

Full wwPDB X-ray Structure Validation Report (i)

Dec 2, 2024 – 07:32 PM EST

PDB ID	:	4Q29
Title	:	Ensemble Refinement of plu4264 protein from Photorhabdus luminescens
Authors	:	Wang, F.; Michalska, K.; Li, H.; Jedrzejczak, R.; Babnigg, G.; Bingman,
		C.A.; Yennamalli, R.; Weerth, S.; Miller, M.D.; Thomas, M.G.; Joachimiak,
		A.; Phillips Jr., G.N.; Enzyme Discovery for Natural Product Biosynthesis
		(NatPro); Midwest Center for Structural Genomics (MCSG)
Deposited on	:	2014-04-07
Resolution	:	1.35 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.21
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.004 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.35 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	Similar resolution				
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$				
R _{free}	164625	1904 (1.36-1.32)				
Ramachandran outliers	177936	2016 (1.36-1.32)				
Sidechain outliers	177891	2016 (1.36-1.32)				
RSRZ outliers	164620	1903 (1.36-1.32)				

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain		
			63%		
1	1-A	128	85%	9%	• 5%
			53%		
1	1-B	128	84%	9%	• 6%
1	10-A	128	79%	14%	• 5%
1	10-B	128	82%	9% •	6%
1	11-A	128	78%	13%	• 5%
1	11-B	128	84%	9%	• 6%

Mol	Chain	Length	Quality of chain		
1	12-A	128	88%	69	% • 5%
1	12-B	128	84%	8%	• 6%
1	13-A	128	84%	11%	5%
1	13-B	128	88%	5%	• 6%
1	14-A	128	77%	11% 5%	• • 5%
1	14-B	128	81%	11%	• 6%
1	15-A	128	80%	13%	• 5%
1	15-B	128	80%	14%	6%
1	16-A	128	88%	7'	% 5%
1	16-B	128	80%	12%	• 6%
1	17-A	128	80%	12%	•• 5%
1	17-B	128	84%	8%	• 6%
1	18-A	128	82%	12%	• 5%
1	18-B	128	84%	8%	• 6%
1	19-A	128	83%	12%	5%
1	19-B	128	78%	14%	• 6%
1	2-A	128	80%	12%	• 5%
1	2-B	128	84%	9%	6%
1	20-A	128	78%	16%	• 5%
1	20-B	128	80%	12%	• 6%
1	3-A	128	83%	9%	•• 5%
1	3-B	128	80%	13%	• 6%
1	4-A	128	83%	10%	• 5%
1	4-B	128	77%	15%	•• 6%
1	5-A	128	80%	14%	5%

Conti	nued fron	<i>i</i> previous	page	
Mol	Chain	Length	Quality of chain	
1	5-B	128	84%	9% •• 6%
1	6-A	128	80%	12% • 5%
1	6-B	128	84%	7% • 6%
1	7-A	128	86%	9% 5%
1	7-B	128	83%	10% • 6%
1	8-A	128	84%	11% 5%
1	8-B	128	84%	9% • 6%
1	9-A	128	80%	14% • 5%
1	9-B	128	83%	9% • 6%

Contin d fr

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 94724 atoms, of which 44279 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues			Ato	ms				ZeroOcc	AltConf	Trace
1	1_A	191	Total	С	Н	Ν	0	\mathbf{S}	Se	0	22	0
	1 11	121	2195	718	1079	188	206	1	3	0		0
1	2-A	121	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
		121	2195	718	1079	188	206	1	3	Ŭ		0
1	3-A	121	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
	0.11	121	2195	718	1079	188	206	1	3	Ŭ		
1	4-A	121	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
			2195	718	1079	188	206	1	3	Ŭ		Ŭ
1	5-A	121	Total	С	Η	Ν	Ο	\mathbf{S}	Se	Se 0	22	0
	0.11		2195	718	1079	188	206	1	3	Ŭ		
1	6-A	121	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
	0 11	121	2195	718	1079	188	206	1	3	0		0
1	7-A	121	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
	1 11	121	2195	718	1079	188	206	1	3			
1	8-A	121	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
	1 0-A	121	2195	718	1079	188	206	1	3	0		0
1	9- A	121	Total	С	Η	Ν	Ο	\mathbf{S}	Se	$\begin{array}{c} \operatorname{Se} \\ 3 \end{array} 0 \end{array}$	22	0
	5 11		2195	718	1079	188	206	1	3			0
1	10-A	191	Total	С	Η	Ν	Ο	\mathbf{S}	Se 0	22	0	
	10 11	121	2195	718	1079	188	206	1	3	0		0
1	11_A	191	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
	11 74	121	2195	718	1079	188	206	1	3	0		0
1	12-A	191	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
	12 11	121	2195	718	1079	188	206	1	3	0		0
1	13-A	191	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
1	10-11	121	2195	718	1079	188	206	1	3	0		0
1	1 14-A	191	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	99	0
1		121	2195	718	1079	188	206	1	3	0	22	0
1	1 15-A	191	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
		141	2195	718	1079	188	206	1	3	0	22	0
1	16 A	191	Total	С	Н	Ν	Ο	S	Se	0	<u> </u>	0
	10-A	141	2195	718	1079	188	206	1	3	U		

• Molecule 1 is a protein called plu4264 protein.

Mol	Chain	Residues			Atc	oms				ZeroOcc	AltConf	Trace
1	17 Δ	191	Total	С	Н	Ν	0	S	Se	0	<u> </u>	0
	17-7	121	2195	718	1079	188	206	1	3	0	22	0
1	18-A	121	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
	10 11	121	2195	718	1079	188	206	1	3	0		
1	19-A	121	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	22	0
-	10 11		2195	718	1079	188	206	1	3	Ŭ		
1	20-A	121	Total	С	Н	Ν	0	S	Se	0	21	0
			2194	718	1078	188	206	1	3			-
1	1-B	120	Total	C	H	N	0	S	Se	0	33	0
			2353 Tetel	$\frac{(1)}{C}$	1135	209 N	230	1 0	3			
1	2-B	120		775	П 1195	N 200	0 920	5 1	Se	0	33	0
			Z505 Total	$\frac{110}{C}$	<u>1155</u> п	209 N	230		3 <u></u>			
1	3-B	120	10tai 2353	775	п 1135	1N 200	230	0 1	े उ	0	33	0
			Z000 Total	<u> </u>	H H	203 N	230	$\frac{1}{S}$	Se			
1	4-B	120	2353	775	1135	209	230	1	3	0	33	0
			Total	$\frac{110}{C}$	H	<u>200</u> N	200	S	Se			
1	5-B 120	120	2353	775	1135	209	230	1	3	0	33	0
			Total	<u>C</u>	H	<u> </u>	0	S	Se			
1	6-B	120	2353	775	1135	209	230	1	3	0	33	0
-	7 D	100	Total	С	Н	Ν	0	S	Se		20	0
	7-В	120	2353	775	1135	209	230	1	3	0	33	0
1	οD	100	Total	С	Η	Ν	0	S	Se		0	
	8-В	120	2353	775	1135	209	230	1	3	0	აა	0
1	0 P	190	Total	С	Н	Ν	0	S	Se	0	33	0
	9-D	120	2353	775	1135	209	230	1	3	0	- <u>-</u>	0
1	10 B	120	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	33	0
1	10-D	120	2353	775	1135	209	230	1	3	0		0
1	11-B	120	Total	С	Η	Ν	Ο	\mathbf{S}	Se	0	33	0
		120	2353	775	1135	209	230	1	3	Ŭ		
1	12-B	120	Total	С	Н	Ν	0	S	Se	0	33	0
			2353	775	1135	209	230	1	3			
1	13-B	120	Total	C	H	N	0	S	Se	0	33	0
			2353	<u>775</u>	1135	209	230	1	3			
1	1 14-B	120	Total	C	H	N	0	S	Se	0	33	0
	1 15-B 120		2353 Tetel	$\frac{(1)}{C}$	1135	209 N	230	1	3			
1		120	10tal 9959	U 775	П 1195	N 200	0 220	5 1	se 2	0	33	0
	1 16-B 120	Z000 Total	$\frac{110}{C}$	п 1199	209 N	230		3 <u>S</u> c				
1		6-B 120	10tal 2252	0 775	11 1125	1N 200	0 220	3 1	ુ ર	0	33	0
			 	<u> </u>	н 1199	209 N	<u>230</u>	$\frac{1}{S}$	Se			
1	17-B	120	2252	0 775	11 1125	1N 200	23U	ວ 1	3 26	0	33	0
		2000	110	1100	200	200	T	0				

Mol	Chain	Residues			Ato	\mathbf{ms}				ZeroOcc	AltConf	Trace
1	18 P	120	Total	С	Η	Ν	0	S	Se	0	33	0
	1 18-Б	120	2353	775	1135	209	230	1	3			
1	10 P	120	Total	С	Η	Ν	0	S	Se	0	33	0
	19-D		2353	775	1135	209	230	1	3			
1	1 90 D	100	Total	С	Η	Ν	0	S	Se	0	22	0
1 20-В	120	2353	775	1135	209	230	1	3	0		U	

Continued from previous page...

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	123	HIS	-	expression tag	UNP Q7MZL9
А	124	HIS	-	expression tag	UNP Q7MZL9
А	125	HIS	-	expression tag	UNP Q7MZL9
А	126	HIS	-	expression tag	UNP Q7MZL9
А	127	HIS	-	expression tag	UNP Q7MZL9
А	128	HIS	-	expression tag	UNP Q7MZL9
В	123	HIS	-	expression tag	UNP Q7MZL9
В	124	HIS	-	expression tag	UNP Q7MZL9
В	125	HIS	-	expression tag	UNP Q7MZL9
В	126	HIS	-	expression tag	UNP Q7MZL9
B	127	HIS	-	expression tag	UNP Q7MZL9
В	128	HIS	-	expression tag	UNP Q7MZL9

• Molecule 2 is NICKEL (II) ION (three-letter code: NI) (formula: Ni).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	1-A	1	Total Ni 1 1	0	0
2	2-A	1	Total Ni 1 1	0	0
2	3-A	1	Total Ni 1 1	0	0
2	4-A	1	Total Ni 1 1	0	0
2	5-A	1	Total Ni 1 1	0	0
2	6-A	1	Total Ni 1 1	0	0
2	7-A	1	Total Ni 1 1	0	0
2	8-A	1	Total Ni 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	9-A	1	Total Ni 1 1	0	0
2	10-A	1	Total Ni 1 1	0	0
2	11-A	1	Total Ni 1 1	0	0
2	12-A	1	Total Ni 1 1	0	0
2	13-A	1	Total Ni 1 1	0	0
2	14-A	1	Total Ni 1 1	0	0
2	15-A	1	Total Ni 1 1	0	0
2	16-A	1	Total Ni 1 1	0	0
2	17-A	1	Total Ni 1 1	0	0
2	18-A	1	Total Ni 1 1	0	0
2	19-A	1	Total Ni 1 1	0	0
2	20-A	1	Total Ni 1 1	0	0
2	1-B	1	Total Ni 1 1	0	0
2	2-B	1	Total Ni 1 1	0	0
2	3-B	1	Total Ni 1 1	0	0
2	4-B	1	Total Ni 1 1	0	0
2	5-B	1	Total Ni 1 1	0	0
2	6-B	1	Total Ni 1 1	0	0
2	7-B	1	Total Ni 1 1	0	0
2	8-B	1	Total Ni 1 1	0	0
2	9-B	1	Total Ni 1 1	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	10-B	1	Total Ni 1 1	0	0
2	11-B	1	Total Ni 1 1	0	0
2	12-B	1	Total Ni 1 1	0	0
2	13-B	1	Total Ni 1 1	0	0
2	14-B	1	Total Ni 1 1	0	0
2	15-B	1	Total Ni 1 1	0	0
2	16-B	1	Total Ni 1 1	0	0
2	17-B	1	Total Ni 1 1	0	0
2	18-B	1	Total Ni 1 1	0	0
2	19-B	1	Total Ni 1 1	0	0
2	20-B	1	Total Ni 1 1	0	0

Continued from previous page...

• Molecule 3 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	1-A	1	Total Na 1 1	0	0
3	2-A	1	Total Na 1 1	0	0
3	3-A	1	Total Na 1 1	0	0
3	4-A	1	Total Na 1 1	0	0
3	5-A	1	Total Na 1 1	0	0
3	6-A	1	Total Na 1 1	0	0
3	7-A	1	Total Na 1 1	0	0
3	8-A	1	Total Na 1 1	0	0
Continued on next page					

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	9-A	1	Total Na 1 1	0	0
3	10-A	1	Total Na 1 1	0	0
3	11-A	1	Total Na 1 1	0	0
3	12-A	1	Total Na 1 1	0	0
3	13-A	1	Total Na 1 1	0	0
3	14-A	1	Total Na 1 1	0	0
3	15-A	1	Total Na 1 1	0	0
3	16-A	1	Total Na 1 1	0	0
3	17-A	1	Total Na 1 1	0	0
3	18-A	1	Total Na 1 1	0	0
3	19-A	1	Total Na 1 1	0	0
3	20-A	1	Total Na 1 1	0	0

Continued from previous page...

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	1-A	101	Total O 101 101	0	0
4	2-A	95	$\begin{array}{cc} \text{Total} & \text{O} \\ 95 & 95 \end{array}$	0	0
4	3-A	92	Total O 92 92	0	0
4	4-A	101	Total O 101 101	0	0
4	5-A	87	Total O 87 87	0	0
4	6-A	100	Total O 100 100	0	0
4	7-A	85	Total O 85 85	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	8-A	90	Total O 90 90	0	0
4	9-A	86	Total O 86 86	0	0
4	10-A	94	Total O 94 94	0	0
4	11-A	86	Total O 86 86	0	0
4	12-A	108	Total O 108 108	0	0
4	13-A	88	Total O 88 88	0	0
4	14-A	91	Total O 91 91	0	0
4	15-A	88	Total O 88 88	0	0
4	16-A	97	Total O 97 97	0	0
4	17-A	97	Total O 97 97	0	0
4	18-A	98	Total O 98 98	0	0
4	19-A	101	Total O 101 101	0	0
4	20-A	85	Total O 85 85	0	0
4	1-B	97	Total O 97 97	0	0
4	2-B	82	TotalO8282	0	0
4	3-B	91	Total O 91 91	0	0
4	4-B	90	Total O 90 90	0	0
4	5-B	95	Total O 95 95	0	0
4	6-B	85	Total O 85 85	0	0
4	7-B	84	Total O 84 84	0	0
4	8-B	99	Total O 99 99	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	9-B	92	Total O 92 92	0	0
4	10-B	95	Total O 95 95	0	0
4	11-B	90	Total O 90 90	0	0
4	12-B	92	Total O 92 92	0	0
4	13-B	81	Total O 81 81	0	0
4	14-B	87	Total O 87 87	0	0
4	15-B	100	Total O 100 100	0	0
4	16-B	95	Total O 95 95	0	0
4	17-B	102	Total O 102 102	0	0
4	18-B	88	Total O 88 88	0	0
4	19-B	91	Total O 91 91	0	0
4	20-B	99	Total O 99 99	0	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain 3-B: 80%	13%	• 6%
MSE MSE 812 812 812 814 817 811 811 811 811 811 811 811 811 811		
• Molecule 1: plu4264 protein		
Chain 4-A: 83%	10%	• 5%
MSE MSE 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15		
• Molecule 1: plu4264 protein		
Chain 4-B: 77%	15%	•• 6%
MSE MSE 812 812 812 812 812 847 848 848 848 848 848 848 848 848 848		
• Molecule 1: plu4264 protein		
Chain 5-A: 80%	14%	5%
MSE M2 14 14 14 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16		
• Molecule 1: plu4264 protein		
Chain 5-B: 84%	9%	•• 6%
MSE K7 K7 K7 K7 K17 K17 K17 K12 K12 K18 K18 K18 K18 K18 K18 K18 K18 K18 K18		
• Molecule 1: plu4264 protein		
Chain 6-A: 80%	12%	• 5%
MSE MSE 14 14 14 14 14 14 14 14 14 14 14 14 11 11		
• Molecule 1: plu4264 protein		
Chain 6-B: 84%	7%	• 6%

Chain 7-A:	86%	9%	5%
MSE N3 K7 K7 K7 K7 R23 R23 R23 R46 H52 H52 H52 H52 H52	E98 HIS HIS HIS HIS HIS HIS HIS HIS		
• Molecule 1: plu4264	protein		
Chain 7-B:	83%	10%	6%
MSE M3 14 14 14 812 812 812 814 814 817 817 817 817 817 817 817 817 817 817	N70 D87 D87 D87 B111 H115 H115 H115 H115 H115 H115 H115		
• Molecule 1: plu4264	protein		
Chain 8-A:	84%	11%	5%
MSE MSE N3 14 14 K7 K7 K46 K46 K46 H50 H50 N52 N52 N52	R68 R68 HIS HIS HIS HIS HIS HIS		
• Molecule 1: plu4264	protein		
Chain 8-B:	84%	9%	• 6%
MSE M2 16 16 16 16 18 185 185 185 185 185 185 185 185 185	H117 H117 H117 H118 H118 H113 H113 H113 H113 H113 H113		
• Molecule 1: plu4264	protein		
Chain 9-A:	80%	14%	• 5%
MSE M3 N3 N3 N3 N3 N5 N5 N5 N5 N5 N5	166 167 167 168 171 169 171 169 171 169 171 169 171 171 171 171 171 171 171 171 171 17		
• Molecule 1: plu4264	protein		
Chain 9-B:	83%	9% •	6%
MSE M2 M8 M8 H50 S51 Q62 D73 D73 Q97 Q97	E98 E110 E110 E110 ASP HIS HIS HIS HIS HIS		
• Molecule 1: plu4264	protein		
Chain 10-A:	79%	14%	• 5%

Chain 10-B:	82%	9% • 6%
MSE N3 S12 C13 C13 C13 C13 C13 C13 C13 C13 C13 C13	L57 L57 167 199 1104 H115 H115 H115 H115 H115 H115 H115 H11	
• Molecule 1: plu4264 pro	otein	
Chain 11-A:	78%	13% • 5%
MSE M3E 14 14 131 14 145 146 146 146 146 146 146 146 146 146 146	E64 L57 L57 T17 T17 T17 T17 T117 P012 P113 H15 H15 H15 H15 H15 H15 H15	
• Molecule 1: plu4264 pro	otein	
Chain 11-B:	84%	9% • 6%
MSE 011 11 11 11 11 11 11 11 11 11 11 11 11	DB7 888 888 888 M114 H115 H115 H115 H115 H115 H115 H115	
• Molecule 1: plu4264 pro	otein	
Chain 12-A:	88%	6% • 5%
NASE M49 H60 H60 H68 E89 E89 E89 E89 E89 E89 E89 E89 E89 E8	HLS HLS HLS HLS HLS HLS HLS	
• Molecule 1: plu4264 pro	otein	
Chain 12-B:	84%	8% • 6%
MSS M2 R6 H62 H62 D71 183 193 H90	E88 D99 E110 E120 E120 H15 H15 H15 H15 H15 H15 H15 H15 H15	
• Molecule 1: plu4264 pro	otein	
Chain 13-A:	84%	11% 5%
MSE N2 K7 K7 K23 R23 N3 N2 R3 N3 N6 A55	166 110 1118 1118 1118 1118 1118 1118 11	
• Molecule 1: plu4264 pro	otein	
Chain 13-B:	88%	5% • 6%

Chain 14-A:	77%	11% 5% • 5%
M2 E16 717 7145 7145 7145 746 746 746 746 751 851 851 851 851 851 851 851 851 851 8	887 888 888 888 889 897 897 897 897 8118 8118	
• Molecule 1: plu4264 p	rotein	
Chain 14-B:	81%	11% • 6%
MSE M2 14 14 15 14 16 85 145 851 185 851 185 851 186 87 187	ны ны 1104 1114 1116 1116 1116 1116 1116 1116	
• Molecule 1: plu4264 p	rotein	
Chain 15-A:	80%	13% • 5%
MSE M3 812 812 812 145 145 851 851 855 855 855 855 855	К/78 К/78 1182 888 888 888 899 1111 1111 1111 11	
• Molecule 1: plu4264 p	rotein	
Chain 15-B:	80%	14% 6%
MSE M2 812 812 812 815 815 815 815 815 815 815 815 815 815	<mark>ИТО 1911 - 110 1111 - 110 1113 - 110 1114 1114 1115 1110 1114 1115 1110 1114 1115 1110 1110</mark>	
• Molecule 1: plu4264 p	rotein	
Chain 16-A:	88%	7% 5%
MSE M2 8 8 8 8 8 8 8 8 8 8 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1	D122 HIS HIS HIS HIS HIS HIS	
• Molecule 1: plu4264 p	rotein	
Chain 16-B:	80%	12% • 6%
MSE M3 14 14 14 812 812 812 851 851 851 851	462 462 468 468 468 468 468 468 468 468 457 41119 41119 41119 41119 41115 41119 41115 41115 41115 41115 41119 411119 411119 411119 411119 411111111	
• Molecule 1: plu4264 p	rotein	
Chain 17-A:	80%	12% •• 5%

Chain 17-B:	84%	8%	• 6%
MASE 119 119 119 119 110 110 110 110 110	[11] [12] [12] [12] [12] [12] [12] [12]		
• Molecule 1: plu4264 protein			
Chain 18-A:	82%	12%	• 5%
MSE M3 M13 E16 E16 K46 K46 K49 M53 N53 R68 R68 R68 R68 R68 R68	N114 117 117 117 118 118 118 119 112 112 112 112 112 112 112 112 112		
• Molecule 1: plu4264 protein			
Chain 18-B:	84%	8%	• 6%
MSE M32 14 15 16 812 812 812 16 17 07 11 09 09 09 1110	0121 ASP HTS HTS HTS HTS HTS HTS HTS		
• Molecule 1: plu4264 protein			
Chain 19-A:	83%	12%	5%
MSE MSE M31 M31 M31 M31 M31 M53 M53 M53 M53 M53 M53 M53 M71 M71 M71 M71 M78	937 1117 1117 1117 1122 1122 1122 1128 1128		
• Molecule 1: plu4264 protein			
Chain 19-B:	78%	14%	• 6%
MSE M3 14 14 14 14 14 14 14 14 14 14 15 15 167 167	177 177 187 196 196 1117 1117 1117 1117 1117 1118 1118 111		
• Molecule 1: plu4264 protein			
Chain 20-A:	78%	16%	• 5%
MSE MSE K7 K7 K7 118 D20 D20 D20 D20 C4 R23 R23 R23 R23 R23 R46 R49 R49 R49 R49 R49 R49 R68	288 888 888 888 888 888 888 888 888 888		
• Molecule 1: plu4264 protein			
Chain 20-B:	80%	12% •	6%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 2 2 21	Depositor
Cell constants	55.74Å 147.69Å 83.84Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$Resolution(\AA)$	24.90 - 1.35	Depositor
Resolution (A)	24.90 - 1.35	EDS
% Data completeness	99.5 (24.90-1.35)	Depositor
(in resolution range)	99.5 (24.90-1.35)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.30 (at 1.35 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.8.4_1496	Depositor
P. P.	0.126 , 0.155	Depositor
n, n_{free}	0.161 , 0.183	DCC
R_{free} test set	1111 reflections (1.46%)	wwPDB-VP
Wilson B-factor $(Å^2)$	13.4	Xtriage
Anisotropy	0.734	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.02 , 31.7	EDS
L-test for $twinning^2$	$ < L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.90	EDS
Total number of atoms	94724	wwPDB-VP
Average B, all atoms $(Å^2)$	17.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 72.55 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 2.1574e-06. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NA, NI

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1-A	0.84	0/1237	1.05	7/1679~(0.4%)	
1	1-B	0.85	1/1338~(0.1%)	0.90	0/1816	
1	2-A	0.92	1/1237~(0.1%)	1.17	8/1679~(0.5%)	
1	2-B	0.78	0/1338	0.99	3/1816~(0.2%)	
1	3-A	0.85	1/1237~(0.1%)	1.09	7/1679~(0.4%)	
1	3-B	0.84	0/1338	1.04	7/1816~(0.4%)	
1	4-A	0.90	1/1237~(0.1%)	1.08	7/1679~(0.4%)	
1	4-B	0.94	2/1338~(0.1%)	1.05	5/1816~(0.3%)	
1	5-A	1.27	4/1237~(0.3%)	1.34	11/1679~(0.7%)	
1	5-B	1.19	5/1338~(0.4%)	1.18	7/1816~(0.4%)	
1	6-A	0.89	2/1237~(0.2%)	1.08	5/1679~(0.3%)	
1	6-B	0.85	2/1338~(0.1%)	1.10	6/1816~(0.3%)	
1	7-A	0.88	1/1237~(0.1%)	1.06	1/1679~(0.1%)	
1	7-B	0.81	0/1338	0.96	5/1816~(0.3%)	
1	8-A	0.84	0/1237	1.04	3/1679~(0.2%)	
1	8-B	0.82	2/1338~(0.1%)	0.99	2/1816~(0.1%)	
1	9-A	0.90	2/1237~(0.2%)	1.12	6/1679~(0.4%)	
1	9-B	0.81	2/1338~(0.1%)	1.08	4/1816~(0.2%)	
1	10-A	1.21	4/1237~(0.3%)	1.24	8/1679~(0.5%)	
1	10-B	1.23	4/1338~(0.3%)	1.17	7/1816~(0.4%)	
1	11-A	0.88	0/1237	1.10	4/1679~(0.2%)	
1	11 - B	0.85	1/1338~(0.1%)	1.08	3/1816~(0.2%)	
1	12-A	0.93	3/1237~(0.2%)	1.09	6/1679~(0.4%)	
1	12-B	0.85	1/1338~(0.1%)	1.05	5/1816~(0.3%)	
1	13-A	0.86	1/1237~(0.1%)	1.03	6/1679~(0.4%)	
1	13-B	0.84	1/1338~(0.1%)	0.94	1/1816~(0.1%)	
1	14-A	1.12	5/1237~(0.4%)	1.25	10/1679~(0.6%)	
1	14-B	0.98	1/1338~(0.1%)	1.20	6/1816~(0.3%)	
1	15-A	1.32	3/1237~(0.2%)	1.26	7/1679~(0.4%)	
1	15-B	1.13	1/1338~(0.1%)	1.11	5/1816~(0.3%)	
1	16-A	0.85	1/1237~(0.1%)	1.01	1/1679~(0.1%)	
1	16-B	0.86	1/1338~(0.1%)	1.07	3/1816~(0.2%)	

4	Q29
-	Q

Mol	Chain	Bo	ond lengths	Bond angles		
MOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	17-A	0.89	1/1237~(0.1%)	1.12	12/1679~(0.7%)	
1	17-B	0.87	1/1338~(0.1%)	1.11	4/1816~(0.2%)	
1	18-A	0.86	1/1237~(0.1%)	1.02	3/1679~(0.2%)	
1	18-B	0.89	2/1338~(0.1%)	1.08	4/1816~(0.2%)	
1	19-A	0.93	1/1237~(0.1%)	1.14	7/1679~(0.4%)	
1	19-B	0.94	3/1338~(0.2%)	1.10	5/1816~(0.3%)	
1	20-A	1.28	3/1229~(0.2%)	1.29	8/1668~(0.5%)	
1	20-B	1.19	4/1338~(0.3%)	1.21	9/1816~(0.5%)	
All	All	0.96	69/51492~(0.1%)	1.10	218/69889~(0.3%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	1-B	0	1
1	4-A	0	1
1	5-A	0	1
1	6-B	0	1
1	9-A	0	1
1	9-B	0	1
1	11-B	0	1
1	12-B	0	1
1	14-A	0	4
1	14-B	0	1
1	17-A	0	1
1	18-A	0	1
1	20-A	0	2
All	All	0	17

All (69) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
1	4-B	98	GLU	CG-CD	12.88	1.71	1.51
1	15-A	45	THR	CB-CG2	-12.85	1.09	1.52
1	20-A	98	GLU	CG-CD	-12.32	1.33	1.51
1	12-A	98	GLU	CD-OE2	11.86	1.38	1.25
1	20-A	98	GLU	CD-OE2	-11.31	1.13	1.25
1	19-B	13	MSE	CB-CG	10.34	1.83	1.52
1	9-B	62	GLN	CB-CG	-10.20	1.25	1.52
1	20-B	12	SER	CB-OG	10.12	1.55	1.42

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
1	4-B	98	GLU	CB-CG	9.84	1.70	1.52
1	5-A	54	GLU	CD-OE2	9.72	1.36	1.25
1	18-B	12	SER	CB-OG	9.41	1.54	1.42
1	18-B	12	SER	CA-CB	9.37	1.67	1.52
1	11-B	11	ASP	CG-OD2	8.96	1.46	1.25
1	5-B	23	ARG	CZ-NH2	-8.61	1.21	1.33
1	5-B	17[A]	TYR	CD2-CE2	-8.40	1.26	1.39
1	5-B	17[B]	TYR	CD2-CE2	-8.40	1.26	1.39
1	16-A	98	GLU	CG-CD	-8.31	1.39	1.51
1	9-A	120	GLU	CB-CG	8.23	1.67	1.52
1	12-A	98	GLU	CB-CG	7.94	1.67	1.52
1	15-A	89	GLU	N-CA	7.68	1.61	1.46
1	10-B	3	ASN	CB-CG	7.65	1.68	1.51
1	1-B	62	GLN	CG-CD	-7.36	1.34	1.51
1	8-B	62	GLN	CG-CD	7.34	1.68	1.51
1	19 - B	44	GLU	CB-CG	7.29	1.66	1.52
1	2-A	54	GLU	CB-CG	7.17	1.65	1.52
1	10-B	44	GLU	CG-CD	-7.12	1.41	1.51
1	16-B	12	SER	CA-CB	7.03	1.63	1.52
1	14-A	17	TYR	CD2-CE2	6.90	1.49	1.39
1	10-A	97[A]	GLN	CB-CG	6.71	1.70	1.52
1	10-A	97[B]	GLN	CB-CG	6.71	1.70	1.52
1	17-A	44	GLU	CB-CG	-6.68	1.39	1.52
1	20-B	12	SER	CA-CB	6.64	1.62	1.52
1	5-A	44	GLU	CD-OE2	6.62	1.32	1.25
1	10-B	23	ARG	CG-CD	6.55	1.68	1.51
1	15-A	28	GLU	CB-CG	6.54	1.64	1.52
1	3-A	45	THR	CB-CG2	-6.26	1.31	1.52
1	20-A	17	TYR	CE2-CZ	-6.21	1.30	1.38
1	5-B	88	SER	N-CA	6.18	1.58	1.46
1	5-B	23	ARG	CG-CD	6.17	1.67	1.51
1	12-A	98	GLU	CG-CD	6.10	1.61	1.51
1	9-B	8	MSE	CB-CG	5.82	1.70	1.52
1	17-B	76	VAL	CB-CG1	5.81	1.65	1.52
1	14-A	120	GLU	CB-CG	5.77	1.63	1.52
1	12-B	98	GLU	CG-CD	5.75	1.60	1.51
1	8-B	62	GLN	CB-CG	5.72	1.68	1.52
1	19-A	117	THR	CB-CG2	5.67	1.71	1.52
1	14-A	47	SER	CA-C	5.65	1.67	1.52
1	6-B	62	GLN	CG-CD	5.63	1.64	1.51
1	18-A	98	GLU	CG-CD	-5.58	1.43	1.51
1	14-A	89	GLU	CB-CG	5.51	1.62	1.52

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
1	15-B	98	GLU	CD-OE2	5.49	1.31	1.25
1	7-A	98	GLU	CB-CG	5.44	1.62	1.52
1	5-A	54	GLU	CG-CD	5.38	1.60	1.51
1	4-A	46	LYS	CB-CG	5.36	1.67	1.52
1	10-A	98	GLU	CG-CD	-5.35	1.44	1.51
1	6-B	44	GLU	CD-OE1	5.27	1.31	1.25
1	13-A	16	GLU	CB-CG	-5.22	1.42	1.52
1	5-A	87	ASP	CB-CG	5.21	1.62	1.51
1	9-A	45	THR	CB-CG2	-5.21	1.35	1.52
1	10-A	89	GLU	CB-CG	5.21	1.62	1.52
1	13-B	98	GLU	CB-CG	5.18	1.61	1.52
1	10-B	39	CYS	CB-SG	-5.16	1.73	1.81
1	14-A	98	GLU	CG-CD	5.15	1.59	1.51
1	14 - B	110	GLU	CG-CD	5.12	1.59	1.51
1	20-B	17[A]	TYR	CD2-CE2	-5.10	1.31	1.39
1	20-B	17[B]	TYR	CD2-CE2	-5.10	1.31	1.39
1	6-A	31	ASN	CB-CG	-5.09	1.39	1.51
1	19-B	44	GLU	CG-CD	5.09	1.59	1.51
1	6-A	12	SER	CA-CB	5.01	1.60	1.52

All (218) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	11-B	11	ASP	CB-CG-OD1	-16.17	103.75	118.30
1	18-B	6	ARG	NE-CZ-NH1	-15.12	112.74	120.30
1	6-B	57	LEU	CB-CG-CD2	-11.07	92.17	111.00
1	17-B	99	ASP	CB-CG-OD2	10.49	127.74	118.30
1	6-B	57	LEU	CB-CG-CD1	10.18	128.30	111.00
1	5-A	23	ARG	NE-CZ-NH2	-10.10	115.25	120.30
1	20-B	118	ARG	NE-CZ-NH2	-9.95	115.33	120.30
1	14-B	118	ARG	NE-CZ-NH2	-9.74	115.43	120.30
1	2-A	48	PHE	CB-CG-CD1	-9.55	114.11	120.80
1	11 - B	57	LEU	CB-CG-CD1	9.44	127.04	111.00
1	14 - B	118	ARG	NE-CZ-NH1	9.41	125.00	120.30
1	18-B	6	ARG	NE-CZ-NH2	9.07	124.84	120.30
1	12-A	2	MSE	CG-SE-CE	-9.06	78.97	98.90
1	14 - B	6	ARG	NE-CZ-NH1	-9.04	115.78	120.30
1	2-A	48	PHE	CB-CG-CD2	8.91	127.04	120.80
1	11 - B	11	ASP	CB-CG-OD2	8.89	126.30	118.30
1	8-B	2	MSE	CB-CG-SE	-8.51	87.16	112.70
1	15-A	68	ARG	NE-CZ-NH2	-8.47	116.06	120.30
1	17-A	30	LEU	CA-CB-CG	8.46	134.75	115.30

4Q29
- ~ ~ - v

Mol	Chain	Res	Type	Atoms	Ζ	Observed(°)	Ideal(°)
1	20-A	108	ASP	CB-CG-OD1	8.23	125.71	118.30
1	5-A	23	ARG	NE-CZ-NH1	8.21	124.41	120.30
1	4-B	97	GLN	CA-CB-CG	8.18	131.39	113.40
1	19-B	13	MSE	CA-CB-CG	8.14	127.14	113.30
1	5-B	23	ARG	NE-CZ-NH1	8.09	124.34	120.30
1	15-A	45	THR	N-CA-CB	-8.05	95.01	110.30
1	19-B	6	ARG	NE-CZ-NH1	7.65	124.12	120.30
1	15-A	20	ASP	CB-CG-OD1	7.60	125.14	118.30
1	10-A	20	ASP	CB-CG-OD1	7.50	125.05	118.30
1	17-A	52	HIS	CB-CA-C	-7.43	95.53	110.40
1	15-A	89	GLU	N-CA-CB	7.41	123.93	110.60
1	5-A	20	ASP	CB-CG-OD1	7.33	124.89	118.30
1	16-B	31	ASN	CB-CA-C	-7.31	95.79	110.40
1	5-B	23	ARG	NE-CZ-NH2	-7.30	116.65	120.30
1	17-A	9	ASP	CB-CG-OD1	7.28	124.86	118.30
1	3-B	57	LEU	CA-CB-CG	7.27	132.03	115.30
1	14-A	49	ARG	NE-CZ-NH1	-7.24	116.68	120.30
1	19-A	78	LYS	CD-CE-NZ	7.21	128.29	111.70
1	3-B	57	LEU	CB-CG-CD1	-7.17	98.81	111.00
1	12-B	57	LEU	CA-CB-CG	7.16	131.78	115.30
1	10-B	44	GLU	OE1-CD-OE2	7.16	131.89	123.30
1	3-B	23	ARG	NE-CZ-NH2	-7.14	116.73	120.30
1	17-A	9	ASP	CB-CG-OD2	-7.05	111.96	118.30
1	9-B	62	GLN	CB-CA-C	-7.04	96.31	110.40
1	14-B	68	ARG	NE-CZ-NH2	-7.03	116.79	120.30
1	20-B	20	ASP	CB-CG-OD1	7.01	124.61	118.30
1	2-A	108	ASP	CB-CG-OD1	7.00	124.60	118.30
1	17-B	23	ARG	NE-CZ-NH2	-6.96	116.82	120.30
1	20-A	68	ARG	NE-CZ-NH2	-6.93	116.83	120.30
1	3-B	68	ARG	NE-CZ-NH2	-6.93	116.83	120.30
1	10-A	108	ASP	CB-CG-OD1	6.86	124.48	118.30
1	20-A	23	ARG	NE-CZ-NH2	-6.84	116.88	120.30
1	5-B	20	ASP	CB-CG-OD1	6.84	124.45	118.30
1	1-A	118	ARG	NE-CZ-NH1	6.82	123.71	120.30
1	10-A	23	ARG	NE-CZ-NH2	-6.76	116.92	120.30
1	7-B	7	LYS	CD-CE-NZ	-6.72	96.24	111.70
1	14-A	118	ARG	NE-CZ-NH2	6.70	123.65	120.30
1	16-B	68	ARG	NE-CZ-NH2	-6.70	116.95	120.30
1	12-A	98	GLU	CG-CD-OE1	-6.65	105.01	118.30
1	15-B	68	ARG	NE-CZ-NH2	-6.64	116.98	120.30
1	6-B	118	ARG	NE-CZ-NH2	-6.64	116.98	120.30
1	20-B	57	LEU	CB-CG-CD2	-6.63	99.73	111.00

4Q29
- ~ ~ - v

Mol	Chain	Res	Tvpe	Atoms	Z	Observed(°)	Ideal(°)
1	6-A	45	THR	OG1-CB-CG2	6.58	125.14	110.00
1	1-A	23	ARG	NE-CZ-NH1	6.56	123.58	120.30
1	5-B	99	ASP	CB-CG-OD2	-6.55	112.41	118.30
1	20-A	20	ASP	CB-CG-OD1	6.51	124.16	118.30
1	15-A	89	GLU	CB-CA-C	-6.49	97.42	110.40
1	2-B	68	ARG	NE-CZ-NH2	-6.48	117.06	120.30
1	5-A	68	ARG	NE-CZ-NH2	-6.46	117.07	120.30
1	2-A	88	SER	N-CA-C	6.41	128.31	111.00
1	14-A	47	SER	N-CA-C	6.41	128.31	111.00
1	3-A	45	THR	CB-CA-C	-6.40	94.33	111.60
1	3-A	45	THR	N-CA-CB	6.35	122.37	110.30
1	5-A	108	ASP	CB-CG-OD2	-6.34	112.59	118.30
1	18-B	6	ARG	CD-NE-CZ	6.34	132.48	123.60
1	15-B	23	ARG	NE-CZ-NH1	6.33	123.47	120.30
1	4-B	98	GLU	OE1-CD-OE2	-6.33	115.70	123.30
1	17-B	99	ASP	CB-CG-OD1	-6.33	112.60	118.30
1	19-A	58[A]	PHE	CB-CG-CD2	-6.29	116.40	120.80
1	19-A	58[B]	PHE	CB-CG-CD2	-6.29	116.40	120.80
1	5-A	18	ASP	CB-CG-OD2	-6.26	112.66	118.30
1	12-A	113[A]	LEU	CA-CB-CG	-6.21	101.01	115.30
1	12-A	113[B]	LEU	CA-CB-CG	-6.21	101.01	115.30
1	19-A	71	ASP	CB-CG-OD1	6.21	123.89	118.30
1	5-B	68	ARG	NE-CZ-NH2	-6.21	117.19	120.30
1	3-B	118	ARG	NE-CZ-NH2	-6.21	117.20	120.30
1	1-A	118	ARG	NE-CZ-NH2	-6.17	117.21	120.30
1	10-A	49	ARG	CG-CD-NE	6.17	124.76	111.80
1	9-A	68	ARG	NE-CZ-NH2	-6.16	117.22	120.30
1	11-A	52	HIS	N-CA-C	6.15	127.61	111.00
1	8-A	68	ARG	NE-CZ-NH2	-6.14	117.23	120.30
1	6-B	23	ARG	NE-CZ-NH1	6.12	123.36	120.30
1	4-A	4[A]	ILE	CB-CA-C	-6.12	99.36	111.60
1	4-A	4[B]	ILE	CB-CA-C	-6.12	99.36	111.60
1	15-A	88	SER	C-N-CA	-6.11	106.43	121.70
1	19-B	6	ARG	NE-CZ-NH2	-6.05	117.28	120.30
1	20-B	6	ARG	NE-CZ-NH2	-6.02	117.29	120.30
1	15-B	20	ASP	CB-CG-OD1	5.99	123.69	118.30
1	9-A	86	LEU	CA-CB-CG	-5.97	101.56	115.30
1	4-A	46	LYS	CA-CB-CG	5.96	126.51	113.40
1	19-A	58[A]	PHE	CB-CG-CD1	5.94	124.96	120.80
1	19-A	58[B]	PHE	CB-CG-CD1	5.94	124.96	120.80
1	7-A	23	ARG	NE-CZ-NH2	-5.89	117.35	120.30
1	14-A	54	GLU	N-CA-C	-5.88	95.14	111.00

4Q29

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
1	5-A	108	ASP	CB-CG-OD1	5.86	123.58	118.30
1	9-A	45	THR	OG1-CB-CG2	-5.86	96.53	110.00
1	3-A	86	LEU	CA-CB-CG	5.82	128.68	115.30
1	17-A	78	LYS	CD-CE-NZ	-5.81	98.35	111.70
1	5-A	4[A]	ILE	CB-CA-C	-5.80	100.01	111.60
1	5-A	4[B]	ILE	CB-CA-C	-5.80	100.01	111.60
1	14-B	64	ASN	CB-CA-C	-5.77	98.86	110.40
1	20-B	119	LEU	CA-CB-CG	5.75	128.53	115.30
1	6-B	118	ARG	NE-CZ-NH1	5.73	123.17	120.30
1	3-A	119	LEU	CA-CB-CG	5.71	128.44	115.30
1	2-A	70[A]	ASN	N-CA-C	5.70	126.38	111.00
1	2-A	70[B]	ASN	N-CA-C	5.70	126.38	111.00
1	5-A	18	ASP	CB-CG-OD1	5.67	123.40	118.30
1	6-B	99	ASP	CB-CG-OD2	-5.66	113.20	118.30
1	7-B	49[A]	ARG	NE-CZ-NH1	-5.66	117.47	120.30
1	7-B	49[B]	ARG	NE-CZ-NH1	-5.66	117.47	120.30
1	15-B	23	ARG	NE-CZ-NH2	-5.66	117.47 120.	
1	18-A	23	ARG	NE-CZ-NH1	-5.66	117.47	120.30
1	17-A	58[A]	PHE	CB-CG-CD2	-5.63	116.86	120.80
1	17-A	58[B]	PHE	CB-CG-CD2	-5.63	116.86	120.80
1	14-A	118	ARG	NE-CZ-NH1	-5.63	117.49	120.30
1	10-B	30	LEU	CA-CB-CG	5.61	128.21	115.30
1	5-B	99	ASP	CB-CG-OD1	5.60	123.34	118.30
1	11-A	51	SER	CB-CA-C	-5.59	99.48	110.10
1	4-A	57[A]	LEU	CA-CB-CG	5.59	128.15	115.30
1	4-A	57[B]	LEU	CA-CB-CG	5.59	128.15	115.30
1	2-B	2	MSE	CG-SE-CE	-5.58	86.62	98.90
1	1-A	23	ARG	NE-CZ-NH2	-5.58	117.51	120.30
1	5-A	115	PHE	CB-CG-CD2	5.58	124.70 120.8	
1	11-A	23	ARG	NE-CZ-NH1	-5.56	117.52 120.3	
1	4-B	12	SER	N-CA-CB	-5.55	102.17 110.50	
1	17-A	58[A]	PHE	CB-CG-CD1	5.51	124.66 120.8	
1	17-A	58[B]	PHE	CB-CG-CD1	5.51	124.66 120.80	
1	10-A	45	THR	OG1-CB-CG2	-5.51	97.33	110.00
1	12-B	99	ASP	CB-CG-OD2	-5.50	113.35	118.30
1	13-A	16	GLU	CB-CA-C	-5.50	99.41	110.40
1	20-A	108	ASP	CB-CG-OD2	-5.49	113.36	118.30
1	15-B	99	ASP	CB-CG-OD1	5.48	123.23	118.30
1	14-A	71	ASP	N-CA-C	5.46	125.75	111.00
1	19-B	67	ILE	CB-CA-C	5.46	122.51	111.60
1	12-A	2	MSE	CB-CG-SE	5.45	129.05	112.70
1	12-B	57	LEU	CB-CG-CD2	5.45	120.26 111.00	

4Q	29
ਤੁਕ	20

Mol	Chain	Res	Type	Atoms	Z	\mathbf{Z} Observed (o) Ideal (o	
1	14-A	97[A]	GLN	CG-CD-OE1	-5.44	110.72	121.60
1	14-A	97[B]	GLN	CG-CD-OE1	-5.44	110.72	121.60
1	10-B	20	ASP	CB-CG-OD1	5.44	123.20	118.30
1	12-B	6	ARG	NE-CZ-NH2	5.42	123.01	120.30
1	6-A	90	HIS	N-CA-C	5.42	125.63	111.00
1	20-A	6[A]	ARG	NE-CZ-NH1	5.40	123.00	120.30
1	20-A	6[B]	ARG	NE-CZ-NH1	5.40	123.00	120.30
1	19-A	117	THR	OG1-CB-CG2	5.39	122.41	110.00
1	7-B	118	ARG	NE-CZ-NH2	-5.39	117.61	120.30
1	9-A	70[A]	ASN	N-CA-C	5.38	125.52	111.00
1	9-A	70[B]	ASN	N-CA-C	5.38	125.52	111.00
1	8-A	23	ARG	NE-CZ-NH1	5.37	122.99	120.30
1	10-A	102	PHE	CB-CG-CD1	5.35	124.55	120.80
1	6-A	18	ASP	CB-CG-OD2	-5.34	113.49	118.30
1	12-B	31	ASN	N-CA-CB	-5.34	100.99	110.60
1	10-B	3	ASN	N-CA-CB	5.33	120.19	110.60
1	12-A	68	ARG	NE-CZ-NH2	-5.33	117.64	120.30
1	9-B	73[A]	ASP	N-CA-C	5.32	125.37	111.00
1	9-B	73[B]	ASP	N-CA-C	5.32	125.37	111.00
1	17-A	119	LEU	CA-CB-CG	5.32	127.54	115.30
1	9-B	23	ARG	CG-CD-NE	5.32	122.97	111.80
1	17-A	118	ARG	NE-CZ-NH1	5.32	122.96	120.30
1	18-A	13	MSE	CG-SE-CE	-5.31	87.22	98.90
1	10-B	2	MSE	CB-CG-SE	5.30	128.62	112.70
1	20-B	99	ASP	CB-CG-OD2	-5.30	113.53	118.30
1	10-B	57	LEU	CB-CG-CD2	5.29	120.00	111.00
1	13-A	58[A]	PHE	CB-CG-CD2	-5.28	117.10	120.80
1	13-A	58[B]	PHE	CB-CG-CD2	-5.28	117.10	120.80
1	13-A	23	ARG	NE-CZ-NH2	-5.28	117.66	120.30
1	20-B	57	LEU	CA-CB-CG	5.26	127.39 115.	
1	2-A	48	PHE	CB-CA-C	5.25	120.91	110.40
1	15-A	99	ASP	CB-CG-OD1	5.25	123.02 118.3	
1	18-A	68	ARG	NE-CZ-NH2	-5.24	117.68	120.30
1	10-A	49	ARG	NE-CZ-NH2	5.23	122.92	120.30
1	2-B	58	PHE	CB-CG-CD2	-5.23	117.14	120.80
1	20-B	118	ARG	NE-CZ-NH1	5.23	122.91	120.30
1	20-A	99	ASP	CB-CG-OD1	5.20	122.98	118.30
1	4-B	23	ARG	NE-CZ-NH2	-5.19	117.70	120.30
1	4-A	70[A]	ASN	CB-CA-C	5.19	120.78	110.40
1	4-A	70[B]	ASN	CB-CA-C	5.19	120.78	110.40
1	1-A	58[A]	PHE	CB-CG-CD2	-5.18	117.17	120.80
1	1-A	58[B]	PHE	CB-CG-CD2	-5.18	117.17	120.80

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$	
1	9-A	66	ILE	CB-CA-C	5.17	121.94	111.60	
1	7-B	86	LEU	CA-CB-CG	5.17	127.19	115.30	
1	16-A	99	ASP	CB-CG-OD1	5.15	122.94	118.30	
1	8-A	23	ARG	NE-CZ-NH2	-5.14	117.73	120.30	
1	13-B	23	ARG	NE-CZ-NH2	-5.14	117.73	120.30	
1	1-A	119	LEU	CA-CB-CG	5.13	127.09	115.30	
1	20-B	81	LEU	CB-CG-CD1	5.12	119.71	111.00	
1	3-B	108	ASP	CB-CG-OD2	5.12	122.91	118.30	
1	14-B	87	ASP	CB-CG-OD2	5.12	122.90	118.30	
1	6-A	89	GLU	N-CA-C	5.11	124.81	111.00	
1	10-A	99	ASP	CB-CG-OD1	5.11	122.90	118.30	
1	13-A	58[A]	PHE	CB-CG-CD1	5.11	124.38	120.80	
1	13-A	58[B]	PHE	CB-CG-CD1	5.11	124.38	120.80	
1	18-B	99	ASP	CB-CG-OD1	5.10	122.89	118.30	
1	8-B	119	LEU	CA-CB-CG	5.09	127.01	115.30	
1	5-B	88	SER	N-CA-C	5.08	124.72	111.00	
1	3-A	71	ASP	CB-CG-OD2	5.07	122.86	118.30	
1	11-A	31	ASN	CB-CA-C	5.07	120.54	110.40	
1	14-A	97[A]	GLN	CA-CB-CG	-5.05	102.28	113.40	
1	14-A	97[B]	GLN	CA-CB-CG	-5.05	102.28	113.40	
1	17-A	116	LEU	CB-CG-CD1	-5.05	102.42	111.00	
1	3-B	68	ARG	NE-CZ-NH1	5.04	122.82	120.30	
1	4-B	57	LEU	CB-CG-CD2	5.03	119.56	111.00	
1	3-A	57[A]	LEU	CB-CG-CD1	-5.03	102.45 111.00		
1	3-A	57[B]	LEU	CB-CG-CD1	-5.03	102.45 111.00		
1	16-B	68	ARG	NE-CZ-NH1	5.02	122.81	122.81 120.30	
1	10-B	99	ASP	CB-CG-OD2	-5.02	113.78	118.30	
1	19-B	3	ASN	CB-CA-C	5.02	120.44	110.40	
1	6-A	68	ARG	NE-CZ-NH2	-5.01	117.79	120.30	
1	2-A	2	MSE	CG-SE-CE	-5.01	87.88	98.90	
1	17-B	2	MSE	CA-CB-CG	5.00	121.81	113.30	

There are no chirality outliers.

All (17) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	1-B	16[B]	GLU	Peptide
1	11 - B	16[B]	GLU	Peptide
1	12-B	2	MSE	Peptide
1	14-A	50	HIS	Peptide
1	14-A	51	SER	Peptide
1	14-A	71	ASP	Peptide

Mol	Chain	Res	Type	Group
1	14 - B	3	ASN	Peptide
1	17-A	30	LEU	Peptide
1	18-A	2	MSE	Peptide
1	20-A	47	SER	Peptide
1	20-A	48	PHE	Peptide
1	4-A	2	MSE	Peptide
1	5-A	64	ASN	Sidechain
1	6-B	2	MSE	Peptide
1	9-A	3	ASN	Peptide
1	9-B	2	MSE	Peptide

Continued from previous page...

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	1-A	1116	1079	982	0	0
1	1-B	1218	1135	1045	0	0
1	2-A	1116	1079	982	0	0
1	2-B	1218	1135	1045	0	0
1	3-A	1116	1079	982	0	0
1	3-B	1218	1135	1045	0	0
1	4-A	1116	1079	982	0	0
1	4-B	1218	1135	1045	0	0
1	5-A	1116	1079	982	0	0
1	5-B	1218	1135	1045	0	0
1	6-A	1116	1079	982	0	0
1	6-B	1218	1135	1045	0	0
1	7-A	1116	1079	982	0	0
1	7-B	1218	1135	1045	0	0
1	8-A	1116	1079	982	0	0
1	8-B	1218	1135	1045	0	0
1	9-A	1116	1079	982	0	0
1	9-B	1218	1135	1045	0	0
1	10-A	1116	1079	982	0	0
1	10-B	1218	1135	1045	0	0
1	11-A	1116	1079	982	0	0
1	11-B	1218	1135	1045	0	0
1	12-A	1116	1079	982	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes	
1	12-B	1218	1135	1045	0	0	
1	13-A	1116	1079	982	0	0	
1	13-B	1218	1135	1045	0	0	
1	14-A	1116	1079	982	0	0	
1	14-B	1218	1135	1045	0	0	
1	15-A	1116	1079	982	0	0	
1	15-B	1218	1135	1045	0	0	
1	16-A	1116	1079	982	0	0	
1	16-B	1218	1135	1045	0	0	
1	17-A	1116	1079	982	0	0	
1	17-B	1218	1135	1045	0	0	
1	18-A	1116	1079	982	0	0	
1	18-B	1218	1135	1045	0	0	
1	19-A	1116	1079	982	0	0	
1	19-B	1218	1135	1045	0	0	
1	20-A	1116	1078	987	0	0	
1	20-B	1218	1135	1045	0	0	
2	1-A	1	0	0	0	0	
2	1-B	1	0	0	0	0	
2	2-A	1	0	0	0	0	
2	2-B	1	0	0	0	0	
2	3-A	1	0	0	0	0	
2	3-B	1	0	0	0	0	
2	4-A	1	0	0	0	0	
2	4-B	1	0	0	0	0	
2	5-A	1	0	0	0	0	
2	5-B	1	0	0	0	0	
2	6-A	1	0	0	0	0	
2	6-B	1	0	0	0	0	
2	7-A	1	0	0	0	0	
2	7-B	1	0	0	0	0	
2	8-A	1	0	0	0	0	
2	8-B	1	0	0	0	0	
2	9-A	1	0	0	0	0	
2	9-B	1	0	0	0	0	
2	10-A	1	0	0	0	0	
2	10-B	1	0	0	0	0	
2	11-A	1	0	0	0	0	
2	11-B	1	0	0	0	0	
2	12-A	1	0	0	0	0	
2	12-B	1	0	0	0	0	
2	13-A	1	0	0	0	0	

4Q29

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	13-B	1	0	0	0	0
2	14-A	1	0	0	0	0
2	14-B	1	0	0	0	0
2	15-A	1	0	0	0	0
2	15-B	1	0	0	0	0
2	16-A	1	0	0	0	0
2	16-B	1	0	0	0	0
2	17-A	1	0	0	0	0
2	17-B	1	0	0	0	0
2	18-A	1	0	0	0	0
2	18-B	1	0	0	0	0
2	19-A	1	0	0	0	0
2	19-B	1	0	0	0	0
2	20-A	1	0	0	0	0
2	20-B	1	0	0	0	0
3	1-A	1	0	0	0	0
3	2-A	1	0	0	0	0
3	3-A	1	0	0	0	0
3	4-A	1	0	0	0	0
3	5-A	1	0	0	0	0
3	6-A	1	0	0	0	0
3	7-A	1	0	0	0	0
3	8-A	1	0	0	0	0
3	9-A	1	0	0	0	0
3	10-A	1	0	0	0	0
3	11-A	1	0	0	0	0
3	12-A	1	0	0	0	0
3	13-A	1	0	0	0	0
3	14-A	1	0	0	0	0
3	15-A	1	0	0	0	0
3	10-A	1	0	0	0	0
<u>う</u>	17-A	1	0	0	0	0
<u>う</u>	18-A	1	0	0	0	0
<u>う</u>	19-A	1	0	0	0	0
3	20-A	101	0	0	0	0
4	1-A 1 D	101	0	0	0	0
4	1-B	97	0	0	0	0
4	2-A 9 P	90	0	0	0	0
4	2-D	02	0	0	0	0
4	3-A 3 D	92	0	0	0	0
4		91 101	0	0	0	0
4	4-A	101	U	U	0	U

4Q29

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	4-B	90	0	0	0	0
4	5-A	87	0	0	0	0
4	5-B	95	0	0	0	0
4	6-A	100	0	0	0	0
4	6-B	85	0	0	0	0
4	7-A	85	0	0	0	0
4	7-B	84	0	0	0	0
4	8-A	90	0	0	0	0
4	8-B	99	0	0	0	0
4	9-A	86	0	0	0	0
4	9-B	92	0	0	0	0
4	10-A	94	0	0	0	0
4	10-B	95	0	0	0	0
4	11-A	86	0	0	0	0
4	11 - B	90	0	0	0	0
4	12-A	108	0	0	0	0
4	12-B	92	0	0	0	0
4	13-A	88	0	0	0	0
4	13-B	81	0	0	0	0
4	14-A	91	0	0	0	0
4	14-B	87	0	0	0	0
4	15-A	88	0	0	0	0
4	15-B	100	0	0	0	0
4	16-A	97	0	0	0	0
4	16-B	95	0	0	0	0
4	17-A	97	0	0	0	0
4	17-B	102	0	0	0	0
4	18-A	98	0	0	0	0
4	18-B	88	0	0	0	0
4	19-A	101	0	0	0	0
4	19-B	91	0	0	0	0
4	20-A	85	0	0	0	0
4	20-B	99	0	0	0	0
All	All	50445	44279	40545	0	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). Clashscore could not be calculated for this entry.

There are no clashes within the asymmetric unit.

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	1-A	141/128~(110%)	139 (99%)	1 (1%)	1 (1%)	19	4
1	1-B	151/128~(118%)	143~(95%)	6 (4%)	2(1%)	10	1
1	2-A	141/128~(110%)	134~(95%)	4 (3%)	3~(2%)	5	0
1	2-B	151/128~(118%)	138 (91%)	11 (7%)	2(1%)	10	1
1	3-A	141/128 (110%)	137~(97%)	1 (1%)	3 (2%)	5	0
1	3-B	151/128 (118%)	137 (91%)	8 (5%)	6 (4%)	2	0
1	4-A	141/128 (110%)	137~(97%)	4 (3%)	0	100	100
1	4-B	151/128 (118%)	138 (91%)	12 (8%)	1 (1%)	19	4
1	5-A	141/128 (110%)	137 (97%)	4 (3%)	0	100	100
1	5-B	151/128 (118%)	140 (93%)	9 (6%)	2 (1%)	10	1
1	6-A	141/128 (110%)	133 (94%)	7 (5%)	1 (1%)	19	4
1	6-B	151/128 (118%)	141 (93%)	7 (5%)	3 (2%)	6	0
1	7-A	141/128 (110%)	133 (94%)	8 (6%)	0	100	100
1	7-B	151/128 (118%)	140 (93%)	7 (5%)	4 (3%)	4	0
1	8-A	141/128 (110%)	135~(96%)	6 (4%)	0	100	100
1	8-B	151/128 (118%)	143 (95%)	6 (4%)	2 (1%)	10	1
1	9-A	141/128 (110%)	131 (93%)	7 (5%)	3 (2%)	5	0
1	9-B	151/128 (118%)	133 (88%)	15 (10%)	3 (2%)	6	0
1	10-A	141/128 (110%)	136 (96%)	4 (3%)	1 (1%)	19	4
1	10-B	151/128 (118%)	140 (93%)	8 (5%)	3 (2%)	6	0
1	11-A	141/128 (110%)	134 (95%)	1 (1%)	6 (4%)	2	0
1	11-B	151/128 (118%)	139 (92%)	8 (5%)	4 (3%)	4	0
1	12-A	141/128 (110%)	137 (97%)	2 (1%)	2 (1%)	9	1
1	12-B	151/128 (118%)	140 (93%)	11 (7%)	0	100	100
1	13-A	141/128 (110%)	132 (94%)	8 (6%)	1 (1%)	19	4

Mol

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

All

Favoured

134 (89%)

135(96%)

140(93%)

136 (97%)

140(93%)

5473 (94%)

Allowed Outliers

151/128~(118%)	142 (94%)	8 (5%)	1 (1%)	19
141/128~(110%)	131~(93%)	4(3%)	6~(4%)	2
151/128~(118%)	135~(89%)	14 (9%)	2(1%)	10
141/128~(110%)	132 (94%)	6 (4%)	3~(2%)	5
151/128~(118%)	140 (93%)	11 (7%)	0	100
141/128~(110%)	138~(98%)	3~(2%)	0	100
151/128~(118%)	133~(88%)	12 (8%)	6~(4%)	2
141/128~(110%)	136~(96%)	4(3%)	1 (1%)	19
151/128~(118%)	142 (94%)	9~(6%)	0	100
141/128 (110%)	132 (94%)	9~(6%)	0	100

10 (7%)

6(4%)

5(3%)

3(2%)

11(7%)

280(5%)

Continued from previous page...

Analysed

Chain

13**-**B

14-A

14**-**B

15-A

15-B

16-A

16-B

17-A

17-B

18-A

18-B

19-A

19-B

20-A

20-B

All

All (86) Ramachandran outliers are listed below:

151/128 (118%)

141/128 (110%)

151/128 (118%)

140/128 (109%)

151/128 (118%)

5839/5120 (114%)

Mol	Chain	Res	Type
1	1-B	17[A]	TYR
1	1-B	17[B]	TYR
1	2-A	4[A]	ILE
1	2-A	4[B]	ILE
1	2-B	51[A]	SER
1	2-B	51[B]	SER
1	3-B	17[A]	TYR
1	3-B	17[B]	TYR
1	3-B	53[A]	ASN
1	3-B	53[B]	ASN
1	5-B	87	ASP
1	8-B	51[A]	SER
1	8-B	51[B]	SER
1	9-A	52	HIS
1	9-A	53	ASN
1	10-A	51	SER
1	10-B	3	ASN

Continued on next page...

Percentiles

4

0

1

0

100

100

0

4

100 100

0

0

4

100

1

100

9

0

9

2

2

19

10

100

100

7(5%)

0

6(4%)

1(1%)

0

86(2%)

Mol	Chain	Res	Type
1	10-B	51[A]	SER
1	10-B	51[B]	SER
1	11-A	48	PHE
1	11-A	49	ARG
1	11-A	50	HIS
1	11-A	52	HIS
1	11-A	54	GLU
1	12-A	49	ARG
1	12-A	50	HIS
1	14-A	48	PHE
1	14-A	49	ARG
1	14-A	89	GLU
1	14-A	90	HIS
1	14-B	4[A]	ILE
1	14-B	4[B]	ILE
1	15-A	52	HIS
1	16-B	4[A]	ILE
1	16-B	4[B]	ILE
1	16-B	17[A]	TYR
1	16-B	17[B]	TYR
1	18-B	4[A]	ILE
1	18-B	4[B]	ILE
1	19-B	17[A]	TYR
1	19-B	17[B]	TYR
1	19-B	50[A]	HIS
1	19-B	50[B]	HIS
1	2-A	89	GLU
1	3-A	71	ASP
1	4-B	97	GLN
1	6-B	50[A]	HIS
1	6-B	50[B]	HIS
1	9-B	73[A]	ASP
1	9-B	73[B]	ASP
1	11-A	71	ASP
1	11-B	17[A]	TYR
1	11-B	17[B]	TYR
1	13-A	118	ARG
1	14-A	17	TYR
1	14-A	121	GLN
1	16-B	51[A]	SER
1	16-B	51[B]	SER
1	18-B	71[A]	ASP

Mol	Chain	Res	Type
1	18-B	71[B]	ASP
1	19-B	4[A]	ILE
1	19-B	4[B]	ILE
1	1-A	78	LYS
1	3-A	70[A]	ASN
1	3-A	70[B]	ASN
1	6-A	90	HIS
1	7-B	17[A]	TYR
1	7-B	17[B]	TYR
1	9-A	71	ASP
1	9-B	110	GLU
1	11-B	51[A]	SER
1	11-B	51[B]	SER
1	15-A	78	LYS
1	18-B	3	ASN
1	6-B	88	SER
1	15-A	89	GLU
1	17-A	30	LEU
1	20-A	49	ARG
1	5-B	88	SER
1	18-B	50[A]	HIS
1	18-B	50[B]	HIS
1	3-B	51[A]	SER
1	3-B	51[B]	SER
1	7-B	4[A]	ILE
1	7-B	4[B]	ILE
1	13-B	74	PHE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	1-A	135/116~(116%)	125~(93%)	10 (7%)	11 0
1	1-B	145/116~(125%)	131~(90%)	14 (10%)	6 0
1	2-A	135/116~(116%)	121 (90%)	14 (10%)	5 0

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentile	
1	2-B	145/116~(125%)	133~(92%)	12 (8%)	9	0
1	3-A	135/116~(116%)	121 (90%)	14 (10%)	5	0
1	3-B	145/116~(125%)	133~(92%)	12 (8%)	9	0
1	4-A	135/116~(116%)	121 (90%)	14 (10%)	5	0
1	4-B	145/116~(125%)	118 (81%)	27 (19%)	1	0
1	5-A	135/116~(116%)	127 (94%)	8 (6%)	16	1
1	5-B	145/116~(125%)	134 (92%)	11 (8%)	11	0
1	6-A	135/116~(116%)	120 (89%)	15 (11%)	5	0
1	6-B	145/116~(125%)	134 (92%)	11 (8%)	11	0
1	7-A	135/116~(116%)	124 (92%)	11 (8%)	9	0
1	7-B	145/116~(125%)	134 (92%)	11 (8%)	11	0
1	8-A	135/116~(116%)	120 (89%)	15 (11%)	5	0
1	8-B	145/116~(125%)	127 (88%)	18 (12%)	4	0
1	9-A	135/116~(116%)	123 (91%)	12 (9%)	8	0
1	9-B	145/116~(125%)	133 (92%)	12 (8%)	9	0
1	10-A	135/116~(116%)	122 (90%)	13 (10%)	7	0
1	10-B	145/116~(125%)	137 (94%)	8 (6%)	18	1
1	11-A	135/116~(116%)	116 (86%)	19 (14%)	3	0
1	11-B	145/116~(125%)	133 (92%)	12 (8%)	9	0
1	12-A	135/116~(116%)	131 (97%)	4 (3%)	36	6
1	12-B	145/116~(125%)	133 (92%)	12 (8%)	9	0
1	13-A	135/116~(116%)	124 (92%)	11 (8%)	9	0
1	13-B	145/116~(125%)	136 (94%)	9 (6%)	15	1
1	14-A	135/116~(116%)	122 (90%)	13 (10%)	7	0
1	14-B	145/116~(125%)	131 (90%)	14 (10%)	6	0
1	15-A	135/116~(116%)	122 (90%)	13 (10%)	7	0
1	15-B	145/116~(125%)	125 (86%)	20 (14%)	3	0
1	16-A	135/116~(116%)	128 (95%)	7 (5%)	19	2
1	16-B	145/116~(125%)	126 (87%)	19 (13%)	3	0
1	17-A	135/116~(116%)	121 (90%)	14 (10%)	5	0
1	17-B	145/116~(125%)	130 (90%)	15 (10%)	6	0

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	18-A	135/116~(116%)	123~(91%)	12 (9%)	8 0
1	18-B	145/116~(125%)	135~(93%)	10 (7%)	13 0
1	19-A	135/116~(116%)	122 (90%)	13 (10%)	7 0
1	19-B	145/116~(125%)	125 (86%)	20 (14%)	3 0
1	20-A	134/116~(116%)	121 (90%)	13 (10%)	6 0
1	20-B	145/116~(125%)	132 (91%)	13 (9%)	8 0
All	All	5599/4640~(121%)	5074 (91%)	525 (9%)	7 0

Continued from previous page...

All (525) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	1-A	23	ARG
1	1-A	24	LEU
1	1-A	50	HIS
1	1-A	57[A]	LEU
1	1-A	57[B]	LEU
1	1-A	64	ASN
1	1-A	77	THR
1	1-A	90	HIS
1	1-A	96[A]	ASN
1	1-A	96[B]	ASN
1	1-B	3	ASN
1	1-B	31	ASN
1	1-B	46[A]	LYS
1	1-B	46[B]	LYS
1	1-B	49[A]	ARG
1	1-B	49[B]	ARG
1	1-B	62	GLN
1	1-B	77[A]	THR
1	1-B	77[B]	THR
1	1-B	81	LEU
1	1-B	87	ASP
1	1-B	97	GLN
1	1-B	118	ARG
1	1-B	119	LEU
1	2-A	2	MSE
1	2-A	5[A]	ILE
1	2-A	5[B]	ILE
1	2-A	46	LYS
1	2-A	47	SER

Mol	Chain	Res	Type
1	2-A	48	PHE
1	2-A	49	ARG
1	2-A	50	HIS
1	2-A	53	ASN
1	2-A	54	GLU
1	2-A	71	ASP
1	2-A	98	GLU
1	2-A	114	ASN
1	2-A	120	GLU
1	2-B	7	LYS
1	2-B	31	ASN
1	2-B	46[A]	LYS
1	2-B	46[B]	LYS
1	2-B	50[A]	HIS
1	2-B	50[B]	HIS
1	2-B	57	LEU
1	2-B	71[A]	ASP
1	2-B	71[B]	ASP
1	2-B	77[A]	THR
1	2-B	77[B]	THR
1	2-B	119	LEU
1	3-A	3	ASN
1	3-A	4[A]	ILE
1	3-A	4[B]	ILE
1	3-A	7[A]	LYS
1	3-A	7[B]	LYS
1	3-A	12	SER
1	3-A	45	THR
1	3-A	46	LYS
1	3-A	50	HIS
1	3-A	71	ASP
1	3-A	75	PRO
1	3-A	86	LEU
1	3-A	91	HIS
1	3-A	110	GLU
1	3-B	2	MSE
1	3-B	12	SER
1	3-B	28	GLU
1	3-B	31	ASN
1	3-B	50[A]	HIS
1	3-B	50[B]	HIS
1	3-B	57	LEU

Mol	Chain	Res	Type
1	3-B	67	ILE
1	3-B	88	SEB
1	3-B	97	GLN
1	3-B	117	THR
1	3-B	110	LEU
1	4-A	110	SEB
1	4-A	18	ASP
1	4-A	45	THR
1	4-A	46	LYS
1	4-A	49	ARG
1	4-A	50	HIS
1	4-A	51	SEB
1	4-A	53	ASN
1	4-Δ	57[4]	LEU
1	4-A	57[R]	LEU
1	<u>4_</u> A	71	ASP
1	4-A	97[A]	GLN
1	4-A	97[R]	GLN
1	4-A	122	ASP
1	4-R	31	ASN
1	4-B	32	THR
1	4-B	47[A]	SER
1	4-B	47[R]	SER
1	4-B	$\frac{48[A]}{48[A]}$	PHE
1	4-B	48[B]	PHE
1	4-B	50[A]	HIS
1	4-B	50[R]	HIS
1	4-B	53[A]	ASN
1	4-B	53[B]	ASN
1	4-B	57 57	LEU
1	4-B	62	GLN
1	4-B	67	ILE
1	4-B	71[A]	ASP
1	4-B	71[B]	ASP
1	4-B	72[A]	GLU
1	4-B	72[B]	GLU
1	4-B	88	SER
1	4-B	89[A]	GLU
1	4-B	89[B]	GLU
1	4-B	90[A]	HIS
1	4-B	90[B]	HIS
1	4-B	91[A]	HIS
-		~ - [^ -]	~

Mal	Choin	B og	Type
10101			туре
1	4-B	91[B]	HIS
1	4-B	97	GLN
1	4-B	114	ASN
1	4-B	116	LEU
1	5-A	2	MSE
1	5-A	16	GLU
1	5-A	19	LEU
1	5-A	52	HIS
1	5-A	53	ASN
1	5-A	57[A]	LEU
1	5-A	57[B]	LEU
1	5-A	110	GLU
1	5-B	2	MSE
1	5-B	7	LYS
1	5-B	$17[\overline{A}]$	TYR
1	5-B	17[B]	TYR
1	5-B	48[A]	PHE
1	5-B	48[B]	PHE
1	5-B	52[A]	HIS
1	5-B	52[B]	HIS
1	5-B	81	LEU
1	5-B	88	SER
1	5-B	117	THR
1	6-A	2	MSE
1	6-A	4[A]	ILE
1	6-A	4[B]	ILE
1	6-A	45	THR
1	6-A	48	PHE
1	6-A	49	ARG
1	6-A	53	ASN
1	6-A	57[A]	LEU
1	6-A	57[B]	LEU
1	6-A	97[A]	GLN
1	6-A	97[B]	GLN
1	6-A	110	GLU
1	6-A	117	THR
1	6-A	118	ARG
1	6-A	120	GLU
1	6-B	2	MSE
1	6-B	50[A]	HIS
1	6-B	50[B]	HIS
1	6-R	52[A]	HIS
T		04[11]	1110

Mol	Chain	Res	Type
1	6-B	52[B]	HIS
1	6-B	53[A]	ASN
1	6-B	53[R]	ASN
1	6-B	57	LEU
1	6-B	67	ILE
1	6-B	87	ASP
1	6-B	118	ARG
1	7-A	2	MSE
1	7-A	3	ASN
1	7-A	7[A]	LYS
1	7-A	7[R]	LYS
1	7-A	16	GLU
1	7-A	45	THR
1	7-A	46	LYS
1	7-A	47	SER
1	7-A	52	HIS
1	7-A	97[A]	GLN
1	7-A	97[B]	GLN
1	7-B	$\frac{2}{2}$	MSE
1	7-B	7	LYS
1	7-B	12	SER
1	7-B	54[A]	GLU
1	7-B	54[B]	GLU
1	7-B	57 57	LEU
1	7-B	70[A]	ASN
1	7-B	70[B]	ASN
1	7-B	87	ASP
1	7-B	110	GLU
1	7-B	117	THR
1	8-A	3	ASN
1	8-A	4[A]	ILE
1	8-A	4[B]	ILE
1	8-A	7[A]	LYS
1	8-A	7[B]	LYS
1	8-A	45	THR
1	8-A	46	LYS
1	8-A	49	ARG
1	8-A	50	HIS
1	8-A	51	SER
1	8-A	53	ASN
1	8-A	87	ASP
1	8-A	97[A]	GLN

Mol	Chain	Res	Type
1	8-A	97[B]	GLN
1	8-A	117	THR
1	8-B	2	MSE
1	8-B	5[A]	ILE
1	8-B	5[B]	ILE
1	8-B	46[A]	LYS
1	8-B	46[B]	LYS
1	8-B	50[A]	HIS
1	8-B	50[B]	HIS
1	8-B	52[A]	HIS
1	8-B	52[B]	HIS
1	8-B	54[A]	GLU
1	8-B	54[B]	GLU
1	8-B	71[A]	ASP
1	8-B	71[B]	ASP
1	8-B	86	LEU
1	8-B	90[A]	HIS
1	8-B	90[B]	HIS
1	8-B	117	THR
1	8-B	119	LEU
1	9-A	2	MSE
1	9-A	19	LEU
1	9-A	28	GLU
1	9-A	46	LYS
1	9-A	47	SER
1	9-A	50	HIS
1	9-A	51	SER
1	9-A	70[A]	ASN
1	9-A	70[B]	ASN
1	9-A	96[A]	ASN
1	9-A	96[B]	ASN
1	9-A	98	GLU
1	9-B	23	ARG
1	9-B	50[A]	HIS
1	9-B	50[B]	HIS
1	9-B	51[A]	SER
1	9-B	51[B]	SER
1	9-B	62	GLN
1	9-B	81	LEU
1	9-B	97	GLN
1	9-B	98	GLU
1	9-B	104	THR

ידע		Process	T T
Mol	Chain	Res	Type
1	9-B	114	ASN
1	9-B	120	GLU
1	10-A	3	ASN
1	10-A	4[A]	ILE
1	10-A	4[B]	ILE
1	10-A	7[A]	LYS
1	10-A	7[B]	LYS
1	10-A	9	ASP
1	10-A	49	ARG
1	10-A	50	HIS
1	10-A	66	ILE
1	10-A	89	GLU
1	10-A	95	ASN
1	10-A	119	LEU
1	10-A	121	GLN
1	10-B	2	MSE
1	10-B	12	SER
1	10-B	23	ARG
1	10-B	53[A]	ASN
1	10-B	53[B]	ASN
1	10-B	67	ILE
1	10-B	104	THR
1	10-B	119	LEU
1	11-A	4[A]	ILE
1	11-A	4[B]	ILE
1	11-A	31	ASN
1	11-A	32	THR
1	11-A	45	THR
1	11-A	46	LYS
1	11-A	49	ARG
1	11-A	50	HIS
1	11-A	53	ASN
1	11-A	57[A]	LEU
1	11-A	57[B]	LEU
1	11-A	72[A]	GLU
1	11-A	72[B]	GLU
1	11-A	77	THR
1	11-A	97[A]	GLN
1	11-A	97[B]	GLN
1	11-A	114	ASN
1	11-A	117	THR
1	11-A	122	ASP
*			1101

Mol	Chain	Res	Type
1	11-B	11	ASP
1	11-B	28	GLU
1	11-B	50[A]	HIS
1	11-B	50[B]	HIS
1	11-B	57	LEU
1	11-B	71[A]	ASP
1	11-B	71[B]	ASP
1	11-B	81	LEU
1	11-B	87	ASP
1	11-B	88	SER
1	11-B	96	ASN
1	11-B	114	ASN
1	12-A	50	HIS
1	12-A	54	GLU
1	12-A	89	GLU
1	12-A	120	GLU
1	12-B	2	MSE
1	12-B	52[A]	HIS
1	12-B	52[B]	HIS
1	12-B	57	LEU
1	12-B	68	ARG
1	12-B	71[A]	ASP
1	12-B	71[B]	ASP
1	12-B	83[A]	ILE
1	12-B	83[B]	ILE
1	12-B	90[A]	HIS
1	12-B	90[B]	HIS
1	12-B	119	LEU
1	13-A	2	MSE
1	13-A	7[A]	LYS
1	13-A	7[B]	LYS
1	13-A	46	LYS
1	13-A	49	ARG
1	13-A	53	ASN
1	13-A	64	ASN
1	13-A	66	ILE
1	13-A	110	GLU
1	13-A	121	GLN
1	13-A	122	ASP
1	13-B	3	ASN
1	13-B	50[A]	HIS
1	13-B	50[B]	HIS

Mol	Chain	Res	Type
1	13-R	52[A]	HIS
1	13-B	52[R]	HIS
1	13-B	$\frac{92[\mathbf{D}]}{91[\mathbf{A}]}$	HIS
1	13 D	01[R]	HIS
1	13-D	97 97	GLN
1	13 D	08	GLU
1	10-D 1/-Δ	16	GLU
1	14-A	45	THR
1	14-M	40	PHE
1	$14-\Lambda$ $1/_{-}\Lambda$	40	ARG
1	14-A	4 <i>3</i> 53	ASN
1	14-A	54	CLU
1	14-A	71	
1 1	14-A	87	
1 1	14-A	88	SEP
1	14-A	110	CLU
1	$14-\Lambda$ $14-\Lambda$	110	GLU
1	14-A	120	CLN
1	14-A	121 199	
1	14-A 14 B	122	ASI
1	14-D	5	
1	14-D 14 R	7	LVS
1	14-D	/ /0[A]	ARC
1	14-D 14 R	49[A] 40[B]	ARG
1	14-D	$51[\Lambda]$	SED
1	14-D	51[A] 51[B]	SER
1	14-D	51[D]	
1	14-D	52[A]	
1	14-D	$\frac{52[\mathbf{D}]}{01[\Lambda]}$	
1	14-D 14 R	01[R]	
1	14-D 14 R	104	THP
1 1	14-D 1/1 R	114	
1 1	14-D 1/1 R	114	LEU
1 1	14-D	2	
1 1	15-A	19	SEP
1 1	15 A	12	LVS
1 1	15-A	50	НІС
1 1	15 A	50	
1	15 A	92 82[A]	
1	15-A	02[A] 89[D]	
1	15-A	02[D]	CLN
1	10-A	97[A]	GLN
1	15-A	97[B]	GLN

Mol	Chain	Res	Type
1	15-A	110	GLU
1	15-A	117	THR
1	15-A	119	LEU
1	15-A	122	ASP
1	15-B	2	MSE
1	15-B	12	SER
1	15-B	49[A]	ARG
1	15-B	49[B]	ARG
1	15-B	50[A]	HIS
1	15-B	50[B]	HIS
1	15-B	52[A]	HIS
1	15-B	52[B]	HIS
1	15-B	54[A]	GLU
1	15-B	54[B]	GLU
1	15-B	70[A]	ASN
1	15-B	70[B]	ASN
1	15-B	87	ASP
1	15-B	90[A]	HIS
1	15-B	90[B]	HIS
1	15-B	91[A]	HIS
1	15-B	91[B]	HIS
1	15-B	97	GLN
1	15-B	110	GLU
1	15-B	114	ASN
1	16-A	3	ASN
1	16-A	16	GLU
1	16-A	46	LYS
1	16-A	49	ARG
1	16-A	50	HIS
1	16-A	117	THR
1	16-A	119	LEU
1	16-B	2	MSE
1	16-B	4[A]	ILE
1	16-B	4[B]	ILE
1	16-B	12	SER
1	16-B	46[A]	LYS
1	16-B	46[B]	LYS
1	16-B	49[A]	ARG
1	16-B	49[B]	ARG
1	16-B	50[A]	HIS
1	16-B	50[B]	HIS
1	16-B	57	LEU

Mol	Chain	Res	Type
1	16-B	62	GLN
1	16-B	77[A]	THR
1	16-B	77[B]	THR
1	16-B	86	LEU
1	16-B	91[A]	HIS
1	16-B	91[B]	HIS
1	16-B	98	GLU
1	16-B	119	LEU
1	17-A	2	MSE
1	17-A	30	LEU
1	17-A	31	ASN
1	17-A	44	GLU
1	17-A	49	ARG
1	17-A	52	HIS
1	17-A	62	GLN
1	17-A	71	ASP
1	17-A	77	THR
1	17-A	81[A]	LEU
1	17-A	81[B]	LEU
1	17-A	86	LEU
1	17-A	91	HIS
1	17-A	122	ASP
1	17-B	2	MSE
1	17-B	19[A]	LEU
1	17-B	19[B]	LEU
1	17-B	50[A]	HIS
1	17-B	50[B]	HIS
1	17-B	52[A]	HIS
1	17-B	52[B]	HIS
1	17-B	62	GLN
1	17-B	82[A]	ILE
1	17-B	82[B]	ILE
1	17-B	90[A]	HIS
1	17-B	90[B]	HIS
1	17-B	99	ASP
1	17-B	110	GLU
1	17-B	119	LEU
1	18-A	2	MSE
1	18-A	3	ASN
1	18-A	16	GLU
1	18-A	19	LEU
1	18-A	46	LYS

M_1	Chair	Daa	Turne
		rtes 40	туре
1	18-A	49	ARG
1	18-A	52	HIS
1	18-A	53	ASN
1	18-A	114	ASN
1	18-A	117	THR
1	18-A	118	ARG
1	18-A	120	GLU
1	18-B	2	MSE
1	18-B	6	ARG
1	18-B	49[A]	ARG
1	18-B	49[B]	ARG
1	18-B	50[A]	HIS
1	18-B	50[B]	HIS
1	18-B	53[A]	ASN
1	18-B	53[B]	ASN
1	18-B	57	LEU
1	18-B	119	LEU
1	19-A	9	ASP
1	19-A	31	ASN
1	19-A	46	LYS
1	19-A	49	ARG
1	19-A	50	HIS
1	19-A	52	HIS
1	19-A	53	ASN
1	19-A	57[A]	LEU
1	19-A	57[B]	LEU
1	19-A	77	THR
1	19-A	97[A]	GLN
1	19-A	97[B]	GLN
1	19-A	120	GLU
1	19-B	2	MSE
1	19-B	3	ASN
1	19-B	13	MSE
1	19-B	51[A]	SER
1	19-B	51[B]	SER
1	19-B	52[A]	HIS
1	19-B	52[B]	HIS
1	19-B	53[A]	ASN
1	19-B	53[B]	ASN
1	19-B	54[A]	GLU
1	19-B	54[B]	GLU
1	19-B	71[A]	ASP
<u> </u>	10 0	' <u> </u>	1101

Mol	Chain	Res	Type
1	19-B	71[B]	ASP
1	19-B	77[A]	THR
1	19-B	77[B]	THR
1	19-B	87	ASP
1	19-B	96	ASN
1	19-B	98	GLU
1	19-B	117	THR
1	19-B	118	ARG
1	20-A	7[A]	LYS
1	20-A	7[B]	LYS
1	20-A	19	LEU
1	20-A	28	GLU
1	20-A	46	LYS
1	20-A	48	PHE
1	20-A	50	HIS
1	20-A	87	ASP
1	20-A	89	GLU
1	20-A	97[A]	GLN
1	20-A	97[B]	GLN
1	20-A	120	GLU
1	20-A	121	GLN
1	20-B	2	MSE
1	20-B	7	LYS
1	20-B	46[A]	LYS
1	20-B	46[B]	LYS
1	20-B	50[A]	HIS
1	20-B	50[B]	HIS
1	20-B	52[A]	HIS
1	20-B	52[B]	HIS
1	20-B	72[A]	GLU
1	20-B	72[B]	GLU
1	20-B	81	LEU
1	20-B	98	GLU
1	20-B	121	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (98) such sidechains are listed below:

Mol	Chain	Res	Type
1	1-A	95	ASN
1	1-B	31	ASN
1	1-B	64	ASN
1	1-B	97	GLN

Mol	Chain	Res	Type
1	1-B	114	ASN
1	2-A	31	ASN
1	2-A	50	HIS
1	2-A	95	ASN
1	2-B	31	ASN
1	2-B	62	GLN
1	2-B	64	ASN
1	2-B	97	GLN
1	3-A	90	HIS
1	3-A	95	ASN
1	3-B	31	ASN
1	3-B	64	ASN
1	3-B	97	GLN
1	4-A	90	HIS
1	4-B	31	ASN
1	4-B	64	ASN
1	4-B	97	GLN
1	4-B	114	ASN
1	5-A	62	GLN
1	5-A	95	ASN
1	5-A	121	GLN
1	5-B	3	ASN
1	5-B	96	ASN
1	5-B	97	GLN
1	6-A	62	GLN
1	6-B	3	ASN
1	6-B	31	ASN
1	6-B	62	GLN
1	6-B	97	GLN
1	7-A	31	ASN
1	7-A	50	HIS
1	7-A	62	GLN
1	7-A	64	ASN
1	7-B	64	ASN
1	7-B	96	ASN
1	8-A	31	ASN
1	8-A	50	HIS
1	8-B	31	ASN
1	8-B	64	ASN
1	9-A	53	ASN
1	9-A	62	GLN
1	9-A	64	ASN

Mol	Chain	Res	Type
1	9-A	95	ASN
1	9-B	3	ASN
1	9-B	64	ASN
1	9-B	121	GLN
1	10-A	53	ASN
1	10-A	64	ASN
1	10-A	91	HIS
1	10-A	95	ASN
1	10-B	64	ASN
1	11-A	114	ASN
1	11-B	96	ASN
1	11-B	114	ASN
1	12-A	50	HIS
1	12-B	3	ASN
1	12-B	64	ASN
1	12-B	96	ASN
1	13-A	50	HIS
1	13-A	62	GLN
1	13-A	64	ASN
1	13-A	91	HIS
1	13-B	114	ASN
1	14-B	3	ASN
1	15-B	62	GLN
1	15-B	64	ASN
1	15-B	121	GLN
1	16-A	31	ASN
1	16-A	53	ASN
1	16-A	64	ASN
1	17-A	31	ASN
1	17-A	52	HIS
1	17-A	62	GLN
1	17-A	91	HIS
1	17-A	101	HIS
1	17-B	62	GLN
1	17-B	121	GLN
1	18-A	31	ASN
1	18-A	52	HIS
1	18-A	53	ASN
1	18-A	62	GLN
1	19-A	31	ASN
1	19-A	62	GLN
1	19-A	91	HIS

Mol	Chain	Res	Type
1	19-A	114	ASN
1	19-A	121	GLN
1	20-A	31	ASN
1	20-A	50	HIS
1	20-A	53	ASN
1	20-A	62	GLN
1	20-A	70	ASN
1	20-A	121	GLN
1	20-B	31	ASN
1	20-B	62	GLN

Continued from previous page..

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 60 ligands modelled in this entry, 60 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Warning: The R factor obtained from EDS is 0.3184, which does not match the depositor's R factor of 0.1264. Please interpret the results in this section carefully.

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	$\mathbf{Q}{<}0.9$
1	1-A	118/128~(92%)	3.02	81 (68%) 0 0	0,1,1,2	118 (100%)
1	1-B	117/128~(91%)	2.79	68~(58%) 0 0	0,1,1,2	117 (100%)
1	2-A	0/128	-	-	-	-
1	2-B	0/128	-	-	-	-
1	3-A	0/128	-	-	-	-
1	3-B	0/128	-	-	-	-
1	4-A	0/128	-	-	-	-
1	4-B	0/128	-	-	-	-
1	5-A	0/128	-	-	-	-
1	5-B	0/128	-	-	-	-
1	6-A	0/128	-	-	-	-
1	6-B	0/128	-	-	-	-
1	7-A	0/128	-	-	-	-
1	7-B	0/128	-	-	-	-
1	8-A	0/128	-	-	-	-
1	8-B	0/128	-	-	-	-
1	9-A	0/128	-	-	-	-
1	9-B	0/128	_	_	-	-
1	10-A	0/128	-	-	-	-
1	10-B	0/128	_	-	-	-
1	11-A	0/128	-	-	-	-
1	11-B	0/128	_	_	-	-
1	12-A	0/128	_	-	-	-
1	12-B	0/128	-	_	-	-
1	13-A	$0/\overline{128}$	_	-	_	_
1	13-B	0/128	_	-	-	-
1	14-A	$0/\overline{128}$	-	-	_	-
1	14-B	0/128	_	-	-	-
1	15-A	0/128	_	-	-	-

4Q29

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	$\mathbf{Q}{<}0.9$
1	15-B	0/128	-	-	-	-
1	16-A	0/128	-	-	-	-
1	16-B	0/128	-	-	-	-
1	17-A	0/128	-	-	-	-
1	17-B	0/128	-	-	-	-
1	18-A	0/128	-	-	-	-
1	18-B	0/128	-	-	-	-
1	19-A	0/128	-	-	-	-
1	19-B	0/128	-	-	-	-
1	20-A	0/128	-	-	-	-
1	20-B	0/128	-	-	-	-
All	All	235/5120 (4%)	2.91	149 (63%) 0 0	0, 1, 1, 2	235 (100%)

All (149) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	1-B	48[A]	PHE	11.7
1	1-B	87	ASP	8.2
1	1-A	49	ARG	8.2
1	1-A	90	HIS	7.9
1	1-A	48	PHE	7.8
1	1-B	53[A]	ASN	7.6
1	1-B	49[A]	ARG	7.5
1	1-A	96[A]	ASN	7.4
1	1-A	71	ASP	7.4
1	1-A	122	ASP	7.4
1	1-A	4[A]	ILE	7.3
1	1-A	64	ASN	7.1
1	1-A	72[A]	GLU	6.8
1	1-B	74	PHE	6.7
1	1-B	96	ASN	6.7
1	1-B	121	GLN	6.2
1	1-A	65	ALA	6.2
1	1-B	17[A]	TYR	6.0
1	1-B	119	LEU	6.0
1	1-A	89	GLU	6.0
1	1-B	97	GLN	5.9
1	1-B	3	ASN	5.9
1	1-A	86	LEU	5.9
1	1-A	3	ASN	5.7
1	1-A	69[A]	ILE	5.6
1	1-B	118	ARG	5.6

Mol	Chain	Res	Type	RSRZ
1	1-B	84	ILE	5.5
1	1-B	70[A]	ASN	5.4
1	1-B	120	GLU	5.3
1	1-A	17	TYR	5.2
1	1-B	50[A]	HIS	5.1
1	1-A	108	ASP	4.9
1	1-B	67	ILE	4.9
1	1-A	77	THR	4.9
1	1-A	57[A]	LEU	4.7
1	1-A	119	LEU	4.6
1	1-B	71[A]	ASP	4.6
1	1-A	83[A]	ILE	4.6
1	1-B	54[A]	GLU	4.6
1	1-B	98	GLU	4.6
1	1-A	53	ASN	4.4
1	1-A	120	GLU	4.4
1	1-B	77[A]	THR	4.2
1	1-A	50	HIS	4.2
1	1-A	74	PHE	4.2
1	1-B	4[A]	ILE	4.2
1	1-A	28	GLU	4.1
1	1-B	52[A]	HIS	4.1
1	1-A	24	LEU	3.9
1	1-B	88	SER	3.9
1	1-A	12	SER	3.9
1	1-A	51	SER	3.9
1	1-B	72[A]	GLU	3.9
1	1-A	75	PRO	3.9
1	1-A	115	PHE	3.8
1	1-A	55	TYR	3.8
1	1-B	51[A]	SER	3.8
1	1-A	121	GLN	3.8
1	1-A	110	GLU	3.7
1	1-A	66	ILE	3.5
1	1-A	84[A]	ILE	3.5
1	1-A	109	LYS	3.5
1	1-B	116	LEU	3.5
1	1-B	81	LEU	3.4
1	1-A	88	SER	3.4
1	1-A	112[A]	THR	3.3
1	1-A	44	GLU	3.3
1	1-B	7	LYS	3.3

Continued from previous page...

Mol	Chain	Res	Type	RSRZ
1	1-B	62	GLN	3.3
1	1-A	106[A]	TRP	3.3
1	1-B	90[A]	HIS	3.3
1	1-A	23	ARG	3.2
1	1-A	118	ARG	3.2
1	1-B	78[A]	LYS	3.2
1	1-A	14	VAL	3.2
1	1-B	91[A]	HIS	3.1
1	1-A	27	TRP	3.1
1	1-B	22	SER	3.1
1	1-B	106[A]	TRP	3.1
1	1-A	19	LEU	3.1
1	1-B	86	LEU	3.0
1	1-A	54	GLU	3.0
1	1-A	87	ASP	3.0
1	1-B	30	LEU	3.0
1	1-B	41	VAL	3.0
1	1-A	52	HIS	3.0
1	1-B	108	ASP	2.9
1	1-B	83[A]	ILE	2.9
1	1-B	46[A]	LYS	2.9
1	1-B	75	PRO	2.9
1	1-B	66	ILE	2.8
1	1-A	107	TRP	2.8
1	1-A	116	LEU	2.8
1	1-A	91	HIS	2.7
1	1-B	115	PHE	2.7
1	1-B	64	ASN	2.7
1	1-B	14	VAL	2.7
1	1-A	34	PHE	2.6
1	1-A	82[A]	ILE	2.6
1	1-B	29	GLY	2.6
1	1-A	5[A]	ILE	2.6
1	1-A	78	LYS	2.5
1	1-B	107	TRP	2.5
1	1-A	70[A]	ASN	2.5
1	1-A	46	LYS	2.5
1	1-A	36	GLY	2.5
1	1-A	68	ARG	2.5
1	1-A	63	GLY	2.4
1	1-A	10	TRP	2.4
1	1-A	117	THR	2.4

Mol	Chain	Res	Type	RSRZ
1	1-A	40	ILE	2.4
1	1-A	73[A]	ASP	2.4
1	1-B	18[A]	ASP	2.4
1	1-A	41	VAL	2.4
1	1-B	57	LEU	2.4
1	1-B	31	ASN	2.4
1	1-B	32	THR	2.3
1	1-B	109	LYS	2.3
1	1-A	114	ASN	2.3
1	1-B	76	VAL	2.3
1	1-B	12	SER	2.3
1	1-B	26	PRO	2.3
1	1-A	81[A]	LEU	2.2
1	1-A	105[A]	ILE	2.2
1	1-B	10	TRP	2.2
1	1-A	85	PRO	2.2
1	1-B	105[A]	ILE	2.2
1	1-A	37	ALA	2.2
1	1-A	45	THR	2.2
1	1-B	117	THR	2.2
1	1-A	111	SER	2.2
1	1-A	25	LEU	2.2
1	1-B	113[A]	LEU	2.2
1	1-B	114	ASN	2.2
1	1-A	9	ASP	2.1
1	1-B	110	GLU	2.1
1	1-A	39	CYS	2.1
1	1-A	98	GLU	2.1
1	1-A	35	GLY	2.1
1	1-A	104	THR	2.1
1	1-B	38	TRP	2.1
1	1-A	95	ASN	2.1
1	1-B	55[A]	TYR	2.1
1	1-B	5[A]	ILE	2.1
1	1-A	22	SER	2.0
1	1-A	47	SER	2.0
1	1-B	19[A]	LEU	2.0
1	1-B	89[A]	GLU	2.0
1	1-B	23	ARG	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

LIGAND-RSR INFOmissingINFO

6.5 Other polymers (i)

There are no such residues in this entry.

