1371	OMU	C4'-C5'-O5'-P
44	2	443	OMC	O4'-C1'-N1-C2
43	1	858	A2M	C3'-C2'-O2'-CM'
43	1	678	A2M	O4'-C4'-C5'-O5'
44	2	443	OMC	C4'-C5'-O5'-P
43	1	1529	OMC	C3'-C2'-O2'-CM2
43	1	681	A2M	C4'-C5'-O5'-P

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 44 ligands modelled in this entry, 34 are monoatomic - leaving 10 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	В	ond leng	gths	Bond angles		
MOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
51	PAR	2	1705	-	44,45,45	<mark>3.59</mark>	8 (18%)	63,67,67	1.65	15 (23%)
51	PAR	1	1802	-	44,45,45	<mark>3.58</mark>	8 (18%)	63,67,67	1.21	7 (11%)
51	PAR	1	1805	-	44,45,45	<mark>3.53</mark>	8 (18%)	63,67,67	1.60	12 (19%)
51	PAR	2	1703	-	44,45,45	<mark>3.63</mark>	10 (22%)	63,67,67	1.96	17 (26%)
51	PAR	1	1803	43	44,45,45	<mark>3.60</mark>	8 (18%)	63,67,67	1.38	7 (11%)
51	PAR	7	201	-	44,45,45	<mark>3.58</mark>	9 (20%)	63,67,67	1.79	16 (25%)
51	PAR	1	1804	-	44,45,45	<mark>3.69</mark>	9 (20%)	63,67,67	1.59	12 (19%)
51	PAR	2	1704	-	44,45,45	<mark>3.63</mark>	8 (18%)	63,67,67	1.28	9 (14%)

Mol Type	Chain	Dec	Tinle	Bond lengths			Bond angles			
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
51	PAR	2	1702	-	44,45,45	<mark>3.60</mark>	8 (18%)	63,67,67	1.45	7 (11%)
51	PAR	1	1801	-	44,45,45	3.61	8 (18%)	63,67,67	1.38	9 (14%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
51	PAR	2	1705	-	-	11/18/94/94	0/4/4/4
51	PAR	1	1802	-	-	6/18/94/94	0/4/4/4
51	PAR	1	1805	-	-	7/18/94/94	0/4/4/4
51	PAR	2	1703	-	-	9/18/94/94	0/4/4/4
51	PAR	1	1803	43	-	7/18/94/94	0/4/4/4
51	PAR	7	201	-	-	8/18/94/94	0/4/4/4
51	PAR	1	1804	-	-	7/18/94/94	0/4/4/4
51	PAR	2	1704	-	-	6/18/94/94	0/4/4/4
51	PAR	2	1702	-	-	4/18/94/94	0/4/4/4
51	PAR	1	1801	-	-	8/18/94/94	0/4/4/4

All (84) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
51	1	1804	PAR	C13-C23	-16.96	1.31	1.52
51	2	1704	PAR	C13-C23	-16.68	1.31	1.52
51	1	1803	PAR	C13-C23	-16.65	1.31	1.52
51	1	1802	PAR	C13-C23	-16.49	1.31	1.52
51	1	1801	PAR	C13-C23	-16.46	1.32	1.52
51	7	201	PAR	C13-C23	-16.24	1.32	1.52
51	1	1805	PAR	C13-C23	-16.21	1.32	1.52
51	2	1702	PAR	C13-C23	-16.20	1.32	1.52
51	2	1705	PAR	C13-C23	-16.11	1.32	1.52
51	2	1703	PAR	C13-C23	-16.02	1.32	1.52
51	1	1804	PAR	O43-C13	12.90	1.64	1.41
51	1	1801	PAR	O43-C13	12.85	1.64	1.41
51	2	1702	PAR	O43-C13	12.77	1.64	1.41
51	2	1705	PAR	O43-C13	12.67	1.64	1.41
51	1	1802	PAR	O43-C13	12.64	1.64	1.41
51	2	1704	PAR	O43-C13	12.58	1.63	1.41

51

51

51

1

2

1

1802

1703

1801

 \mathbf{PAR}

PAR

PAR

O54-C14

C34-C24

C34-C24

σ

\mathbf{Mol}	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
51	2	1703	PAR	O43-C13	12.46	1.63	1.41
51	1	1805	PAR	O43-C13	12.46	1.63	1.41
51	1	1803	PAR	O43-C13	12.19	1.63	1.41
51	7	201	PAR	O43-C13	12.11	1.63	1.41
51	7	201	PAR	O43-C43	-7.26	1.28	1.45
51	1	1803	PAR	O43-C43	-6.94	1.29	1.45
51	2	1703	PAR	O43-C43	-6.90	1.29	1.45
51	2	1702	PAR	O43-C43	-6.79	1.29	1.45
51	1	1801	PAR	O43-C43	-6.77	1.29	1.45
51	2	1705	PAR	O43-C43	-6.77	1.30	1.45
51	2	1704	PAR	O43-C43	-6.62	1.30	1.45
51	1	1804	PAR	O43-C43	-6.52	1.30	1.45
51	1	1802	PAR	O43-C43	-6.50	1.30	1.45
51	1	1805	PAR	O43-C43	-6.44	1.30	1.45
51	2	1703	PAR	C31-C21	-6.16	1.45	1.53
51	2	1704	PAR	C31-C21	-4.83	1.47	1.53
51	1	1804	PAR	C34-C24	-4.72	1.47	1.53
51	1	1804	PAR	C31-C21	-4.60	1.47	1.53
51	1	1805	PAR	C34-C24	-4.56	1.47	1.53
51	2	1702	PAR	C31-C21	-4.56	1.47	1.53
51	7	201	PAR	C31-C21	-4.53	1.47	1.53
51	2	1705	PAR	C34-C24	-4.53	1.47	1.53
51	1	1801	PAR	C31-C21	-4.31	1.48	1.53
51	2	1705	PAR	O54-C14	4.22	1.52	1.41
51	1	1803	PAR	C34-C24	-4.16	1.48	1.53
51	1	1803	PAR	C31-C21	-4.10	1.48	1.53
51	2	1703	PAR	O54-C14	4.06	1.52	1.41
51	2	1702	PAR	O54-C14	4.02	1.52	1.41
51	7	201	PAR	C34-C24	-4.02	1.48	1.53
51	2	1702	PAR	C34-C24	-3.90	1.48	1.53
51	1	1805	PAR	O54-C14	3.88	1.51	1.41
51	1	1802	PAR	C31-C21	-3.88	1.48	1.53
51	2	1704	PAR	O54-C14	3.85	1.51	1.41
51	2	1705	PAR	C31-C21	-3.80	1.48	1.53
51	1	1802	PAR	C34-C24	-3.80	1.48	1.53
51	2	1704	PAR	C34-C24	-3.79	1.48	1.53
51	1	1804	PAR	O54-C14	3.75	1.51	1.41
51	7	201	PAR	O54-C14	3.67	1.51	1.41
$5\overline{1}$	1	1803	PAR	054-C14	3.62	1.51	1.41

 $Continued \ from \ previous \ page...$

Continued on next page...

1.41

1.53

1.53

1.51

1.49

1.49

3.58

-3.54

-3.52

EMD-7025, 6	AZ3
-------------	-----

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
51	1	1801	PAR	O54-C14	3.51	1.50	1.41
51	7	201	PAR	O33-C33	-3.39	1.35	1.43
51	2	1702	PAR	O33-C33	-3.25	1.35	1.43
51	1	1801	PAR	O33-C33	-3.11	1.35	1.43
51	1	1805	PAR	C31-C21	-3.10	1.49	1.53
51	1	1802	PAR	O33-C33	-3.05	1.36	1.43
51	2	1703	PAR	O51-C11	3.03	1.49	1.41
51	2	1703	PAR	O33-C33	-2.99	1.36	1.43
51	2	1705	PAR	O33-C33	-2.98	1.36	1.43
51	1	1805	PAR	O33-C33	-2.98	1.36	1.43
51	1	1803	PAR	O33-C33	-2.94	1.36	1.43
51	2	1704	PAR	O33-C33	-2.90	1.36	1.43
51	1	1804	PAR	O33-C33	-2.87	1.36	1.43
51	2	1705	PAR	O51-C11	2.82	1.49	1.41
51	2	1704	PAR	O51-C11	2.79	1.49	1.41
51	1	1801	PAR	O51-C11	2.76	1.48	1.41
51	7	201	PAR	O51-C11	2.75	1.48	1.41
51	1	1802	PAR	O51-C11	2.64	1.48	1.41
51	1	1804	PAR	O51-C11	2.55	1.48	1.41
51	2	1702	PAR	O51-C11	2.49	1.48	1.41
51	1	1803	PAR	O51-C11	2.43	1.48	1.41
51	1	1805	PAR	O51-C11	2.38	1.48	1.41
51	2	1703	PAR	C21-N21	-2.27	1.43	1.47
51	1	1804	PAR	O51-C51	2.22	1.49	1.44
51	2	1703	PAR	O51-C51	2.19	1.49	1.44
51	7	201	PAR	C22-C12	-2.07	1.49	1.53

All (111) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
51	2	1703	PAR	O52-C13-O43	-5.86	105.38	111.37
51	1	1805	PAR	C41-C31-C21	5.26	119.72	110.99
51	7	201	PAR	C44-C34-C24	4.89	119.11	110.99
51	2	1703	PAR	C22-C12-C62	4.83	117.30	110.08
51	7	201	PAR	O52-C13-O43	4.70	116.17	111.37
51	7	201	PAR	O52-C52-C62	4.65	119.06	107.23
51	1	1804	PAR	O51-C51-C41	4.55	117.91	109.70
51	2	1702	PAR	C44-C34-C24	4.37	118.25	110.99
51	2	1703	PAR	C32-C22-C12	4.26	118.32	111.02
51	2	1705	PAR	C13-C23-C33	4.23	107.19	102.10
51	1	1804	PAR	C14-O33-C33	-4.22	107.97	117.98
51	2	1703	PAR	O52-C52-C42	4.16	117.99	107.42

a 1	C		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
51	1	1801	PAR	C14-O33-C33	-4.15	108.15	117.98
51	1	1804	PAR	O33-C14-C24	3.72	114.17	108.08
51	2	1705	PAR	O52-C13-O43	-3.72	107.57	111.37
51	1	1803	PAR	O54-C54-C44	3.70	116.37	109.70
51	1	1804	PAR	C31-C41-C51	3.67	116.89	110.23
51	2	1702	PAR	C14-O33-C33	-3.65	109.33	117.98
51	1	1803	PAR	C44-C34-C24	3.64	117.04	110.99
51	1	1805	PAR	C14-O33-C33	-3.60	109.45	117.98
51	2	1703	PAR	O51-C51-C41	3.51	116.02	109.70
51	2	1705	PAR	C14-O54-C54	3.40	120.36	113.72
51	1	1805	PAR	C62-C52-C42	3.40	119.37	111.72
51	1	1805	PAR	C52-C62-C12	3.39	118.12	109.93
51	2	1703	PAR	C11-O11-C42	-3.39	109.95	117.98
51	7	201	PAR	C14-O33-C33	-3.37	109.99	117.98
51	1	1803	PAR	C34-C44-C54	3.37	116.34	110.23
51	2	1705	PAR	O54-C14-C24	3.34	117.47	110.08
51	2	1703	PAR	C11-O51-C51	3.32	120.21	113.72
51	7	201	PAR	O62-C62-C12	-3.31	103.70	109.90
51	1	1802	PAR	C11-O11-C42	-3.28	110.20	117.98
51	1	1801	PAR	C13-O52-C52	-3.27	110.22	117.98
51	2	1705	PAR	O33-C14-C24	3.20	113.31	108.08
51	2	1705	PAR	C34-C24-N24	-3.19	104.52	111.05
51	2	1705	PAR	O52-C52-C62	3.17	115.29	107.23
51	1	1801	PAR	C44-C34-C24	3.15	116.22	110.99
51	1	1805	PAR	C13-O52-C52	-3.12	110.57	117.98
51	2	1703	PAR	C61-C51-C41	-3.08	105.45	113.02
51	2	1703	PAR	C62-C52-C42	-3.06	104.83	111.72
51	7	201	PAR	C14-C24-C34	3.06	117.94	110.29
51	2	1703	PAR	O11-C42-C52	3.06	115.18	107.42
51	2	1705	PAR	C14-O33-C33	-3.05	110.75	117.98
51	2	1704	PAR	C14-O33-C33	-3.04	110.78	117.98
51	1	1804	PAR	C22-C12-C62	3.04	114.62	110.08
51	1	1802	PAR	C32-C22-C12	3.02	116.20	111.02
51	1	1801	PAR	O51-C11-C21	2.95	116.59	110.08
51	1	1803	PAR	C14-O33-C33	-2.90	111.10	117.98
51	2	1702	PAR	O54-C14-C24	2.89	116.47	110.08
51	1	1803	PAR	O11-C11-C21	2.87	112.77	108.08
51	1	1804	PAR	C52-C62-C12	2.85	116.82	109.93
51	1	1803	PAR	C13-C23-C33	2.84	105.52	102.10
51	1	1805	PAR	C11-C21-C31	2.83	117.39	110.29
51	1	1805	PAR	C22-C12-C62	2.81	114.28	110.08
51	1	1804	PAR	C13-O52-C52	-2.77	111.42	117.98

a 1	e		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
51	1	1805	PAR	C11-O11-C42	-2.76	111.43	117.98
51	2	1702	PAR	C13-C23-C33	2.72	105.38	102.10
51	2	1702	PAR	O51-C51-C41	2.71	114.59	109.70
51	1	1802	PAR	C44-C34-C24	2.66	115.40	110.99
51	7	201	PAR	C52-C42-C32	2.65	116.22	111.31
51	7	201	PAR	C34-C44-C54	2.63	115.00	110.23
51	7	201	PAR	C13-O52-C52	2.63	124.21	117.98
51	2	1704	PAR	O51-C51-C41	2.61	114.41	109.70
51	1	1803	PAR	C11-O11-C42	-2.60	111.83	117.98
51	2	1704	PAR	C61-C51-C41	-2.54	106.77	113.02
51	2	1703	PAR	C64-C54-C44	-2.54	106.85	112.80
51	7	201	PAR	O52-C52-C42	-2.51	101.05	107.42
51	1	1805	PAR	C13-C23-C33	2.47	105.07	102.10
51	2	1703	PAR	C52-C42-C32	-2.46	106.75	111.31
51	2	1704	PAR	C14-C24-C34	2.46	116.45	110.29
51	2	1704	PAR	C44-C34-C24	2.44	115.05	110.99
51	7	201	PAR	C11-O11-C42	-2.39	112.31	117.98
51	2	1703	PAR	C53-C43-C33	-2.38	107.36	114.84
51	1	1801	PAR	C11-O51-C51	2.37	118.34	113.72
51	2	1704	PAR	C13-O52-C52	-2.35	112.41	117.98
51	2	1703	PAR	C13-O52-C52	-2.35	112.41	117.98
51	1	1801	PAR	O33-C14-C24	2.33	111.88	108.08
51	2	1705	PAR	C14-C24-N24	2.32	114.38	110.20
51	1	1805	PAR	C11-C21-N21	-2.31	106.03	110.20
51	7	201	PAR	C22-C32-C42	2.29	115.11	109.50
51	1	1801	PAR	C13-C23-C33	2.28	104.84	102.10
51	1	1804	PAR	C61-C51-C41	-2.27	107.44	113.02
51	7	201	PAR	O34-C34-C24	-2.26	106.16	110.22
51	7	201	PAR	C13-C23-C33	2.24	104.80	102.10
51	2	1705	PAR	C11-O11-C42	-2.22	112.72	117.98
51	1	1805	PAR	C52-C42-C32	2.19	115.37	111.31
51	1	1804	PAR	C11-O51-C51	2.19	117.99	113.72
51	2	1705	PAR	C41-C31-C21	2.18	114.61	110.99
51	1	1802	PAR	C22-C32-C42	2.17	114.83	109.50
51	1	1802	PAR	C13-C23-C33	2.17	104.71	102.10
51	1	1801	PAR	C11-C21-C31	2.17	115.71	110.29
51	2	1702	PAR	C11-O51-C51	2.15	117.92	113.72
51	1	1801	PAR	C61-C51-C41	-2.15	107.74	113.02
51	1	1802	PAR	C62-C12-N12	-2.13	106.73	110.94
51	1	1802	PAR	C62-C52-C42	-2.13	106.94	111.72
51	2	1705	PAR	O62-C62-C12	-2.11	105.95	109.90
51	2	1703	PAR	C22-C32-C42	2.10	114.64	109.50

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
51	2	1704	PAR	C31-C41-C51	2.08	114.00	110.23
51	1	1805	PAR	C31-C41-C51	2.08	114.00	110.23
51	1	1804	PAR	C34-C24-N24	-2.06	106.83	111.05
51	2	1705	PAR	C44-C34-C24	2.06	114.41	110.99
51	2	1703	PAR	O54-C54-C64	2.05	110.01	106.07
51	7	201	PAR	O43-C43-C33	-2.05	100.60	104.92
51	2	1702	PAR	C14-C24-C34	2.04	115.41	110.29
51	2	1703	PAR	C14-O33-C33	-2.04	113.15	117.98
51	2	1705	PAR	O51-C11-C21	2.04	114.58	110.08
51	2	1705	PAR	C14-C24-C34	2.03	115.39	110.29
51	1	1804	PAR	O34-C34-C24	-2.03	106.57	110.22
51	2	1704	PAR	O54-C14-C24	2.02	114.54	110.08
51	2	1704	PAR	C11-O51-C51	2.01	117.65	113.72
51	7	201	PAR	C34-C24-N24	-2.01	106.93	111.05
51	1	1804	PAR	O52-C13-O43	2.01	113.42	111.37

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
51	1	1801	PAR	C23-C13-O52-C52
51	1	1802	PAR	C33-C43-C53-O53
51	1	1803	PAR	O54-C54-C64-N64
51	1	1804	PAR	C23-C13-O52-C52
51	1	1805	PAR	C44-C54-C64-N64
51	1	1805	PAR	O54-C54-C64-N64
51	2	1703	PAR	C23-C13-O52-C52
51	2	1703	PAR	O43-C13-O52-C52
51	2	1705	PAR	C62-C52-O52-C13
51	2	1705	PAR	C23-C13-O52-C52
51	2	1705	PAR	O43-C13-O52-C52
51	2	1705	PAR	C24-C14-O33-C33
51	2	1705	PAR	O54-C54-C64-N64
51	7	201	PAR	C23-C13-O52-C52
51	7	201	PAR	O43-C13-O52-C52
51	1	1801	PAR	O51-C11-O11-C42
51	1	1801	PAR	O43-C43-C53-O53
51	2	1703	PAR	O43-C43-C53-O53
51	1	1801	PAR	C33-C43-C53-O53
51	1	1803	PAR	C33-C43-C53-O53
51	1	1803	PAR	C41-C51-C61-O61
51	1	1802	PAR	O43-C43-C53-O53

All (73) torsion outliers are listed below:

EMD-7025,	6AZ3
-----------	------

Mol Chain Res Type Atoms 51 1 1804 PAR 043-C43-C53-O53 51 2 1705 PAR 043-C43-C53-O53 51 1 1803 PAR O54-C14-O33-C33 51 1 1803 PAR O43-C43-C53-O53 51 1 1803 PAR O43-C43-C53-O53 51 2 1703 PAR O54-C14-O33-C33 51 2 1702 PAR O51-C11-O11-C42 51 2 1702 PAR O51-C51-C61-O61 51 2 1705 PAR C33-C43-C53-O53 51 2 1705 PAR C33-C43-C53-O53 51 7 201 PAR C32-C52-O52-C13 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR O43-C13-O52-C52 51 7<	Continued from previous page							
51 1 1804 PAR O43-C43-C53-O53 51 2 1705 PAR O43-C43-C53-O53 51 1 1803 PAR O54-C14-O33-C33 51 1 1803 PAR O43-C43-C53-O53 51 1 1803 PAR O43-C43-C53-O53 51 2 1703 PAR O54-C14-O33-C33 51 2 1702 PAR O51-C11-O11-C42 51 1 1803 PAR O51-C51-C61-O61 51 2 1704 PAR C33-C43-C53-O53 51 2 1705 PAR C33-C43-C53-O53 51 2 1705 PAR C33-C43-C53-O53 51 7 201 PAR C62-C52-O52-C13 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR O51-C51-C61-O61 51 <	Mol	Chain	\mathbf{Res}	Type	Atoms			
51 2 1705 PAR 043-C43-C53-053 51 1 1803 PAR 054-C14-033-C33 51 1 1803 PAR 043-C43-C53-053 51 1 1802 PAR 043-C43-C53-053 51 1 1802 PAR 054-C14-033-C33 51 2 1703 PAR C33-C43-C53-053 51 2 1702 PAR 051-C11-011-C42 51 1 1803 PAR C33-C43-C53-053 51 2 1704 PAR C33-C43-C53-053 51 2 1705 PAR C33-C43-C53-053 51 2 1705 PAR C33-C43-C53-053 51 7 201 PAR C41-C51-C61-061 51 <	51	1	1804	PAR	O43-C43-C53-O53			
51 1 1803 PAR O54-C14-O33-C33 51 1 1804 PAR C33-C43-C53-O53 51 1 1802 PAR O43-C43-C53-O53 51 1 1802 PAR O54-C14-O33-C33 51 2 1702 PAR O51-C11-O11-C42 51 1 1803 PAR O51-C51-C61-O61 51 2 1704 PAR C33-C43-C53-O53 51 2 1705 PAR C33-C43-C53-O53 51 2 1705 PAR C33-C43-C53-O53 51 2 1705 PAR C33-C43-C53-O53 51 7 201 PAR C62-C52-O52-C13 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR O51-C51-C61-O61 51 7 201 PAR O51-C51-C61-O61 51 <t< td=""><td>51</td><td>2</td><td>1705</td><td>PAR</td><td>O43-C43-C53-O53</td></t<>	51	2	1705	PAR	O43-C43-C53-O53			
51 1 1804 PAR C33-C43-C53-O53 51 1 1803 PAR O43-C43-C53-O53 51 1 1802 PAR O54-C14-O33-C33 51 2 1702 PAR O51-C11-O11-C42 51 1 1803 PAR O51-C51-C61-O61 51 2 1704 PAR C33-C43-C53-O53 51 2 1705 PAR C33-C43-C53-O53 51 7 201 PAR C62-C52-O52-C13 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR O51-C51-C61-O61 51 2 1704 PAR O43-C13-O52-C52 51 <	51	1	1803	PAR	O54-C14-O33-C33			
51 1 1803 PAR 043-C43-C53-053 51 1 1802 PAR 054-C14-033-C33 51 2 1703 PAR C33-C43-C53-053 51 2 1702 PAR 051-C11-011-C42 51 1 1803 PAR C33-C43-C53-053 51 2 1704 PAR C33-C43-C53-053 51 2 1705 PAR C33-C43-C53-053 51 7 201 PAR C62-C52-052-C13 51 7 201 PAR C41-C51-C61-061 51 7 201 PAR C41-C51-C61-061 51 7 201 PAR C41-C51-C61-061 51 7 201 PAR C42-C52-O52-C13 51 7 201 PAR O54-C14-033-C33 51 1 1805 PAR O51-C51-C61-061 51 2 1702 PAR O51-C51-C61-061 51 <td< td=""><td>51</td><td>1</td><td>1804</td><td>PAR</td><td>C33-C43-C53-O53</td></td<>	51	1	1804	PAR	C33-C43-C53-O53			
51 1 1802 PAR 054-C14-033-C33 51 2 1703 PAR C33-C43-C53-O53 51 2 1702 PAR 051-C11-011-C42 51 1 1803 PAR 051-C51-C61-061 51 2 1704 PAR C33-C43-C53-O53 51 2 1705 PAR C33-C43-C53-O53 51 7 201 PAR C41-C51-C61-061 51 7 201 PAR C41-C51-C61-061 51 7 201 PAR O54-C14-O33-C33 51 1 1805 PAR O51-C51-C61-061 51 2 1704 PAR O43-C13-O52-C52 51 1 1804 PAR O51-C51-C61-061 51 <td< td=""><td>51</td><td>1</td><td>1803</td><td>PAR</td><td>O43-C43-C53-O53</td></td<>	51	1	1803	PAR	O43-C43-C53-O53			
512 1703 PAR $C33-C43-C53-O53$ 51 2 1702 PAR $O51-C11-O11-C42$ 51 1 1803 PAR $O51-C51-C61-O61$ 51 2 1704 PAR $C33-C43-C53-O53$ 51 2 1705 PAR $C33-C43-C53-O53$ 51 2 1705 PAR $C33-C43-C53-O53$ 51 7 201 PAR $C62-C52-O52-C13$ 51 7 201 PAR $C41-C51-C61-O61$ 51 1 1805 PAR $C41-C51-C61-O61$ 51 7 201 PAR $C42-C52-O52-C13$ 51 7 201 PAR $C42-C52-O52-C13$ 51 7 201 PAR $C42-C52-O52-C13$ 51 7 201 PAR $O54-C14-O33-C33$ 51 1 1805 PAR $O51-C51-C61-O61$ 51 2 1704 PAR $O43-C13-O52-C52$ 51 1 1804 PAR $O51-C51-C61-O61$ 51 2 1703 PAR $O51-C51-C61-O61$ 51 1 1804 PAR $O51-C51-C61-O61$ 51 1 1805 PAR $C24-C14-O33-C33$ 51 1 1805 PAR $C24-C14-O33-C33$ 51 2 1704 PAR $O51-C51-C61-O61$ 51 1 1805 PAR $C24-C14-O33-C33$ 51 2 1704 PAR $O51-C51-C61-O61$ 51 1 1805 PAR $C24-C14-O33-C33$ <tr< td=""><td>51</td><td>1</td><td>1802</td><td>PAR</td><td>O54-C14-O33-C33</td></tr<>	51	1	1802	PAR	O54-C14-O33-C33			
51 2 1702 PAR O51-C11-O11-C42 51 1 1803 PAR O51-C51-C61-O61 51 2 1704 PAR C33-C43-C53-O53 51 2 1705 PAR C33-C43-C53-O53 51 7 201 PAR C33-C43-C53-O53 51 7 201 PAR C62-C52-O52-C13 51 7 201 PAR C41-C51-C61-O61 51 1 1805 PAR C41-C51-C61-O61 51 7 201 PAR C42-C52-O52-C13 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR O54-C14-O33-C33 51 1 1805 PAR O51-C51-C61-O61 51 2 1702 PAR O51-C51-C61-O61 51 1 1804 PAR O51-C51-C61-O61 51 2 1703 PAR O51-C51-C61-O61 51 <td< td=""><td>51</td><td>2</td><td>1703</td><td>PAR</td><td>C33-C43-C53-O53</td></td<>	51	2	1703	PAR	C33-C43-C53-O53			
51 1 1803 PAR O51-C51-C61-O61 51 2 1704 PAR C33-C43-C53-O53 51 2 1705 PAR C33-C43-C53-O53 51 7 201 PAR C33-C43-C53-O53 51 7 201 PAR C62-C52-O52-C13 51 7 201 PAR C41-C51-C61-O61 51 1 1805 PAR C41-C51-C61-O61 51 7 201 PAR O54-C14-O33-C33 51 1 1805 PAR O51-C51-C61-O61 51 2 1702 PAR O51-C51-C61-O61 51 1 1804 PAR O51-C51-C61-O61 51 1 1804 PAR O51-C51-C61-O61 51	51	2	1702	PAR	O51-C11-O11-C42			
51 2 1704 PAR C33-C43-C53-O53 51 2 1705 PAR C33-C43-C53-O53 51 7 201 PAR C62-C52-O52-C13 51 7 201 PAR O51-C51-C61-O61 51 2 1703 PAR C41-C51-C61-O61 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR C42-C52-O52-C13 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR O54-C14-O33-C33 51 1 1805 PAR O51-C51-C61-O61 51 2 1702 PAR O51-C51-C61-O61 51 1 1804 PAR O51-C51-C61-O61 51 2 1703 PAR O51-C51-C61-O61 51 1 1804 PAR O51-C51-C61-O61 51	51	1	1803	PAR	O51-C51-C61-O61			
51 2 1705 PAR C33-C43-C53-O53 51 7 201 PAR C62-C52-O52-C13 51 7 201 PAR O51-C51-C61-O61 51 2 1703 PAR C41-C51-C61-O61 51 1 1805 PAR C41-C51-C61-O61 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR C42-C52-O52-C13 51 1 1805 PAR O51-C51-C61-O61 51 2 1702 PAR O51-C51-C61-O61 51 1 1804 PAR O51-C51-C61-O61 51 2 1703 PAR C24-C14-O33-C33 51 2 1703 PAR C24-C14-O33-C33 51	51	2	1704	PAR	C33-C43-C53-O53			
51 7 201 PAR C62-C52-O52-C13 51 7 201 PAR O51-C51-C61-O61 51 2 1703 PAR C41-C51-C61-O61 51 1 1805 PAR C41-C51-C61-O61 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR C42-C52-O52-C13 51 1 1805 PAR O51-C51-C61-O61 51 2 1702 PAR O43-C13-O52-C52 51 1 1804 PAR O51-C51-C61-O61 51 2 1703 PAR O51-C51-C61-O61 51 1 1804 PAR O51-C51-C61-O61 51 1 1805 PAR C24-C14-O33-C33 51	51	2	1705	PAR	C33-C43-C53-O53			
517 201 PAR $O51-C51-C61-O61$ 51 2 1703 PAR $C41-C51-C61-O61$ 51 1 1805 PAR $C41-C51-C61-O61$ 51 7 201 PAR $C42-C52-O52-C13$ 51 7 201 PAR $C42-C52-O52-C13$ 51 7 201 PAR $O54-C14-O33-C33$ 51 1 1805 PAR $O51-C51-C61-O61$ 51 2 1704 PAR $O43-C43-C53-O53$ 51 2 1702 PAR $O51-C51-C61-O61$ 51 2 1702 PAR $O51-C51-C61-O61$ 51 1 1804 PAR $O43-C13-O52-C52$ 51 1 1804 PAR $O51-C51-C61-O61$ 51 2 1703 PAR $O51-C51-C61-O61$ 51 2 1703 PAR $O51-C51-C61-O61$ 51 1 1804 PAR $O51-C51-C61-O61$ 51 1 1805 PAR $C24-C14-O33-C33$ 51 2 1705 PAR $C41-C51-C61-O61$ 51 1 1801 PAR $O43-C13-O52-C52$ 51 2 1704 PAR $O51-C51-C61-O61$ 51 1 1805 PAR $C33-C43-C53-O53$ 51 2 1704 PAR $O54-C14-O33-C33$ 51 2 1704 PAR $O54-C14-O33-C33$ 51 2 1705 PAR $C21-C11-O11-C42$ 51 1 1802 PAR $C21-C11-O11-C42$ <	51	7	201	PAR	C62-C52-O52-C13			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	7	201	PAR	O51-C51-C61-O61			
51 1 1805 PAR C41-C51-C61-O61 51 7 201 PAR C41-C51-C61-O61 51 7 201 PAR C42-C52-O52-C13 51 7 201 PAR C42-C52-O52-C13 51 7 201 PAR O54-C14-O33-C33 51 1 1805 PAR O51-C51-C61-O61 51 2 1704 PAR O43-C43-C53-O53 51 2 1702 PAR O51-C51-C61-O61 51 1 1804 PAR O43-C13-O52-C52 51 1 1801 PAR O51-C51-C61-O61 51 2 1703 PAR O51-C51-C61-O61 51 1 1804 PAR O51-C51-C61-O61 51 1 1805 PAR C24-C14-O33-C33 51 2 1705 PAR C41-C51-C61-O61 51 1 1801 PAR O43-C13-O52-C52 51 <	51	2	1703	PAR	C41-C51-C61-O61			
517 201 PARC41-C51-C61-O61 51 7 201 PAR 054 -C14-O33-C33 51 1 1805 PAR 051 -C51-C61-O61 51 2 1704 PAR 043 -C43-C53-O53 51 2 1702 PAR 051 -C51-C61-O61 51 2 1702 PAR 051 -C51-C61-O61 51 1 1804 PAR 043 -C13-O52-C52 51 1 1801 PAR 051 -C51-C61-O61 51 2 1703 PAR 051 -C51-C61-O61 51 2 1705 PARC24-C14-O33-C33 51 2 1705 PARC41-C51-C61-O61 51 1 1801 PAR 043 -C13-O52-C52 51 2 1704 PAR 043 -C13-O52-C52 51 2 1704 PAR 054 -C14-O33-C33 51 2 1704 PAR 054 -C14-O33-C33 51 2 1705 PAR $C21$ -C11-O11-C42 51 1 1801 PAR $C22$ -C52-O52-C13 51 1 1801 PAR $C43$ -C33-O33-C14 51 2 1705 PAR $C21$ -C11-O11-C42 51 1 1803 PARC43-C33-O33-C14 51 2 1705 PAR 054 -C14-O33-C33 <td< td=""><td>51</td><td>1</td><td>1805</td><td>PAR</td><td>C41-C51-C61-O61</td></td<>	51	1	1805	PAR	C41-C51-C61-O61			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	7	201	PAR	C41-C51-C61-O61			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	7	201	PAR	C42-C52-O52-C13			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	7	201	PAR	O54-C14-O33-C33			
512 1704 PAR 043 - $C43$ - $C53$ - 053 51 2 1702 PAR 051 - $C51$ - $C61$ - 061 51 1 1804 PAR 043 - $C13$ - 052 - $C52$ 51 1 1801 PAR 051 - $C51$ - $C61$ - 061 51 2 1703 PAR 054 - $C14$ - 033 - $C33$ 51 1 1804 PAR 051 - $C51$ - $C61$ - 061 51 2 1703 PAR 051 - $C51$ - $C61$ - 061 51 2 1703 PAR 051 - $C51$ - $C61$ - 061 51 1 1805 PAR $C24$ - $C14$ - 033 - $C33$ 51 2 1705 PAR $C41$ - $C51$ - $C61$ - 061 51 1 1801 PAR 043 - $C13$ - 052 - $C52$ 51 2 1704 PAR 043 - $C13$ - 052 - $C52$ 51 2 1704 PAR 054 - $C14$ - 033 - $C33$ 51 2 1704 PAR 054 - $C14$ - 033 - $C33$ 51 2 1704 PAR 054 - $C14$ - 033 - $C33$ 51 2 1703 PAR $C21$ - $C11$ - 011 - $C42$ 51 1 1802 PAR $C21$ - $C11$ - 011 - $C42$ 51 1 1803 PAR $C43$ - $C33$ - 033 - $C14$ 51 1 1803 PAR $C43$ - $C33$ - 033 - $C14$ 51 2 1704 PAR 054 - $C14$ - 033 - $C33$ 51 1 1803 PAR $C43$ - $C33$ - 033 - $C14$ 51 2 1704 PAR 054 - $C14$ - 033 - $C33$ 51 2 170	51	1	1805	PAR	O51-C51-C61-O61			
51 2 1702 PAR O51-C51-C61-O61 51 1 1804 PAR O43-C13-O52-C52 51 1 1801 PAR O51-C51-C61-O61 51 2 1703 PAR O54-C14-O33-C33 51 1 1804 PAR O51-C51-C61-O61 51 2 1703 PAR O51-C51-C61-O61 51 1 1805 PAR O51-C51-C61-O61 51 1 1805 PAR C24-C14-O33-C33 51 2 1705 PAR C41-C51-C61-O61 51 1 1805 PAR C41-C51-C61-O61 51 1 1801 PAR O43-C13-O52-C52 51 2 1704 PAR O51-C11-O11-C42 51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O51-C51-C61-O61 51 1 1801 PAR O51-C51-C61-O61 51	51	2	1704	PAR	O43-C43-C53-O53			
51 1 1804 PAR O43-C13-O52-C52 51 1 1801 PAR O51-C51-C61-O61 51 2 1703 PAR O54-C14-O33-C33 51 1 1804 PAR O51-C51-C61-O61 51 2 1703 PAR O51-C51-C61-O61 51 2 1703 PAR O51-C51-C61-O61 51 1 1805 PAR C24-C14-O33-C33 51 2 1705 PAR C24-C14-O33-C33 51 2 1705 PAR C24-C14-O33-C33 51 2 1704 PAR O43-C13-O52-C52 51 2 1704 PAR O43-C13-O52-C52 51 2 1704 PAR O51-C11-O11-C42 51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O51-C51-C61-O61 51 1 1801 PAR C54-C54-C64-N64 51	51	2	1702	PAR	O51-C51-C61-O61			
51 1 1801 PAR O51-C51-C61-O61 51 2 1703 PAR O54-C14-O33-C33 51 1 1804 PAR O51-C51-C61-O61 51 2 1703 PAR O51-C51-C61-O61 51 2 1705 PAR C24-C14-O33-C33 51 2 1705 PAR C24-C14-O33-C33 51 2 1705 PAR C41-C51-C61-O61 51 1 1801 PAR O43-C13-O52-C52 51 2 1704 PAR O43-C13-O52-C52 51 2 1704 PAR O51-C11-O11-C42 51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O54-C14-O33-C33 51 2 1705 PAR O51-C51-C61-O61 51 1 1801 PAR C21-C11-O11-C42 51 1 1802 PAR C21-C11-O11-C42 51	51	1	1804	PAR	O43-C13-O52-C52			
51 2 1703 PAR O54-C14-O33-C33 51 1 1804 PAR O51-C51-C61-O61 51 2 1703 PAR O51-C51-C61-O61 51 1 1805 PAR C24-C14-O33-C33 51 2 1705 PAR C24-C14-O33-C33 51 2 1705 PAR C41-C51-C61-O61 51 1 1801 PAR O43-C13-O52-C52 51 2 1704 PAR O43-C13-O52-C52 51 2 1704 PAR O43-C13-O52-C52 51 2 1704 PAR O51-C11-O11-C42 51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O54-C14-O33-C33 51 2 1705 PAR O51-C51-C61-O61 51 1 1801 PAR C21-C11-O11-C42 51 1 1805 PAR C21-C11-O11-C42 51	51	1	1801	PAR	O51-C51-C61-O61			
51 1 1804 PAR O51-C51-C61-O61 51 2 1703 PAR O51-C51-C61-O61 51 1 1805 PAR C24-C14-O33-C33 51 2 1705 PAR C24-C14-O33-C33 51 2 1705 PAR C41-C51-C61-O61 51 1 1801 PAR O43-C13-O52-C52 51 2 1704 PAR O51-C11-O11-C42 51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O54-C14-O33-C33 51 1 1801 PAR O54-C54-C64-N64 51 1 1802 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51	51	2	1703	PAR	O54-C14-O33-C33			
51 2 1703 PAR O51-C51-C61-O61 51 1 1805 PAR C24-C14-O33-C33 51 2 1705 PAR C41-C51-C61-O61 51 1 1801 PAR O43-C13-O52-C52 51 2 1704 PAR O51-C11-O11-C42 51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O54-C14-O33-C33 51 2 1705 PAR O51-C51-C61-O61 51 1 1801 PAR C54-C54-C64-N64 51 1 1802 PAR C21-C11-O11-C42 51 1 1805 PAR C62-C52-O52-C13 51 1 1805 PAR C62-C52-O52-C13 51 1	51	1	1804	PAR	O51-C51-C61-O61			
51 1 1805 PAR C24-C14-O33-C33 51 2 1705 PAR C41-C51-C61-O61 51 1 1801 PAR O43-C13-O52-C52 51 2 1704 PAR O51-C11-O11-C42 51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O54-C14-O33-C33 51 2 1705 PAR O51-C51-C61-O61 51 1 1801 PAR C54-C54-C64-N64 51 1 1802 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 1 1805 PAR C62-C52-O52-C13 51	51	2	1703	PAR	O51-C51-C61-O61			
51 2 1705 PAR C41-C51-C61-O61 51 1 1801 PAR O43-C13-O52-C52 51 2 1704 PAR O51-C11-O11-C42 51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O54-C14-O33-C33 51 2 1705 PAR O51-C51-C61-O61 51 1 1801 PAR O54-C54-C64-N64 51 1 1802 PAR C21-C11-O11-C42 51 2 1703 PAR C62-C52-O52-C13 51 1 1805 PAR C62-C52-O52-C13 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2	51	1	1805	PAR	C24-C14-O33-C33			
51 1 1801 PAR O43-C13-O52-C52 51 2 1704 PAR O43-C13-O52-C52 51 2 1704 PAR O43-C13-O52-C52 51 2 1704 PAR O51-C11-O11-C42 51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O54-C14-O33-C33 51 2 1705 PAR O51-C51-C61-O61 51 1 1801 PAR O54-C54-C64-N64 51 1 1802 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 1 1805 PAR C62-C52-O52-C13 51 1 1801 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR C43-C33-O33-C14 51 2 1705 PAR C43-C33-O33-C14 51 2	51	2	1705	PAR	C41-C51-C61-O61			
51 2 1704 PAR O43-C13-O52-C52 51 2 1704 PAR O51-C11-O11-C42 51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O54-C14-O33-C33 51 2 1705 PAR O51-C51-C61-O61 51 1 1801 PAR O54-C54-C64-N64 51 1 1802 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 1 1805 PAR C21-C11-O11-C42 51 1 1805 PAR C62-C52-O52-C13 51 1 1801 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR C43-C33-O33-C14 51 2 1705 PAR C43-C14-O33-C33 51	51	1	1801	PAR	O43-C13-O52-C52			
51 2 1704 PAR O51-C11-O11-C42 51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O54-C14-O33-C33 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR O51-C51-C61-O61 51 1 1801 PAR O54-C54-C64-N64 51 1 1802 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 1 1805 PAR C62-C52-O52-C13 51 1 1805 PAR C62-C52-O52-C13 51 1 1801 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR C43-C33-O33-C14 51 2 1704 PAR C23-C13-O52-C52	51	2	1704	PAR	O43-C13-O52-C52			
51 1 1805 PAR C33-C43-C53-O53 51 2 1704 PAR O54-C14-O33-C33 51 2 1705 PAR O51-C51-C61-O61 51 1 1801 PAR O54-C54-C64-N64 51 1 1802 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 1 1805 PAR C62-C52-O52-C13 51 1 1801 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR C43-C33-O33-C14 51 2 1705 PAR C54-C14-O33-C33 51 2 1704 PAR C23-C13-O52-C52	51	2	1704	PAR	O51-C11-O11-C42			
51 2 1704 PAR O54-C14-O33-C33 51 2 1705 PAR O51-C51-C61-O61 51 1 1801 PAR O54-C54-C64-N64 51 1 1802 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 1 1805 PAR C62-C52-O52-C13 51 1 1801 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR O54-C14-O33-C33 51 2 1704 PAR C23-C13-O52-C52	51	1	1805	PAR	C33-C43-C53-O53			
51 2 1705 PAR O51-C51-C61-O61 51 1 1801 PAR O54-C54-C64-N64 51 1 1802 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 1 1805 PAR C62-C52-O52-C13 51 1 1801 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR C43-C33-O33-C14 51 2 1704 PAR C23-C13-O52-C52	51	2	1704	PAR	O54-C14-O33-C33			
51 1 1801 PAR O54-C54-C64-N64 51 1 1802 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 1 1805 PAR C21-C11-O11-C42 51 1 1805 PAR C62-C52-O52-C13 51 1 1801 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR C54-C14-O33-C33 51 2 1704 PAR C23-C13-O52-C52	51	2	1705	PAR	O51-C51-C61-O61			
51 1 1802 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 2 1703 PAR C21-C11-O11-C42 51 1 1805 PAR C62-C52-O52-C13 51 1 1801 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR C54-C14-O33-C33 51 2 1704 PAR C23-C13-O52-C52	51	1	1801	PAR	O54-C54-C64-N64			
51 2 1703 PAR C21-C11-O11-C42 51 1 1805 PAR C62-C52-O52-C13 51 1 1801 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR C43-C33-O33-C14 51 2 1704 PAR C23-C13-O52-C52	51	1	1802	PAR	C21-C11-O11-C42			
51 1 1805 PAR C62-C52-O52-C13 51 1 1801 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR O54-C14-O33-C33 51 2 1704 PAR C23-C13-O52-C52	51	2	1703	PAR	C21-C11-O11-C42			
51 1 1801 PAR O54-C14-O33-C33 51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1705 PAR O54-C14-O33-C33 51 2 1704 PAR C23-C13-O52-C52	51	1	1805	PAR	C62-C52-O52-C13			
51 1 1803 PAR C43-C33-O33-C14 51 2 1705 PAR O54-C14-O33-C33 51 2 1704 PAR C23-C13-O52-C52	51	1	1801	PAR	O54-C14-O33-C33			
51 2 1705 PAR O54-C14-O33-C33 51 2 1704 PAR C23-C13-O52-C52	51	1	1803	PAR	C43-C33-O33-C14			
51 2 1704 PAR C23-C13-O52-C52	51	2	1705	PAR	O54-C14-O33-C33			
	51	2	1704	PAR	C23-C13-O52-C52			

	5	1	1 5	
Mol	Chain	Res	Type	Atoms
51	1	1802	PAR	O51-C51-C61-O61
51	1	1802	PAR	C23-C33-O33-C14
51	1	1804	PAR	C23-C33-O33-C14
51	1	1804	PAR	C43-C33-O33-C14
51	2	1702	PAR	C23-C33-O33-C14
51	2	1702	PAR	C43-C33-O33-C14
51	2	1703	PAR	C23-C33-O33-C14
51	2	1705	PAR	C23-C33-O33-C14
51	7	201	PAR	C23-C33-O33-C14

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-7025. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 192

Y Index: 192

Z Index: 192

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 228

Y Index: 133

Z Index: 211

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.065. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 933 $\rm nm^3;$ this corresponds to an approximate mass of 843 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.400 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-7025 and PDB model 6AZ3. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.065 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.065).

9.4 Atom inclusion (i)

At the recommended contour level, 83% of all backbone atoms, 85% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.065) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.8460	0.5990
1	0.8890	0.6060
2	0.8720	0.6030
3	0.8770	0.6030
4	0.8940	0.6070
5	0.9040	0.6110
6	0.7850	0.5640
7	0.9180	0.6160
8	0.8880	0.6020
А	0.8650	0.6180
В	0.8470	0.6060
С	0.8130	0.5930
D	0.6280	0.5280
E	0.7480	0.5770
F	0.6960	0.5560
G	0.7880	0.5850
Н	0.8080	0.5990
I	0.8120	0.5880
J	0.8240	0.6040
K	0.7180	0.5670
L	0.8690	0.6140
М	0.9130	0.6250
Ν	0.6680	0.5660
Ο	0.7540	0.5720
Р	0.8610	0.6080
Q	0.7430	0.5830
R	0.7870	0.5890
S	0.7540	0.5800
T	0.8660	0.6140
U	0.6520	0.5300
V	0.7960	0.5880
W	0.8420	0.6010
X	0.8400	0.5990
Y	0.7640	0.5850
Z	0.7880	0.5770

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
a	0.7960	0.5870
b	0.8160	0.6050
С	0.8080	0.5960
d	0.7180	0.5780
е	0.7880	0.5880
f	0.8350	0.5970
g	0.8710	0.6160
h	0.7770	0.5850
i	0.7760	0.5800
j	0.9100	0.6240
k	0.7420	0.5850
1	0.8550	0.6110
m	0.7840	0.5930
n	0.4330	0.4860
0	0.8220	0.6070
р	0.8370	0.6050

