

Full wwPDB X-ray Structure Validation Report (i)

Nov 10, 2024 – 08:03 AM EST

PDB ID	:	3SMH
Title	:	Crystal structure of major peanut allergen Ara h 1
Authors	:	Cabanos, C.S.; Mikami, B.; Maruyama, N.
Deposited on	:	2011-06-28
Resolution	:	2.43 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.003 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.43 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution		
	$(\# {\rm Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
R _{free}	164625	2124 (2.46-2.42)		
Clashscore	180529	2259 (2.46-2.42)		
Ramachandran outliers	177936	2244 (2.46-2.42)		
Sidechain outliers	177891	2244 (2.46-2.42)		
RSRZ outliers	164620	2124 (2.46-2.42)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain				
1	А	418	68%	19%	·	11%	
1	В	418	65%	20%	•	13%	
1	С	418	67%	20%	•	11%	
1	D	418	% 67%	19%	•	11%	
1	Е	418	% 65%	20%	•	13%	

Mol	Chain	Length	Quality of chain					
1	F	418	66%	18%	•	13%	-	

3SMH

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 17950 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	373	Total	С	Ν	0	\mathbf{S}	0	0	0
	Л	515	2982	1859	553	564	6	0	0	0
1	В	365	Total	С	Ν	0	S	0	0	0
	D	505	2910	1820	537	547	6	0	0	0
1	С	370	Total	С	Ν	0	S	0	0	0
		570	2949	1841	546	556	6		0	0
1	Л	373	Total	С	Ν	0	S	0	0	0
	D	313	2965	1851	551	557	6	0	0	0
1	F	365	Total	С	Ν	0	S	0	0	0
		505	2901	1812	532	551	6	0	0	0
1	1 F	264	Total	С	Ν	Ο	S	0	0	0
		304	2906	1817	538	545	6	0	0	

• Molecule 1 is a protein called Allergen Ara h 1, clone P41B.

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	275	VAL	MET	conflict	UNP P43238
В	275	VAL	MET	conflict	UNP P43238
С	275	VAL	MET	conflict	UNP P43238
D	275	VAL	MET	conflict	UNP P43238
Е	275	VAL	MET	conflict	UNP P43238
F	275	VAL	MET	conflict	UNP P43238

• Molecule 2 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	63	Total O 63 63	0	0
2	В	47	$\begin{array}{cc} \text{Total} & \text{O} \\ 47 & 47 \end{array}$	0	0
2	С	59	Total O 59 59	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	D	85	Total O 85 85	0	0
2	Е	36	$\begin{array}{cc} \text{Total} & \text{O} \\ 36 & 36 \end{array}$	0	0
2	F	47	$\begin{array}{cc} \text{Total} & \text{O} \\ 47 & 47 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Allergen Ara h 1, clone P41B

Chain F:

66%

18% • 13%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	156.49Å 89.01 Å 158.97 Å	Deperitor
a, b, c, α , β , γ	90.00° 107.15° 90.00°	Depositor
$\mathbf{B}_{\mathrm{ascolution}}\left(\overset{\mathrm{A}}{\mathbf{\lambda}}\right)$	15.00 - 2.43	Depositor
Resolution (A)	15.00 - 2.43	EDS
% Data completeness	98.3 (15.00-2.43)	Depositor
(in resolution range)	97.8 (15.00-2.43)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$6.35 (at 2.42 \text{\AA})$	Xtriage
Refinement program	PHENIX (phenix.refine: 1.6.4_486)	Depositor
D D	0.202 , 0.244	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.201 , 0.242	DCC
R_{free} test set	3859 reflections $(5.03%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	39.2	Xtriage
Anisotropy	0.754	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.34 , 40.6	EDS
L-test for twinning ²	$< L >=0.48, < L^2>=0.31$	Xtriage
	0.017 for 1/2 *h-3/2 *k,-1/2 *h-1/2 *k,-1/2 *h	
Estimated twinning fraction	+1/2*k-l	Xtriage
	0.018 for $1/2^{h+3}/2^{k}, 1/2^{h-1}/2^{k}, -1/2^{h-1}/2^{h-$	110110.00
	1/2*k-1	DDC
$\mathbf{F}_{o}, \mathbf{F}_{c}$ correlation	0.95	EDS
Total number of atoms	17950	wwPDB-VP
Average B, all atoms $(Å^2)$	46.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.13% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CSD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.42	0/3023	0.56	0/4072	
1	В	0.41	0/2951	0.88	6/3977~(0.2%)	
1	С	0.41	0/2990	0.56	0/4029	
1	D	0.42	0/3006	0.75	3/4047~(0.1%)	
1	Е	0.41	0/2942	0.57	0/3965	
1	F	0.41	0/2947	0.56	0/3970	
All	All	0.41	0/17859	0.66	9/24060~(0.0%)	

There are no bond length outliers.

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	D	149	ARG	NE-CZ-NH1	-21.52	109.54	120.30
1	В	35	ARG	NE-CZ-NH1	-21.03	109.79	120.30
1	D	149	ARG	NE-CZ-NH2	20.62	130.61	120.30
1	В	35	ARG	NE-CZ-NH2	20.39	130.49	120.30
1	В	165	ARG	NE-CZ-NH1	-20.22	110.19	120.30
1	В	165	ARG	NE-CZ-NH2	20.12	130.36	120.30
1	В	35	ARG	CD-NE-CZ	10.07	137.70	123.60
1	D	149	ARG	CD-NE-CZ	9.89	137.44	123.60
1	В	165	ARG	CD-NE-CZ	9.47	136.85	123.60

All (9) bond angle outliers are listed below:

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2982	0	2955	71	0
1	В	2910	0	2892	57	0
1	С	2949	0	2927	58	0
1	D	2965	0	2949	60	0
1	Е	2901	0	2864	57	0
1	F	2906	0	2890	66	0
2	А	63	0	0	0	0
2	В	47	0	0	3	0
2	С	59	0	0	3	0
2	D	85	0	0	5	0
2	Е	36	0	0	2	0
2	F	47	0	0	1	0
All	All	17950	0	17477	328	0

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

All (328) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:253:LYS:CG	1:F:233:GLU:HG3	1.93	0.99
1:A:209:LYS:HE3	1:A:210:HIS:CE1	1.97	0.98
1:A:417:ARG:HA	1:A:417:ARG:HH11	1.25	0.97
1:A:2:ARG:HG2	1:A:12:ARG:HH12	1.30	0.97
1:A:253:LYS:HG3	1:F:233:GLU:CG	2.01	0.91
1:A:253:LYS:HG3	1:F:233:GLU:HG3	1.56	0.86
1:A:233:GLU:HG3	1:F:235:GLU:HG3	1.56	0.86
1:F:267:VAL:HG13	1:F:359:LEU:HB2	1.58	0.86
1:A:417:ARG:HA	1:A:417:ARG:NH1	1.91	0.84
1:A:209:LYS:HE3	1:A:210:HIS:HE1	1.42	0.83
1:E:267:VAL:HG13	1:E:359:LEU:HB2	1.60	0.83
1:C:267:VAL:HG13	1:C:359:LEU:HB2	1.61	0.83
1:D:267:VAL:HG13	1:D:359:LEU:HB2	1.60	0.81
1:A:267:VAL:HG13	1:A:359:LEU:HB2	1.62	0.80
1:B:267:VAL:HG13	1:B:359:LEU:HB2	1.63	0.80
1:A:253:LYS:HG2	1:F:233:GLU:HG3	1.64	0.80
1:A:253:LYS:HG3	1:F:233:GLU:CD	2.02	0.80
1:C:209:LYS:HE3	1:C:210:HIS:NE2	2.00	0.77
1:A:416:ALA:O	1:A:417:ARG:HD2	1.86	0.76

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:379:ASP:OD2	1:B:412:HIS:HE1	1.70	0.75	
1:E:379:ASP:OD2	1:E:412:HIS:HE1	1.69	0.75	
1:B:210:HIS:HB2	2:B:419:HOH:O	1.88	0.74	
1:E:395:PRO:HG3	1:F:169:GLU:O	1.88	0.74	
1:B:93:HIS:CD2	1:B:214:VAL:HG21	2.23	0.74	
1:C:395:PRO:HG3	1:D:169:GLU:O	1.88	0.73	
1:E:51:LYS:O	1:E:54:THR:HB	1.89	0.73	
1:A:233:GLU:CG	1:F:235:GLU:CG	2.66	0.72	
1:F:379:ASP:OD2	1:F:412:HIS:HE1	1.72	0.71	
1:A:233:GLU:CG	1:F:235:GLU:HG3	2.20	0.71	
1:D:51:LYS:O	1:D:54:THR:HB	1.89	0.71	
1:A:253:LYS:CG	1:F:233:GLU:CG	2.62	0.69	
1:D:379:ASP:OD2	1:D:412:HIS:HE1	1.76	0.68	
1:A:164:ARG:HA	1:A:168:LEU:HB2	1.76	0.68	
1:E:47:GLN:HE21	1:E:70:GLN:HE22	1.39	0.68	
1:A:51:LYS:O	1:A:54:THR:HB	1.94	0.68	
1:A:379:ASP:OD2	1:A:412:HIS:HE1	1.77	0.68	
1:F:164:ARG:HA	1:F:168:LEU:HB2	1.76	0.68	
1:B:51:LYS:O	1:B:54:THR:HB	1.94	0.67	
1:B:302:ARG:HG3	1:B:329:ARG:HD2	1.77	0.67	
1:C:379:ASP:OD2	1:C:412:HIS:HE1	1.76	0.67	
1:F:51:LYS:O	1:F:54:THR:HB	1.94	0.67	
1:B:164:ARG:HA	1:B:168:LEU:HB2	1.77	0.66	
1:C:51:LYS:O	1:C:54:THR:HB	1.95	0.66	
1:E:164:ARG:HA	1:E:168:LEU:HB2	1.78	0.66	
1:A:233:GLU:HG3	1:F:235:GLU:CG	2.26	0.66	
1:E:90:ASP:H	1:E:93:HIS:CD2	2.14	0.65	
1:D:164:ARG:HA	1:D:168:LEU:HB2	1.79	0.65	
1:F:164:ARG:O	1:F:169:GLU:HG2	1.98	0.64	
1:E:164:ARG:O	1:E:169:GLU:HG2	1.98	0.64	
1:C:164:ARG:HA	1:C:168:LEU:HB2	1.80	0.63	
1:C:90:ASP:H	1:C:93:HIS:CD2	2.16	0.63	
1:B:164:ARG:O	1:B:169:GLU:HG2	1.98	0.63	
1:E:47:GLN:NE2	1:E:70:GLN:HE22	1.97	0.63	
1:F:71:GLN:NE2	1:F:115:ARG:HH21	1.96	0.62	
1:A:233:GLU:CG	1:F:235:GLU:HG2	2.29	0.62	
1:C:164:ARG:O	1:C:169:GLU:HG2	1.99	0.62	
1:B:47:GLN:HE21	1:B:70:GLN:HE22	1.47	0.62	
1:A:2:ARG:HG2	1:A:12:ARG:NH1	2.11	0.62	
1:D:137:SER:HA	1:D:192:ASN:HD21	1.64	0.61	
1:D:164:ARG:O	1:D:169:GLU:HG2	2.00	0.61	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:47:GLN:HE21	1:C:70:GLN:HE22	1.48	0.61	
1:A:47:GLN:HE21	1:A:70:GLN:HE22	1.47	0.61	
1:D:90:ASP:H	1:D:93:HIS:CD2	2.20	0.60	
1:B:90:ASP:H	1:B:93:HIS:CD2	2.19	0.60	
1:F:47:GLN:HE21	1:F:70:GLN:HE22	1.50	0.60	
1:C:34:SER:OG	1:C:36:GLN:HG2	2.01	0.60	
1:A:164:ARG:O	1:A:169:GLU:HG2	2.02	0.59	
1:D:255:PRO:HD2	2:D:451:HOH:O	2.02	0.59	
1:C:293:THR:OG1	1:C:354:SER:HB2	2.01	0.59	
1:F:295:ASN:HB3	2:F:458:HOH:O	2.02	0.59	
1:A:293:THR:OG1	1:A:354:SER:HB2	2.02	0.59	
1:B:169:GLU:O	1:F:395:PRO:HG3	2.02	0.59	
1:F:90:ASP:H	1:F:93:HIS:CD2	2.20	0.59	
1:A:90:ASP:H	1:A:93:HIS:CD2	2.21	0.59	
1:A:34:SER:OG	1:A:36:GLN:HG2	2.03	0.58	
1:E:293:THR:OG1	1:E:354:SER:HB2	2.04	0.58	
1:D:253:LYS:NZ	1:E:252:LYS:HD2	2.17	0.58	
1:F:34:SER:OG	1:F:36:GLN:HG2	2.03	0.58	
1:C:209:LYS:HG3	1:C:210:HIS:CD2	2.37	0.58	
1:F:162:GLU:O	1:F:166:VAL:HG13	2.03	0.58	
1:E:34:SER:OG	1:E:36:GLN:HG2	2.03	0.58	
1:A:47:GLN:NE2	1:A:70:GLN:HE22	2.03	0.57	
1:B:71:GLN:NE2	1:B:115:ARG:HH21	2.02	0.57	
1:D:47:GLN:HE21	1:D:70:GLN:HE22	1.52	0.57	
1:D:293:THR:OG1	1:D:354:SER:HB2	2.04	0.57	
1:D:34:SER:OG	1:D:36:GLN:HG2	2.05	0.56	
1:C:210:HIS:HB2	2:C:475:HOH:O	2.05	0.56	
1:E:162:GLU:O	1:E:166:VAL:HG13	2.06	0.56	
1:E:342:ILE:O	1:E:344:PRO:HD3	2.05	0.56	
1:B:34:SER:OG	1:B:36:GLN:HG2	2.05	0.56	
1:B:162:GLU:O	1:B:166:VAL:HG13	2.06	0.56	
1:C:47:GLN:NE2	1:C:70:GLN:HE22	2.04	0.55	
1:B:47:GLN:NE2	1:B:70:GLN:HE22	2.03	0.55	
1:B:379:ASP:OD2	1:B:412:HIS:CE1	2.56	0.55	
1:C:71:GLN:NE2	1:C:115:ARG:HH21	2.03	0.55	
1:A:162:GLU:O	1:A:166:VAL:HG13	2.07	0.54	
1:D:345:ALA:O	1:D:347:HIS:HD2	1.90	0.54	
1:D:232:ARG:NH1	2:D:449:HOH:O	2.40	0.54	
1:F:21:ASN:ND2	1:F:198:LYS:HG2	2.22	0.54	
1:F:296:LEU:O	1:F:332:THR:HA	2.07	0.54	
1:D:47:GLN:NE2	1:D:70:GLN:HE22	2.05	0.54	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:E:206:GLU:O	1:E:209:LYS:HG2	2.08	0.54	
1:F:47:GLN:NE2	1:F:70:GLN:HE22	2.06	0.54	
1:B:166:VAL:O	1:F:395:PRO:HD2	2.08	0.54	
1:C:206:GLU:O	1:C:209:LYS:HG2	2.08	0.54	
1:E:399:GLU:HB2	2:E:438:HOH:O	2.08	0.54	
1:E:23:ARG:HG2	1:E:23:ARG:HH21	1.73	0.53	
1:E:71:GLN:NE2	1:E:115:ARG:HH21	2.06	0.53	
1:A:166:VAL:O	1:D:395:PRO:HD2	2.07	0.53	
1:D:73:GLN:HE21	1:D:109:HIS:HD2	1.55	0.53	
1:A:91:GLU:OE2	1:A:232:ARG:NH2	2.42	0.53	
1:D:71:GLN:NE2	1:D:115:ARG:HH21	2.06	0.53	
1:F:293:THR:OG1	1:F:354:SER:HB2	2.09	0.53	
1:F:406:LYS:O	1:F:409:LYS:HE3	2.07	0.53	
1:A:80:ASN:O	1:D:381:VAL:HG23	2.08	0.53	
1:B:395:PRO:HG3	1:E:169:GLU:O	2.09	0.53	
1:B:406:LYS:O	1:B:409:LYS:HE3	2.08	0.53	
1:B:91:GLU:OE2	1:B:232:ARG:NH2	2.41	0.53	
1:F:70:GLN:HE21	1:F:290:ASN:ND2	2.07	0.53	
1:F:50:ALA:HB1	1:F:54:THR:CG2	2.39	0.52	
1:A:296:LEU:O	1:A:332:THR:HA	2.10	0.52	
1:D:162:GLU:O	1:D:166:VAL:HG13	2.10	0.52	
1:E:296:LEU:O	1:E:332:THR:HA	2.10	0.52	
1:B:345:ALA:O	1:B:347:HIS:HD2	1.93	0.52	
1:B:296:LEU:O	1:B:332:THR:HA	2.09	0.52	
1:C:162:GLU:O	1:C:166:VAL:HG13	2.08	0.52	
1:C:406:LYS:O	1:C:409:LYS:HE3	2.09	0.52	
1:F:36:GLN:HE22	1:F:302:ARG:HH12	1.57	0.52	
1:E:379:ASP:OD2	1:E:412:HIS:CE1	2.58	0.52	
1:F:206:GLU:O	1:F:209:LYS:HG2	2.09	0.52	
1:C:355:SER:O	1:C:356:GLU:C	2.49	0.51	
1:F:355:SER:O	1:F:356:GLU:C	2.48	0.51	
1:F:30:PHE:CD1	1:F:342:ILE:HD11	2.45	0.51	
1:E:73:GLN:HE21	1:E:109:HIS:HD2	1.59	0.51	
1:D:206:GLU:O	1:D:209:LYS:HG2	2.11	0.51	
1:D:70:GLN:HE21	1:D:290:ASN:ND2	2.09	0.51	
1:D:214:VAL:HG21	1:D:228:PRO:HD2	1.92	0.51	
1:A:206:GLU:O	1:A:209:LYS:HG2	2.10	0.51	
1:A:406:LYS:O	1:A:409:LYS:HE3	2.11	0.50	
1:C:21:ASN:ND2	1:C:198:LYS:HG2	2.26	0.50	
1:F:379:ASP:OD2	1:F:412:HIS:CE1	2.60	0.50	
1:F:77:THR:O	1:F:103:SER:HA	2.11	0.50	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:406:LYS:O	1:D:409:LYS:HE3	2.11	0.50	
1:E:355:SER:O	1:E:356:GLU:C	2.49	0.50	
1:A:70:GLN:HE21	1:A:290:ASN:ND2	2.10	0.50	
1:A:71:GLN:NE2	1:A:115:ARG:HH21	2.09	0.50	
1:B:70:GLN:HE21	1:B:290:ASN:ND2	2.10	0.50	
1:E:406:LYS:O	1:E:409:LYS:HE3	2.10	0.50	
1:B:302:ARG:HG3	1:B:329:ARG:CD	2.41	0.50	
1:C:50:ALA:HB1	1:C:54:THR:CG2	2.41	0.50	
1:A:2:ARG:HA	1:A:33:ARG:HH21	1.76	0.50	
1:F:91:GLU:OE2	1:F:232:ARG:NH2	2.44	0.50	
1:C:296:LEU:O	1:C:332:THR:HA	2.11	0.50	
1:D:355:SER:O	1:D:356:GLU:C	2.49	0.50	
1:B:293:THR:OG1	1:B:354:SER:HB2	2.11	0.50	
1:C:23:ARG:HH21	1:C:23:ARG:HG2	1.76	0.49	
1:D:77:THR:O	1:D:103:SER:HA	2.13	0.49	
1:D:91:GLU:OE2	1:D:232:ARG:NH2	2.46	0.49	
1:D:230:ASN:HB3	1:D:233:GLU:HB2	1.94	0.49	
1:A:77:THR:O	1:A:103:SER:HA	2.13	0.49	
1:B:355:SER:O	1:B:356:GLU:C	2.50	0.49	
1:C:232:ARG:NH1	2:C:468:HOH:O	2.44	0.49	
1:D:296:LEU:O	1:D:332:THR:HA	2.13	0.49	
1:B:73:GLN:HE21	1:B:109:HIS:HD2	1.60	0.49	
1:B:21:ASN:ND2	1:B:198:LYS:HG2	2.27	0.49	
1:D:21:ASN:ND2	1:D:198:LYS:HG2	2.27	0.49	
1:F:71:GLN:HE21	1:F:115:ARG:HH21	1.60	0.49	
1:A:233:GLU:HG2	1:F:235:GLU:HG2	1.94	0.49	
1:B:50:ALA:HB1	1:B:54:THR:CG2	2.43	0.49	
1:D:379:ASP:OD2	1:D:412:HIS:CE1	2.62	0.49	
1:A:73:GLN:HE21	1:A:109:HIS:HD2	1.59	0.49	
1:D:36:GLN:HE22	1:D:302:ARG:NH1	2.11	0.48	
1:E:21:ASN:ND2	1:E:198:LYS:HG2	2.28	0.48	
1:F:67:LEU:HD12	1:F:67:LEU:C	2.33	0.48	
1:C:91:GLU:OE2	1:C:232:ARG:NH2	2.46	0.48	
1:D:412:HIS:HD2	2:D:478:HOH:O	1.94	0.48	
1:E:398:GLY:O	1:E:402:GLU:HG3	2.13	0.48	
1:F:50:ALA:HB1	1:F:54:THR:HG21	1.95	0.48	
1:A:209:LYS:CE	1:A:210:HIS:CE1	2.86	0.48	
1:E:50:ALA:HB1	1:E:54:THR:CG2	2.44	0.48	
1:E:404:LEU:HD21	1:F:163:ILE:HA	1.94	0.48	
1:A:345:ALA:O	1:A:347:HIS:HD2	1.96	0.48	
1:A:355:SER:O	1:A:356:GLU:C	2.51	0.48	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:209:LYS:HE3	1:C:210:HIS:CE1	2.48	0.48	
1:C:73:GLN:HE21	1:C:109:HIS:HD2	1.61	0.48	
1:C:70:GLN:HE21	1:C:290:ASN:ND2	2.11	0.48	
1:D:50:ALA:HB1	1:D:54:THR:CG2	2.44	0.48	
1:F:23:ARG:HH21	1:F:23:ARG:HG2	1.77	0.48	
1:A:50:ALA:HB1	1:A:54:THR:CG2	2.44	0.48	
1:A:2:ARG:HA	1:A:33:ARG:NH2	2.29	0.47	
1:C:379:ASP:OD2	1:C:412:HIS:CE1	2.63	0.47	
1:E:230:ASN:HB3	1:E:233:GLU:HB2	1.96	0.47	
1:F:302:ARG:HG3	1:F:329:ARG:HD2	1.96	0.47	
1:A:395:PRO:HD2	1:C:166:VAL:O	2.15	0.47	
1:A:395:PRO:HG3	1:C:169:GLU:O	2.14	0.47	
1:D:212:LYS:NZ	2:D:467:HOH:O	2.47	0.47	
1:A:30:PHE:CD1	1:A:342:ILE:HD11	2.50	0.47	
1:B:77:THR:O	1:B:103:SER:HA	2.15	0.47	
1:B:203:HIS:HD2	2:B:422:HOH:O	1.98	0.47	
1:A:221:GLU:HG2	1:F:253:LYS:HD2	1.95	0.47	
1:F:73:GLN:HE21	1:F:109:HIS:HD2	1.63	0.47	
1:C:50:ALA:HB1	1:C:54:THR:HG21	1.97	0.47	
1:E:407:ASN:HD22	1:F:158:ALA:HB2	1.80	0.47	
1:B:23:ARG:HH21	1:B:23:ARG:HG2	1.80	0.46	
1:B:30:PHE:CD1	1:B:342:ILE:HD11	2.50	0.46	
1:B:206:GLU:O	1:B:209:LYS:HG2	2.15	0.46	
1:B:388:GLN:HE21	1:E:206:GLU:HG2	1.80	0.46	
1:B:255:PRO:HD2	2:B:465:HOH:O	2.15	0.46	
1:E:69:ILE:HG13	1:E:89:LEU:HB3	1.97	0.46	
1:A:21:ASN:ND2	1:A:198:LYS:HG2	2.30	0.46	
1:B:269:ILE:CD1	1:B:275:VAL:CG2	2.94	0.46	
1:E:23:ARG:HH21	1:E:23:ARG:CG	2.28	0.46	
1:F:269:ILE:CD1	1:F:275:VAL:CG2	2.94	0.46	
1:C:214:VAL:O	1:C:215:SER:HB3	2.16	0.46	
1:C:417:ARG:HA	1:C:417:ARG:HH11	1.81	0.46	
1:A:67:LEU:HD12	1:A:67:LEU:C	2.35	0.46	
1:C:404:LEU:HD21	1:D:163:ILE:HA	1.98	0.46	
1:A:23:ARG:HG2	1:A:23:ARG:HH21	1.80	0.46	
1:A:269:ILE:CD1	1:A:275:VAL:CG2	2.94	0.46	
1:B:386:GLU:HG3	1:E:84:ARG:HD3	1.97	0.46	
1:C:269:ILE:CD1	1:C:275:VAL:CG2	2.94	0.46	
1:D:214:VAL:CG2	1:D:228:PRO:HD2	2.46	0.46	
1:A:342:ILE:O	1:A:344:PRO:HD3	2.15	0.45	
1:C:345:ALA:O	1:C:347:HIS:HD2	1.99	0.45	

	lo de page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:381:VAL:HG23	1:E:80:ASN:O	2.16	0.45	
1:B:417:ARG:HA	1:B:417:ARG:NE	2.31	0.45	
1:E:77:THR:O	1:E:103:SER:HA	2.16	0.45	
1:F:46:VAL:HB	1:F:118:LYS:HB2	1.98	0.45	
1:A:253:LYS:HG2	1:F:233:GLU:CG	2.38	0.45	
1:C:30:PHE:CD1	1:C:342:ILE:HD11	2.52	0.45	
1:D:30:PHE:CD1	1:D:342:ILE:HD11	2.52	0.45	
1:A:416:ALA:C	1:A:417:ARG:HD2	2.37	0.45	
1:B:122:PRO:HB3	1:B:128:GLN:O	2.17	0.45	
1:B:137:SER:HB2	1:B:192:ASN:OD1	2.17	0.45	
1:B:209:LYS:HE3	1:B:210:HIS:CE1	2.51	0.45	
1:C:77:THR:O	1:C:103:SER:HA	2.16	0.45	
1:F:69:ILE:HG13	1:F:89:LEU:HB3	1.99	0.45	
1:C:23:ARG:HH21	1:C:23:ARG:CG	2.30	0.45	
1:D:36:GLN:HE22	1:D:302:ARG:HH12	1.63	0.45	
1:B:230:ASN:HB3	1:B:233:GLU:HB2	1.99	0.45	
1:C:122:PRO:HB3	1:C:128:GLN:O	2.18	0.44	
1:B:199:VAL:CG1	1:B:203:HIS:HB2	2.48	0.44	
1:D:23:ARG:HG2	1:D:23:ARG:HH21	1.81	0.44	
1:E:46:VAL:HB	1:E:118:LYS:HB2	2.00	0.44	
1:B:379:ASP:H	1:E:82:ASN:HD21	1.65	0.44	
1:F:390:LYS:HD3	1:F:401:VAL:CG1	2.47	0.44	
1:B:416:ALA:O	1:B:417:ARG:HG2	2.18	0.44	
1:F:21:ASN:HD21	1:F:198:LYS:HG2	1.83	0.44	
1:D:214:VAL:HG21	1:D:227:ASN:HB3	2.00	0.44	
1:B:46:VAL:HB	1:B:118:LYS:HB2	2.00	0.44	
1:B:257:LEU:HD12	1:B:257:LEU:HA	1.85	0.44	
1:E:345:ALA:O	1:E:347:HIS:HD2	2.01	0.44	
1:C:255:PRO:O	1:C:258:GLN:HB2	2.18	0.43	
1:E:87:PHE:CE1	1:E:228:PRO:HD3	2.53	0.43	
1:A:46:VAL:HB	1:A:118:LYS:HB2	1.99	0.43	
1:B:67:LEU:C	1:B:67:LEU:HD12	2.38	0.43	
1:B:342:ILE:O	1:B:344:PRO:HD3	2.18	0.43	
1:C:407:ASN:HD22	1:D:158:ALA:HB2	1.82	0.43	
1:C:82:ASN:ND2	2:C:472:HOH:O	2.43	0.43	
1:C:342:ILE:O	1:C:344:PRO:HD3	2.19	0.43	
1:D:57:LEU:HD12	1:D:57:LEU:HA	1.90	0.43	
1:D:67:LEU:C	1:D:67:LEU:HD12	2.39	0.43	
1:B:330:ARG:HD2	1:E:146:GLY:O	2.18	0.43	
1:C:404:LEU:HD23	1:D:167:LEU:HG	2.01	0.43	
1:C:71:GLN:HE21	1:C:115:ARG:HH21	1.66	0.43	

	lo de page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:46:VAL:HB	1:D:118:LYS:HB2	2.01	0.43	
1:E:30:PHE:CD1	1:E:342:ILE:HD11	2.53	0.43	
1:C:301:VAL:O	1:D:130:GLU:HG3	2.19	0.43	
1:E:57:LEU:HD12	1:E:57:LEU:HA	1.84	0.42	
1:F:342:ILE:O	1:F:344:PRO:HD3	2.19	0.42	
1:E:343:MET:HE1	2:E:423:HOH:O	2.19	0.42	
1:A:206:GLU:HG2	1:D:388:GLN:HE21	1.84	0.42	
1:A:379:ASP:OD2	1:A:412:HIS:CE1	2.65	0.42	
1:C:69:ILE:HG13	1:C:89:LEU:HB3	2.01	0.42	
1:D:417:ARG:NE	1:D:417:ARG:HA	2.34	0.42	
1:E:91:GLU:OE2	1:E:232:ARG:NH2	2.52	0.42	
1:C:138:ARG:HB3	1:C:192:ASN:HB3	2.01	0.42	
1:D:398:GLY:O	1:D:402:GLU:HG3	2.19	0.42	
1:E:269:ILE:CD1	1:E:275:VAL:CG2	2.97	0.42	
1:A:93:HIS:CD2	1:A:214:VAL:HG21	2.54	0.42	
1:A:233:GLU:CD	1:F:235:GLU:CG	2.88	0.42	
1:B:91:GLU:CD	1:B:232:ARG:NH2	2.73	0.42	
1:A:390:LYS:HD3	1:A:401:VAL:CG1	2.50	0.42	
1:D:256:GLN:HG2	2:D:451:HOH:O	2.19	0.42	
1:A:58:PRO:HG3	1:A:104:TYR:CD1	2.55	0.42	
1:A:91:GLU:CD	1:A:232:ARG:NH2	2.73	0.42	
1:A:230:ASN:HB3	1:A:233:GLU:HB2	2.02	0.42	
1:E:296:LEU:HD22	1:E:297:GLU:N	2.35	0.42	
1:F:23:ARG:HH21	1:F:23:ARG:CG	2.33	0.42	
1:C:46:VAL:HB	1:C:118:LYS:HB2	2.02	0.41	
1:D:69:ILE:HG13	1:D:89:LEU:HB3	2.01	0.41	
1:A:200:SER:O	1:A:204:VAL:HG23	2.20	0.41	
1:E:298:LEU:HD23	1:E:298:LEU:C	2.41	0.41	
1:C:404:LEU:HD23	1:D:166:VAL:HG22	2.01	0.41	
1:D:58:PRO:HG3	1:D:104:TYR:CD1	2.55	0.41	
1:E:67:LEU:C	1:E:67:LEU:HD12	2.41	0.41	
1:E:70:GLN:HE21	1:E:290:ASN:ND2	2.19	0.41	
1:F:257:LEU:HD12	1:F:257:LEU:HA	1.91	0.41	
1:B:93:HIS:CD2	1:B:214:VAL:CG2	2.99	0.41	
1:B:52:PRO:HD3	1:B:113:ASN:ND2	2.36	0.41	
1:D:50:ALA:HB1	1:D:54:THR:HG21	2.02	0.41	
1:D:91:GLU:CD	1:D:232:ARG:NH2	2.74	0.41	
1:F:415:SER:C	1:F:417:ARG:H	2.24	0.41	
1:A:57:LEU:HD12	1:A:57:LEU:HA	1.91	0.41	
1:B:50:ALA:HB1	1:B:54:THR:HG21	2.03	0.41	
1:D:257:LEU:HD12	1:D:257:LEU:HA	1.87	0.41	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:401:VAL:HG22	1:F:166:VAL:HG23	2.03	0.41
1:F:199:VAL:CG1	1:F:203:HIS:HB2	2.51	0.41
1:C:75:THR:OG1	1:C:88:ASN:ND2	2.54	0.41
1:C:93:HIS:CD2	1:C:214:VAL:HG21	2.56	0.41
1:E:200:SER:O	1:E:204:VAL:HG23	2.21	0.41
1:E:406:LYS:HA	1:E:406:LYS:HE3	2.03	0.41
1:E:8:PHE:HA	1:E:9:PRO:HD2	1.99	0.41
1:A:169:GLU:O	1:D:395:PRO:HG3	2.21	0.40
1:B:398:GLY:O	1:B:402:GLU:HG3	2.21	0.40
1:C:91:GLU:CD	1:C:232:ARG:NH2	2.74	0.40
1:E:277:PRO:HB3	1:F:147:PHE:CE1	2.57	0.40
1:F:200:SER:O	1:F:204:VAL:HG23	2.21	0.40
1:A:398:GLY:O	1:A:402:GLU:HG3	2.21	0.40
1:C:390:LYS:HD3	1:C:401:VAL:CG1	2.52	0.40
1:A:50:ALA:HB1	1:A:54:THR:HG21	2.03	0.40
1:C:52:PRO:HD3	1:C:113:ASN:ND2	2.35	0.40
1:E:50:ALA:HB1	1:E:54:THR:HG21	2.02	0.40
1:F:398:GLY:O	1:F:402:GLU:HG3	2.21	0.40
1:C:270:LYS:HD3	1:C:270:LYS:HA	1.92	0.40
1:D:255:PRO:O	1:D:258:GLN:HB2	2.21	0.40
1:E:36:GLN:HE22	1:E:302:ARG:HH22	1.67	0.40
1:F:70:GLN:HE21	1:F:290:ASN:HD22	1.70	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	364/418~(87%)	351~(96%)	13 (4%)	0	100	100
1	В	356/418~(85%)	343~(96%)	13~(4%)	0	100	100
1	С	361/418~(86%)	349~(97%)	12 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	D	364/418~(87%)	352~(97%)	12 (3%)	0	100 100
1	Ε	356/418~(85%)	342~(96%)	13 (4%)	1 (0%)	37 44
1	F	355/418~(85%)	340 (96%)	15 (4%)	0	100 100
All	All	2156/2508~(86%)	2077 (96%)	78 (4%)	1 (0%)	100 100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	Е	219	SER

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	326/364~(90%)	300~(92%)	26~(8%)	10	11
1	В	318/364~(87%)	293~(92%)	25~(8%)	10	11
1	С	322/364~(88%)	297~(92%)	25 (8%)	10	12
1	D	323/364~(89%)	296 (92%)	27 (8%)	9	9
1	Е	316/364~(87%)	293~(93%)	23 (7%)	11	13
1	F	317/364~(87%)	292~(92%)	25~(8%)	10	11
All	All	1922/2184 (88%)	1771 (92%)	151 (8%)	10	11

All (151) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	15	THR
1	А	16	ARG
1	А	54	THR
1	А	57	LEU
1	А	67	LEU
1	А	83	ASN
1	А	89	LEU

Mol	Chain	Res	Type
1	А	96	ARG
1	А	106	LEU
1	А	108	ARG
1	А	121	MET
1	А	166	VAL
1	А	168	LEU
1	А	191	ASN
1	А	232	ARG
1	А	257	LEU
1	А	265	THR
1	А	267	VAL
1	А	287	VAL
1	А	288	VAL
1	А	296	LEU
1	А	326	ARG
1	А	352	ASN
1	А	358	HIS
1	А	403	LYS
1	А	406	LYS
1	В	15	THR
1	В	16	ARG
1	В	54	THR
1	В	57	LEU
1	В	67	LEU
1	В	83	ASN
1	В	89	LEU
1	В	96	ARG
1	В	106	LEU
1	В	108	ARG
1	В	121	MET
1	В	166	VAL
1	В	168	LEU
1	В	232	ARG
1	В	257	LEU
1	В	265	THR
1	В	267	VAL
1	В	287	VAL
1	В	288	VAL
1	В	296	LEU
1	В	352	ASN
1	В	358	HIS
1	В	403	LYS

Mol	Chain	Res	Type
1	В	406	LYS
1	В	417	ARG
1	С	15	THR
1	С	16	ARG
1	С	54	THR
1	С	57	LEU
1	С	67	LEU
1	С	83	ASN
1	С	89	LEU
1	С	96	ARG
1	С	106	LEU
1	С	108	ARG
1	С	121	MET
1	С	166	VAL
1	С	168	LEU
1	С	232	ARG
1	С	257	LEU
1	С	265	THR
1	С	267	VAL
1	С	287	VAL
1	С	288	VAL
1	С	296	LEU
1	С	326	ARG
1	С	352	ASN
1	С	358	HIS
1	С	403	LYS
1	С	406	LYS
1	D	15	THR
1	D	16	ARG
1	D	54	THR
1	D	57	LEU
1	D	67	LEU
1	D	83	ASN
1	D	89	LEU
1	D	96	ARG
1	D	106	LEU
1	D	108	ARG
1	D	121	MET
1	D	166	VAL
1	D	168	LEU
1	D	213	SER
1	D	214	VAL

Mol	Chain	Res	Type
1	D	232	ARG
1	D	257	LEU
1	D	265	THR
1	D	267	VAL
1	D	287	VAL
1	D	288	VAL
1	D	296	LEU
1	D	326	ARG
1	D	352	ASN
1	D	358	HIS
1	D	403	LYS
1	D	406	LYS
1	E	15	THR
1	Е	16	ARG
1	Е	54	THR
1	Ε	57	LEU
1	E	67	LEU
1	Е	83	ASN
1	Ε	96	ARG
1	E	106	LEU
1	Е	108	ARG
1	E	121	MET
1	E	166	VAL
1	E	168	LEU
1	E	232	ARG
1	E	257	LEU
1	E	265	THR
1	E	267	VAL
1	Е	287	VAL
1	E	288	VAL
1	E	296	LEU
1	E	352	ASN
1	E	358	HIS
1	E	403	LYS
1	E	406	LYS
1	F	15	THR
1	F	16	ARG
1	F	54	THR
1	F	57	LEU
1	F	67	LEU
1	F	83	ASN
1	F	96	ARG

Mol	Chain	Res	Type
1	F	106	LEU
1	F	108	ARG
1	F	121	MET
1	F	166	VAL
1	F	168	LEU
1	F	232	ARG
1	F	257	LEU
1	F	265	THR
1	F	267	VAL
1	F	287	VAL
1	F	288	VAL
1	F	296	LEU
1	F	302	ARG
1	F	326	ARG
1	F	352	ASN
1	F	358	HIS
1	F	403	LYS
1	F	406	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (108) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	21	ASN
1	А	32	GLN
1	А	41	GLN
1	А	47	GLN
1	А	53	ASN
1	А	71	GLN
1	А	73	GLN
1	А	82	ASN
1	А	88	ASN
1	А	93	HIS
1	А	113	ASN
1	А	210	HIS
1	А	256	GLN
1	А	290	ASN
1	А	347	HIS
1	А	365	ASN
1	А	368	ASN
1	А	388	GLN
1	А	412	HIS
1	В	21	ASN

Mol	Chain	Res	Type
1	В	32	GLN
1	В	47	GLN
1	В	71	GLN
1	В	73	GLN
1	В	82	ASN
1	В	88	ASN
1	В	93	HIS
1	В	113	ASN
1	В	256	GLN
1	В	290	ASN
1	В	347	HIS
1	В	352	ASN
1	В	368	ASN
1	В	384	GLN
1	В	388	GLN
1	В	412	HIS
1	С	21	ASN
1	С	32	GLN
1	С	36	GLN
1	С	47	GLN
1	С	71	GLN
1	С	73	GLN
1	С	88	ASN
1	С	93	HIS
1	С	113	ASN
1	С	256	GLN
1	С	290	ASN
1	С	347	HIS
1	С	352	ASN
1	С	365	ASN
1	С	368	ASN
1	С	384	GLN
1	С	412	HIS
1	D	21	ASN
1	D	32	GLN
1	D	36	GLN
1	D	47	GLN
1	D	53	ASN
1	D	71	GLN
1	D	73	GLN
1	D	88	ASN
1	D	93	HIS

Mol	Chain	Res	Type
1	D	113	ASN
1	D	256	GLN
1	D	290	ASN
1	D	347	HIS
1	D	352	ASN
1	D	365	ASN
1	D	368	ASN
1	D	384	GLN
1	D	388	GLN
1	D	412	HIS
1	Е	21	ASN
1	Е	32	GLN
1	Ε	36	GLN
1	Е	47	GLN
1	Ε	53	ASN
1	Е	71	GLN
1	Е	73	GLN
1	Е	82	ASN
1	Е	88	ASN
1	Е	93	HIS
1	Е	113	ASN
1	Ε	254	ASN
1	Е	256	GLN
1	Е	290	ASN
1	Ε	347	HIS
1	Е	365	ASN
1	Ε	368	ASN
1	Е	384	GLN
1	Ε	412	HIS
1	F	21	ASN
1	F	32	GLN
1	F	36	GLN
1	F	47	GLN
1	F	53	ASN
1	F	71	GLN
1	F	73	GLN
1	F	88	ASN
1	F	93	HIS
1	F	113	ASN
1	F	256	GLN
1	F	290	ASN
		1	

Continued from previous page...

Mol	Chain	Res	Type
1	F	352	ASN
1	F	368	ASN
1	F	384	GLN
1	F	412	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

6 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Turno Chain		Dog	Link	Bond lengths			Bond angles			
INIOI	туре	Unain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	CSD	E	266	1	4,7,8	1.43	1 (25%)	1,8,10	1.88	0
1	CSD	С	266	1	4,7,8	0.93	0	1,8,10	1.20	0
1	CSD	F	266	1	4,7,8	1.00	0	1,8,10	3.03	1 (100%)
1	CSD	А	266	1	4,7,8	1.37	1 (25%)	1,8,10	1.61	0
1	CSD	В	266	1	4,7,8	0.96	0	1,8,10	2.07	1 (100%)
1	CSD	D	266	1	4,7,8	1.19	0	1,8,10	2.03	1 (100%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	CSD	Е	266	1	-	1/2/6/8	-
1	CSD	С	266	1	-	1/2/6/8	-
1	CSD	F	266	1	-	1/2/6/8	-
1	CSD	А	266	1	-	1/2/6/8	-
1	CSD	В	266	1	-	1/2/6/8	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	CSD	D	266	1	-	1/2/6/8	-

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	Е	266	CSD	OD1-SG	-2.55	1.45	1.47
1	А	266	CSD	OD1-SG	-2.09	1.45	1.47

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$\operatorname{Ideal}(^{o})$
1	F	266	CSD	OD1-SG-CB	3.03	111.18	105.60
1	В	266	CSD	OD1-SG-CB	2.07	109.42	105.60
1	D	266	CSD	OD1-SG-CB	2.03	109.33	105.60

There are no chirality outliers.

All (6) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	А	266	CSD	CA-CB-SG-OD1
1	В	266	CSD	CA-CB-SG-OD1
1	С	266	CSD	CA-CB-SG-OD1
1	D	266	CSD	CA-CB-SG-OD1
1	Е	266	CSD	CA-CB-SG-OD1
1	F	266	CSD	CA-CB-SG-OD1

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	А	372/418~(88%)	-0.45	2 (0%) 87 88	26, 42, 75, 120	0
1	В	364/418~(87%)	-0.41	0 100 100	28, 43, 71, 96	0
1	С	369/418~(88%)	-0.47	1 (0%) 90 91	25, 42, 72, 95	0
1	D	372/418~(88%)	-0.37	3 (0%) 82 83	26, 41, 69, 93	0
1	Ε	364/418~(87%)	-0.19	4 (1%) 77 79	29, 44, 73, 122	0
1	F	363/418~(86%)	-0.28	0 100 100	28, 44, 72, 97	0
All	All	2204/2508~(87%)	-0.36	10 (0%) 87 88	25, 43, 72, 122	0

All (10) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	D	171	ASN	3.7
1	Е	399	GLU	3.2
1	D	399	GLU	2.6
1	С	171	ASN	2.6
1	D	218	GLY	2.5
1	А	171	ASN	2.4
1	Е	403	LYS	2.4
1	Ε	416	ALA	2.2
1	A	139	ASP	2.1
1	Е	391	ASP	2.1

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
1	CSD	В	266	8/9	0.79	0.11	30,40,57,71	0
1	CSD	С	266	8/9	0.87	0.10	33,37,59,71	0
1	CSD	D	266	8/9	0.88	0.09	$27,\!36,\!58,\!72$	0
1	CSD	Е	266	8/9	0.89	0.09	34,39,61,78	0
1	CSD	F	266	8/9	0.89	0.08	$35,\!38,\!53,\!75$	0
1	CSD	А	266	8/9	0.91	0.07	27,35,59,73	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

