Full wwPDB NMR Structure Validation Report (i) #### Oct 17, 2021 – 12:02 AM EDT PDB ID : 1RGR Title : Cyclic Peptides Targeting PDZ Domains of PSD-95: Structural Basis for En- hanced Affinity and Enzymatic Stability Authors: Piserchio, A.; Salinas, G.D.; Li, T.; Marshall, J.; Spaller, M.R.; Mierke, D.F. Deposited on : 2003-11-12 This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry. We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp with specific help available everywhere you see the (i) symbol. The following versions of software and data (see references (1)) were used in the production of this report: MolProbity: 4.02b-467 Mogul : 1.8.5 (274361), CSD as541be (2020) Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019) RCI : v 1n 11 5 13 A (Berjanski et al., 2005) PANAV : Wang et al. (2010) ShiftChecker : 2.23.2 Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.23.2 # 1 Overall quality at a glance (i) The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$ The overall completeness of chemical shifts assignment was not calculated. Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based. | Metric | Whole archive $(\# \mathrm{Entries})$ | $egin{array}{l} { m NMR \ archive} \ (\#{ m Entries}) \end{array}$ | |-----------------------|---------------------------------------|--------------------------------------------------------------------| | Clashscore | 158937 | 12864 | | Ramachandran outliers | 154571 | 11451 | | Sidechain outliers | 154315 | 11428 | The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% | Mol | Chain | Length | Quality of chain | | | | |-----|-------|--------|------------------|-----------|----|--| | 1 | A | 99 | 58% | 12% • 21% | 6% | | | 2 | В | 6 | 50% | 50% | | | # 2 Ensemble composition and analysis (i) This entry contains 22 models. Model 7 is the overall representative, medoid model (most similar to other models). The following residues are included in the computation of the global validation metrics. | Well-defined (core) protein residues | | | | | | | | |--------------------------------------|-----------------------------------------------------------------------------|------|---|--|--|--|--| | Well-defined core | Well-defined core Residue range (total) Backbone RMSD (Å) Medoid mode | | | | | | | | 1 | A:63-A:69, A:75-A:87, | 0.36 | 7 | | | | | | | A:92-A:108, A:115-A:149, | | | | | | | | | B:1-B:6 (78) | | | | | | | Ill-defined regions of proteins are excluded from the global statistics. Ligands and non-protein polymers are included in the analysis. The models can be grouped into 4 clusters and 3 single-model clusters were found. | Cluster number | Models | |-----------------------|-------------------------| | 1 | 3, 4, 9, 10, 13, 20, 22 | | 2 | 5, 11, 15, 16, 21 | | 3 | 2, 8, 14, 18, 19 | | 4 | 1, 7 | | Single-model clusters | 6; 12; 17 | # 3 Entry composition (i) There are 3 unique types of molecules in this entry. The entry contains 1531 atoms, of which 768 are hydrogens and 0 are deuteriums. • Molecule 1 is a protein called Presynaptic density protein 95. | Mol | Chain | Residues | Atoms | | | | Trace | | | |-----|-------|----------|-------|-----|-----|-----|-------|---|---| | 1 | Λ | 02 | Total | С | Н | N | О | S | 0 | | | A | 93 | 1411 | 440 | 706 | 126 | 138 | 1 | 0 | There are 6 discrepancies between the modelled and reference sequences: | Chain | Residue | Modelled | Actual | Comment | Reference | |-------|---------|----------|--------|----------------|------------| | A | 155 | HIS | - | expression tag | UNP P31016 | | A | 156 | HIS | - | expression tag | UNP P31016 | | A | 157 | HIS | - | expression tag | UNP P31016 | | A | 158 | HIS | - | expression tag | UNP P31016 | | A | 159 | HIS | - | expression tag | UNP P31016 | | A | 160 | HIS | - | expression tag | UNP P31016 | • Molecule 2 is a protein called postsynaptic protein CRIPT peptide. | Mol | Chain | Residues | Atoms | | | | Trace | | |-----|-------|----------|-------|----|----|---|-------|---| | 9 | D | G | Total | С | Н | N | О | 0 | | | D | 0 | 110 | 35 | 57 | 8 | 10 | U | There are 2 discrepancies between the modelled and reference sequences: | Chain | Residue | Modelled | Actual | Comment | Reference | |-------|---------|----------|--------|---------------------|------------| | В | 3 | LYS | GLN | engineered mutation | GB 3098551 | | В | 5 | GLU | SER | engineered mutation | GB 3098551 | • Molecule 3 is BETA-ALANINE (three-letter code: BAL) (formula: C₃H₇NO₂). | Mol | Chain | Residues | Atoms | | | | | |-----|-------|----------|-------|---|---|---|---| | 9 | D | 1 | Total | С | Н | N | О | | 3 | D | 1 | 10 | 3 | 5 | 1 | 1 | # 4 Residue-property plots (i) ### 4.1 Average score per residue in the NMR ensemble These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey. • Molecule 1: Presynaptic density protein 95 # 4.2 Scores per residue for each member of the ensemble Colouring as in section 4.1 above. #### 4.2.1 Score per residue for model 1 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 67% 33% #### 4.2.2 Score per residue for model 2 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 83% 17% #### 4.2.3 Score per residue for model 3 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 50% 33% 17% ### 4.2.4 Score per residue for model 4 • Molecule 1: Presynaptic density protein 95 Chain A: 54% 14% · · 21% 6% • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 67% 17% 17% ### 4.2.5 Score per residue for model 5 • Molecule 1: Presynaptic density protein 95 #### HIS HIS HIS HIS • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 67% 33% ### 4.2.6 Score per residue for model 6 • Molecule 1: Presynaptic density protein 95 #### R150 R151 R152 R153 P154 H1S H1S H1S H1S • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 50% 50% ### 4.2.7 Score per residue for model 7 (medoid) • Molecule 1: Presynaptic density protein 95 #### 4.2.8 Score per residue for model 8 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide #### 4.2.9 Score per residue for model 9 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide #### 4.2.10 Score per residue for model 10 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide #### 4.2.11 Score per residue for model 11 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide #### 4.2.12 Score per residue for model 12 • Molecule 1: Presynaptic density protein 95 #### P153 HIS HIS HIS HIS HIS • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 50% 50% #### 4.2.13 Score per residue for model 13 • Molecule 1: Presynaptic density protein 95 HIS • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 50% 33% 17% ### 4.2.14 Score per residue for model 14 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 33% 50% 17% #### 4.2.15 Score per residue for model 15 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide #### 4.2.16 Score per residue for model 16 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide # 4.2.17 Score per residue for model 17 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 67% 33% #### 4.2.18 Score per residue for model 18 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 67% 33% #### 4.2.19 Score per residue for model 19 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 83% 17% #### 4.2.20 Score per residue for model 20 • Molecule 1: Presynaptic density protein 95 HIS HIS • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 67% 33% Y1 V6 ### 4.2.21 Score per residue for model 21 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 50% 50% Y1 E5 V6 #### 4.2.22 Score per residue for model 22 • Molecule 1: Presynaptic density protein 95 • Molecule 2: postsynaptic protein CRIPT peptide Chain B: 67% 33% #### Refinement protocol and experimental data overview (i) 5 The models were refined using the following method: torsion angle dynamics, cartesian MD in water. Of the 100 calculated structures, 22 were deposited, based on the following criterion: structures with acceptable covalent geometry, structures with the least restraint violations. The following table shows the software used for structure solution, optimisation and refinement. | Software name | Classification | Version | |---------------|--------------------|---------| | CNS | structure solution | 1.1 | | CNS | refinement | 1.1 | No chemical shift data was provided. # 6 Model quality (i) # 6.1 Standard geometry (i) Bond lengths and bond angles in the following residue types are not validated in this section: BAL The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the (average) root-mean-square of all Z scores of the bond lengths (or angles). | Mol Chain | | E | Sond lengths | Bond angles | | | |-----------|-----|-----------------|-----------------------------|-----------------|-----------------------------|--| | | | RMSZ | #Z>5 | RMSZ | #Z>5 | | | 1 | A | 0.83 ± 0.03 | $0\pm0/551~(~0.0\pm~0.0\%)$ | 1.38 ± 0.03 | $4\pm1/750~(~0.5\pm~0.1\%)$ | | | 2 | В | 0.87 ± 0.04 | $0\pm0/53~(~0.0\pm~0.0\%)$ | 1.35 ± 0.11 | $0\pm0/67~(~0.5\pm~0.7\%)$ | | | All | All | 0.83 | 0/13288 (0.0%) | 1.38 | 94/17974 (0.5%) | | Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar. | Mol | Chain | Chirality | Planarity | |-----|-------|-------------|---------------| | 1 | A | 0.0 ± 0.0 | 1.7 ± 0.6 | | 2 | В | 0.0 ± 0.0 | 0.1 ± 0.3 | | All | All | 0 | 40 | There are no bond-length outliers. All unique angle outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble. | Mol | Chain | Dog | Type | Atoms Z | $Observed(^{o})$ | $\operatorname{Ideal}({}^{o})$ | Mod | Models | | |-------|-------|-----|------|-----------|------------------|--------------------------------|----------|--------|-------| | IVIOI | Chain | Res | Type | Atoms | L | Observed(') | Ideal(*) | Worst | Total | | 1 | A | 126 | ARG | NE-CZ-NH1 | 10.40 | 125.50 | 120.30 | 6 | 22 | | 1 | A | 145 | ARG | NE-CZ-NH1 | 7.82 | 124.21 | 120.30 | 1 | 22 | | 2 | В | 6 | VAL | CA-CB-CG1 | 7.69 | 122.44 | 110.90 | 3 | 8 | | 1 | A | 126 | ARG | NE-CZ-NH2 | -7.32 | 116.64 | 120.30 | 6 | 13 | | 1 | A | 77 | PHE | CB-CG-CD1 | -6.28 | 116.40 | 120.80 | 11 | 2 | | 1 | A | 92 | PRO | N-CA-CB | -6.24 | 95.74 | 102.60 | 13 | 6 | | 1 | A | 105 | ALA | N-CA-CB | -5.75 | 102.05 | 110.10 | 15 | 1 | | 1 | A | 118 | LEU | CB-CA-C | 5.63 | 120.90 | 110.20 | 21 | 2 | | 1 | A | 85 | ASN | N-CA-CB | -5.39 | 100.89 | 110.60 | 16 | 2 | | 1 | A | 95 | PHE | CB-CG-CD2 | -5.36 | 117.05 | 120.80 | 2 | 1 | Continued on next page... | I 'omtamalod | trom | mmonia | maaa | |--------------|---------|----------|------| | Continued | 11 0116 | DICUIUUS | Daue | | | ., | 10 | 1 | | Mol | Chain | Dec | $oxed{ ext{Type}} oxed{ ext{Atoms}} oxed{ ext{Z}} oxed{ ext{Ob}}$ | | $Observed(^{o})$ | $\operatorname{Ideal}({}^{o})$ | Models | | | |------|-------|-----|-------------------------------------------------------------------|-----------|------------------|--------------------------------|----------|-------|-------| | MIOI | Chain | Res | Туре | Atoms | Z | Observed() | ideai() | Worst | Total | | 1 | A | 77 | PHE | CB-CG-CD2 | -5.21 | 117.16 | 120.80 | 19 | 1 | | 1 | A | 96 | ILE | CB-CA-C | 5.20 | 121.99 | 111.60 | 22 | 2 | | 1 | A | 145 | ARG | NE-CZ-NH2 | -5.16 | 117.72 | 120.30 | 12 | 5 | | 1 | A | 75 | LEU | CB-CG-CD2 | 5.11 | 119.69 | 111.00 | 4 | 1 | | 1 | A | 140 | ALA | N-CA-CB | -5.08 | 102.99 | 110.10 | 13 | 2 | | 1 | A | 147 | TYR | CB-CG-CD2 | -5.06 | 117.96 | 121.00 | 22 | 1 | | 1 | A | 134 | VAL | CA-CB-CG1 | 5.06 | 118.48 | 110.90 | 2 | 1 | | 1 | A | 118 | LEU | CB-CG-CD2 | 5.04 | 119.57 | 111.00 | 12 | 1 | | 1 | A | 118 | LEU | CA-CB-CG | 5.04 | 126.88 | 115.30 | 1 | 1 | There are no chirality outliers. All unique planar outliers are listed below. They are sorted by the frequency of occurrence in the ensemble. | Mol | Chain | Res | Type | Group | Models (Total) | |-----|-------|-----|------|-----------|----------------| | 1 | A | 80 | ALA | Peptide | 22 | | 1 | A | 130 | HIS | Sidechain | 9 | | 1 | A | 87 | HIS | Peptide | 3 | | 2 | В | 1 | TYR | Sidechain | 2 | | 1 | A | 95 | PHE | Peptide | 2 | | 1 | A | 63 | TYR | Sidechain | 1 | | 1 | A | 128 | VAL | Peptide | 1 | # 6.2 Too-close contacts (i) In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble. | Mol | Chain | Non-H | H(model) | H(added) | Clashes | |-----|-------|-------|----------|----------|---------| | 1 | A | 541 | 538 | 536 | 4±2 | | 2 | В | 53 | 57 | 57 | 0±1 | | All | All | 13178 | 13200 | 13139 | 91 | The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3. All unique clashes are listed below, sorted by their clash magnitude. | A | A | Cl 1 (| D: (8) | Mod | dels | |----------------------|----------------------|-----------------------------------|-----------------------------------------------|-------|-------| | Atom-1 | Atom-2 | $\operatorname{Clash}(ext{\AA})$ | $\operatorname{Distance}(\operatorname{\AA})$ | Worst | Total | | 1:A:118:LEU:HD11 | 1:A:149:MET:H | 0.67 | 1.49 | 12 | 3 | | 1:A:121:ASN:HD21 | 1:A:140:ALA:HB2 | 0.66 | 1.49 | 5 | 17 | | 1:A:134:VAL:HG22 | 2:B:6:VAL:HG21 | 0.64 | 1.69 | 12 | 1 | | 1:A:75:LEU:H | 1:A:75:LEU:HD23 | 0.62 | 1.53 | 5 | 1 | | 1:A:79:ILE:HG22 | 1:A:96:ILE:HG12 | 0.59 | 1.75 | 19 | 7 | | 1:A:118:LEU:HD21 | 1:A:149:MET:HB3 | 0.57 | 1.77 | 13 | 4 | | 1:A:126:ARG:HD2 | 1:A:127:GLU:H | 0.55 | 1.62 | 14 | 2 | | 1:A:79:ILE:HG22 | 1:A:96:ILE:HD13 | 0.54 | 1.79 | 9 | 1 | | 1:A:75:LEU:H | 1:A:75:LEU:HD22 | 0.53 | 1.62 | 13 | 1 | | 1:A:75:LEU:HD21 | 2:B:6:VAL:HG22 | 0.51 | 1.83 | 14 | 2 | | 1:A:75:LEU:HD11 | 1:A:144:VAL:HG11 | 0.51 | 1.81 | 10 | 2 | | 1:A:123:VAL:HG12 | 1:A:125:VAL:HG13 | 0.50 | 1.82 | 2 | 2 | | 1:A:76:GLY:HA3 | 1:A:103:GLY:HA3 | 0.47 | 1.86 | 8 | 4 | | 1:A:118:LEU:HA | 1:A:126:ARG:HB3 | 0.46 | 1.85 | 21 | 4 | | 1:A:134:VAL:HG23 | 2:B:6:VAL:HB | 0.45 | 1.89 | 3 | 1 | | 1:A:137:LEU:HD11 | 1:A:146:LEU:HD21 | 0.45 | 1.88 | 4 | 1 | | 1:A:75:LEU:HD13 | 2:B:6:VAL:HG22 | 0.45 | 1.88 | 20 | 2 | | 1:A:75:LEU:HD23 | 2:B:6:VAL:HG12 | 0.45 | 1.89 | 11 | 1 | | 1:A:83:THR:HG22 | 1:A:92:PRO:HB2 | 0.45 | 1.88 | 5 | 3 | | 1:A:134:VAL:HG23 | 2:B:6:VAL:HG22 | 0.45 | 1.88 | 21 | 1 | | 1:A:125:VAL:HG11 | 1:A:133:ALA:HA | 0.45 | 1.87 | 2 | 4 | | 1:A:87:HIS:HB2 | 2:B:1:TYR:CG | 0.44 | 2.48 | 13 | 1 | | 1:A:118:LEU:HD23 | 1:A:149:MET:HB2 | 0.44 | 1.88 | 15 | 2 | | 1:A:94:ILE:HG13 | 1:A:133:ALA:CB | 0.44 | 2.43 | 6 | 1 | | 1:A:78:SER:O | 1:A:96:ILE:HG23 | 0.43 | 2.13 | 20 | 1 | | 1:A:131:SER:HA | 1:A:134:VAL:HG12 | 0.43 | 1.89 | 5 | 4 | | 1:A:126:ARG:H | 1:A:128:VAL:HG22 | 0.43 | 1.73 | 6 | 1 | | 1:A:117:ILE:HD12 | 1:A:137:LEU:HD21 | 0.43 | 1.90 | 4 | 1 | | 1:A:75:LEU:HD23 | 2:B:6:VAL:HG22 | 0.43 | 1.89 | 15 | 1 | | 1:A:121:ASN:HD21 | 1:A:140:ALA:CB | 0.43 | 2.26 | 10 | 1 | | 1:A:75:LEU:HB2 | 2:B:6:VAL:HG13 | 0.43 | 1.90 | 15 | 1 | | 1:A:75:LEU:HD23 | 1:A:75:LEU:N | 0.43 | 2.29 | 4 | 3 | | 1:A:75:LEU:HD12 | 1:A:144:VAL:HG21 | 0.42 | 1.92 | 13 | 1 | | 1:A:120:VAL:HG21 | 1:A:137:LEU:HD12 | 0.42 | 1.91 | 5 | 1 | | 1:A:79:ILE:CG2 | 1:A:96:ILE:HD13 | 0.41 | 2.45 | 9 | 1 | | 1:A:115:ASP:HB3 | 1:A:148:VAL:HG11 | 0.41 | 1.91 | 9 | 1 | | 1:A:117:ILE:HD12 | 1:A:137:LEU:HD11 | 0.41 | 1.93 | 5 | 1 | | 1:A:140:ALA:HB1 | 1:A:144:VAL:HA | 0.41 | 1.93 | 15 | 1 | | 1:A:117:ILE:CD1 | 1:A:137:LEU:HD21 | 0.40 | 2.46 | 4 | 1 | | 1:A:137:LEU:O | 1:A:140:ALA:HB3 | 0.40 | 2.15 | 12 | 1 | | 1:A:95:PHE:HA | 1:A:115:ASP:O | 0.40 | 2.17 | 8 | 1 | | 1:A:120:VAL:HG21 | 1:A:137:LEU:HD22 | 0.40 | 1.94 | 8 | 1 | | 1.11.120. VIII.IIQZI | 1.71.101.1110.111022 | 0.40 | 1.04 | | 1 | # 6.3 Torsion angles (i) #### 6.3.1 Protein backbone (i) In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues. | Mol | Chain | Analysed | Favoured | Allowed | Outliers | Percentiles | |-----|-------|----------------------|--------------|-------------|------------|-------------| | 1 | A | 72/99~(73%) | 61±2 (84±2%) | 7±2 (10±3%) | 4±1 (6±1%) | 3 21 | | 2 | В | 4/6~(67%) | 4±0 (100±0%) | 0±0 (0±0%) | 0±0 (0±0%) | 100 100 | | All | All | $1672/2310 \ (72\%)$ | 1424 (85%) | 155 (9%) | 93 (6%) | 3 22 | All 11 unique Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble. | Mol | Chain | Res | Type | Models (Total) | |-----|-------|-----|------|----------------| | 1 | A | 125 | VAL | 21 | | 1 | A | 126 | ARG | 20 | | 1 | A | 121 | ASN | 17 | | 1 | A | 92 | PRO | 11 | | 1 | A | 122 | GLU | 9 | | 1 | A | 86 | PRO | 7 | | 1 | A | 115 | ASP | 4 | | 1 | A | 75 | LEU | 1 | | 1 | A | 141 | GLY | 1 | | 1 | A | 140 | ALA | 1 | | 1 | A | 76 | GLY | 1 | ### 6.3.2 Protein sidechains (i) In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues. | Mol | Chain | Analysed | Rotameric | Outliers | Percentiles | | | |-----|-------|-----------------|--------------|--------------|-------------|--|--| | 1 | A | 58/81 (72%) | 50±2 (86±3%) | 8±2 (14±3%) | 7 47 | | | | 2 | В | 6/6 (100%) | 4±1 (71±11%) | 2±1 (29±11%) | 2 18 | | | | All | All | 1408/1914 (74%) | 1196 (85%) | 212 (15%) | 6 44 | | | All 33 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble. | Mol | Chain | Res | Type | Models (Total) | |-----|-------|-----|------|----------------| | 1 | A | 143 | ILE | 22 | | 1 | A | 99 | ILE | 20 | | 1 | A | 107 | GLN | 18 | | 1 | A | 85 | ASN | 16 | | 2 | В | 1 | TYR | 14 | | 1 | A | 125 | VAL | 12 | | 1 | A | 118 | LEU | 11 | | 2 | В | 5 | GLU | 11 | | 1 | A | 77 | PHE | 10 | | 1 | A | 65 | GLU | 10 | | 1 | A | 75 | LEU | 10 | | 1 | A | 148 | VAL | 8 | | 2 | В | 3 | LYS | 7 | | 1 | A | 126 | ARG | 6 | | 1 | A | 98 | LYS | 5 | | 1 | A | 68 | LEU | 4 | | 1 | A | 135 | GLU | 4 | | 1 | A | 134 | VAL | 3 | | 2 | В | 4 | THR | 2 | | 1 | A | 117 | ILE | 2 | | 2 | В | 2 | LYS | 2 | | 1 | A | 139 | GLU | 2 | | 2 | В | 6 | VAL | 2 | | 1 | A | 122 | GLU | 2 | | 1 | A | 83 | THR | 1 | | 1 | A | 127 | GLU | 1 | | 1 | A | 129 | THR | 1 | | 1 | A | 92 | PRO | 1 | | 1 | A | 97 | THR | 1 | | 1 | A | 64 | GLU | 1 | | 1 | A | 69 | GLU | 1 | | 1 | A | 66 | ILE | 1 | | 1 | A | 78 | SER | 1 | # 6.3.3 RNA (i) There are no RNA molecules in this entry. # 6.4 Non-standard residues in protein, DNA, RNA chains (i) There are no non-standard protein/DNA/RNA residues in this entry. # 6.5 Carbohydrates (i) There are no monosaccharides in this entry. # 6.6 Ligand geometry (i) 1 ligand is modelled in this entry. In the following table, the Counts columns list the number of bonds for which Mogul statistics could be retrieved, the number of bonds that are observed in the model and the number of bonds that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length is the number of standard deviations the observed value is removed from the expected value. A bond length with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond lengths. | Mol | Type | Chain | Ros | Link | | Bond leng | gths | |-------|------|-------|------|------|--------|-----------------|-----------------------| | IVIOI | Type | Chain | rtes | Link | Counts | RMSZ | #Z>2 | | 3 | BAL | В | 7 | 2 | 4,4,5 | 0.70 ± 0.06 | 0±0 (0±0%) | In the following table, the Counts columns list the number of angles for which Mogul statistics could be retrieved, the number of angles that are observed in the model and the number of angles that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond angle is the number of standard deviations the observed value is removed from the expected value. A bond angle with |Z| > 2 is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond angles. | Mal | Tuno | Chain | Dec | Tiple | | Bond an | ngles | |-------|------|-------|-----|-------|--------|-----------------|-----------------------| | IVIOI | туре | Chain | nes | LIIIK | Counts | RMSZ | #Z>2 | | 3 | BAL | В | 7 | 2 | 3,3,5 | 2.62 ± 1.02 | $1\pm0 \ (25\pm13\%)$ | In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified. | Mol | Type | Chain | Res | Link | Chirals | Torsions | Rings | |-----|------|-------|-----|------|---------|---------------|-------| | 3 | BAL | В | 7 | 2 | - | $0\pm0,1,2,3$ | - | There are no bond-length outliers. All unique angle outliers are listed below. | Mol | Chain | Res | Type | Atoms | Z | $\mathbf{Observed}(^o)$ | $\operatorname{Ideal}({}^o)$ | Moo
Worst | | |-----|-------|-----|------|---------|------|-------------------------|------------------------------|--------------|----| | 3 | В | 7 | BAL | CB-CA-C | 6.81 | 121.54 | 111.42 | 14 | 17 | There are no chirality outliers. There are no torsion outliers. There are no ring outliers. # 6.7 Other polymers (i) There are no such molecules in this entry. # 6.8 Polymer linkage issues (i) There are no chain breaks in this entry. # 7 Chemical shift validation (i) No chemical shift data were provided