

# Full wwPDB X-ray Structure Validation Report (i)

#### Oct 24, 2024 – 09:01 AM EDT

| PDB ID       | : | 2QTS                                                                      |
|--------------|---|---------------------------------------------------------------------------|
| Title        | : | Structure of an acid-sensing ion channel 1 at 1.9 A resolution and low pH |
| Authors      | : | Jasti, J.; Furukawa, H.; Gonzales, E.B.; Gouaux, E.                       |
| Deposited on | : | 2007-08-02                                                                |
| Resolution   | : | 1.90  Å(reported)                                                         |
|              |   |                                                                           |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 2022.3.0, CSD as543be (2022)                                       |
| Xtriage (Phenix)               | : | 1.20.1                                                             |
| EDS                            | : | 3.0                                                                |
| Percentile statistics          | : | 20231227.v01 (using entries in the PDB archive December 27th 2023) |
| CCP4                           | : | 9.0.003 (Gargrove)                                                 |
| Density-Fitness                | : | 1.0.11                                                             |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.39                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY\;DIFFRACTION$ 

The reported resolution of this entry is 1.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| $R_{free}$            | 164625                                                               | 7293 (1.90-1.90)                                                          |
| Clashscore            | 180529                                                               | 8090 (1.90-1.90)                                                          |
| Ramachandran outliers | 177936                                                               | 8022 (1.90-1.90)                                                          |
| Sidechain outliers    | 177891                                                               | 8022 (1.90-1.90)                                                          |
| RSRZ outliers         | 164620                                                               | 7292 (1.90-1.90)                                                          |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of ch | nain     |
|-----|-------|--------|---------------|----------|
|     |       |        | 23%           |          |
| 1   | А     | 438    | 69%           | 23% • 5% |
|     |       |        | 20%           |          |
| 1   | В     | 438    | 73%           | 21% • •  |
|     |       |        | 21%           |          |
| 1   | С     | 438    | 71%           | 22% • 5% |
|     |       |        | 24%           |          |
| 1   | D     | 438    | 69%           | 24% • 5% |
|     |       |        | 28%           |          |
| 1   | Е     | 438    | 70%           | 25% • •  |



| Continued from previous page |       |        |                  |     |      |  |
|------------------------------|-------|--------|------------------|-----|------|--|
| Mol                          | Chain | Length | Quality of chain |     |      |  |
| 1                            | F     | 438    | 71%              | 20% | • 6% |  |
| 2                            | G     | 2      | 100%             |     |      |  |
| 2                            | Н     | 2      | 50%              | 50% |      |  |
| 2                            | Ι     | 2      | 50%              | 50% |      |  |



## 2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 22034 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues | Atoms |      |     |     |    | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|----|---------|---------|-------|
| 1   | Δ     | 417      | Total | С    | Ν   | 0   | S  | 0       | 0       | 0     |
| 1   | Л     | 417      | 3345  | 2144 | 541 | 633 | 27 | 0       | 0       | 0     |
| 1   | В     | 420      | Total | С    | Ν   | 0   | S  | 0       | 0       | 0     |
|     | D     | 420      | 3369  | 2161 | 545 | 636 | 27 | 0       | 0       | U     |
| 1   | С     | /18      | Total | С    | Ν   | 0   | S  | 0       | 0       | Ο     |
| 1   |       | 410      | 3350  | 2148 | 542 | 633 | 27 | 0       |         | 0     |
| 1   | Л     | 415      | Total | С    | Ν   | 0   | S  | 0       | 0       | Ο     |
| 1   | D     | 410      | 3324  | 2130 | 539 | 628 | 27 | 0       | 0       | U     |
| 1   | F     | 491      | Total | С    | Ν   | 0   | S  | 0       | 0       | 0     |
| 1   |       | 421      | 3375  | 2164 | 546 | 638 | 27 | 0       | 0       | 0     |
| 1   | 1 F   | 412      | Total | С    | Ν   | 0   | S  | 0       | 0       | 0     |
|     |       |          | 3299  | 2114 | 536 | 622 | 27 | 0       | U       | 0     |

• Molecule 1 is a protein called Acid-sensing ion channel.

• Molecule 2 is an oligosaccharide called alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose.



| Mol | Chain | Residues | Atoms                                                        | ZeroOcc | AltConf | Trace |
|-----|-------|----------|--------------------------------------------------------------|---------|---------|-------|
| 2   | G     | 2        | Total         C         O           23         12         11 | 0       | 0       | 0     |
| 2   | Н     | 2        | Total         C         O           23         12         11 | 0       | 0       | 0     |
| 2   | Ι     | 2        | Total         C         O           23         12         11 | 0       | 0       | 0     |

• Molecule 3 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula:  $C_8H_{15}NO_6$ ).





| Mol        | Chain | Residues | A     | ton | ns |   | ZeroOcc | AltConf |
|------------|-------|----------|-------|-----|----|---|---------|---------|
| 9          | ٨     | 1        | Total | С   | Ν  | 0 | 0       | 0       |
| 3          | A     | 1        | 14    | 8   | 1  | 5 | 0       | 0       |
| 9          | ٨     | 1        | Total | С   | Ν  | 0 | 0       | 0       |
| 3          | A     | 1        | 14    | 8   | 1  | 5 | 0       | 0       |
| 2          | Р     | 1        | Total | С   | Ν  | 0 | 0       | 0       |
| 5          | D     | 1        | 14    | 8   | 1  | 5 | 0       | 0       |
| 2          | В     | 1        | Total | С   | Ν  | 0 | 0       | 0       |
| ່ <u>ບ</u> | D     | 1        | 14    | 8   | 1  | 5 | 0       | 0       |
| 2          | C     | 1        | Total | С   | Ν  | Ο | 0       | 0       |
| ່ງ         | U     | 1        | 14    | 8   | 1  | 5 | 0       | 0       |
| 2          | С     | 1        | Total | С   | Ν  | Ο | 0       | 0       |
| 5          | U     | 1        | 14    | 8   | 1  | 5 | 0       | U       |
| 2          | Л     | 1        | Total | С   | Ν  | Ο | 0       | 0       |
| 5          | D     | T        | 14    | 8   | 1  | 5 | 0       | 0       |
| 3          | л     | 1        | Total | С   | Ν  | Ο | 0       | 0       |
| 5          | D     | I        | 14    | 8   | 1  | 5 | 0       | 0       |
| 3          | E     | 1        | Total | С   | Ν  | Ο | 0       | 0       |
| 5          | Ľ     | 1        | 14    | 8   | 1  | 5 | 0       | 0       |
| 2          | F     | 1        | Total | С   | Ν  | Ο | 0       | 0       |
| 5          | Ľ     | 1        | 14    | 8   | 1  | 5 | 0       | 0       |
| 3          | F     | 1        | Total | С   | Ν  | 0 | 0       | 0       |
|            | Ľ     | 1        | 14    | 8   | 1  | 5 |         | U       |
| 3          | F     | 1        | Total | C   | N  | 0 | 0       | 0       |
| J          | Ľ     | L        | 14    | 8   | 1  | 5 |         | U       |

• Molecule 4 is CHLORIDE ION (three-letter code: CL) (formula: Cl).



| 20 | TC |  |
|----|----|--|
| 2Q | TO |  |

| Mol | Chain | Residues | Atoms           | ZeroOcc | AltConf |
|-----|-------|----------|-----------------|---------|---------|
| 4   | А     | 1        | Total Cl<br>1 1 | 0       | 0       |
| 4   | В     | 1        | Total Cl<br>1 1 | 0       | 0       |
| 4   | С     | 1        | Total Cl<br>1 1 | 0       | 0       |
| 4   | D     | 1        | Total Cl<br>1 1 | 0       | 0       |
| 4   | Е     | 1        | Total Cl<br>1 1 | 0       | 0       |
| 4   | F     | 1        | Total Cl<br>1 1 | 0       | 0       |

• Molecule 5 is water.

| Mol | Chain | Residues | Atoms                                     | ZeroOcc | AltConf |
|-----|-------|----------|-------------------------------------------|---------|---------|
| 5   | А     | 285      | Total O<br>285 285                        | 0       | 0       |
| 5   | В     | 280      | Total         O           280         280 | 0       | 0       |
| 5   | С     | 302      | Total O<br>302 302                        | 0       | 0       |
| 5   | D     | 270      | Total         O           270         270 | 0       | 0       |
| 5   | Е     | 292      | Total O<br>292 292                        | 0       | 0       |
| 5   | F     | 300      | Total O<br>300 300                        | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Acid-sensing ion channel













GLC1 GLC2



## 4 Data and refinement statistics (i)

| Property                                    | Value                                           | Source    |
|---------------------------------------------|-------------------------------------------------|-----------|
| Space group                                 | P 1 21 1                                        | Depositor |
| Cell constants                              | 124.25Å 110.78Å 149.89Å                         | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$      | $90.00^{\circ}$ $97.54^{\circ}$ $90.00^{\circ}$ | Depositor |
| Bosolution(A)                               | 30.00 - 1.90                                    | Depositor |
| Resolution (A)                              | 30.00 - 1.90                                    | EDS       |
| % Data completeness                         | 88.4 (30.00-1.90)                               | Depositor |
| (in resolution range)                       | 88.4 (30.00-1.90)                               | EDS       |
| $R_{merge}$                                 | 0.06                                            | Depositor |
| R <sub>sym</sub>                            | 0.07                                            | Depositor |
| $< I/\sigma(I) > 1$                         | $0.78 (at 1.76 \text{\AA})$                     | Xtriage   |
| Refinement program                          | CNS 1.1                                         | Depositor |
| B B.                                        | 0.208 , 0.233                                   | Depositor |
| II, II, <i>free</i>                         | (Not available), $0.210$                        | DCC       |
| $R_{free}$ test set                         | 15744 reflections $(4.96%)$                     | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                     | 20.8                                            | Xtriage   |
| Anisotropy                                  | 0.490                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$ | 0.35 , $49.3$                                   | EDS       |
| L-test for twinning <sup>2</sup>            | $ < L >=0.49, < L^2>=0.32$                      | Xtriage   |
| Estimated twinning fraction                 | No twinning to report.                          | Xtriage   |
| $F_o, F_c$ correlation                      | 0.94                                            | EDS       |
| Total number of atoms                       | 22034                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                | 38.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 8.17% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, CL, GLC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal   | Chain | Bond | lengths  | Bo   | ond angles     |
|-------|-------|------|----------|------|----------------|
| 1VIOI | Chain | RMSZ | # Z  > 5 | RMSZ | # Z  > 5       |
| 1     | А     | 0.32 | 0/3424   | 0.58 | 0/4637         |
| 1     | В     | 0.32 | 0/3448   | 0.59 | 1/4669~(0.0%)  |
| 1     | С     | 0.33 | 0/3429   | 0.60 | 0/4644         |
| 1     | D     | 0.32 | 0/3402   | 0.58 | 0/4607         |
| 1     | Е     | 0.32 | 0/3454   | 0.59 | 1/4677~(0.0%)  |
| 1     | F     | 0.32 | 0/3376   | 0.59 | 0/4571         |
| All   | All   | 0.32 | 0/20533  | 0.59 | 2/27805~(0.0%) |

There are no bond length outliers.

All (2) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 1   | В     | 405 | LEU  | CA-CB-CG | 6.13  | 129.40           | 115.30        |
| 1   | Е     | 271 | GLN  | N-CA-C   | -5.00 | 97.49            | 111.00        |

There are no chirality outliers.

There are no planarity outliers.

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 3345  | 0        | 3238     | 91      | 0            |
| 1   | В     | 3369  | 0        | 3271     | 103     | 0            |
| 1   | С     | 3350  | 0        | 3248     | 95      | 0            |



| Conti | Continued from previous page |       |          |          |         |              |
|-------|------------------------------|-------|----------|----------|---------|--------------|
| Mol   | Chain                        | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
| 1     | D                            | 3324  | 0        | 3222     | 99      | 0            |
| 1     | Е                            | 3375  | 0        | 3276     | 100     | 0            |
| 1     | F                            | 3299  | 0        | 3205     | 82      | 0            |
| 2     | G                            | 23    | 0        | 21       | 0       | 0            |
| 2     | Н                            | 23    | 0        | 21       | 0       | 0            |
| 2     | Ι                            | 23    | 0        | 21       | 0       | 0            |
| 3     | А                            | 28    | 0        | 26       | 0       | 0            |
| 3     | В                            | 28    | 0        | 26       | 0       | 0            |
| 3     | С                            | 28    | 0        | 26       | 1       | 0            |
| 3     | D                            | 28    | 0        | 26       | 1       | 0            |
| 3     | Е                            | 28    | 0        | 26       | 0       | 0            |
| 3     | F                            | 28    | 0        | 26       | 1       | 0            |
| 4     | А                            | 1     | 0        | 0        | 0       | 0            |
| 4     | В                            | 1     | 0        | 0        | 0       | 0            |
| 4     | С                            | 1     | 0        | 0        | 0       | 0            |
| 4     | D                            | 1     | 0        | 0        | 0       | 0            |
| 4     | Е                            | 1     | 0        | 0        | 0       | 0            |
| 4     | F                            | 1     | 0        | 0        | 0       | 0            |
| 5     | А                            | 285   | 0        | 0        | 9       | 0            |
| 5     | В                            | 280   | 0        | 0        | 3       | 0            |
| 5     | С                            | 302   | 0        | 0        | 9       | 0            |
| 5     | D                            | 270   | 0        | 0        | 9       | 0            |
| 5     | Е                            | 292   | 0        | 0        | 7       | 0            |
| 5     | F                            | 300   | 0        | 0        | 7       | 0            |
| All   | All                          | 22034 | 0        | 19679    | 523     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 13.

All (523) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1           | Atom 2          | Interatomic  | Clash       |
|------------------|-----------------|--------------|-------------|
| Atom-1           | Atom-2          | distance (Å) | overlap (Å) |
| 1:D:131:ALA:HA   | 1:F:387:LYS:HD3 | 1.46         | 0.98        |
| 1:F:294:THR:HG23 | 1:F:304:TYR:H   | 1.28         | 0.97        |
| 1:F:298:SER:HB2  | 1:F:302:ASP:HA  | 1.47         | 0.95        |
| 1:B:131:ALA:HB2  | 1:B:234:TRP:HE1 | 1.31         | 0.93        |
| 1:C:294:THR:HA   | 1:C:304:TYR:HB3 | 1.50         | 0.91        |
| 1:B:42:LEU:HD12  | 1:B:44:ARG:HB2  | 1.54         | 0.88        |
| 1:B:207:ARG:HH21 | 1:B:207:ARG:HB2 | 1.41         | 0.85        |
| 1:E:122:ARG:HE   | 1:E:122:ARG:HA  | 1.41         | 0.83        |
| 1:A:154:ASN:HD22 | 1:A:157:GLU:H   | 1.27         | 0.82        |



|                  | lo uo pugom      | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:C:186:LYS:HE2  | 1:C:202:GLN:HG2  | 1.60         | 0.82        |
| 1:D:205:LYS:HB3  | 1:D:206:PRO:HD2  | 1.63         | 0.80        |
| 1:D:211:MET:HG3  | 1:E:357:ASN:ND2  | 1.98         | 0.79        |
| 1:D:98:GLU:HG2   | 1:D:192:TYR:O    | 1.84         | 0.78        |
| 1:D:357:ASN:ND2  | 1:F:211:MET:HG3  | 1.98         | 0.77        |
| 1:C:223:LEU:HB2  | 1:C:405:LEU:CD2  | 2.14         | 0.77        |
| 1:E:146:ARG:HD2  | 5:E:671:HOH:O    | 1.83         | 0.76        |
| 1:A:395:LYS:HG2  | 1:A:399:TYR:CD1  | 2.19         | 0.76        |
| 1:E:127:ASP:CG   | 1:E:128:THR:H    | 1.90         | 0.74        |
| 1:C:42:LEU:H     | 1:C:42:LEU:HD22  | 1.52         | 0.74        |
| 1:D:127:ASP:O    | 1:D:130:THR:HG23 | 1.87         | 0.73        |
| 1:C:395:LYS:HG2  | 1:C:399:TYR:CD1  | 2.24         | 0.73        |
| 1:B:97:ASN:HD21  | 1:B:231:LEU:H    | 1.36         | 0.73        |
| 1:A:130:THR:HB   | 1:C:387:LYS:HB3  | 1.70         | 0.72        |
| 1:F:98:GLU:HG2   | 1:F:192:TYR:O    | 1.88         | 0.72        |
| 1:C:223:LEU:HB2  | 1:C:405:LEU:HD21 | 1.72         | 0.71        |
| 1:E:65:ARG:HH21  | 1:E:433:ASP:HB3  | 1.56         | 0.71        |
| 1:E:420:GLU:HG2  | 1:E:422:LYS:HD3  | 1.71         | 0.71        |
| 1:A:78:LEU:HD13  | 1:A:79:ASP:N     | 2.05         | 0.70        |
| 1:A:176:ARG:HH22 | 1:B:357:ASN:ND2  | 1.89         | 0.70        |
| 1:C:98:GLU:HG2   | 1:C:192:TYR:O    | 1.91         | 0.70        |
| 1:D:395:LYS:HG2  | 1:D:399:TYR:CD1  | 2.27         | 0.70        |
| 1:F:310:ARG:O    | 1:F:314:GLU:HG3  | 1.92         | 0.69        |
| 1:D:63:THR:O     | 1:D:67:GLN:HG3   | 1.92         | 0.69        |
| 1:D:156:LEU:HD13 | 1:D:327:VAL:HG13 | 1.72         | 0.69        |
| 1:E:63:THR:O     | 1:E:67:GLN:HG3   | 1.92         | 0.69        |
| 1:B:437:GLN:NE2  | 1:B:437:GLN:H    | 1.90         | 0.69        |
| 1:E:144:ASN:OD1  | 1:E:146:ARG:HD3  | 1.93         | 0.69        |
| 1:C:405:LEU:HD23 | 1:C:405:LEU:O    | 1.94         | 0.67        |
| 1:C:210:THR:HG23 | 1:C:217:ASN:HB3  | 1.75         | 0.67        |
| 1:D:239:GLU:HB2  | 5:D:705:HOH:O    | 1.94         | 0.67        |
| 1:E:296:GLY:HA2  | 1:E:302:ASP:HA   | 1.77         | 0.67        |
| 1:A:357:ASN:HD21 | 1:C:176:ARG:HH12 | 1.43         | 0.66        |
| 1:E:332:ASP:HB3  | 5:E:700:HOH:O    | 1.96         | 0.66        |
| 1:B:120:ASN:ND2  | 1:B:122:ARG:H    | 1.94         | 0.65        |
| 1:B:341:TYR:HA   | 1:B:345:ALA:HB3  | 1.78         | 0.65        |
| 1:C:240:THR:HG21 | 5:C:726:HOH:O    | 1.97         | 0.65        |
| 1:F:42:LEU:N     | 1:F:42:LEU:HD13  | 2.11         | 0.65        |
| 1:B:120:ASN:C    | 1:B:120:ASN:HD22 | 1.98         | 0.65        |
| 1:A:86:LEU:HD23  | 1:A:87:THR:N     | 2.12         | 0.65        |
| 1:A:97:ASN:HD21  | 1:A:231:LEU:H    | 1.43         | 0.64        |



|                  | A h o            | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:366:CYS:HB2  | 5:A:692:HOH:O    | 1.97                    | 0.64        |
| 1:D:375:LEU:HD13 | 5:F:591:HOH:O    | 1.98                    | 0.64        |
| 1:D:131:ALA:HB3  | 1:D:234:TRP:HE1  | 1.61                    | 0.64        |
| 1:F:393:TYR:O    | 1:F:395:LYS:HD2  | 1.97                    | 0.64        |
| 1:A:260:ASP:HB3  | 5:A:732:HOH:O    | 1.98                    | 0.64        |
| 1:B:450:LEU:HD21 | 1:C:42:LEU:HB2   | 1.78                    | 0.64        |
| 1:D:310:ARG:O    | 1:D:314:GLU:HG3  | 1.97                    | 0.64        |
| 1:D:341:TYR:HA   | 1:D:345:ALA:HB3  | 1.80                    | 0.64        |
| 1:D:203:ASP:HB3  | 1:D:205:LYS:HG3  | 1.80                    | 0.64        |
| 1:E:122:ARG:HA   | 1:E:122:ARG:NE   | 2.11                    | 0.64        |
| 1:F:298:SER:CB   | 1:F:302:ASP:HA   | 2.25                    | 0.64        |
| 1:A:139:LEU:HD23 | 1:A:234:TRP:CH2  | 2.33                    | 0.63        |
| 1:A:387:LYS:HD3  | 5:A:733:HOH:O    | 1.97                    | 0.63        |
| 1:B:437:GLN:H    | 1:B:437:GLN:HE21 | 1.45                    | 0.63        |
| 1:A:78:LEU:HD23  | 1:A:419:ILE:HG12 | 1.80                    | 0.63        |
| 1:C:75:VAL:HG13  | 1:C:424:ALA:HB2  | 1.79                    | 0.63        |
| 1:D:176:ARG:HH22 | 1:E:357:ASN:ND2  | 1.95                    | 0.63        |
| 1:A:420:GLU:OE1  | 1:A:422:LYS:HE2  | 1.98                    | 0.63        |
| 1:B:156:LEU:HD13 | 1:B:327:VAL:HG13 | 1.79                    | 0.63        |
| 1:F:97:ASN:HD21  | 1:F:231:LEU:H    | 1.46                    | 0.62        |
| 1:A:67:GLN:O     | 1:A:71:LEU:HD23  | 2.00                    | 0.62        |
| 1:E:55:LEU:HD13  | 1:E:55:LEU:O     | 1.98                    | 0.62        |
| 1:A:295:THR:HG22 | 1:A:296:GLY:N    | 2.14                    | 0.62        |
| 1:B:176:ARG:HH12 | 1:C:357:ASN:HD21 | 1.45                    | 0.62        |
| 1:B:379:LYS:HE3  | 5:B:496:HOH:O    | 1.98                    | 0.62        |
| 1:F:55:LEU:HD23  | 1:F:441:PHE:CE1  | 2.35                    | 0.62        |
| 1:F:239:GLU:HB2  | 5:F:640:HOH:O    | 1.98                    | 0.62        |
| 1:C:156:LEU:HD13 | 1:C:327:VAL:HG13 | 1.81                    | 0.61        |
| 1:A:125:ILE:HD12 | 1:A:140:GLN:HG2  | 1.80                    | 0.61        |
| 1:C:132:ASP:HB3  | 1:C:135:GLN:HG3  | 1.82                    | 0.61        |
| 1:B:45:VAL:C     | 1:B:47:TRP:H     | 2.04                    | 0.61        |
| 1:E:211:MET:HG3  | 1:F:357:ASN:ND2  | 2.16                    | 0.61        |
| 1:B:295:THR:HG22 | 1:B:296:GLY:N    | 2.16                    | 0.61        |
| 1:C:285:PRO:CB   | 1:C:286:PRO:HD2  | 2.30                    | 0.61        |
| 1:C:418:THR:HG23 | 5:C:532:HOH:O    | 2.01                    | 0.61        |
| 1:E:310:ARG:O    | 1:E:314:GLU:HG3  | 2.00                    | 0.60        |
| 1:B:395:LYS:HG2  | 1:B:399:TYR:CD1  | 2.36                    | 0.60        |
| 1:D:75:VAL:HG13  | 1:D:424:ALA:HB2  | 1.82                    | 0.60        |
| 1:E:59:ALA:HB2   | 1:E:441:PHE:CE2  | 2.36                    | 0.60        |
| 1:E:438:MET:O    | 1:E:442:ILE:HG13 | 2.00                    | 0.60        |
| 1:C:40:LEU:HD22  | 1:C:43:LYS:HE3   | 1.83                    | 0.60        |



|                  | A i a            | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:F:62:CYS:O     | 1:F:66:ILE:HG13  | 2.01                    | 0.60        |
| 1:D:97:ASN:HD21  | 1:D:231:LEU:H    | 1.50                    | 0.60        |
| 1:F:120:ASN:ND2  | 1:F:122:ARG:H    | 2.00                    | 0.60        |
| 1:E:456:ALA:O    | 1:E:460:ILE:HG13 | 2.02                    | 0.59        |
| 1:C:298:SER:HB2  | 1:C:301:TYR:O    | 2.02                    | 0.59        |
| 1:E:341:TYR:HA   | 1:E:345:ALA:HB3  | 1.84                    | 0.59        |
| 1:C:200:ALA:HB1  | 1:C:202:GLN:NE2  | 2.17                    | 0.59        |
| 1:B:92:THR:OG1   | 1:B:251:HIS:HE1  | 1.85                    | 0.59        |
| 1:D:62:CYS:O     | 1:D:66:ILE:HG12  | 2.02                    | 0.59        |
| 1:A:176:ARG:HH12 | 1:B:357:ASN:HD21 | 1.49                    | 0.59        |
| 1:C:202:GLN:N    | 1:C:202:GLN:HE21 | 2.01                    | 0.59        |
| 1:F:101:PHE:HE1  | 1:F:139:LEU:HD21 | 1.68                    | 0.59        |
| 1:E:139:LEU:O    | 1:E:143:ALA:N    | 2.35                    | 0.58        |
| 1:E:136:LEU:O    | 1:E:140:GLN:HG3  | 2.02                    | 0.58        |
| 1:D:120:ASN:ND2  | 1:D:124:GLU:H    | 2.00                    | 0.58        |
| 1:A:154:ASN:HD21 | 1:A:156:LEU:HB3  | 1.68                    | 0.58        |
| 1:B:454:ASP:CG   | 1:C:40:LEU:HD21  | 2.24                    | 0.58        |
| 1:C:47:TRP:HZ3   | 1:C:447:LEU:HB3  | 1.69                    | 0.58        |
| 1:D:50:CYS:HB2   | 1:F:450:LEU:HD21 | 1.84                    | 0.58        |
| 1:E:97:ASN:HD21  | 1:E:231:LEU:H    | 1.52                    | 0.58        |
| 1:D:120:ASN:C    | 1:D:120:ASN:HD22 | 2.07                    | 0.58        |
| 1:E:240:THR:HG21 | 5:E:623:HOH:O    | 2.02                    | 0.58        |
| 1:E:260:ASP:HB3  | 5:E:583:HOH:O    | 2.03                    | 0.58        |
| 1:C:63:THR:O     | 1:C:67:GLN:HG3   | 2.04                    | 0.57        |
| 1:E:176:ARG:HH12 | 1:F:357:ASN:HD21 | 1.51                    | 0.57        |
| 1:E:181:SER:OG   | 1:E:183:GLU:HG2  | 2.05                    | 0.57        |
| 1:F:120:ASN:C    | 1:F:120:ASN:HD22 | 2.07                    | 0.57        |
| 1:A:98:GLU:HG2   | 1:A:192:TYR:O    | 2.05                    | 0.57        |
| 1:A:120:ASN:C    | 1:A:120:ASN:HD22 | 2.08                    | 0.57        |
| 1:E:62:CYS:O     | 1:E:66:ILE:HG13  | 2.05                    | 0.57        |
| 1:E:207:ARG:NH1  | 1:E:207:ARG:HB2  | 2.20                    | 0.57        |
| 1:D:120:ASN:ND2  | 1:D:122:ARG:H    | 2.02                    | 0.57        |
| 1:F:207:ARG:HA   | 5:F:551:HOH:O    | 2.03                    | 0.57        |
| 1:B:437:GLN:NE2  | 1:B:437:GLN:N    | 2.53                    | 0.57        |
| 1:B:120:ASN:HD22 | 1:B:122:ARG:H    | 1.52                    | 0.57        |
| 1:E:53:GLY:C     | 1:E:55:LEU:H     | 2.08                    | 0.57        |
| 1:A:253:GLN:HG3  | 5:A:578:HOH:O    | 2.05                    | 0.57        |
| 1:B:223:LEU:HB2  | 1:B:405:LEU:HD22 | 1.87                    | 0.57        |
| 1:D:43:LYS:NZ    | 1:D:43:LYS:HB3   | 2.20                    | 0.57        |
| 1:C:341:TYR:HA   | 1:C:345:ALA:HB3  | 1.86                    | 0.57        |
| 1:A:298:SER:HB3  | 1:A:302:ASP:HA   | 1.86                    | 0.56        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:C:154:ASN:HD22 | 1:C:157:GLU:H    | 1.53         | 0.56        |
| 1:D:357:ASN:ND2  | 1:F:176:ARG:HH22 | 2.03         | 0.56        |
| 1:F:203:ASP:O    | 1:F:205:LYS:HG2  | 2.05         | 0.56        |
| 1:B:207:ARG:HB2  | 1:B:207:ARG:NH2  | 2.17         | 0.56        |
| 1:D:157:GLU:OE2  | 1:D:161:ARG:NE   | 2.34         | 0.56        |
| 1:B:75:VAL:HG23  | 1:B:424:ALA:HB2  | 1.86         | 0.56        |
| 1:C:167:ARG:NH2  | 1:C:183:GLU:OE1  | 2.39         | 0.56        |
| 1:C:285:PRO:HB2  | 1:C:286:PRO:HD2  | 1.86         | 0.56        |
| 1:D:53:GLY:O     | 1:D:57:LEU:HG    | 2.06         | 0.56        |
| 1:B:128:THR:HB   | 1:B:136:LEU:HD21 | 1.87         | 0.56        |
| 1:F:420:GLU:OE1  | 1:F:422:LYS:HE2  | 2.06         | 0.56        |
| 1:B:42:LEU:C     | 1:B:44:ARG:H     | 2.08         | 0.56        |
| 1:B:127:ASP:O    | 1:B:130:THR:HG23 | 2.06         | 0.56        |
| 1:B:295:THR:HG22 | 1:B:296:GLY:H    | 1.70         | 0.56        |
| 1:C:97:ASN:HD21  | 1:C:231:LEU:H    | 1.54         | 0.56        |
| 1:C:282:ILE:HB   | 1:C:420:GLU:HG3  | 1.88         | 0.56        |
| 1:D:442:ILE:HG22 | 1:E:54:SER:OG    | 2.05         | 0.56        |
| 1:F:92:THR:OG1   | 1:F:251:HIS:HE1  | 1.89         | 0.56        |
| 1:B:206:PRO:HG2  | 5:B:648:HOH:O    | 2.06         | 0.56        |
| 1:E:176:ARG:HH22 | 1:F:357:ASN:ND2  | 2.04         | 0.56        |
| 1:A:210:THR:HG22 | 1:A:217:ASN:O    | 2.06         | 0.55        |
| 1:F:53:GLY:O     | 1:F:57:LEU:HD23  | 2.06         | 0.55        |
| 1:F:156:LEU:HD13 | 1:F:327:VAL:HG13 | 1.87         | 0.55        |
| 1:A:42:LEU:N     | 1:A:42:LEU:HD13  | 2.21         | 0.55        |
| 1:B:405:LEU:C    | 1:B:405:LEU:HD23 | 2.27         | 0.55        |
| 1:A:65:ARG:NE    | 1:A:65:ARG:HA    | 2.22         | 0.55        |
| 1:A:50:CYS:HB3   | 1:C:446:ILE:HG23 | 1.89         | 0.55        |
| 1:A:204:GLY:O    | 1:A:205:LYS:C    | 2.45         | 0.55        |
| 1:D:447:LEU:HD12 | 1:F:450:LEU:HB3  | 1.88         | 0.55        |
| 1:F:131:ALA:HB2  | 1:F:234:TRP:HE1  | 1.72         | 0.55        |
| 1:A:211:MET:HG3  | 1:B:357:ASN:ND2  | 2.21         | 0.55        |
| 1:C:133:GLU:CD   | 1:C:133:GLU:H    | 2.09         | 0.55        |
| 1:E:420:GLU:CG   | 1:E:422:LYS:HD3  | 2.37         | 0.55        |
| 1:A:122:ARG:O    | 1:A:124:GLU:HG3  | 2.07         | 0.55        |
| 1:A:280:ARG:HG2  | 1:A:280:ARG:HH11 | 1.72         | 0.55        |
| 1:D:237:THR:OG1  | 1:D:240:THR:HG23 | 2.07         | 0.55        |
| 1:D:447:LEU:O    | 1:D:451:GLU:HG3  | 2.06         | 0.55        |
| 1:E:452:LEU:O    | 1:E:452:LEU:HD23 | 2.06         | 0.55        |
| 1:A:295:THR:HG22 | 1:A:296:GLY:H    | 1.71         | 0.54        |
| 1:B:139:LEU:HD23 | 1:B:234:TRP:CH2  | 2.42         | 0.54        |
| 1:F:134:LYS:O    | 1:F:138:ILE:HG12 | 2.06         | 0.54        |



|                  | i agein          | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:A:294:THR:HG22 | 1:A:295:THR:N    | 2.21         | 0.54        |
| 1:D:357:ASN:HD22 | 1:F:211:MET:HG3  | 1.72         | 0.54        |
| 1:D:357:ASN:HD21 | 1:F:176:ARG:HH12 | 1.54         | 0.54        |
| 1:E:455:TYR:O    | 1:E:459:VAL:HG23 | 2.07         | 0.54        |
| 3:F:11:NAG:O3    | 3:F:11:NAG:H83   | 2.07         | 0.54        |
| 1:C:299:GLU:HG2  | 1:C:312:ASP:OD1  | 2.08         | 0.54        |
| 1:D:146:ARG:O    | 1:D:147:ASN:HB2  | 2.07         | 0.54        |
| 1:B:130:THR:HA   | 5:B:739:HOH:O    | 2.06         | 0.54        |
| 1:C:286:PRO:HG2  | 1:C:287:PRO:HD3  | 1.89         | 0.54        |
| 1:E:250:ILE:HD12 | 1:E:373:LYS:HD3  | 1.89         | 0.54        |
| 1:B:236:GLU:HG2  | 1:B:242:PHE:CZ   | 2.42         | 0.54        |
| 1:C:387:LYS:O    | 1:C:387:LYS:HD3  | 2.07         | 0.54        |
| 1:D:240:THR:HG21 | 5:D:546:HOH:O    | 2.06         | 0.54        |
| 1:E:64:ASN:HA    | 1:E:67:GLN:NE2   | 2.23         | 0.54        |
| 1:F:121:ASN:OD1  | 1:F:122:ARG:HG3  | 2.06         | 0.54        |
| 1:D:157:GLU:CD   | 1:D:161:ARG:HE   | 2.10         | 0.54        |
| 1:F:210:THR:HG23 | 1:F:217:ASN:HB3  | 1.90         | 0.54        |
| 1:C:59:ALA:O     | 1:C:63:THR:HG23  | 2.08         | 0.54        |
| 1:F:280:ARG:HG2  | 1:F:280:ARG:HH21 | 1.73         | 0.54        |
| 1:A:154:ASN:ND2  | 1:A:157:GLU:H    | 2.03         | 0.54        |
| 1:A:442:ILE:O    | 1:A:446:ILE:HG13 | 2.08         | 0.54        |
| 1:E:128:THR:HA   | 1:E:136:LEU:HD21 | 1.88         | 0.54        |
| 1:A:86:LEU:HD21  | 1:A:278:GLU:OE1  | 2.07         | 0.53        |
| 1:B:135:GLN:O    | 1:B:139:LEU:HB2  | 2.08         | 0.53        |
| 1:E:92:THR:OG1   | 1:E:251:HIS:HE1  | 1.92         | 0.53        |
| 1:A:55:LEU:HB2   | 1:A:441:PHE:HE2  | 1.73         | 0.53        |
| 1:D:42:LEU:O     | 1:D:45:VAL:HG12  | 2.09         | 0.53        |
| 1:B:131:ALA:HB2  | 1:B:234:TRP:NE1  | 2.14         | 0.53        |
| 1:C:420:GLU:OE1  | 1:C:422:LYS:HE3  | 2.09         | 0.53        |
| 1:A:312:ASP:OD2  | 1:A:316:ARG:NH1  | 2.42         | 0.53        |
| 1:C:132:ASP:OD1  | 1:C:134:LYS:HG2  | 2.09         | 0.53        |
| 1:B:42:LEU:HD12  | 1:B:44:ARG:CB    | 2.33         | 0.53        |
| 1:B:85:ARG:NH2   | 1:B:209:ILE:HD13 | 2.23         | 0.53        |
| 1:A:341:TYR:HA   | 1:A:345:ALA:HB3  | 1.91         | 0.53        |
| 1:E:127:ASP:CG   | 1:E:128:THR:N    | 2.62         | 0.53        |
| 1:B:167:ARG:HG2  | 1:B:167:ARG:HH21 | 1.74         | 0.53        |
| 1:D:139:LEU:HD23 | 1:D:234:TRP:CH2  | 2.44         | 0.53        |
| 1:D:176:ARG:HH12 | 1:E:357:ASN:HD21 | 1.56         | 0.53        |
| 1:C:405:LEU:HD23 | 1:C:405:LEU:C    | 2.29         | 0.53        |
| 1:A:420:GLU:CD   | 1:A:422:LYS:HE2  | 2.30         | 0.52        |
| 1:D:379:LYS:HG3  | 5:D:722:HOH:O    | 2.08         | 0.52        |



|                  | i agem           | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:D:56:ALA:O     | 1:D:60:LEU:HD23  | 2.09                    | 0.52        |
| 1:B:44:ARG:HH11  | 1:B:455:TYR:HE2  | 1.57                    | 0.52        |
| 1:A:63:THR:O     | 1:A:67:GLN:HG3   | 2.09                    | 0.52        |
| 1:A:207:ARG:HA   | 5:A:625:HOH:O    | 2.10                    | 0.52        |
| 1:C:256:PRO:HG2  | 1:C:307:THR:HG22 | 1.91                    | 0.52        |
| 1:C:379:LYS:HE3  | 5:C:480:HOH:O    | 2.10                    | 0.52        |
| 1:D:136:LEU:O    | 1:D:140:GLN:HG3  | 2.09                    | 0.52        |
| 1:A:357:ASN:ND2  | 1:C:176:ARG:HH22 | 2.08                    | 0.52        |
| 1:C:42:LEU:HD22  | 1:C:42:LEU:N     | 2.22                    | 0.52        |
| 1:C:210:THR:HG22 | 5:C:750:HOH:O    | 2.09                    | 0.52        |
| 1:B:310:ARG:O    | 1:B:314:GLU:HG3  | 2.08                    | 0.52        |
| 1:C:92:THR:OG1   | 1:C:251:HIS:HE1  | 1.93                    | 0.52        |
| 1:E:156:LEU:HD13 | 1:E:327:VAL:CG2  | 2.39                    | 0.52        |
| 1:B:46:VAL:HG12  | 1:B:46:VAL:O     | 2.10                    | 0.52        |
| 1:F:295:THR:HG22 | 1:F:295:THR:O    | 2.10                    | 0.52        |
| 1:A:131:ALA:C    | 1:A:133:GLU:H    | 2.13                    | 0.51        |
| 1:D:447:LEU:CD1  | 1:F:450:LEU:HB3  | 2.40                    | 0.51        |
| 1:C:63:THR:O     | 1:C:66:ILE:HG12  | 2.09                    | 0.51        |
| 1:D:44:ARG:HD2   | 1:D:455:TYR:CE2  | 2.45                    | 0.51        |
| 1:D:440:LEU:HD23 | 1:F:443:GLY:HA3  | 1.93                    | 0.51        |
| 1:F:63:THR:O     | 1:F:67:GLN:HG3   | 2.11                    | 0.51        |
| 1:F:312:ASP:HB3  | 5:F:687:HOH:O    | 2.11                    | 0.51        |
| 1:D:274:VAL:HG22 | 1:D:375:LEU:HG   | 1.92                    | 0.51        |
| 1:E:271:GLN:HE21 | 1:F:243:GLU:HG2  | 1.74                    | 0.51        |
| 1:B:271:GLN:HE21 | 1:C:243:GLU:HG2  | 1.76                    | 0.51        |
| 1:E:114:GLU:HG2  | 1:E:342:LYS:HE3  | 1.93                    | 0.51        |
| 1:E:327:VAL:HG12 | 5:E:480:HOH:O    | 2.09                    | 0.51        |
| 1:A:120:ASN:ND2  | 1:A:122:ARG:H    | 2.08                    | 0.51        |
| 1:B:319:VAL:O    | 1:B:323:ASN:HA   | 2.11                    | 0.51        |
| 1:D:209:ILE:HD12 | 1:D:209:ILE:C    | 2.31                    | 0.51        |
| 1:E:85:ARG:HB3   | 1:E:85:ARG:NH2   | 2.26                    | 0.51        |
| 1:A:256:PRO:HG2  | 1:A:307:THR:HG22 | 1.92                    | 0.51        |
| 1:D:256:PRO:HG2  | 1:D:307:THR:HG22 | 1.92                    | 0.51        |
| 1:A:402:GLU:OE1  | 1:C:383:LYS:HE2  | 2.11                    | 0.50        |
| 1:C:205:LYS:H    | 1:C:206:PRO:HD2  | 1.77                    | 0.50        |
| 1:C:310:ARG:O    | 1:C:314:GLU:HG3  | 2.11                    | 0.50        |
| 1:C:446:ILE:HG22 | 1:C:450:LEU:HD22 | 1.93                    | 0.50        |
| 1:D:202:GLN:C    | 1:D:204:GLY:H    | 2.14                    | 0.50        |
| 1:E:418:THR:HG23 | 5:E:543:HOH:O    | 2.12                    | 0.50        |
| 1:B:294:THR:HG21 | 1:B:303:THR:HA   | 1.93                    | 0.50        |
| 1:C:287:PRO:HG2  | 5:C:727:HOH:O    | 2.10                    | 0.50        |



|                  |                  | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:B:454:ASP:OD2  | 1:C:40:LEU:HD21  | 2.12                    | 0.50        |
| 1:C:442:ILE:O    | 1:C:446:ILE:HG13 | 2.11                    | 0.50        |
| 1:A:292:LYS:HA   | 5:A:644:HOH:O    | 2.12                    | 0.50        |
| 1:D:446:ILE:HG13 | 1:E:54:SER:HB2   | 1.94                    | 0.50        |
| 1:F:75:VAL:HG13  | 1:F:422:LYS:HB2  | 1.93                    | 0.50        |
| 1:A:298:SER:HB2  | 1:A:301:TYR:C    | 2.32                    | 0.50        |
| 1:D:186:LYS:HE3  | 5:D:697:HOH:O    | 2.12                    | 0.50        |
| 1:A:43:LYS:NZ    | 1:A:43:LYS:HB3   | 2.27                    | 0.50        |
| 1:A:144:ASN:HD21 | 1:A:146:ARG:HE   | 1.60                    | 0.50        |
| 1:C:395:LYS:HG2  | 1:C:399:TYR:CE1  | 2.47                    | 0.49        |
| 1:A:205:LYS:O    | 1:A:207:ARG:N    | 2.45                    | 0.49        |
| 1:C:420:GLU:CD   | 1:C:422:LYS:HE3  | 2.33                    | 0.49        |
| 1:A:176:ARG:NH1  | 1:B:357:ASN:HD21 | 2.09                    | 0.49        |
| 1:C:154:ASN:ND2  | 1:C:156:LEU:HB3  | 2.27                    | 0.49        |
| 1:C:293:ALA:C    | 1:C:295:THR:H    | 2.16                    | 0.49        |
| 1:B:176:ARG:HH22 | 1:C:357:ASN:ND2  | 2.10                    | 0.49        |
| 1:F:346:ASP:HB2  | 1:F:347:PRO:HD3  | 1.95                    | 0.49        |
| 1:B:210:THR:HG23 | 1:B:217:ASN:HB3  | 1.95                    | 0.49        |
| 1:E:202:GLN:HB2  | 1:E:205:LYS:CG   | 2.42                    | 0.49        |
| 1:C:274:VAL:HG22 | 1:C:375:LEU:HG   | 1.95                    | 0.49        |
| 1:B:274:VAL:HG22 | 1:B:375:LEU:HG   | 1.95                    | 0.49        |
| 1:B:438:MET:O    | 1:B:442:ILE:HG13 | 2.13                    | 0.49        |
| 1:D:282:ILE:HB   | 1:D:420:GLU:HG3  | 1.95                    | 0.49        |
| 1:B:136:LEU:O    | 1:B:140:GLN:HG3  | 2.13                    | 0.48        |
| 1:C:42:LEU:H     | 1:C:42:LEU:CD2   | 2.23                    | 0.48        |
| 1:C:44:ARG:CZ    | 1:C:455:TYR:HB2  | 2.43                    | 0.48        |
| 1:D:209:ILE:HD12 | 1:D:209:ILE:O    | 2.13                    | 0.48        |
| 1:D:445:SER:O    | 1:D:449:VAL:HG23 | 2.13                    | 0.48        |
| 1:F:101:PHE:CE1  | 1:F:139:LEU:HD21 | 2.47                    | 0.48        |
| 1:D:202:GLN:HG3  | 5:D:697:HOH:O    | 2.13                    | 0.48        |
| 1:D:390:ALA:HB1  | 1:D:395:LYS:O    | 2.14                    | 0.48        |
| 1:F:452:LEU:HD13 | 1:F:452:LEU:O    | 2.13                    | 0.48        |
| 1:A:387:LYS:HE2  | 1:A:397:GLU:OE2  | 2.13                    | 0.48        |
| 1:A:400:ILE:HG23 | 1:A:404:ILE:HG13 | 1.95                    | 0.48        |
| 1:C:292:LYS:HD2  | 1:C:363:GLU:OE1  | 2.13                    | 0.48        |
| 1:E:51:PHE:HD2   | 1:E:447:LEU:HD13 | 1.77                    | 0.48        |
| 1:D:122:ARG:O    | 1:D:124:GLU:HG3  | 2.14                    | 0.48        |
| 1:A:387:LYS:HD3  | 5:A:747:HOH:O    | 2.12                    | 0.48        |
| 1:B:292:LYS:O    | 1:B:292:LYS:HG3  | 2.13                    | 0.48        |
| 1:D:116:LEU:HA   | 5:D:705:HOH:O    | 2.12                    | 0.48        |
| 1:D:211:MET:HG3  | 1:E:357:ASN:HD22 | 1.74                    | 0.48        |



|                  |                  | Interatomic  | Clash       |
|------------------|------------------|--------------|-------------|
| Atom-1           | Atom-2           | distance (Å) | overlap (Å) |
| 1:B:44:ARG:NH1   | 1:B:455:TYR:HE2  | 2.12         | 0.48        |
| 1:B:346:ASP:HB2  | 1:B:347:PRO:HD3  | 1.96         | 0.48        |
| 1:C:395:LYS:HE3  | 5:C:635:HOH:O    | 2.13         | 0.48        |
| 1:E:339:GLU:HG3  | 5:E:694:HOH:O    | 2.13         | 0.48        |
| 1:F:85:ARG:HD3   | 1:F:209:ILE:HD12 | 1.96         | 0.48        |
| 1:E:78:LEU:HD13  | 1:E:419:ILE:HG12 | 1.96         | 0.47        |
| 1:E:202:GLN:HB2  | 1:E:205:LYS:HG2  | 1.95         | 0.47        |
| 1:A:395:LYS:HG2  | 1:A:399:TYR:CE1  | 2.48         | 0.47        |
| 1:D:49:LEU:HD12  | 1:D:50:CYS:N     | 2.28         | 0.47        |
| 1:A:78:LEU:HD13  | 1:A:78:LEU:C     | 2.34         | 0.47        |
| 1:A:176:ARG:HH22 | 1:B:357:ASN:HD21 | 1.58         | 0.47        |
| 1:B:236:GLU:HG2  | 1:B:242:PHE:HZ   | 1.80         | 0.47        |
| 1:D:436:GLY:O    | 1:D:440:LEU:HD13 | 2.14         | 0.47        |
| 1:E:101:PHE:CE1  | 1:E:139:LEU:HD21 | 2.50         | 0.47        |
| 1:C:207:ARG:HA   | 5:C:639:HOH:O    | 2.14         | 0.47        |
| 1:F:55:LEU:HD13  | 1:F:55:LEU:C     | 2.34         | 0.47        |
| 1:F:97:ASN:ND2   | 1:F:231:LEU:H    | 2.10         | 0.47        |
| 1:B:85:ARG:HG2   | 1:B:209:ILE:HD12 | 1.97         | 0.47        |
| 1:B:456:ALA:O    | 1:B:459:VAL:HG23 | 2.15         | 0.47        |
| 1:D:92:THR:OG1   | 1:D:251:HIS:HE1  | 1.96         | 0.47        |
| 1:E:442:ILE:C    | 1:E:444:ALA:H    | 2.18         | 0.47        |
| 1:F:292:LYS:HD2  | 1:F:304:TYR:CD2  | 2.50         | 0.47        |
| 1:D:181:SER:HB2  | 1:D:182:PRO:CD   | 2.45         | 0.47        |
| 1:D:420:GLU:OE1  | 1:D:422:LYS:HE2  | 2.15         | 0.47        |
| 1:D:435:GLY:HA3  | 1:E:61:VAL:HG11  | 1.97         | 0.47        |
| 1:E:59:ALA:O     | 1:E:63:THR:HG23  | 2.15         | 0.47        |
| 1:E:75:VAL:HG23  | 1:E:424:ALA:HB2  | 1.96         | 0.47        |
| 1:A:170:LEU:HD11 | 1:A:173:CYS:HB2  | 1.97         | 0.47        |
| 1:C:205:LYS:H    | 1:C:206:PRO:CD   | 2.27         | 0.46        |
| 1:F:52:MET:O     | 1:F:55:LEU:HB3   | 2.13         | 0.46        |
| 1:B:207:ARG:HH21 | 1:B:207:ARG:CB   | 2.20         | 0.46        |
| 1:E:299:GLU:C    | 1:E:301:TYR:H    | 2.18         | 0.46        |
| 1:B:97:ASN:ND2   | 1:B:231:LEU:H    | 2.09         | 0.46        |
| 3:C:6:NAG:H83    | 3:C:6:NAG:O3     | 2.15         | 0.46        |
| 1:F:315:THR:O    | 1:F:319:VAL:HG23 | 2.15         | 0.46        |
| 1:F:434:ILE:HG22 | 1:F:438:MET:HE2  | 1.98         | 0.46        |
| 1:C:427:VAL:O    | 1:C:431:LEU:HD13 | 2.14         | 0.46        |
| 1:A:149:LYS:O    | 1:A:151:LYS:HD3  | 2.16         | 0.46        |
| 1:B:452:LEU:HA   | 1:B:455:TYR:HB3  | 1.96         | 0.46        |
| 1:F:45:VAL:HG23  | 1:F:46:VAL:N     | 2.30         | 0.46        |
| 1:A:120:ASN:ND2  | 1:A:124:GLU:H    | 2.14         | 0.46        |



|                  | <b>A</b> + <b>O</b> | Interatomic             | Clash       |
|------------------|---------------------|-------------------------|-------------|
| Atom-1           | Atom-2              | distance $(\text{\AA})$ | overlap (Å) |
| 1:C:47:TRP:CZ3   | 1:C:447:LEU:HB3     | 2.51                    | 0.46        |
| 1:D:120:ASN:HD21 | 1:D:124:GLU:H       | 1.64                    | 0.46        |
| 1:E:181:SER:HB2  | 1:E:182:PRO:CD      | 2.46                    | 0.46        |
| 1:F:442:ILE:O    | 1:F:446:ILE:HG13    | 2.15                    | 0.46        |
| 1:B:53:GLY:O     | 1:B:57:LEU:HD23     | 2.15                    | 0.46        |
| 1:C:42:LEU:O     | 1:C:45:VAL:HG22     | 2.16                    | 0.46        |
| 1:C:448:THR:HG23 | 1:C:452:LEU:HD12    | 1.98                    | 0.46        |
| 1:D:46:VAL:HA    | 1:D:49:LEU:HG       | 1.98                    | 0.46        |
| 1:E:434:ILE:HA   | 1:E:437:GLN:HB3     | 1.98                    | 0.46        |
| 1:A:453:PHE:HE1  | 1:B:43:LYS:HZ2      | 1.64                    | 0.46        |
| 1:E:65:ARG:NH2   | 1:E:433:ASP:HB3     | 2.28                    | 0.46        |
| 1:C:62:CYS:O     | 1:C:66:ILE:HG23     | 2.16                    | 0.46        |
| 1:A:201:GLY:O    | 1:A:202:GLN:HB2     | 2.16                    | 0.45        |
| 1:A:205:LYS:HA   | 1:A:206:PRO:HD2     | 1.80                    | 0.45        |
| 1:A:240:THR:HG22 | 5:A:618:HOH:O       | 2.16                    | 0.45        |
| 1:B:101:PHE:CE1  | 1:B:139:LEU:HD13    | 2.51                    | 0.45        |
| 1:B:405:LEU:HD23 | 1:B:405:LEU:O       | 2.17                    | 0.45        |
| 3:D:7:NAG:H83    | 3:D:7:NAG:O3        | 2.17                    | 0.45        |
| 1:C:89:PRO:HB3   | 1:C:371:TYR:CZ      | 2.51                    | 0.45        |
| 1:C:139:LEU:HD23 | 1:C:234:TRP:CH2     | 2.51                    | 0.45        |
| 1:D:49:LEU:HD12  | 1:D:49:LEU:C        | 2.37                    | 0.45        |
| 1:D:74:HIS:HD2   | 5:D:588:HOH:O       | 1.99                    | 0.45        |
| 1:F:282:ILE:HB   | 1:F:420:GLU:HG3     | 1.98                    | 0.45        |
| 1:A:63:THR:O     | 1:A:66:ILE:HG22     | 2.17                    | 0.45        |
| 1:C:137:GLU:HG2  | 5:C:632:HOH:O       | 2.17                    | 0.45        |
| 1:E:282:ILE:HB   | 1:E:420:GLU:HG3     | 1.98                    | 0.45        |
| 1:A:390:ALA:HB1  | 1:A:395:LYS:O       | 2.15                    | 0.45        |
| 1:D:446:ILE:O    | 1:D:450:LEU:HG      | 2.17                    | 0.45        |
| 1:E:420:GLU:CD   | 1:E:422:LYS:HD3     | 2.37                    | 0.45        |
| 1:A:58:LEU:HD13  | 1:A:438:MET:HA      | 1.99                    | 0.45        |
| 1:E:132:ASP:OD2  | 1:E:134:LYS:HB3     | 2.17                    | 0.45        |
| 1:B:181:SER:HB2  | 1:B:182:PRO:CD      | 2.47                    | 0.45        |
| 1:D:280:ARG:HG3  | 1:D:416:TYR:CE1     | 2.51                    | 0.45        |
| 1:A:227:GLN:HA   | 1:A:230:TYR:CD1     | 2.52                    | 0.45        |
| 1:B:61:VAL:HG11  | 1:B:437:GLN:HG2     | 1.97                    | 0.45        |
| 1:C:205:LYS:HB3  | 1:C:206:PRO:HD3     | 1.97                    | 0.45        |
| 1:F:192:TYR:CE2  | 1:F:260:ASP:HA      | 2.52                    | 0.45        |
| 1:A:176:ARG:NH2  | 1:B:357:ASN:HD21    | 2.15                    | 0.45        |
| 1:B:436:GLY:O    | 1:B:440:LEU:HG      | 2.17                    | 0.45        |
| 1:C:154:ASN:HD21 | 1:C:156:LEU:HB3     | 1.82                    | 0.45        |
| 1:E:97:ASN:ND2   | 1:E:231:LEU:H       | 2.13                    | 0.45        |



|                  |                  | Interatomic             | Clash       |  |
|------------------|------------------|-------------------------|-------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |  |
| 1:E:129:GLN:C    | 1:E:131:ALA:H    | 2.20                    | 0.45        |  |
| 1:E:130:THR:HG22 | 1:E:130:THR:O    | 2.17                    | 0.45        |  |
| 1:B:434:ILE:O    | 1:B:438:MET:HG2  | 2.17                    | 0.45        |  |
| 1:A:204:GLY:O    | 1:A:206:PRO:N    | 2.49                    | 0.44        |  |
| 1:E:300:PHE:HD2  | 1:E:312:ASP:CG   | 2.21                    | 0.44        |  |
| 1:F:274:VAL:HG22 | 1:F:375:LEU:HG   | 1.99                    | 0.44        |  |
| 1:E:53:GLY:C     | 1:E:55:LEU:N     | 2.70                    | 0.44        |  |
| 1:F:395:LYS:HG2  | 1:F:399:TYR:CD1  | 2.51                    | 0.44        |  |
| 1:B:449:VAL:HA   | 1:B:452:LEU:CD2  | 2.47                    | 0.44        |  |
| 1:C:43:LYS:O     | 1:C:47:TRP:HD1   | 2.00                    | 0.44        |  |
| 1:D:132:ASP:HB2  | 5:D:651:HOH:O    | 2.17                    | 0.44        |  |
| 1:E:53:GLY:O     | 1:E:54:SER:HB3   | 2.18                    | 0.44        |  |
| 1:F:433:ASP:O    | 1:F:437:GLN:HG2  | 2.17                    | 0.44        |  |
| 1:A:134:LYS:O    | 1:A:138:ILE:HG22 | 2.18                    | 0.44        |  |
| 1:D:405:LEU:C    | 1:D:405:LEU:HD12 | 2.38                    | 0.44        |  |
| 1:D:176:ARG:HH22 | 1:E:357:ASN:HD21 | 1.60                    | 0.44        |  |
| 1:E:51:PHE:HB2   | 1:E:448:THR:OG1  | 2.17                    | 0.44        |  |
| 1:E:405:LEU:C    | 1:E:405:LEU:HD12 | 2.38                    | 0.44        |  |
| 1:C:109:LEU:HG   | 1:C:119:LEU:HD11 | 1.99                    | 0.44        |  |
| 1:E:133:GLU:HG3  | 1:E:134:LYS:N    | 2.33                    | 0.44        |  |
| 1:A:53:GLY:O     | 1:A:57:LEU:HD23  | 2.17                    | 0.44        |  |
| 1:D:84:THR:O     | 1:D:85:ARG:HB2   | 2.17                    | 0.44        |  |
| 1:F:434:ILE:HG22 | 1:F:438:MET:CE   | 2.48                    | 0.44        |  |
| 1:C:42:LEU:O     | 1:C:46:VAL:HG23  | 2.17                    | 0.44        |  |
| 1:E:55:LEU:HD11  | 1:E:58:LEU:HD22  | 2.00                    | 0.44        |  |
| 1:A:295:THR:CG2  | 1:A:296:GLY:N    | 2.81                    | 0.43        |  |
| 1:D:227:GLN:HA   | 1:D:230:TYR:CD1  | 2.53                    | 0.43        |  |
| 1:F:120:ASN:ND2  | 1:F:124:GLU:H    | 2.17                    | 0.43        |  |
| 1:E:353:VAL:HG23 | 1:E:354:GLU:HG3  | 2.01                    | 0.43        |  |
| 1:C:346:ASP:HB2  | 1:C:347:PRO:HD3  | 2.00                    | 0.43        |  |
| 1:E:58:LEU:N     | 1:E:58:LEU:HD12  | 2.34                    | 0.43        |  |
| 1:F:42:LEU:O     | 1:F:42:LEU:HD22  | 2.19                    | 0.43        |  |
| 1:B:120:ASN:ND2  | 1:B:120:ASN:C    | 2.70                    | 0.43        |  |
| 1:D:395:LYS:HG2  | 1:D:399:TYR:CE1  | 2.54                    | 0.43        |  |
| 1:E:271:GLN:NE2  | 1:F:243:GLU:HG2  | 2.33                    | 0.43        |  |
| 1:D:43:LYS:HB3   | 1:D:43:LYS:HZ3   | 1.84                    | 0.43        |  |
| 1:F:55:LEU:HD22  | 1:F:55:LEU:O     | 2.18                    | 0.43        |  |
| 1:F:227:GLN:HA   | 1:F:230:TYR:CD1  | 2.54                    | 0.43        |  |
| 1:A:445:SER:O    | 1:A:449:VAL:HG23 | 2.18                    | 0.43        |  |
| 1:B:165:ASP:OD1  | 1:B:167:ARG:HG3  | 2.18                    | 0.43        |  |
| 1:B:395:LYS:HG2  | 1:B:399:TYR:CE1  | 2.53                    | 0.43        |  |



|                  | <b>A</b> ( <b>D</b> | Interatomic             | Clash       |
|------------------|---------------------|-------------------------|-------------|
| Atom-1           | Atom-2              | distance $(\text{\AA})$ | overlap (Å) |
| 1:C:293:ALA:O    | 1:C:295:THR:N       | 2.49                    | 0.43        |
| 1:F:300:PHE:HD2  | 1:F:312:ASP:OD1     | 2.01                    | 0.43        |
| 1:B:45:VAL:O     | 1:B:49:LEU:HG       | 2.19                    | 0.43        |
| 1:D:271:GLN:HE21 | 1:E:243:GLU:HG2     | 1.84                    | 0.43        |
| 1:E:135:GLN:NE2  | 1:E:232:PRO:HG3     | 2.34                    | 0.43        |
| 1:E:181:SER:HB2  | 1:E:182:PRO:HD2     | 2.01                    | 0.43        |
| 1:A:131:ALA:C    | 1:A:133:GLU:N       | 2.71                    | 0.43        |
| 1:B:139:LEU:HD12 | 1:B:139:LEU:HA      | 1.86                    | 0.43        |
| 1:C:128:THR:HB   | 1:C:234:TRP:CE2     | 2.53                    | 0.43        |
| 1:D:346:ASP:HB2  | 1:D:347:PRO:HD3     | 2.01                    | 0.43        |
| 1:E:98:GLU:HG2   | 1:E:192:TYR:O       | 2.19                    | 0.43        |
| 1:F:43:LYS:NZ    | 1:F:43:LYS:HB3      | 2.34                    | 0.43        |
| 1:F:427:VAL:O    | 1:F:431:LEU:HD13    | 2.20                    | 0.42        |
| 1:B:126:PRO:O    | 1:B:127:ASP:C       | 2.58                    | 0.42        |
| 1:B:449:VAL:O    | 1:B:453:PHE:HB2     | 2.20                    | 0.42        |
| 1:C:205:LYS:N    | 1:C:206:PRO:CD      | 2.81                    | 0.42        |
| 1:B:121:ASN:C    | 1:B:121:ASN:HD22    | 2.22                    | 0.42        |
| 1:C:280:ARG:HG2  | 1:C:280:ARG:HH11    | 1.84                    | 0.42        |
| 1:D:106:LYS:HE3  | 1:D:106:LYS:HB2     | 1.88                    | 0.42        |
| 1:D:176:ARG:NH1  | 1:E:357:ASN:HD21    | 2.17                    | 0.42        |
| 1:D:427:VAL:O    | 1:D:431:LEU:HD13    | 2.18                    | 0.42        |
| 1:A:346:ASP:N    | 1:A:347:PRO:HD2     | 2.34                    | 0.42        |
| 1:B:45:VAL:C     | 1:B:47:TRP:N        | 2.72                    | 0.42        |
| 1:D:447:LEU:O    | 1:D:447:LEU:HD13    | 2.19                    | 0.42        |
| 1:E:268:PRO:HA   | 1:E:405:LEU:HB3     | 2.01                    | 0.42        |
| 1:F:292:LYS:HD3  | 1:F:292:LYS:C       | 2.40                    | 0.42        |
| 1:F:339:GLU:CD   | 1:F:339:GLU:H       | 2.23                    | 0.42        |
| 1:B:135:GLN:O    | 1:B:138:ILE:HG23    | 2.19                    | 0.42        |
| 1:A:256:PRO:O    | 1:A:307:THR:HG21    | 2.19                    | 0.42        |
| 1:B:121:ASN:ND2  | 1:B:122:ARG:HG3     | 2.33                    | 0.42        |
| 1:B:134:LYS:O    | 1:B:138:ILE:HG22    | 2.19                    | 0.42        |
| 1:D:146:ARG:HG3  | 1:D:146:ARG:HH11    | 1.84                    | 0.42        |
| 1:D:241:SER:HB2  | 5:D:518:HOH:O       | 2.19                    | 0.42        |
| 1:F:201:GLY:O    | 1:F:202:GLN:NE2     | 2.53                    | 0.42        |
| 1:B:227:GLN:HA   | 1:B:230:TYR:CD1     | 2.55                    | 0.42        |
| 1:B:394:ASN:O    | 1:B:395:LYS:HD2     | 2.18                    | 0.42        |
| 1:E:58:LEU:O     | 1:E:62:CYS:HB2      | 2.20                    | 0.42        |
| 1:A:405:LEU:C    | 1:A:405:LEU:HD12    | 2.40                    | 0.42        |
| 1:B:120:ASN:ND2  | 1:B:124:GLU:H       | 2.17                    | 0.42        |
| 1:F:47:TRP:HH2   | 1:F:448:THR:HG1     | 1.60                    | 0.42        |
| 1:C:85:ARG:HH21  | 1:C:209:ILE:HD13    | 1.83                    | 0.42        |



|                  | A L O            | Interatomic             | Clash       |  |
|------------------|------------------|-------------------------|-------------|--|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |  |
| 1:D:55:LEU:HB2   | 1:D:441:PHE:HE2  | 1.84                    | 0.42        |  |
| 1:A:97:ASN:ND2   | 1:A:231:LEU:H    | 2.14                    | 0.42        |  |
| 1:D:202:GLN:OE1  | 1:D:202:GLN:HA   | 2.20                    | 0.42        |  |
| 1:B:128:THR:O    | 1:B:130:THR:N    | 2.53                    | 0.41        |  |
| 1:B:454:ASP:OD1  | 1:C:40:LEU:HD21  | 2.20                    | 0.41        |  |
| 1:D:46:VAL:O     | 1:D:49:LEU:HG    | 2.19                    | 0.41        |  |
| 1:D:64:ASN:OD1   | 1:D:65:ARG:HD2   | 2.20                    | 0.41        |  |
| 1:F:181:SER:HB3  | 1:F:182:PRO:CD   | 2.50                    | 0.41        |  |
| 5:A:728:HOH:O    | 1:B:437:GLN:HG3  | 2.19                    | 0.41        |  |
| 1:B:42:LEU:CD1   | 1:B:44:ARG:HB2   | 2.38                    | 0.41        |  |
| 1:B:448:THR:O    | 1:B:452:LEU:HD22 | 2.20                    | 0.41        |  |
| 1:D:54:SER:OG    | 1:D:441:PHE:HA   | 2.20                    | 0.41        |  |
| 1:D:97:ASN:ND2   | 1:D:231:LEU:H    | 2.16                    | 0.41        |  |
| 1:D:126:PRO:O    | 1:D:127:ASP:C    | 2.59                    | 0.41        |  |
| 1:F:374:GLU:HB3  | 5:F:591:HOH:O    | 2.19                    | 0.41        |  |
| 1:A:173:CYS:C    | 1:A:180:CYS:SG   | 2.99                    | 0.41        |  |
| 1:B:44:ARG:O     | 1:B:47:TRP:HB3   | 2.21                    | 0.41        |  |
| 1:C:227:GLN:HA   | 1:C:230:TYR:CD1  | 2.55                    | 0.41        |  |
| 1:E:173:CYS:C    | 1:E:180:CYS:SG   | 2.99                    | 0.41        |  |
| 1:A:235:GLY:O    | 1:A:240:THR:HG21 | 2.20                    | 0.41        |  |
| 1:A:364:MET:HA   | 1:A:365:PRO:HD3  | 1.97                    | 0.41        |  |
| 1:B:188:VAL:O    | 1:B:188:VAL:HG13 | 2.21                    | 0.41        |  |
| 1:C:85:ARG:HD3   | 1:C:209:ILE:CD1  | 2.50                    | 0.41        |  |
| 1:D:128:THR:HG22 | 1:D:129:GLN:N    | 2.36                    | 0.41        |  |
| 1:D:44:ARG:HG2   | 1:D:44:ARG:HH11  | 1.85                    | 0.41        |  |
| 1:E:176:ARG:NH1  | 1:F:357:ASN:HD21 | 2.17                    | 0.41        |  |
| 1:E:270:PHE:CG   | 1:E:377:MET:HE3  | 2.56                    | 0.41        |  |
| 1:A:450:LEU:HD11 | 1:B:50:CYS:SG    | 2.61                    | 0.41        |  |
| 1:F:204:GLY:N    | 5:F:654:HOH:O    | 2.54                    | 0.41        |  |
| 1:A:99:PHE:CE2   | 1:A:116:LEU:HD21 | 2.55                    | 0.41        |  |
| 1:B:295:THR:CG2  | 1:B:296:GLY:N    | 2.83                    | 0.41        |  |
| 1:E:72:TYR:HB3   | 1:E:288:TRP:CD1  | 2.56                    | 0.41        |  |
| 1:E:306:ILE:O    | 1:E:310:ARG:HG3  | 2.20                    | 0.41        |  |
| 1:E:379:LYS:HD2  | 1:E:380:ILE:N    | 2.36                    | 0.41        |  |
| 1:F:120:ASN:HD22 | 1:F:122:ARG:H    | 1.67                    | 0.41        |  |
| 1:A:144:ASN:OD1  | 1:A:146:ARG:HG2  | 2.21                    | 0.41        |  |
| 1:A:181:SER:HB2  | 1:A:182:PRO:HD2  | 2.03                    | 0.41        |  |
| 1:B:292:LYS:HD2  | 1:B:304:TYR:CZ   | 2.55                    | 0.41        |  |
| 1:C:55:LEU:C     | 1:C:55:LEU:HD13  | 2.41                    | 0.41        |  |
| 1:C:433:ASP:O    | 1:C:437:GLN:HG2  | 2.21                    | 0.41        |  |
| 1:D:236:GLU:OE1  | 1:F:392:LYS:NZ   | 2.44                    | 0.41        |  |



| Atom 1           | Atom 2           | Interatomic             | Clash       |
|------------------|------------------|-------------------------|-------------|
| Atom-1           | Atom-2           | distance $(\text{\AA})$ | overlap (Å) |
| 1:A:301:TYR:OH   | 1:A:311:ILE:HG21 | 2.19                    | 0.41        |
| 1:B:67:GLN:HE21  | 1:B:67:GLN:HB2   | 1.67                    | 0.41        |
| 1:C:210:THR:HG21 | 5:C:738:HOH:O    | 2.21                    | 0.41        |
| 1:E:55:LEU:CD1   | 1:E:58:LEU:HD22  | 2.51                    | 0.40        |
| 1:E:431:LEU:HD12 | 1:E:431:LEU:N    | 2.36                    | 0.40        |
| 1:F:181:SER:HB3  | 1:F:182:PRO:HD2  | 2.01                    | 0.40        |
| 1:F:379:LYS:HD3  | 5:F:757:HOH:O    | 2.21                    | 0.40        |
| 1:A:57:LEU:HB3   | 1:A:437:GLN:OE1  | 2.21                    | 0.40        |
| 1:A:236:GLU:HG2  | 1:A:242:PHE:CZ   | 2.55                    | 0.40        |
| 1:D:439:GLY:HA3  | 1:E:58:LEU:CD1   | 2.52                    | 0.40        |
| 1:E:128:THR:HA   | 1:E:136:LEU:CD2  | 2.50                    | 0.40        |
| 1:E:280:ARG:HH21 | 1:E:280:ARG:HG2  | 1.86                    | 0.40        |
| 1:F:448:THR:O    | 1:F:452:LEU:HB2  | 2.21                    | 0.40        |
| 1:B:135:GLN:HA   | 1:B:138:ILE:CG2  | 2.52                    | 0.40        |
| 1:B:387:LYS:HE2  | 1:C:131:ALA:HA   | 2.04                    | 0.40        |
| 1:D:357:ASN:HD21 | 1:F:176:ARG:NH1  | 2.19                    | 0.40        |
| 1:E:52:MET:HG3   | 1:E:448:THR:OG1  | 2.21                    | 0.40        |
| 1:B:104:VAL:HG21 | 1:B:231:LEU:HD21 | 2.03                    | 0.40        |
| 1:B:303:THR:HG22 | 1:B:304:TYR:N    | 2.37                    | 0.40        |
| 1:D:176:ARG:NH2  | 1:E:357:ASN:HD21 | 2.20                    | 0.40        |
| 1:E:44:ARG:HG2   | 1:E:44:ARG:HH21  | 1.87                    | 0.40        |
| 1:C:85:ARG:HD3   | 1:C:209:ILE:HD12 | 2.03                    | 0.40        |

There are no symmetry-related clashes.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured  | Allowed | Outliers | Perce | ntiles |
|-----|-------|---------------|-----------|---------|----------|-------|--------|
| 1   | А     | 415/438~(95%) | 396~(95%) | 12 (3%) | 7(2%)    | 7     | 2      |
| 1   | В     | 418/438~(95%) | 397~(95%) | 18 (4%) | 3(1%)    | 19    | 11     |
| 1   | С     | 416/438~(95%) | 398~(96%) | 12 (3%) | 6 (1%)   | 9     | 3      |



| Mol | Chain | Analysed        | Favoured   | Allowed | Outliers | Percei | ntiles |
|-----|-------|-----------------|------------|---------|----------|--------|--------|
| 1   | D     | 413/438~(94%)   | 390~(94%)  | 18 (4%) | 5 (1%)   | 11     | 4      |
| 1   | Е     | 419/438~(96%)   | 397~(95%)  | 20~(5%) | 2(0%)    | 25     | 17     |
| 1   | F     | 410/438~(94%)   | 394 (96%)  | 13 (3%) | 3 (1%)   | 19     | 11     |
| All | All   | 2491/2628~(95%) | 2372 (95%) | 93 (4%) | 26 (1%)  | 13     | 5      |

Continued from previous page...

All (26) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 202 | GLN  |
| 1   | А     | 203 | ASP  |
| 1   | А     | 206 | PRO  |
| 1   | С     | 205 | LYS  |
| 1   | D     | 132 | ASP  |
| 1   | D     | 298 | SER  |
| 1   | D     | 299 | GLU  |
| 1   | Е     | 127 | ASP  |
| 1   | F     | 43  | LYS  |
| 1   | D     | 127 | ASP  |
| 1   | F     | 299 | GLU  |
| 1   | А     | 207 | ARG  |
| 1   | В     | 46  | VAL  |
| 1   | В     | 129 | GLN  |
| 1   | С     | 286 | PRO  |
| 1   | С     | 294 | THR  |
| 1   | С     | 455 | TYR  |
| 1   | F     | 297 | ASP  |
| 1   | А     | 205 | LYS  |
| 1   | С     | 206 | PRO  |
| 1   | С     | 297 | ASP  |
| 1   | Е     | 435 | GLY  |
| 1   | А     | 296 | GLY  |
| 1   | В     | 126 | PRO  |
| 1   | D     | 126 | PRO  |
| 1   | А     | 126 | PRO  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.



| Mol | Chain | Analysed        | Rotameric  | Outliers | Percentiles |
|-----|-------|-----------------|------------|----------|-------------|
| 1   | А     | 363/383~(95%)   | 351~(97%)  | 12 (3%)  | 33 26       |
| 1   | В     | 366/383~(96%)   | 354~(97%)  | 12 (3%)  | 33 26       |
| 1   | С     | 364/383~(95%)   | 358~(98%)  | 6 (2%)   | 58 56       |
| 1   | D     | 361/383~(94%)   | 355~(98%)  | 6 (2%)   | 56 54       |
| 1   | Ε     | 367/383~(96%)   | 358~(98%)  | 9(2%)    | 42 37       |
| 1   | F     | 359/383~(94%)   | 346~(96%)  | 13 (4%)  | 30 23       |
| All | All   | 2180/2298~(95%) | 2122~(97%) | 58(3%)   | 40 34       |

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

All (58) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 42  | LEU  |
| 1   | А     | 120 | ASN  |
| 1   | А     | 147 | ASN  |
| 1   | А     | 151 | LYS  |
| 1   | А     | 180 | CYS  |
| 1   | А     | 217 | ASN  |
| 1   | А     | 240 | THR  |
| 1   | А     | 299 | GLU  |
| 1   | А     | 302 | ASP  |
| 1   | А     | 381 | PRO  |
| 1   | А     | 430 | LEU  |
| 1   | А     | 457 | TYR  |
| 1   | В     | 42  | LEU  |
| 1   | В     | 120 | ASN  |
| 1   | В     | 121 | ASN  |
| 1   | В     | 180 | CYS  |
| 1   | В     | 207 | ARG  |
| 1   | В     | 217 | ASN  |
| 1   | В     | 290 | ASP  |
| 1   | В     | 312 | ASP  |
| 1   | В     | 320 | GLU  |
| 1   | В     | 405 | LEU  |
| 1   | В     | 437 | GLN  |
| 1   | В     | 458 | GLU  |
| 1   | C     | 180 | CYS  |
| 1   | С     | 202 | GLN  |
| 1   | C     | 217 | ASN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 405 | LEU  |
| 1   | С     | 450 | LEU  |
| 1   | С     | 457 | TYR  |
| 1   | D     | 120 | ASN  |
| 1   | D     | 139 | LEU  |
| 1   | D     | 180 | CYS  |
| 1   | D     | 312 | ASP  |
| 1   | D     | 341 | TYR  |
| 1   | D     | 367 | ASN  |
| 1   | Е     | 122 | ARG  |
| 1   | Е     | 180 | CYS  |
| 1   | Е     | 217 | ASN  |
| 1   | Е     | 292 | LYS  |
| 1   | Е     | 379 | LYS  |
| 1   | Е     | 430 | LEU  |
| 1   | Е     | 447 | LEU  |
| 1   | Е     | 453 | PHE  |
| 1   | Е     | 458 | GLU  |
| 1   | F     | 42  | LEU  |
| 1   | F     | 47  | TRP  |
| 1   | F     | 55  | LEU  |
| 1   | F     | 120 | ASN  |
| 1   | F     | 129 | GLN  |
| 1   | F     | 180 | CYS  |
| 1   | F     | 217 | ASN  |
| 1   | F     | 231 | LEU  |
| 1   | F     | 292 | LYS  |
| 1   | F     | 381 | PRO  |
| 1   | F     | 395 | LYS  |
| 1   | F     | 451 | GLU  |
| 1   | F     | 452 | LEU  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (49) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 97  | ASN  |
| 1   | А     | 111 | HIS  |
| 1   | А     | 120 | ASN  |
| 1   | А     | 129 | GLN  |
| 1   | А     | 154 | ASN  |
| 1   | А     | 202 | GLN  |
| 1   | А     | 357 | ASN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 437 | GLN  |
| 1   | В     | 67  | GLN  |
| 1   | В     | 97  | ASN  |
| 1   | В     | 120 | ASN  |
| 1   | В     | 121 | ASN  |
| 1   | В     | 147 | ASN  |
| 1   | В     | 251 | HIS  |
| 1   | В     | 271 | GLN  |
| 1   | В     | 321 | ASN  |
| 1   | В     | 323 | ASN  |
| 1   | В     | 357 | ASN  |
| 1   | В     | 437 | GLN  |
| 1   | С     | 64  | ASN  |
| 1   | С     | 97  | ASN  |
| 1   | С     | 154 | ASN  |
| 1   | С     | 202 | GLN  |
| 1   | С     | 251 | HIS  |
| 1   | С     | 321 | ASN  |
| 1   | С     | 357 | ASN  |
| 1   | D     | 74  | HIS  |
| 1   | D     | 97  | ASN  |
| 1   | D     | 120 | ASN  |
| 1   | D     | 135 | GLN  |
| 1   | D     | 147 | ASN  |
| 1   | D     | 251 | HIS  |
| 1   | D     | 271 | GLN  |
| 1   | D     | 357 | ASN  |
| 1   | Е     | 67  | GLN  |
| 1   | E     | 97  | ASN  |
| 1   | E     | 135 | GLN  |
| 1   | E     | 251 | HIS  |
| 1   | Е     | 271 | GLN  |
| 1   | Е     | 357 | ASN  |
| 1   | Е     | 398 | GLN  |
| 1   | F     | 64  | ASN  |
| 1   | F     | 67  | GLN  |
| 1   | F     | 97  | ASN  |
| 1   | F     | 120 | ASN  |
| 1   | F     | 251 | HIS  |
| 1   | F     | 323 | ASN  |
| 1   | F     | 357 | ASN  |
| 1   | F     | 398 | GLN  |

Continued from previous page...



#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

6 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal   | Mol Type Chain |      | Dec | Tipk | Bo       | ond leng | $_{\rm ths}$ | Bond angles    |      |          |  |
|-------|----------------|------|-----|------|----------|----------|--------------|----------------|------|----------|--|
| INIOI | туре           | Unam | nes |      | Counts   | RMSZ     | # Z  > 2     | Counts         | RMSZ | # Z  > 2 |  |
| 2     | GLC            | G    | 1   | 2    | 12,12,12 | 1.00     | 0            | 17,17,17       | 0.71 | 0        |  |
| 2     | GLC            | G    | 2   | 2    | 11,11,12 | 1.07     | 0            | 15,15,17       | 0.75 | 0        |  |
| 2     | GLC            | Н    | 1   | 2    | 12,12,12 | 1.01     | 0            | 17,17,17       | 0.73 | 0        |  |
| 2     | GLC            | Н    | 2   | 2    | 11,11,12 | 1.13     | 1 (9%)       | $15,\!15,\!17$ | 0.74 | 0        |  |
| 2     | GLC            | Ι    | 1   | 2    | 12,12,12 | 1.00     | 0            | 17,17,17       | 0.72 | 0        |  |
| 2     | GLC            | Ι    | 2   | 2    | 11,11,12 | 1.11     | 1 (9%)       | 15,15,17       | 0.73 | 0        |  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | GLC  | G     | 1   | 2    | -       | 0/2/22/22 | 0/1/1/1 |
| 2   | GLC  | G     | 2   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | GLC  | Н     | 1   | 2    | -       | 0/2/22/22 | 0/1/1/1 |
| 2   | GLC  | Н     | 2   | 2    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | GLC  | Ι     | 1   | 2    | -       | 0/2/22/22 | 0/1/1/1 |
| 2   | GLC  | Ι     | 2   | 2    | -       | 0/2/19/22 | 0/1/1/1 |

All (2) bond length outliers are listed below:



| Mol | Chain | Res | Type | Atoms | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|------|-------------|----------|
| 2   | Ι     | 2   | GLC  | O5-C1 | 2.09 | 1.47        | 1.43     |
| 2   | Н     | 2   | GLC  | O5-C1 | 2.07 | 1.47        | 1.43     |

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.













## 5.6 Ligand geometry (i)

Of 18 ligands modelled in this entry, 6 are monoatomic - leaving 12 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Turne | Chain | Dog | Link | Bo       | ond leng | ths      | Bond angles    |      |          |  |
|-----|-------|-------|-----|------|----------|----------|----------|----------------|------|----------|--|
|     | Type  | Unain | nes |      | Counts   | RMSZ     | # Z  > 2 | Counts         | RMSZ | # Z  > 2 |  |
| 3   | NAG   | С     | 5   | 1    | 14,14,15 | 0.53     | 0        | $17,\!19,\!21$ | 0.59 | 0        |  |
| 3   | NAG   | D     | 7   | 1    | 14,14,15 | 0.50     | 0        | $17,\!19,\!21$ | 0.69 | 1 (5%)   |  |
| 3   | NAG   | Е     | 10  | 1    | 14,14,15 | 0.53     | 0        | 17,19,21       | 0.66 | 0        |  |
| 3   | NAG   | F     | 12  | 1    | 14,14,15 | 0.60     | 0        | 17,19,21       | 0.61 | 0        |  |
| 3   | NAG   | С     | 6   | 1    | 14,14,15 | 0.54     | 0        | 17,19,21       | 0.65 | 0        |  |



| Mal  | Turne | Chain | Bos | Link | Bo             | ond leng | $\mathbf{ths}$ | Bond angles |      |          |  |
|------|-------|-------|-----|------|----------------|----------|----------------|-------------|------|----------|--|
| WIOI | туре  | Unain | nes |      | Counts         | RMSZ     | # Z >2         | Counts      | RMSZ | # Z  > 2 |  |
| 3    | NAG   | А     | 1   | 1    | $14,\!14,\!15$ | 0.50     | 0              | 17,19,21    | 0.71 | 1 (5%)   |  |
| 3    | NAG   | А     | 2   | 1    | 14,14,15       | 0.60     | 0              | 17,19,21    | 0.68 | 1 (5%)   |  |
| 3    | NAG   | Е     | 9   | 1    | 14,14,15       | 0.49     | 0              | 17,19,21    | 0.70 | 1 (5%)   |  |
| 3    | NAG   | D     | 8   | 1    | 14,14,15       | 0.62     | 0              | 17,19,21    | 0.70 | 1 (5%)   |  |
| 3    | NAG   | F     | 11  | 1    | 14,14,15       | 0.57     | 0              | 17,19,21    | 0.64 | 0        |  |
| 3    | NAG   | В     | 4   | 1    | $14,\!14,\!15$ | 0.53     | 0              | 17,19,21    | 0.63 | 0        |  |
| 3    | NAG   | В     | 3   | 1    | 14,14,15       | 0.51     | 0              | 17,19,21    | 0.69 | 1 (5%)   |  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 3   | NAG  | С     | 5   | 1    | -       | 3/6/23/26 | 0/1/1/1 |
| 3   | NAG  | D     | 7   | 1    | -       | 4/6/23/26 | 0/1/1/1 |
| 3   | NAG  | Е     | 10  | 1    | -       | 4/6/23/26 | 0/1/1/1 |
| 3   | NAG  | F     | 12  | 1    | -       | 6/6/23/26 | 0/1/1/1 |
| 3   | NAG  | С     | 6   | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 1   | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | А     | 2   | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 3   | NAG  | Е     | 9   | 1    | -       | 4/6/23/26 | 0/1/1/1 |
| 3   | NAG  | D     | 8   | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 3   | NAG  | F     | 11  | 1    | -       | 3/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 4   | 1    | -       | 4/6/23/26 | 0/1/1/1 |
| 3   | NAG  | В     | 3   | 1    | -       | 0/6/23/26 | 0/1/1/1 |

There are no bond length outliers.

All (6) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 3   | D     | 8   | NAG  | C2-N2-C7 | -2.23 | 119.92           | 122.90        |
| 3   | Е     | 9   | NAG  | C2-N2-C7 | -2.21 | 119.93           | 122.90        |
| 3   | А     | 1   | NAG  | C2-N2-C7 | -2.20 | 119.96           | 122.90        |
| 3   | D     | 7   | NAG  | C2-N2-C7 | -2.17 | 119.99           | 122.90        |
| 3   | В     | 3   | NAG  | C2-N2-C7 | -2.08 | 120.11           | 122.90        |
| 3   | А     | 2   | NAG  | C2-N2-C7 | -2.07 | 120.13           | 122.90        |

There are no chirality outliers.



| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 3   | С     | 5   | NAG  | C3-C2-N2-C7 |
| 3   | С     | 5   | NAG  | C8-C7-N2-C2 |
| 3   | С     | 5   | NAG  | O7-C7-N2-C2 |
| 3   | С     | 6   | NAG  | C8-C7-N2-C2 |
| 3   | С     | 6   | NAG  | O7-C7-N2-C2 |
| 3   | D     | 7   | NAG  | C8-C7-N2-C2 |
| 3   | D     | 7   | NAG  | O7-C7-N2-C2 |
| 3   | Е     | 9   | NAG  | C8-C7-N2-C2 |
| 3   | Е     | 9   | NAG  | O7-C7-N2-C2 |
| 3   | Е     | 10  | NAG  | C8-C7-N2-C2 |
| 3   | Е     | 10  | NAG  | O7-C7-N2-C2 |
| 3   | F     | 11  | NAG  | C8-C7-N2-C2 |
| 3   | F     | 11  | NAG  | O7-C7-N2-C2 |
| 3   | F     | 12  | NAG  | C8-C7-N2-C2 |
| 3   | F     | 12  | NAG  | O7-C7-N2-C2 |
| 3   | Е     | 9   | NAG  | O5-C5-C6-O6 |
| 3   | Е     | 10  | NAG  | C4-C5-C6-O6 |
| 3   | F     | 12  | NAG  | O5-C5-C6-O6 |
| 3   | Е     | 9   | NAG  | C4-C5-C6-O6 |
| 3   | Е     | 10  | NAG  | O5-C5-C6-O6 |
| 3   | F     | 12  | NAG  | C4-C5-C6-O6 |
| 3   | А     | 1   | NAG  | C8-C7-N2-C2 |
| 3   | D     | 7   | NAG  | O5-C5-C6-O6 |
| 3   | D     | 7   | NAG  | C4-C5-C6-O6 |
| 3   | А     | 1   | NAG  | O7-C7-N2-C2 |
| 3   | В     | 4   | NAG  | C8-C7-N2-C2 |
| 3   | F     | 11  | NAG  | O5-C5-C6-O6 |
| 3   | В     | 4   | NAG  | C4-C5-C6-O6 |
| 3   | В     | 4   | NAG  | O7-C7-N2-C2 |
| 3   | В     | 4   | NAG  | O5-C5-C6-O6 |
| 3   | F     | 12  | NAG  | C3-C2-N2-C7 |
| 3   | F     | 12  | NAG  | C1-C2-N2-C7 |

All (32) torsion outliers are listed below:

There are no ring outliers.

3 monomers are involved in 3 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 3   | D     | 7   | NAG  | 1       | 0            |
| 3   | С     | 6   | NAG  | 1       | 0            |
| 3   | F     | 11  | NAG  | 1       | 0            |



## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | <RSRZ $>$ | #RSR      | Z>2 | 2 | $OWAB(Å^2)$    | Q<0.9 |
|-----|-------|-----------------|-----------|-----------|-----|---|----------------|-------|
| 1   | А     | 417/438~(95%)   | 0.95      | 100 (23%) | 2   | 2 | 13, 30, 80, 91 | 0     |
| 1   | В     | 420/438~(95%)   | 0.89      | 88 (20%)  | 3   | 3 | 12, 31, 85, 97 | 0     |
| 1   | С     | 418/438~(95%)   | 0.70      | 90 (21%)  | 3   | 2 | 13, 28, 73, 88 | 0     |
| 1   | D     | 415/438~(94%)   | 1.11      | 106 (25%) | 2   | 2 | 12, 31, 80, 91 | 0     |
| 1   | Е     | 421/438~(96%)   | 1.19      | 123 (29%) | 1   | 1 | 11, 31, 87, 96 | 0     |
| 1   | F     | 412/438~(94%)   | 0.97      | 97~(23%)  | 2   | 2 | 13, 30, 81, 94 | 0     |
| All | All   | 2503/2628~(95%) | 0.97      | 604 (24%) | 2   | 2 | 11, 30, 82, 97 | 0     |

All (604) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | D     | 293 | ALA  | 8.7  |
| 1   | F     | 42  | LEU  | 8.5  |
| 1   | В     | 457 | TYR  | 7.8  |
| 1   | F     | 202 | GLN  | 7.5  |
| 1   | Е     | 447 | LEU  | 7.4  |
| 1   | D     | 456 | ALA  | 7.3  |
| 1   | В     | 128 | THR  | 7.1  |
| 1   | Е     | 293 | ALA  | 7.1  |
| 1   | F     | 293 | ALA  | 7.1  |
| 1   | А     | 206 | PRO  | 7.0  |
| 1   | F     | 450 | LEU  | 6.8  |
| 1   | Ε     | 298 | SER  | 6.8  |
| 1   | Ε     | 446 | ILE  | 6.7  |
| 1   | D     | 447 | LEU  | 6.7  |
| 1   | Е     | 295 | THR  | 6.6  |
| 1   | A     | 293 | ALA  | 6.5  |
| 1   | F     | 45  | VAL  | 6.5  |
| 1   | D     | 453 | PHE  | 6.3  |
| 1   | D     | 294 | THR  | 6.3  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | А     | 450 | LEU  | 6.3  |
| 1   | А     | 295 | THR  | 6.2  |
| 1   | А     | 128 | THR  | 6.1  |
| 1   | А     | 453 | PHE  | 6.0  |
| 1   | Е     | 130 | THR  | 6.0  |
| 1   | Е     | 48  | ALA  | 6.0  |
| 1   | F     | 46  | VAL  | 6.0  |
| 1   | Е     | 54  | SER  | 5.9  |
| 1   | D     | 42  | LEU  | 5.9  |
| 1   | В     | 447 | LEU  | 5.8  |
| 1   | А     | 294 | THR  | 5.8  |
| 1   | В     | 460 | ILE  | 5.8  |
| 1   | D     | 128 | THR  | 5.8  |
| 1   | D     | 130 | THR  | 5.8  |
| 1   | В     | 300 | PHE  | 5.8  |
| 1   | F     | 48  | ALA  | 5.7  |
| 1   | D     | 297 | ASP  | 5.7  |
| 1   | D     | 298 | SER  | 5.7  |
| 1   | В     | 453 | PHE  | 5.7  |
| 1   | Е     | 125 | ILE  | 5.6  |
| 1   | Е     | 131 | ALA  | 5.6  |
| 1   | С     | 457 | TYR  | 5.6  |
| 1   | F     | 300 | PHE  | 5.6  |
| 1   | F     | 296 | GLY  | 5.6  |
| 1   | Е     | 449 | VAL  | 5.6  |
| 1   | В     | 296 | GLY  | 5.6  |
| 1   | Е     | 128 | THR  | 5.5  |
| 1   | D     | 295 | THR  | 5.5  |
| 1   | D     | 45  | VAL  | 5.5  |
| 1   | В     | 295 | THR  | 5.5  |
| 1   | А     | 42  | LEU  | 5.5  |
| 1   | F     | 295 | THR  | 5.5  |
| 1   | F     | 61  | VAL  | 5.4  |
| 1   | F     | 56  | ALA  | 5.4  |
| 1   | В     | 450 | LEU  | 5.4  |
| 1   | D     | 58  | LEU  | 5.3  |
| 1   | А     | 131 | ALA  | 5.3  |
| 1   | F     | 49  | LEU  | 5.2  |
| 1   | А     | 130 | THR  | 5.2  |
| 1   | D     | 292 | LYS  | 5.2  |
| 1   | F     | 453 | PHE  | 5.1  |
| 1   | А     | 447 | LEU  | 5.1  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | С     | 293 | ALA  | 5.1  |
| 1   | Е     | 453 | PHE  | 5.1  |
| 1   | С     | 66  | ILE  | 5.1  |
| 1   | А     | 141 | ASP  | 5.0  |
| 1   | В     | 42  | LEU  | 5.0  |
| 1   | Е     | 450 | LEU  | 5.0  |
| 1   | F     | 452 | LEU  | 5.0  |
| 1   | Е     | 456 | ALA  | 5.0  |
| 1   | Е     | 457 | TYR  | 4.9  |
| 1   | D     | 49  | LEU  | 4.9  |
| 1   | D     | 296 | GLY  | 4.9  |
| 1   | Е     | 50  | CYS  | 4.9  |
| 1   | А     | 300 | PHE  | 4.9  |
| 1   | Е     | 452 | LEU  | 4.9  |
| 1   | D     | 446 | ILE  | 4.9  |
| 1   | Е     | 70  | PHE  | 4.9  |
| 1   | В     | 359 | TYR  | 4.9  |
| 1   | А     | 452 | LEU  | 4.8  |
| 1   | С     | 294 | THR  | 4.8  |
| 1   | Е     | 294 | THR  | 4.8  |
| 1   | А     | 449 | VAL  | 4.8  |
| 1   | В     | 455 | TYR  | 4.8  |
| 1   | D     | 452 | LEU  | 4.8  |
| 1   | А     | 127 | ASP  | 4.7  |
| 1   | А     | 204 | GLY  | 4.7  |
| 1   | F     | 449 | VAL  | 4.7  |
| 1   | С     | 51  | PHE  | 4.7  |
| 1   | Ε     | 57  | LEU  | 4.7  |
| 1   | D     | 434 | ILE  | 4.7  |
| 1   | E     | 460 | ILE  | 4.7  |
| 1   | E     | 300 | PHE  | 4.7  |
| 1   | D     | 450 | LEU  | 4.7  |
| 1   | Е     | 442 | ILE  | 4.6  |
| 1   | E     | 459 | VAL  | 4.6  |
| 1   | С     | 295 | THR  | 4.6  |
| 1   | F     | 294 | THR  | 4.6  |
| 1   | F     | 55  | LEU  | 4.6  |
| 1   | F     | 298 | SER  | 4.6  |
| 1   | C     | 47  | TRP  | 4.6  |
| 1   | A     | 442 | ILE  | 4.6  |
| 1   | E     | 49  | LEU  | 4.6  |
| 1   | А     | 46  | VAL  | 4.6  |



| 2QTS |  |
|------|--|
|------|--|

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | А     | 298 | SER  | 4.5  |
| 1   | Е     | 66  | ILE  | 4.5  |
| 1   | D     | 444 | ALA  | 4.5  |
| 1   | Е     | 61  | VAL  | 4.5  |
| 1   | F     | 58  | LEU  | 4.5  |
| 1   | А     | 132 | ASP  | 4.5  |
| 1   | С     | 50  | CYS  | 4.5  |
| 1   | F     | 301 | TYR  | 4.5  |
| 1   | D     | 47  | TRP  | 4.5  |
| 1   | Е     | 56  | ALA  | 4.5  |
| 1   | А     | 297 | ASP  | 4.5  |
| 1   | Е     | 55  | LEU  | 4.5  |
| 1   | А     | 66  | ILE  | 4.4  |
| 1   | E     | 204 | GLY  | 4.4  |
| 1   | Е     | 47  | TRP  | 4.4  |
| 1   | А     | 45  | VAL  | 4.4  |
| 1   | D     | 202 | GLN  | 4.4  |
| 1   | Е     | 431 | LEU  | 4.4  |
| 1   | F     | 47  | TRP  | 4.4  |
| 1   | Е     | 129 | GLN  | 4.3  |
| 1   | В     | 45  | VAL  | 4.3  |
| 1   | Е     | 65  | ARG  | 4.3  |
| 1   | С     | 450 | LEU  | 4.3  |
| 1   | D     | 206 | PRO  | 4.3  |
| 1   | D     | 131 | ALA  | 4.3  |
| 1   | Е     | 434 | ILE  | 4.3  |
| 1   | В     | 461 | LYS  | 4.3  |
| 1   | С     | 296 | GLY  | 4.3  |
| 1   | А     | 290 | ASP  | 4.2  |
| 1   | D     | 203 | ASP  | 4.2  |
| 1   | Е     | 42  | LEU  | 4.2  |
| 1   | В     | 301 | TYR  | 4.2  |
| 1   | А     | 49  | LEU  | 4.2  |
| 1   | В     | 452 | LEU  | 4.2  |
| 1   | F     | 60  | LEU  | 4.2  |
| 1   | А     | 299 | GLU  | 4.2  |
| 1   | Е     | 123 | TYR  | 4.2  |
| 1   | Е     | 291 | CYS  | 4.1  |
| 1   | F     | 43  | LYS  | 4.1  |
| 1   | D     | 455 | TYR  | 4.1  |
| 1   | Е     | 445 | SER  | 4.1  |
| 1   | D     | 441 | PHE  | 4.1  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | А     | 58  | LEU  | 4.1  |
| 1   | В     | 294 | THR  | 4.1  |
| 1   | F     | 57  | LEU  | 4.1  |
| 1   | Е     | 359 | TYR  | 4.1  |
| 1   | Е     | 46  | VAL  | 4.1  |
| 1   | А     | 205 | LYS  | 4.1  |
| 1   | В     | 456 | ALA  | 4.1  |
| 1   | D     | 125 | ILE  | 4.1  |
| 1   | В     | 130 | THR  | 4.1  |
| 1   | С     | 359 | TYR  | 4.1  |
| 1   | С     | 300 | PHE  | 4.1  |
| 1   | А     | 180 | CYS  | 4.1  |
| 1   | F     | 204 | GLY  | 4.0  |
| 1   | Е     | 62  | CYS  | 4.0  |
| 1   | Е     | 146 | ARG  | 4.0  |
| 1   | F     | 446 | ILE  | 4.0  |
| 1   | А     | 292 | LYS  | 4.0  |
| 1   | А     | 296 | GLY  | 4.0  |
| 1   | F     | 441 | PHE  | 4.0  |
| 1   | F     | 439 | GLY  | 4.0  |
| 1   | F     | 443 | GLY  | 4.0  |
| 1   | D     | 51  | PHE  | 4.0  |
| 1   | F     | 66  | ILE  | 4.0  |
| 1   | С     | 287 | PRO  | 3.9  |
| 1   | С     | 290 | ASP  | 3.9  |
| 1   | В     | 49  | LEU  | 3.9  |
| 1   | Е     | 332 | ASP  | 3.9  |
| 1   | В     | 298 | SER  | 3.9  |
| 1   | С     | 46  | VAL  | 3.9  |
| 1   | Е     | 122 | ARG  | 3.9  |
| 1   | В     | 292 | LYS  | 3.9  |
| 1   | А     | 455 | TYR  | 3.9  |
| 1   | В     | 131 | ALA  | 3.9  |
| 1   | Ε     | 45  | VAL  | 3.9  |
| 1   | D     | 132 | ASP  | 3.9  |
| 1   | D     | 299 | GLU  | 3.9  |
| 1   | В     | 446 | ILE  | 3.9  |
| 1   | D     | 57  | LEU  | 3.9  |
| 1   | E     | 448 | THR  | 3.8  |
| 1   | D     | 454 | ASP  | 3.8  |
| 1   | В     | 47  | TRP  | 3.8  |
| 1   | F     | 51  | PHE  | 3.8  |



| 2QTS |
|------|
|------|

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | С     | 455 | TYR  | 3.8  |
| 1   | F     | 69  | TYR  | 3.8  |
| 1   | F     | 299 | GLU  | 3.8  |
| 1   | С     | 286 | PRO  | 3.8  |
| 1   | D     | 55  | LEU  | 3.8  |
| 1   | D     | 451 | GLU  | 3.8  |
| 1   | В     | 454 | ASP  | 3.8  |
| 1   | С     | 206 | PRO  | 3.8  |
| 1   | А     | 57  | LEU  | 3.8  |
| 1   | А     | 129 | GLN  | 3.8  |
| 1   | D     | 445 | SER  | 3.7  |
| 1   | В     | 55  | LEU  | 3.7  |
| 1   | F     | 438 | MET  | 3.7  |
| 1   | D     | 442 | ILE  | 3.7  |
| 1   | D     | 43  | LYS  | 3.7  |
| 1   | D     | 448 | THR  | 3.7  |
| 1   | Е     | 438 | MET  | 3.7  |
| 1   | F     | 50  | CYS  | 3.7  |
| 1   | В     | 51  | PHE  | 3.7  |
| 1   | А     | 47  | TRP  | 3.7  |
| 1   | D     | 440 | LEU  | 3.7  |
| 1   | F     | 440 | LEU  | 3.7  |
| 1   | Е     | 124 | GLU  | 3.7  |
| 1   | В     | 46  | VAL  | 3.7  |
| 1   | С     | 449 | VAL  | 3.7  |
| 1   | F     | 64  | ASN  | 3.7  |
| 1   | D     | 359 | TYR  | 3.6  |
| 1   | Е     | 53  | GLY  | 3.6  |
| 1   | Е     | 63  | THR  | 3.6  |
| 1   | В     | 48  | ALA  | 3.6  |
| 1   | В     | 293 | ALA  | 3.6  |
| 1   | В     | 134 | LYS  | 3.6  |
| 1   | D     | 46  | VAL  | 3.6  |
| 1   | Е     | 75  | VAL  | 3.6  |
| 1   | F     | 203 | ASP  | 3.6  |
| 1   | С     | 204 | GLY  | 3.6  |
| 1   | С     | 42  | LEU  | 3.6  |
| 1   | Е     | 430 | LEU  | 3.6  |
| 1   | F     | 434 | ILE  | 3.6  |
| 1   | F     | 288 | TRP  | 3.6  |
| 1   | Е     | 127 | ASP  | 3.6  |
| 1   | D     | 61  | VAL  | 3.6  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | F     | 52  | MET  | 3.6  |
| 1   | А     | 457 | TYR  | 3.6  |
| 1   | С     | 41  | SER  | 3.6  |
| 1   | С     | 205 | LYS  | 3.5  |
| 1   | D     | 75  | VAL  | 3.5  |
| 1   | Ε     | 292 | LYS  | 3.5  |
| 1   | F     | 292 | LYS  | 3.5  |
| 1   | В     | 291 | CYS  | 3.5  |
| 1   | D     | 129 | GLN  | 3.5  |
| 1   | Е     | 443 | GLY  | 3.5  |
| 1   | А     | 207 | ARG  | 3.5  |
| 1   | Ε     | 43  | LYS  | 3.5  |
| 1   | С     | 203 | ASP  | 3.5  |
| 1   | D     | 70  | PHE  | 3.5  |
| 1   | Е     | 297 | ASP  | 3.5  |
| 1   | С     | 40  | LEU  | 3.5  |
| 1   | Е     | 440 | LEU  | 3.5  |
| 1   | Е     | 69  | TYR  | 3.5  |
| 1   | F     | 289 | GLY  | 3.5  |
| 1   | В     | 458 | GLU  | 3.4  |
| 1   | В     | 203 | ASP  | 3.4  |
| 1   | F     | 444 | ALA  | 3.4  |
| 1   | А     | 59  | ALA  | 3.4  |
| 1   | С     | 440 | LEU  | 3.4  |
| 1   | В     | 299 | GLU  | 3.4  |
| 1   | В     | 362 | CYS  | 3.4  |
| 1   | Ε     | 299 | GLU  | 3.4  |
| 1   | Ε     | 425 | TYR  | 3.4  |
| 1   | Ε     | 51  | PHE  | 3.4  |
| 1   | Е     | 202 | GLN  | 3.4  |
| 1   | В     | 52  | MET  | 3.4  |
| 1   | F     | 205 | LYS  | 3.4  |
| 1   | A     | 55  | LEU  | 3.4  |
| 1   | Ε     | 360 | CYS  | 3.4  |
| 1   | D     | 72  | TYR  | 3.4  |
| 1   | А     | 434 | ILE  | 3.4  |
| 1   | В     | 127 | ASP  | 3.4  |
| 1   | D     | 433 | ASP  | 3.4  |
| 1   | С     | 453 | PHE  | 3.3  |
| 1   | С     | 292 | LYS  | 3.3  |
| 1   | A     | 440 | LEU  | 3.3  |
| 1   | Ε     | 60  | LEU  | 3.3  |



| 2 | Q | Τ | S |
|---|---|---|---|
|   |   |   |   |

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Е     | 296 | GLY  | 3.3  |
| 1   | А     | 61  | VAL  | 3.3  |
| 1   | С     | 452 | LEU  | 3.3  |
| 1   | D     | 50  | CYS  | 3.3  |
| 1   | Е     | 366 | CYS  | 3.3  |
| 1   | А     | 446 | ILE  | 3.3  |
| 1   | D     | 300 | PHE  | 3.3  |
| 1   | Е     | 133 | GLU  | 3.3  |
| 1   | Е     | 362 | CYS  | 3.3  |
| 1   | F     | 72  | TYR  | 3.3  |
| 1   | С     | 297 | ASP  | 3.2  |
| 1   | В     | 320 | GLU  | 3.2  |
| 1   | С     | 444 | ALA  | 3.2  |
| 1   | D     | 133 | GLU  | 3.2  |
| 1   | А     | 71  | LEU  | 3.2  |
| 1   | А     | 126 | PRO  | 3.2  |
| 1   | С     | 49  | LEU  | 3.2  |
| 1   | D     | 60  | LEU  | 3.2  |
| 1   | А     | 44  | ARG  | 3.2  |
| 1   | В     | 129 | GLN  | 3.2  |
| 1   | В     | 323 | ASN  | 3.2  |
| 1   | D     | 204 | GLY  | 3.2  |
| 1   | А     | 203 | ASP  | 3.2  |
| 1   | F     | 297 | ASP  | 3.2  |
| 1   | А     | 125 | ILE  | 3.2  |
| 1   | Е     | 134 | LYS  | 3.2  |
| 1   | F     | 359 | TYR  | 3.2  |
| 1   | А     | 70  | PHE  | 3.2  |
| 1   | F     | 447 | LEU  | 3.1  |
| 1   | В     | 438 | MET  | 3.1  |
| 1   | А     | 448 | THR  | 3.1  |
| 1   | В     | 332 | ASP  | 3.1  |
| 1   | В     | 441 | PHE  | 3.1  |
| 1   | D     | 48  | ALA  | 3.1  |
| 1   | С     | 431 | LEU  | 3.1  |
| 1   | С     | 54  | SER  | 3.1  |
| 1   | D     | 323 | ASN  | 3.1  |
| 1   | Е     | 458 | GLU  | 3.1  |
| 1   | Е     | 139 | LEU  | 3.1  |
| 1   | С     | 298 | SER  | 3.1  |
| 1   | В     | 138 | ILE  | 3.1  |
| 1   | F     | 206 | PRO  | 3.1  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | А     | 43  | LYS  | 3.1  |
| 1   | В     | 43  | LYS  | 3.1  |
| 1   | D     | 432 | GLY  | 3.1  |
| 1   | С     | 57  | LEU  | 3.1  |
| 1   | В     | 434 | ILE  | 3.0  |
| 1   | Е     | 132 | ASP  | 3.0  |
| 1   | Е     | 203 | ASP  | 3.0  |
| 1   | А     | 54  | SER  | 3.0  |
| 1   | А     | 451 | GLU  | 3.0  |
| 1   | F     | 451 | GLU  | 3.0  |
| 1   | В     | 344 | CYS  | 3.0  |
| 1   | D     | 180 | CYS  | 3.0  |
| 1   | С     | 312 | ASP  | 3.0  |
| 1   | Е     | 301 | TYR  | 3.0  |
| 1   | С     | 441 | PHE  | 3.0  |
| 1   | Е     | 363 | GLU  | 3.0  |
| 1   | В     | 60  | LEU  | 3.0  |
| 1   | Е     | 461 | LYS  | 3.0  |
| 1   | D     | 437 | GLN  | 3.0  |
| 1   | С     | 439 | GLY  | 3.0  |
| 1   | D     | 56  | ALA  | 3.0  |
| 1   | Е     | 59  | ALA  | 3.0  |
| 1   | А     | 51  | PHE  | 3.0  |
| 1   | D     | 84  | THR  | 3.0  |
| 1   | F     | 70  | PHE  | 3.0  |
| 1   | F     | 71  | LEU  | 3.0  |
| 1   | С     | 43  | LYS  | 3.0  |
| 1   | Е     | 344 | CYS  | 3.0  |
| 1   | F     | 131 | ALA  | 2.9  |
| 1   | В     | 459 | VAL  | 2.9  |
| 1   | F     | 427 | VAL  | 2.9  |
| 1   | D     | 124 | GLU  | 2.9  |
| 1   | А     | 202 | GLN  | 2.9  |
| 1   | F     | 68  | TYR  | 2.9  |
| 1   | F     | 425 | TYR  | 2.9  |
| 1   | А     | 441 | PHE  | 2.9  |
| 1   | А     | 454 | ASP  | 2.9  |
| 1   | С     | 45  | VAL  | 2.9  |
| 1   | В     | 126 | PRO  | 2.9  |
| 1   | С     | 445 | SER  | 2.9  |
| 1   | D     | 146 | ARG  | 2.9  |
| 1   | Е     | 52  | MET  | 2.9  |



| 2QTS |
|------|
|------|

| Mol | Chain | Res | Type   RSR |     |
|-----|-------|-----|------------|-----|
| 1   | В     | 444 | ALA        | 2.9 |
| 1   | D     | 83  | ALA        | 2.9 |
| 1   | D     | 205 | LYS        | 2.9 |
| 1   | А     | 138 | ILE        | 2.9 |
| 1   | F     | 430 | LEU        | 2.9 |
| 1   | Е     | 126 | PRO        | 2.9 |
| 1   | В     | 366 | CYS        | 2.9 |
| 1   | С     | 62  | CYS        | 2.9 |
| 1   | С     | 320 | GLU        | 2.8 |
| 1   | С     | 426 | GLU        | 2.8 |
| 1   | F     | 431 | LEU        | 2.8 |
| 1   | Е     | 439 | GLY        | 2.8 |
| 1   | В     | 360 | CYS        | 2.8 |
| 1   | F     | 62  | CYS        | 2.8 |
| 1   | D     | 59  | ALA        | 2.8 |
| 1   | А     | 122 | ARG        | 2.8 |
| 1   | А     | 134 | LYS        | 2.8 |
| 1   | В     | 339 | GLU        | 2.8 |
| 1   | F     | 424 | ALA        | 2.8 |
| 1   | В     | 448 | THR        | 2.8 |
| 1   | А     | 52  | MET        | 2.8 |
| 1   | А     | 438 | MET        | 2.8 |
| 1   | А     | 436 | GLY        | 2.8 |
| 1   | D     | 436 | GLY        | 2.8 |
| 1   | Е     | 455 | TYR        | 2.8 |
| 1   | В     | 44  | ARG        | 2.8 |
| 1   | А     | 362 | CYS        | 2.8 |
| 1   | Ε     | 444 | ALA        | 2.8 |
| 1   | А     | 430 | LEU        | 2.7 |
| 1   | В     | 440 | LEU        | 2.7 |
| 1   | D     | 148 | PHE        | 2.7 |
| 1   | E     | 441 | PHE        | 2.7 |
| 1   | F     | 44  | ARG        | 2.7 |
| 1   | A     | 301 | TYR        | 2.7 |
| 1   | E     | 68  | TYR        | 2.7 |
| 1   | C     | 141 | ASP        | 2.7 |
| 1   | D     | 127 | ASP        | 2.7 |
| 1   | A     | 48  | ALA        | 2.7 |
| 1   | D     | 54  | SER        | 2.7 |
| 1   | C     | 442 | ILE        | 2.7 |
| 1   | С     | 425 | TYR        | 2.7 |
| 1   | Е     | 72  | TYR        | 2.7 |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | В     | 449 | VAL  | 2.7  |
| 1   | Е     | 361 | VAL  | 2.7  |
| 1   | D     | 52  | MET  | 2.7  |
| 1   | А     | 358 | GLU  | 2.7  |
| 1   | В     | 50  | CYS  | 2.7  |
| 1   | С     | 289 | GLY  | 2.7  |
| 1   | D     | 44  | ARG  | 2.7  |
| 1   | D     | 86  | LEU  | 2.7  |
| 1   | Е     | 71  | LEU  | 2.7  |
| 1   | Е     | 288 | TRP  | 2.7  |
| 1   | С     | 438 | MET  | 2.7  |
| 1   | В     | 61  | VAL  | 2.7  |
| 1   | Е     | 427 | VAL  | 2.7  |
| 1   | С     | 456 | ALA  | 2.7  |
| 1   | D     | 360 | CYS  | 2.7  |
| 1   | F     | 291 | CYS  | 2.7  |
| 1   | С     | 434 | ILE  | 2.7  |
| 1   | F     | 312 | ASP  | 2.7  |
| 1   | В     | 451 | GLU  | 2.7  |
| 1   | С     | 134 | LYS  | 2.7  |
| 1   | Е     | 137 | GLU  | 2.7  |
| 1   | F     | 130 | THR  | 2.6  |
| 1   | А     | 50  | CYS  | 2.6  |
| 1   | F     | 53  | GLY  | 2.6  |
| 1   | D     | 71  | LEU  | 2.6  |
| 1   | F     | 367 | ASN  | 2.6  |
| 1   | D     | 288 | TRP  | 2.6  |
| 1   | F     | 63  | THR  | 2.6  |
| 1   | В     | 56  | ALA  | 2.6  |
| 1   | С     | 180 | CYS  | 2.6  |
| 1   | D     | 62  | CYS  | 2.6  |
| 1   | F     | 442 | ILE  | 2.6  |
| 1   | С     | 58  | LEU  | 2.6  |
| 1   | В     | 445 | SER  | 2.6  |
| 1   | В     | 289 | GLY  | 2.6  |
| 1   | Е     | 424 | ALA  | 2.6  |
| 1   | В     | 297 | ASP  | 2.6  |
| 1   | С     | 79  | ASP  | 2.6  |
| 1   | F     | 132 | ASP  | 2.6  |
| 1   | А     | 291 | CYS  | 2.6  |
| 1   | С     | 299 | GLU  | 2.6  |
| 1   | В     | 59  | ALA  | 2.6  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Ε     | 287 | PRO  | 2.5  |
| 1   | В     | 202 | GLN  | 2.5  |
| 1   | В     | 442 | ILE  | 2.5  |
| 1   | Е     | 138 | ILE  | 2.5  |
| 1   | В     | 58  | LEU  | 2.5  |
| 1   | С     | 451 | GLU  | 2.5  |
| 1   | В     | 132 | ASP  | 2.5  |
| 1   | С     | 454 | ASP  | 2.5  |
| 1   | А     | 456 | ALA  | 2.5  |
| 1   | С     | 48  | ALA  | 2.5  |
| 1   | В     | 322 | CYS  | 2.5  |
| 1   | D     | 301 | TYR  | 2.5  |
| 1   | F     | 129 | GLN  | 2.5  |
| 1   | В     | 66  | ILE  | 2.5  |
| 1   | В     | 53  | GLY  | 2.5  |
| 1   | D     | 289 | GLY  | 2.5  |
| 1   | С     | 302 | ASP  | 2.5  |
| 1   | С     | 131 | ALA  | 2.5  |
| 1   | D     | 449 | VAL  | 2.5  |
| 1   | Е     | 437 | GLN  | 2.5  |
| 1   | F     | 147 | ASN  | 2.5  |
| 1   | А     | 62  | CYS  | 2.5  |
| 1   | С     | 344 | CYS  | 2.5  |
| 1   | Е     | 451 | GLU  | 2.5  |
| 1   | С     | 127 | ASP  | 2.5  |
| 1   | С     | 60  | LEU  | 2.5  |
| 1   | D     | 63  | THR  | 2.5  |
| 1   | В     | 358 | GLU  | 2.5  |
| 1   | D     | 69  | TYR  | 2.4  |
| 1   | С     | 207 | ARG  | 2.4  |
| 1   | D     | 364 | MET  | 2.4  |
| 1   | С     | 254 | ASP  | 2.4  |
| 1   | Е     | 58  | LEU  | 2.4  |
| 1   | А     | 133 | GLU  | 2.4  |
| 1   | F     | 133 | GLU  | 2.4  |
| 1   | Е     | 149 | LYS  | 2.4  |
| 1   | D     | 141 | ASP  | 2.4  |
| 1   | Е     | 254 | ASP  | 2.4  |
| 1   | С     | 301 | TYR  | 2.4  |
| 1   | Е     | 432 | GLY  | 2.4  |
| 1   | А     | 60  | LEU  | 2.4  |
| 1   | F     | 82  | ALA  | 2.4  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | F     | 207 | ARG  | 2.4  |
| 1   | В     | 75  | VAL  | 2.4  |
| 1   | D     | 123 | TYR  | 2.4  |
| 1   | А     | 137 | GLU  | 2.4  |
| 1   | С     | 55  | LEU  | 2.4  |
| 1   | Е     | 64  | ASN  | 2.4  |
| 1   | А     | 146 | ARG  | 2.4  |
| 1   | D     | 85  | ARG  | 2.4  |
| 1   | Е     | 143 | ALA  | 2.4  |
| 1   | F     | 201 | GLY  | 2.4  |
| 1   | С     | 358 | GLU  | 2.4  |
| 1   | С     | 366 | CYS  | 2.4  |
| 1   | Е     | 120 | ASN  | 2.3  |
| 1   | F     | 59  | ALA  | 2.3  |
| 1   | А     | 445 | SER  | 2.3  |
| 1   | F     | 127 | ASP  | 2.3  |
| 1   | D     | 435 | GLY  | 2.3  |
| 1   | F     | 432 | GLY  | 2.3  |
| 1   | С     | 44  | ARG  | 2.3  |
| 1   | С     | 147 | ASN  | 2.3  |
| 1   | F     | 84  | THR  | 2.3  |
| 1   | F     | 448 | THR  | 2.3  |
| 1   | D     | 134 | LYS  | 2.3  |
| 1   | А     | 78  | LEU  | 2.3  |
| 1   | С     | 430 | LEU  | 2.3  |
| 1   | D     | 285 | PRO  | 2.3  |
| 1   | D     | 427 | VAL  | 2.3  |
| 1   | А     | 84  | THR  | 2.3  |
| 1   | С     | 447 | LEU  | 2.3  |
| 1   | D     | 79  | ASP  | 2.3  |
| 1   | Е     | 426 | GLU  | 2.3  |
| 1   | F     | 428 | ALA  | 2.3  |
| 1   | D     | 126 | PRO  | 2.3  |
| 1   | Е     | 289 | GLY  | 2.3  |
| 1   | D     | 65  | ARG  | 2.3  |
| 1   | F     | 344 | CYS  | 2.3  |
| 1   | А     | 135 | GLN  | 2.3  |
| 1   | Е     | 320 | GLU  | 2.3  |
| 1   | F     | 302 | ASP  | 2.3  |
| 1   | А     | 72  | TYR  | 2.3  |
| 1   | F     | 146 | ARG  | 2.2  |
| 1   | Ε     | 121 | ASN  | 2.2  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | А     | 124 | GLU  | 2.2  |
| 1   | Е     | 148 | PHE  | 2.2  |
| 1   | А     | 444 | ALA  | 2.2  |
| 1   | В     | 428 | ALA  | 2.2  |
| 1   | А     | 53  | GLY  | 2.2  |
| 1   | В     | 125 | ILE  | 2.2  |
| 1   | С     | 285 | PRO  | 2.2  |
| 1   | А     | 140 | GLN  | 2.2  |
| 1   | С     | 67  | GLN  | 2.2  |
| 1   | Е     | 418 | THR  | 2.2  |
| 1   | F     | 290 | ASP  | 2.2  |
| 1   | В     | 313 | CYS  | 2.2  |
| 1   | D     | 362 | CYS  | 2.2  |
| 1   | А     | 136 | LEU  | 2.2  |
| 1   | D     | 53  | GLY  | 2.2  |
| 1   | D     | 431 | LEU  | 2.2  |
| 1   | D     | 367 | ASN  | 2.2  |
| 1   | А     | 123 | TYR  | 2.2  |
| 1   | А     | 437 | GLN  | 2.2  |
| 1   | С     | 150 | PRO  | 2.2  |
| 1   | D     | 74  | HIS  | 2.2  |
| 1   | Е     | 303 | THR  | 2.2  |
| 1   | F     | 303 | THR  | 2.2  |
| 1   | D     | 361 | VAL  | 2.2  |
| 1   | Е     | 77  | LYS  | 2.2  |
| 1   | А     | 147 | ASN  | 2.2  |
| 1   | С     | 52  | MET  | 2.2  |
| 1   | А     | 86  | LEU  | 2.2  |
| 1   | В     | 140 | GLN  | 2.2  |
| 1   | С     | 56  | ALA  | 2.2  |
| 1   | А     | 458 | GLU  | 2.2  |
| 1   | F     | 254 | ASP  | 2.1  |
| 1   | F     | 363 | GLU  | 2.1  |
| 1   | В     | 57  | LEU  | 2.1  |
| 1   | Е     | 73  | PRO  | 2.1  |
| 1   | F     | 280 | ARG  | 2.1  |
| 1   | Е     | 290 | ASP  | 2.1  |
| 1   | Е     | 211 | MET  | 2.1  |
| 1   | D     | 147 | ASN  | 2.1  |
| 1   | А     | 439 | GLY  | 2.1  |
| 1   | В     | 180 | CYS  | 2.1  |
| 1   | С     | 427 | VAL  | 2.1  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | D     | 207 | ARG  | 2.1  |
| 1   | А     | 82  | ALA  | 2.1  |
| 1   | В     | 333 | ALA  | 2.1  |
| 1   | С     | 83  | ALA  | 2.1  |
| 1   | F     | 284 | LEU  | 2.1  |
| 1   | D     | 254 | ASP  | 2.1  |
| 1   | D     | 286 | PRO  | 2.1  |
| 1   | D     | 287 | PRO  | 2.1  |
| 1   | С     | 446 | ILE  | 2.1  |
| 1   | С     | 448 | THR  | 2.1  |
| 1   | F     | 128 | THR  | 2.1  |
| 1   | В     | 435 | GLY  | 2.1  |
| 1   | D     | 280 | ARG  | 2.1  |
| 1   | Е     | 207 | ARG  | 2.1  |
| 1   | С     | 61  | VAL  | 2.1  |
| 1   | F     | 180 | CYS  | 2.1  |
| 1   | В     | 141 | ASP  | 2.1  |
| 1   | С     | 332 | ASP  | 2.1  |
| 1   | F     | 423 | LYS  | 2.1  |
| 1   | А     | 211 | MET  | 2.1  |
| 1   | Е     | 144 | ASN  | 2.1  |
| 1   | А     | 85  | ARG  | 2.1  |
| 1   | С     | 65  | ARG  | 2.1  |
| 1   | F     | 433 | ASP  | 2.0  |
| 1   | А     | 143 | ALA  | 2.0  |
| 1   | Е     | 206 | PRO  | 2.0  |
| 1   | Е     | 428 | ALA  | 2.0  |
| 1   | С     | 70  | PHE  | 2.0  |
| 1   | С     | 133 | GLU  | 2.0  |
| 1   | С     | 64  | ASN  | 2.0  |
| 1   | F     | 65  | ARG  | 2.0  |
| 1   | А     | 69  | TYR  | 2.0  |
| 1   | А     | 56  | ALA  | 2.0  |
| 1   | А     | 366 | CYS  | 2.0  |
| 1   | В     | 361 | VAL  | 2.0  |
| 1   | D     | 319 | VAL  | 2.0  |
| 1   | Е     | 205 | LYS  | 2.0  |
| 1   | Е     | 327 | VAL  | 2.0  |
| 1   | В     | 54  | SER  | 2.0  |

Continued from previous page...



### 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 6.3 Carbohydrates (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | B-factors(Å <sup>2</sup> ) | Q < 0.9 |
|-----|------|-------|-----|-------|------|------|----------------------------|---------|
| 2   | GLC  | Ι     | 1   | 12/12 | 0.71 | 0.20 | 78, 78, 79, 79             | 0       |
| 2   | GLC  | Ι     | 2   | 11/12 | 0.73 | 0.17 | 76,77,78,78                | 0       |
| 2   | GLC  | Н     | 1   | 12/12 | 0.75 | 0.16 | 71,73,74,74                | 0       |
| 2   | GLC  | Н     | 2   | 11/12 | 0.78 | 0.16 | 73,73,75,76                | 0       |
| 2   | GLC  | G     | 2   | 11/12 | 0.80 | 0.17 | 63,63,64,64                | 0       |
| 2   | GLC  | G     | 1   | 12/12 | 0.82 | 0.18 | 63,64,64,65                | 0       |

The following is a graphical depiction of the model fit to experimental electron density for oligosaccharide. Each fit is shown from different orientation to approximate a three-dimensional view.











### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res | Atoms | RSCC | RSR  | $B-factors(Å^2)$    | Q < 0.9 |
|-----|------|-------|-----|-------|------|------|---------------------|---------|
| 3   | NAG  | F     | 12  | 14/15 | 0.10 | 0.22 | 67,72,74,74         | 0       |
| 3   | NAG  | D     | 7   | 14/15 | 0.34 | 0.20 | 69,73,74,75         | 0       |
| 3   | NAG  | F     | 11  | 14/15 | 0.36 | 0.21 | 70,74,76,76         | 0       |
| 3   | NAG  | E     | 10  | 14/15 | 0.45 | 0.19 | $61,\!67,\!69,\!70$ | 0       |
| 3   | NAG  | С     | 5   | 14/15 | 0.46 | 0.16 | 61,66,68,69         | 0       |
| 3   | NAG  | С     | 6   | 14/15 | 0.56 | 0.18 | 65,71,73,73         | 0       |
| 3   | NAG  | В     | 4   | 14/15 | 0.72 | 0.14 | $52,\!55,\!59,\!61$ | 0       |
| 3   | NAG  | А     | 2   | 14/15 | 0.76 | 0.13 | 44,46,50,51         | 0       |
| 3   | NAG  | E     | 9   | 14/15 | 0.78 | 0.15 | $53,\!57,\!59,\!61$ | 0       |
| 3   | NAG  | А     | 1   | 14/15 | 0.81 | 0.13 | $50,\!54,\!56,\!57$ | 0       |
| 3   | NAG  | В     | 3   | 14/15 | 0.85 | 0.11 | 42,45,48,50         | 0       |
| 3   | NAG  | D     | 8   | 14/15 | 0.87 | 0.10 | 32,36,42,45         | 0       |
| 4   | CL   | В     | 464 | 1/1   | 0.97 | 0.06 | 29,29,29,29         | 0       |
| 4   | CL   | D     | 4   | 1/1   | 0.97 | 0.07 | 31,31,31,31         | 0       |
| 4   | CL   | F     | 6   | 1/1   | 0.98 | 0.08 | 28,28,28,28         | 0       |
| 4   | CL   | А     | 464 | 1/1   | 0.99 | 0.03 | 26,26,26,26         | 0       |
| 4   | CL   | E     | 5   | 1/1   | 0.99 | 0.04 | 31,31,31,31         | 0       |
| 4   | CL   | С     | 464 | 1/1   | 0.99 | 0.03 | 24,24,24,24         | 0       |

## 6.5 Other polymers (i)

There are no such residues in this entry.

